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ENGINEERING SEISMIC RISK ANALYSIS 

BY C. ALLIN CORNELL 

ABSTRACT 

This paper introduces a method for the evaluation of the seismic risk at the site of 

an engineering project. The results are in terms of a ground motion parameter 

(such as peak acceleration) versus average return period. The method incorporates 

the influence of all potential sources of earthquakes and the average activity rates 

assigned to them. Arbitrary geographical relationships between the site and po­
tential point, line, or areal sources can be modeled with computational ease. In 

the range of interest, the derived distributions of maximum annual ground motions 

are in the form of Type I or Type II extreme value distributions, if the more com­

monly assumed magnitude distribution and attenuation laws are used. 

INTRODUCTION 

Owing to the uncertainty in the number, sizes, and locations of future earthquakes 
it is appropriate that engineers express seismic risk, as design winds or floods are, in 
terms of return periods (Blume, 1965; Newmark, 1967; Blume, Newmark and Corning, 
1961; Housner, 1952; Muto, Bailey and Mitchell, 1963; Gzovsky, 1962). 

The engineer professionally responsible for the aseismic design of a project must 
make a fundamental trade-off between costly higher resistances and higher risks of 
economic loss (Blume, 1965). It requires assessment of the various levels of perform­
ance and economic implications of particular designs subjected to various levels of 
intensity of ground motion. The engineer must consider the performance of the system 
under moderate as well as large motions. Sound design often suggests some economic 
loss (e.g., architectural damage in buildings, automatic shut-down costs in nuclear 
power plants) under these moderate, not unexpected earthquake effects. 

This engineer should have available all the pertinent data and professional judge­
ment of those trained in seismology and geology in a form most suitable for making 
this decision wisely. This information is far more usefully and completely transmitted 
through a plot of, say, Modified Mercalli intensity versus average return period than 
through such ill-defined single numbers as the "probable maximum" or the "maximum 
credible" intensity. Even well-defined single numbers such as the "expected lifetime 
maximum" or "50-year" intensity are insufficient to give the engineer an understanding 
of how quickly the risk decreases as the ground motion intensity increases. Such infor­
mation is crucial to well-balanced engineering designs, whether it is used informally 
and intuitively (Newmark, 1967), more systematically (Blume, 1965), or directly in 
statistically-based optimization studies (Sandi, 1966; Benjamin, 1967; Borgman, 
1963). 

Unfortunately it has not been a simple matter for the seismologist to assess and ex­
press the risk at a site in these terms. He must synthesize historical data, geological 
information, and other factors in this assessment. The locations and activities of po­
tential sources of tectonic earthquakes may be many and different in kind; they may 
not even be well known. In some regions, for example, it is not possible to correlate 
past activity with known geological structure. In such circumstances the seismologist 
understandably has been led to express his professional opinion in terms of one or two 
single numbers, seldom quantitatively defined. It is undoubtedly difficult, in this situ-
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ation, for the seismologist to avoid engineering influences; the seismologist's estimates 
will probably be more conservative for more consequential projects. But these de­
cisions are more appropriately those of the design engineer who has at hand more 
complete information (such as construction costs, system performance characteristics, 
etc.) upon which to determine the optimal balance of cost, performance, and risk. 

Seismologists have long recognized this need to provide engineers with their best 
estimates of the seismic risk. Numerous regional seismic zoning maps have been de­
veloped. Familiar examples appear in the Uniform Building Code (1967) and 
Richter (1959). Despite reference to probabilities they are seldom clear as to how 
the (single) intensity level for each location is to be interpreted. More recently these 
values have been associated with specific average return periods (Muto, Bailey and 
Mitchell, 1963; Kawasumi, 1951; Ipek et al, 1965). In any case, more information is 
needed to define a relationship between a continuous range of average return period 
and intensities. Other attempts have been made to provide this more complete in­
formation at regional levels (Ipek, 1965; Milne and Davenport, 1965). These ap­
proaches, which are usually large scale numerical studies based directly on historical 
data, have difficulty giving proper weight to the known correlation between geological 
structure and most seismic activity. They also are not successful at a fine or local 
scale. Lacer (1965) has presented a numerical, Monte Carlo technique designed to 
estimate the distribution of the intensity of motion at a particular site given the occur­
rence of an earthquake somewhere in the surrounding region. He is able to account 
for geological features, such as faults, but he assumes all the assigned "point" sources 
are equal likely to give rise to this earthquake. 

In this paper a method is developed to produce for the engineer the desired rela­
tionships between such ground-motion parameters as Modified Mercalli Intensity, 
peak-ground velocity, peak-ground acceleration, etc., and their average return period 
for his site. The minimum data needed are only the seismologist's best estimates of 
the average activity levels of the various potential sources of earthquakes (e.g., a 
particular fault's average annual number of earthquakes in excess of some minimum 
magnitude of interest, say 4). If, in addition, the seismologist has reason to use other 
than average or typical values of the parameters in the function used to describe the 
relative frequency of earthquake magnitudes or in the functions of intensity, say, 
versus magnitude and distance, he may also supply these parameter values. The tech­
nique to be developed provides the method for integrating the individual influences 
of potential earthquake sources, near and far, more active or less, into the probability 
distribution of maximum annual intensity (or peak-ground acceleration, etc.). The 
average return period follows directly. The results of the development appear in closed 
analytical form, requiring no lengthy computation and permitting direct observation 
of the sensitivity of the final results to the estimates made. 

Unlike the analogous flood or wind problem, in the determination of the distribu­
tion of the maximum annual earthquake intensity at a site, one must consider not 
only the distribution of the size (magnitude) of an event, but also its uncertain dis­
tance from the site and the uncertain number of events in any time period. The presen­
tation here will show the mathematical development of a simple case. Results of other 
cases of interest will be displayed without complete derivations. An illustration will 
demonstrate the application of the method. Finally, the assumptions and limitations 
will be discussed more critically. Extensions and advantages of the method will con­
clude the presentation. 
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LINE SOURCE DERIVATION 

For illustration of the development of the method of solution, the determination of 
the distribution of the annual maximum Modified Mercalli intensity at a site due to 
potential earthquakes along a neighboring fault will be considered. As illustrated in 

A a) Perspective 

,e; 2 ---.. --r=-x--l-.e/2---·\ 

!~ 
[J 

Site 

b) A BD Plane 
Fm. 1. Line source. 

Figure la, the site is assumed to lie a perpendicular distance, 6., from a line on the 
surface vertically above the fault at the focal depth, h, along which future earthquake 
foci are expected to lie. The length of this fault is Z, and the site is located symmetri­
cally with respect to this length. 

Concern with focal distances restricts attention to the ABD plane, Figure lb. The 
perpendicular slant distance to the source is 

d = yh2 + 6,2 (1) 
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The focal distance, R, to any future focus located a distance X from the point Bis 

R = yd2 + X 2 (2) 

Since - l/2 ;::;; X ;;;; l/2, the distance to any earthquake focus is restricted to O ;::;; R < r0 

in which r0 = v d2 + l2j4. In general the size and location of a future earthquake are 
uncertain. They shall be treated therefore as random variables. (Random variables 
are denoted by capital letters.) 

We first seek the conditional distribution of the Modified Mercalli Intensity, I, at 
the site given that an earthquake occurs at a focal distance R = r from the site. For 
illustration we us the common assumption (Ipek, 1965; Esteva and Rosenblueth, 
1964; Wiggins, 1964; Kanai, 1961) that in the range of interest the intensity has the 
following dependence on magnitude, M, and focal distance, R: 

(3) 

in which In denotes natural logarithm and c; , i = 1, 2, 3, are semiempirical constants 
on the order of 8, 1.5, and 2.5, respectively for firm ground in southern California 
(Esteva and Rosenblueth, 1964). 

Given that an earthquake occurs at focal distance R = r, the probability that I, 
the intensity at the site, is greater than any number i is, using equation 3, 

P[l ~ i / R = r] = P[c1 + c2M - ca In r ~ i / R = r] ( 4) 

in which P[A / B] is read the probability of A given B. Assuming probabilistic inde­
pendence of Mand R, 

P[I ~ i IR= r] 

(5) 

in which FM( m) is the cumulative distribution function of earthquake magnitudes. 
For example, Richter's widely verified ( 19, 20) relationship between number, nm , and 
magnitude, m 

logro nm = a - bm 

implies 

(6) 

in which /3 = b In 10 and mo is some magnitude small enough, say 4, that events of 
lesser magnitude may be ignored by engineers. This restriction to larger events implies 
that the probabilities above are conditional on the occurrence of an event of interest, 
that is, one where M ~ m0 • The parameter bis typically (Isacks and Oliver, 1964) 
such that /3 is about 1.5 to 2.3. 
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Combining equations 5 and 6, the result is 

P[I > . I R _ ] _ [ r.i [i + cdn r + c1 ]] = i - r - exp -,.., - mo . 
C2 

(7) 

The limit on the definition of FM( m), namely m ~ mo , implies that equation 7 holds 
for 

or. 

i + C3 ln r + c1 ;:;; i. 'o 
C2 

d r0 r 
FIG. 2. Probability density function of focal distance, R. 

1S) 

At smaller values of the argument, i, the probability ( equation 7) is unity that I exceeds 
i (given the occurrence of an event of magnitude greater than mo at distance r ). 

In order to consider the influence of all possible values of the focal distance and their 
relative likelihoo.ds, we must integrate. We seek the cumulative distribution of I, 
Fr(i), given an occurrence of M ~mo, 

l
ro 

1 - Fr(i) = P[I ~ i] = d P[I ~ i [ R = r]fa(r) dr (9) 

in which fa( r) is the probability density function of R, the uncertain focal distance. 
For the illustration here, it is assumed that, given an occurrence of an event of 

interest along the fault, it is equally likely to occur anywhere along the fault. Formally, 
the location variable X is assumed to be uniformly distributed on the interval 
( -l/2, +Z/2). Thus IX[, the absolute magnitude of X, is uniformly distributed on 
the interval (0, l/2). The cumulative probability distribution, Fa(r), of R follows 
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immediately: 

2 2 2 _;---= P[X + d ~ r] = P[ / X / ~ v r2 
- d2] 

d ~ r ~ ro. (10) 

Therefore, the probability density function of R is 

2r 
d ~ r ~ ro. (11) = lyr2 - d2 

This density function is plotted in Figure 2. 
Substituting equation 11 into equation 9 and integrating is complicated by the 

awkward limits of definition of the functions, but in the region of greatest interest, 
namely larger values of the intensity the result is 

i ~ i' (12) 

in which i' is the lower limit of validity of this form of the result and equals 

( 13) 

and in which C and G are constants. The first constant is related to parameters in the 
various relationships used above: 

C = exp [~ ( ~ + mo) J . (14) 

The second constant is related to the geometry of illustration: 

2 lseo-l[ro/d] 
= -d (cos u)'Y-i du 

'Y 0 
(15) 

in which 

(16) 
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The integral in equation 15 must be evaluated numerically. Results appear in Figure 3. 
For typical parameter values and sufficiently long faults it is conservative and reason­
able to replace ro by infinity. In this case G is given by 

2,r r(,,) 

G = (2d)? [r ('Y t l)J (17) 

in which r ( 'Y) is the complete gamma function and 'Y is restricted to positive values. 
The results above yield the probability that the site intensity, I, will exceed a 

10 -

Q 

5 

2 

1.0. 

0.5 

ro/d =(X) 

/ 

1.10 

r0 /d = 1.05 

-I 0 +I 

sec-I r0 /d 

Q = f ( cos u) Y -1 du 

0 

+2 +8 
FIG. 3. Numerical values of integral in equation (15). 

y 
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certain value, i, given that an event of interest (M ~ m0 ) occurs somewhere along the 
fault. Next we must consider the question of the random number of occurrences in 
any time period. For illustration, it is assumed that the occurrences of these major 
events follow a Poisson arrival process (Parzen, 1962; Cornell, 1964) with average 
occurrence rate (along the entire fault) of 11 per year. Then, N, the number of events 
of interest along the fault in a time interval of length t years is known to be Poisson 
distributed 

n = 0, 1, 2, · · · . (18) 

It is easily established that, if certain events are Poisson arrivals with average ar­
rival rate 11 and if each of these events is independently, with probability p, a "special 
event," then these special events are Poisson arrivals with average rate pv. (This is 
said to be a Poisson process with ("random selection.") In our case the special events 
are those which cause an intensity at the site in excess of some value i. The probability, 
Pi, that any event of interest (M ~ mo) will be a special event is given by equation 12. 

Pi = P[I ~ i] = f CG exp [ ~: i J . ( 19) 

Thus the number of times N that the intensity at the site will exceed i in an interval 
of length t is 

P[N n] 
e-p,,t(Pi vtt 

n! 
n = 0, 1, 2, · · · . (20) 

Such probabilities are useful in studying losses due to a succession of moderate inten­
sities or cumulative damage due to two or more major ground motions. 

Of particular interest is the probability distribution of I~;2x the maximum intensity 
over an interval of time t ( often one year). Observe that 

P[I~2x 2 i] = P[exactly zero special events in excess of i 
occur in the time interval O to t] 

which from equation (20) is 

P[I~~x 2 i] = P[N = OJ = e-Pi'
1

. (21) 

If we let Imax equal I;;;x , the annual maximum intensity, t = 1, and 

i ~ i' (22) 

in which now the ratio v = 11/l appears. This ratio is the average number of occur­
rences per unit length per year. 

The conclusion is that for the larger intensities of engineering interest, the annual 
maximum intensity has a distribution of the double exponential or Gumbel type. This 
distribution is widely used in engineering studies of extreme events. It is important to 
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realize that, here, this conclusion is not based on the intuitive appeal to the familiar 
asymptotic extreme value argument (Gumbel, 1958), which has caused other investi­
gators to seek and find empirical verification of the distribution for maximum magni­
tudes or intensities in a given region (Milne and Davenport, 1965; Nordquist, 1945; 
Dick, 1965 ). The form of the distribution is dependent on the functional form of the 
various relationships assumed above. Others, too, have found (Dick, 1965; Epstein 
and Lomnitz, 1966; Epstein and Brooks, 1948) that the combination of Poisson oc­
currences of events and exponentially distributed "sizes" of events will invariably lead 
to the conclusion that the largest event has a Gumbel-like distribution (the true 
Gumbel distribution is non-zero for negative as well as positive values of the argu­
ment). Any combination of assumptions which leads to the exponential form of the 
distribution of I will, in combination with Poisson assumption of event occurrences, 
yield this Gumbel distribution. The exponential form of F1( i) does not require the 
exponential form of FM( m ). If the logarithmic dependence of I on R ( equation 3) is 
retained, for example, even polynomial distributions (Housner, 1952) of magnitude 
will lead to the exponential distribution of I. 

If the annual probabilities of exceedance are small enough ( say ~ 0.05), the dis­
tribution of I max can be approximated by 

,..._, p;v 

,..._, iiCG exp ( - ~ i) i ~ i'. (23) 

The average return period, T; , of an intensity equal to or greater than i is defined as 
the reciprocal of 1 - Fd,/.lx or 

T ,..._, I (/3·) ; = -. - exp - i 
vCG C2 

i ~ i' (24) 

or, the "T-year" intensity is 

i ,..._, ~ ln (vCGT;) (2.5) 

Consider the following typical numerical values of the parameters and site constants, 
applicable to a particular site in Turkey, where in one region in 1953 years it was found 
(Ipek et al, 1965) that 

log10 nm = a - bm 

= 5.51 - 0.644m 

in which nm is the number of earthquakes greater than min magnitude. Assuming these 
earthquakes all occur along the 650 km of the major fault system in the region, the 
average number of earthquakes in excess of magnitude 5 (i.e., mo = 5) per year per 
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unit length of fault is 

Also 

{3 = b ln 10 = 0.644(2.30) = 1.48. 

Using attenuation constants found empirically (Esteva and Rosenblueth, 1964) for 
California 

C1 = 8.16 

C2 = 1.45 

C3 = 2.46 

the following numerical results are obtained for a site located a minimum surface 
distance,~' of 40 km from a line source of earthquakes at depth h = 20 km: 

d = yh2 + ~2 = 44.6 km 

C3 
'Y = {3 - - 1 = 1.52 

C2 

C = exp [{3 (~ + mo) J = 6.85 X 10
6 

G 
21r r(y) 704 X 10-3 

"' (2d)7 [ r ( 'Y t 1) J = · · 

(Numerical integration gives G = 6.58 X 10-3
). Thus, the intensity at this site with 

return period Ti is 

i "'1 ln (vCGTi) 

~ 0.98 ln (6.9Ti), 

Note the logarithmic relationship between i and Ti . The risk that a design intensity 
will be exceeded can be halved ( T doubled) by increasing the design intensity by about 
0.7. This equation is plotted in Figure 4 for the range of validity i ~ i' where 

If interest extends to smaller intensities, it necessitates more cumbersome integrations 
not shown here. 

PEAK GROUND MOTION RESULTS 

The previous section developed the desired distribution results for the Modified 
Mercalli intensity, I, and a uniform line source, with a particular set of assumptions 
on magnitude distribution and the intensity versus M and R relationship. Engineers 
are generally more directly concerned with such ground motion parameters as peak-
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ground acceleration, A, peak-ground velocity, V, or peak-ground displacement, D, 
than with intensity itself. 

An argument parallel to that in the preceding section can be carried out with any 
functional relationship between the site ground-motion variable, Y, and M and R. 
For example, the particular form 

(26) 

has been recommended by Kanai ( 1961) and by Esteva and Rosenblueth ( 1964) * for 
peak-ground acceleration ( Y = A), peak-ground velocity ( Y = V), and peak-ground 
displacement ( Y = D). The latter authors (Esteva and Rosenblueth, 1964; Esteva, 

"' -1/1 
C: 

~ 
C: 

-
0 
u ... 
Q) 

2 
-0 
Q) .... 
'o 
0 
~ 

9 

8 

7 

6 

100 
0.01 

200 500 1000 2000 5000 Ti ,years 
0.001 I -Flma/i l 

Fm. 4. Numerical example: Intensity versus return period. 

1967) ( on theoretical and empirical grounds) suggest that the constants { b1 , b2 , b3} be 
{2000, 0.8, 2}, {16, 1.0, 1.7}, and {7, 1.2, 1.6) for A, V, andD respectively in southern 
California, with A, V, and Din units of centimeters and seconds and R in kilometers. 

For the general relationship in equation 26, an argument like that in the previous 
section yields for the annual maximum value of Y from a uniform line source 

1 - F <u> ~ vCGy-f!/b2 
Ymax-

1 . 
T ~ -y~Jb2 

y - vCG 

y ~ y' 

y ~ y' 

(27) 

(28) 

(29) 

*More recently, Esteva (1967), it has been suggested that the focal depth, h, in kilometers, be 
replaced by an empirically adjusted value, Vh2 + 202, which increases the formula's accuracy 
shorter focal distances. 
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in which 

(30) 

and G is as given in equation 15 ( or equation 17) with 

(31) 

The lower limit of the validity of these forms of F yi.fJx is 

(32) 

For durations, t, other than one year, v should be replaced by vt in equations 27 and 28. 
Notice that equation 27 is of the general form of the Type II asymptotic extreme 

value distribution of largest values ( Gumbel, 1958). This distribution, too, is com­
monly used in the description of natural loadings on engineering structures, the most 
familiar being maximum annual wind velocities (Task Commission on Wind Forces, 

Site 

h 

Point Source 
FIG. 5. Point source, cross section. 

1961; Thom, 1967). The justification there is based on asymptotic (large N) argu­
ments while that here is not. The results here are a consequence of the forms of the 
relationships assumed. 

Using results such as these the designer can compute for his site the peak-ground 
velocity, v, and peak-ground acceleration, a, associated with the same, say the 200-year, 
return period. For the numerical example in the previous section and the values of 
the parameters referred to in this section, these values are approximately 

v = 7.5 cm/sec = 3 in/sec 

a = 80 cm/sec2 = 0.08g. 

GENERAL SOURCE RESULTS 

In order to facilitate representing the geometry and potential source conditions at 
arbitrary sites, it is desirable to have additional results for point and area sources. 
It will be shown that these results can be used to represent quite general conditions. 

If a potential source of earthquakes is closely concentrated in space relative to its 
distance, d, from the site, it satisfactorily may be assumed to be a point source, Figure 
5. (Examples might be sites one or two hundred kilometers from New Madrid, Mo. or 
Charleston, S. C.) In this case there is no uncertainty in the focal distance, d, and the 
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previous results ( e.g., equations 22, 25, 27, 29) hold with fi equal to the average number 
of earthquakes of interest (M ~ m0 ) per year originating at this point and with a 
geometry term (in place of equation 15) equal to 

(33) 

For intensities 'Y is given by equation 16 and for variables with relationships of the 
type shown in equation 26, 1' is given by equation 31. For a point source, for values of 
the argument less than i' or y', the cumulative distribution function ( equation 22 or 27) 
is simply zero. 

In some situations, owing to an apparent lack of correlation between geologic struc­
ture and seismic activity or owing to an inability to observe this structure due to deep 
overburdens, it may be necessary for engineering purposes to treat an area surrounding 
the site as if earthquakes were equally likely to occur anywhere over the area. It can 

FIG. 6. Annular sources, perspective. 

be shown that for an annular areal source surrounding the site, as pictured in Figure 6, 
the distributions above ( equations 22 and 27) hold with a geometry term equal to 

G - 7r 1 ro 2 
[ ( )

-(,y-1)] 
- (1' - l)d-y-l - d (34) 

with 1' given by equation 16 or 31. The value of fi should now be the average number 
of earthquakes of interest (M ~ mo) per year per unit area. In terms of v, the average 
number per year over the entire annular region, fi is 

(35) 

For values of the argument less than i' or y', the cumulative distribution function 
(equation 22 or 27) is zero. Note that d will never be less than h. Thus the geometry 
factor remains finite even when the site is "immersed" in the areal source, i.e., when 
A = 0, and an earthquake directly below the site is an (improbable) possibility. 
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When more complex source configurations exist, the distribution function for the 
maximum value of some ground motion variable can be found by combining the re­
sults above. For example, if there exist independent sources ( 1, 2, · · · n) of the various 
types discussed above, the probability that the maximum value of Y, the peak-ground 
acceleration, for example, is less than y is the probability that the maximum values 
from sources 1 through n are all less than y, or 

in which FY'rl(_b_. is the distribution of the maximum Y (say peak acceleration) from 
source j, as give1n by equation 27 with the appropriate values of the parameters iii, Ci, 

GJ . Note that the different possible focal depths on the same fault can be accounted 
for in this manner. 

For the exponential form of the FYiYl functions (equation 27) 

y > y' (36) 

where y' is the largest of the y /. For y less than y', the distribution can be found with 
ease (unless a line source is involved). If the constants /3, b1 , b2 , ba are the same for all 
the sources in the region around the site, equation 36 becomes simply 

in which 
n 

iiG = L iijGj 
j=l 

y > y' 

A similar conclusion holds for Modified Mercalli intensities, equation 22. 

(37) 

(38) 

In short the distributions retain the same forms with the product, iiG, equal to the 
sum of the corresponding products over the various sources. With respect to these 
products, then, linear superposition applies. This conclusion is a reflection of the fact 
that the sum of independent Poisson process is a Poisson process with an average ar­
rival rate equal to the sum of individual rates. 

This conclusion can be used to determine geometry factors for unsymmetrical source 
geometries. For example, for the condition in Figure 7a, the geometry factor, G, must 
equal one-half of that for the symmetrical situation. The geometry factor for the situa­
tion in Figure 7b must equal one-half of that for a symmetrical source length 2b minus 
one-half of that for a symmetrical source of length 2a, or 

G = ![G' - G"] (39) 

in which G' and G" are calculated from equation 15 with values ro' and ro" respectively. 
An example will follow. This result also permits easy treatment of a fault with a (spa­
tially) non-constant average occurrence rate, each different portion of the fault being 
treated independently. 
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a) Case I 

Site 

b) Case 2 

c) Case 3, Perspective 
Fm. 7. Unsymmetrical sources. 
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In the same manner the geometry factor for an area such as that shown in Figure 7c 
is found to be 

FIG. 8. Numerical examples: plan 

in which G2" is the result for the complete annulus, equation 34. As will be shown in a 
numerical example, an areal source of arbitrary shape can be modeled with ease by 
approximating it by a number of such shapes. 

Note that the approximation to equation 37 for smaller values of the probability 

1 - Fycyl becomes 
max 

(41) 



ENGINEERING SEISMIC RISK ANALYSIS 1599 

suggesting that the (small) probability that the annual maximum, Y max, exceeds y 
in any year is made up of the sum of the probabilities contributed by each of the sources. 
Also, for larger values the return period is approximately 

,....., __ 1_ ~/b2 

Ty = C'I-v;G; y . (42) 

TABLE 1, PART 1 
NUMERICAL EX.'\MPLE 

Gi 
Source d r, 

A V D 

Line 1 
Right portion 104 115.3 5.12 X 10--1 1.73 X 10-4 3.66 X 10-a 
Left portion 104 241 1.06 X 10-6 3.17 X 10-4 5.99 X 10-a 
Line 2 
Total 49 206 3.18 X 10-5 1.98 X 10-a 1.55 X 10-2 

Portion a1 ( - ) 49 57.5 -7.28 X 10-6 -0.94 X 10-a -1.082 X 10-2 
Areal 
Annulus 

1, a = 21r 28.3 45 24.9 X 10-4 2.44 X 10-1 1.76 
2, a= 4.38 45 75.5 7.0 X 10-4 1.14 X 10-1 1.28 
3, a= 3.78 75.5 123.5 2.11 X 10-4 0.65 X 10-1 0.98 
4, a= 3.44 123.5 252 0.80 X 10-4 0.61 X 10-1 1.16 
5, a = ,r 252 00 0.23 X 10-4 0.60 X 10-1 10.49 

"Point" 216 4.7 X 10-10 4.4 X 10-7 1.1 X 10-G 

Assumptions: h = y202 + 202 = 28.3 km; /3 = 1.6; 1n-0 = 4 
Peak acceleration: b1 = 2000; b2 = 0.8; ba = 2 ; C = 2.4 X 109 

Peak velocity: b1 = 16 b2 = 1.0; b, = 1. 7; C = 4.98 X 104 

Peak displacement: b1 = 7 b, = 1.2; b, = 1.6; C = 7.8 X 103 

TABLE 1, PART 2 

NUMERICAL EXAMPLE 

;iGi 
Source 

A V D 

Line 1 
Right portion 5.12 X 10-11 1.73 X 10-s 3.66 X 10-1 
Left portion 10.6 X 10-11 3.17 X 10-s 5.99 X 10-1 
Line 2 
Total 318 X 10-11 19.8 X 10-s 15.5 X 10-7 
Portion a1 ( - ) -72.8 X 10-11 -9.4 X 10-s -10.82 X 10-7 
Areal 
Annulus 

1, a = 2,r 249 X 10-11 24.4 X 10-s 17.6 X 10-1 
2, a= 4.38 70 X 10-11 11.4 X 10-s 12.8 X 10-7 
3, a = 3.78 21.1 X 10--11 6.5 X 10-s 9.8 X 10-7 
4, a = 3.44 8.0 X 10-11 6.1 X 10-s 11.6 X 10-1 
5, a = ,r 2 .3 X 10-11 6.0 X 10-8 104.9 X 10-1 

"Point" 4.3 X 10-11 4.1 X 10-s 9.8 X 10-7 

Sum 616 X 10-11 73.7 X 10-s 182 X 10-7 
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NUMERICAL EXAMPLE 

For illustration we treat the hypothetical situation shown in Figure 8. The site is 
located on a deep alluvial plane (shaded) such that the geological structure below the 
site and to the south and east is not known in detail. Historically, earthquakes have 
~ccurred throughout this plane, but not often enough to determine fault patterns. The 
engineer chooses to treat the region as if the next earthquake were equally likely to 
occur in any unit area. The average rate, -r, = 1.0 X 10- 6 per km2

, was estimated by 
dividing the region's total number of earthquakes ( with magnitudes in excess of 4) 
by its total area. 

The exception, historically, is a small area, some 200 km southeast. It is also below 
the alluvial plane. The frequency of all sizes of earthquakes there has been relatively 
high, including several of larger magnitudes. Although the engineer can easily account 
for any suspected local difference in the parameter /3 (smaller values imply higher 
relative frequencies of larger magnitudes), he chooses to use the same /3 value, 1.6, 
for the entire region. In other words, he chooses to attribute the small area's observed 
larger magnitudes to the same population f M( m ). The justification is that the larger 
the average arrival rate, the larger is the number of observations and the more likely 
it is that larger magnitudes will be inclt,ded among the observations of a given period 
of time. Exactly what area (here shown as 30 by 30 km) is used to estimate the areal 
occurrence rate, -r, = 1.0 X 10-4 per km2, is not critical in this case since the area is 
small enough and far enough from the site that the entire source will be treated as a 
point with rate -r, = 0.09. 

Finally, to the northwest where the geological structure is exposed two faults have 
been located. Neither can be assumed inactive. Past activity on the first ( and other 
geologically similar faults) suggests an average occurrence rate of -r, = 1.0 X 10-4 

per km. No earthquakes on the second, closer fault have been recorded, but its geo­
logical similarity to the first suggests that it be given a similar activity level. 

The sectors of annuli used to represent the areal region are shown in Figure 8. The 
geometry factors, Gi , for the various sources are shown in Table 1 along with the 
products -PiGi, and their sums for peak-ground acceleration, A, peak-ground velocity V, 
and peak-ground displacement, D. The conclusion is that the maximum ground ac­
celeration, velocity, and displacement during an interval of t years have distributions 

Fv(•> = exp [-0.0367tv-1. 6
] 

max 

Fvl:fJx = exp [-0.142td-1.33
]. 

The annual maxima have the approximate distributions 

1 - Fv(v) "'0.0367v-1. 6 
max 

1 - F (d> ~ 0 142d-1.ss 
Dmax - • • 

In terms of return periods Ta"' 0.0681a2, T.""' 27.3v1.6
, Ta""' 7.05d1.33

, or a""' 3.83Ta°'5, 
V "-' 0.126T}' 625

, d "-' 0.231Ta°'75
• 
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If a design response spectrum based on a 200-year return period were desired, it 
should be based on design ground-motion values of a200 = 55 cm/sec2 = 0.054g, 
V200 = 3.5 crp/sec, d200 = 12.5 cm. Using the method for constructing a spectrum sug­
gested for design by Newmark (1967), the dynamic response spectrum in Figure 9 is 
obtained. 

u 
Q) 
(I) ...... 
E 
u 

u 
0 
Q) 

> 

0.1 0.2 0.5 1.0 
Natural Period, sec 

Design Response Spectrum; 2 % of Critical Damping 

FIG. 9. Dynamic response spectrum. 

2.0 

Notice that, for a proportional increase in all ground-motion factors, the risk (as 
measured by 1 - F or 1/T) decreases more rapidly for peak acceleration than for 
peak velocity, and more rapidly for velocity than for displacement. The implication is 
that shorter-period structures can achieve greater risk reductions for the same per­
centage increase in design level than longer-period structures. 
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Inspection of the individual "contributions" to "f.viGi ( or, approximately, to the 
risks 1 - F) in Table 1 reveals that the closer faults have the predominant influence 
on peak acceleration risks, since even relatively small, more frequent magnitudes can 
give rise to high accelerations locally.* More distant potential sources contribute sig­
nificantly to the risk of longer-period structures, as evidenced by their contributions 
to the "f.v;Gi factor for velocity and displacement. The slow decay with distance of 
peak displacement causes a large contribution even from long distances. This explains 
why the displacement of 12.5 cm is considerably larger than those associated with 
specific earthquakes records with peak accelerations of the order of 0.05g. 

ASSUMPTIONS AND EXTENSIONS 

While the assumptions made in the method are considered reasonable for most 
purposes of engineering design, a number of them can be relaxed without significantly 
altering the basic method. In particular, the distribution of magnitudes and the rela­
tionships used to relate site ground-motion characteristics to the magnitude and focal 
distance can be replaced with ease, only the results of certain integrations will change. 

In the derivations above the distribution of magnitudes has been assumed to be the 
unlimited exponential distribution. For the larger, rarer magnitudes there are in­
sufficient data to substantiate with confidence this or any other assumption (Rosen­
blueth, 1964). The shape as well as the parameters may in fact vary among different 
regions for these larger values. The magnitudes of earthquakes may be bounded. 
Relatively clean analytical results can be obtained for distribution functions of poly­
nomial form and for the limited exponential distribution. Their influence, which may be 
significant for larger return periods, are under investigation. 

For different focal distance relationships, the existing results can be used with piece­
wise fits to the other functions. For example, if it is assumed that there is no attenua­
tion of Y with distance for a certain distance, r', from a source (Housner, 1965; lpek 
et al, 1965) an annular source can be broken into two regions, one ford ~ r ~ r' and the 
other for r' ~ r ~ ro . In the first region b3 should be set equal to zero, and the values of 
b1 and b2 appropriate for near-source conditions adopted. Coupled with a limited magni­
tude distribution, this process facilitates incorporation of any suspected upper bounds 
on maximum ground motions (Housner, 1965 ). 

These functions are, in any case, no better than the parameter estimates used in 
them. One primary advantage of an analytical method, as opposed to a numerical one 
(Ipek et al, 1965; Lacer, 1965) is that the sensitivity ot final conclusions to the ac­
curacy of these parameter estimates can be assessed. 

Other of the more basic assumptions in the method can also be relaxed with relative 
ease. Specifically, these include the two assumptions (a) that the radiation of effects 
can be treated as if the earthquake generating mechanism were concentrated at a 
point and (b) that isoseismals are circular. These assumptions are commonly made in 
design studies. This is done not so much because it is thought to be true, but because 
alternative methods and information are seldom available. The vast majority of sta­
tistical data on attenuation and scaling laws, for example, are available in forms 
(averages, etc.) based on these two assumptions. At the expense of added mathematical 
cornplexity alternative assumptions ( e.g., finite mechanism length, elliptical isoseis­
mals) can be incorporated into the method above if sufficient data are available to 
justify their inclusion. 

* Also, of course, the durations are correspondingly short, a factor not explicitly appearing in 
the method for construction of response spectra proposed by Newmark. 
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The more fundamental assumptions are those of (a) equal likelihood of occurrence 
along a line or over an areal source, (b) constant-in-time average occurrence rate of 
earthquakes, and ( c) Poisson ( or "memory-less") behavior of occurrences. 

If data or judgement rule against the equal-likelihood assumption and in favor of 
other relative values they can be included by simply treating each portion of the 
source over which the equally likely assumption is reasonable as an individual source 
using the superposition method described above. 

If the engineer and the seismologist are prepared to make an assumption about the 
time dependence of the average occurrence rate, other than that of constant in time, a 
minor modification in the method suffices to account for this non-homogeneity in time 
(Parzen, 1962; Cornell, 1964 ). The influence appears, for example, in Equation 21 as 

(59) 

in which v( T) is the average occurrence rate at time T, 

The assumption that the occurrences of earthquakes follow the behavior of the 
Poisson process model can be removed only at a greater penalty, however. The Poisson 
assumption does not reflect earthquake swarms or aftershocks, nor is it physically 
consistent with the elastic rebound theory, which implies that a zone of recent past 
activity is less likely to be the source of the next earthquake than a previously active 
zone which has been relatively quiet for some time. These limitations can, in principle, 
be removed by adopting more general renewal process or Markov process models 
(Aki, 1956; Vere-Jones, 1966). For engineering purposes the Poisson results are con­
sidered adequate for numerous reasons (Rosenblueth, 1966; Lomnitz, 1966). When 
swarms and aftershocks are excluded, data does not clearly reject the Poisson assump­
tion (Lomnitz, 1966; Wanner, 1937; Knopoff, 1964; Niazi, 1964) for the rarer, major 
events of engineering interest. Even when more accurate theoretical models become 
available, it is not evident that sufficient statistical data and other information will be 
available in many regions to permit the seismologist to adopt a non-Poisson assumption 
or to estimate any more parameters than the average occurrence rates. 

The structural engineer is concerned more directly with a design response spectrum. 
For random forcing functions such as earthquake ground motions, the duration of 
motion also influences the peak-response values (Rosenblueth, 1964; Crandall and 
Mark, 1963 ). Given a relationship between duration and Mand R, and given a func­
tion relating (expected) peak response to duration and to expected peak-ground ac­
celeration or velocity, a simple application of the same method will produce such 
response spectra. In addition, inclusion of the randomness of peak response to random 
motions with given parameters (Rosenblueth, 1964; Crandall and Mark, 1963) will 
permit the construction of response spectra based on prescribed probabilities of re­
sponses not to be exceeded in a given lifetime. There is strong reason to believe that 
this latter influence is negligible (Rosenblueth, 1964; Borges, 1956 ). 

Although developed specifically for the seismic risk analysis of individual sites, the 
method systematically applied to a grid of points would yield regional seismic proba­
bility maps. These might take a form similar to those used in determining design winds 
(Thom, 1967), namely contours of maximum ground motion of equal return period. 
Consistent maps could be produced to as fine a scale as desired. Perhaps the greatest 
advantage of this method for this purpose is that it would insure that consistent 
assumptions were being used for all portions of the region and among different regions. 
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All assumptions made by the seismologists involved would be explicit and quantitative, 
open to review and to up-dating with new evidence. Major difficulties would remain, 
however, in the judgement of active sources, in the estimation of their average activity 
rates, and in determination of local soil influence. 

CONCLUSION 

A quantitative method of evaluating the seismic risk at a particular site has the 
advantage that consistent estimates of these risks can be prepared for various poten­
tial sites, all perhaps in the same general region but in significantly different geometri­
cal relationships with respect to potential sources of earthquakes. 

Such a method is necessary to determine how rapidly the risk decays as the resist­
ance of the system's design is increased. Reasonable economic trade-offs, be they with 
respect to operating regulations, below-standard performance, or system malfunction, 
cannot be made without such quantitative relationships. 

The method proposed offers the means by which to make these engineering analyses 
consistent with the seismicity information available. This information is transferred 
from the seismologist in the form of his best estimates of the average rate of seismic 
activity of potential sources of earthquakes, the relative likelihoods of various mag­
nitudes of events on those sources, and the relationships between site characteristics, 
distance, and magnitude applicable for the region. 

The conclusions appear in an easily applied, easily interpreted form, suitable for 
review for consistency and sensitivity to assumptions. 

For the most commonly assumed functional forms of the relationships used, the 
upper tails of the probability distributions of the design ground motion parameters 
are found theoretically to be of Type I or Type II extreme value type. 
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