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MANAGEM ENT SCIENCE 
Vol. 29, No. 5, May 1983 

Printed in U.S.A. 

THREE-POINT APPROXIMATIONS FOR CONTINUOUS 
RANDOM VARIABLES* 

DONALD L. KEEFERt AND SAMUELE. BODILYt 

This paper compares a number of approximations used to estimate means and variances of 
continuous random variables and / or to serve as substitutes for the probability distributions of 
such variables, with particular emphasis on three-point approximations. Numerical results 
from estimating means and variances of a set of beta distributions indicate surprisingly large 
differences in accuracy among approximations in current use, with some of the most popular 
ones such as the PERT and triangular-density-function approximations faring poorly. A 
simple new three-point approximation, which is a straightforward extension of earlier work by 
Pearson and Tukey, outperforms the others significantly in these tests, and also performs well 
in related multivariate tests involving the Dirichlet family of distributions. It offers an 
attractive alternative to currently used approximations in a variety of applications. 
(PROBABILITY MODELING, APPROXIMATION; DECISION ANALYSIS) 

1. Introduction 

In many management science applications, it is useful to represent the key uncer­
tainties by cumulative distribution functions (CDF's) defined over continuous random 
variables, or uncertain quantities. The CDF may be elicited from an "expert" via 
judgmental assessments [5], [12], [18]-[20] or obtained from historical data [22, 
Chapter 7]. It is common practice-although not always appropriate-to obtain and 
use just several points from each of the CD F's, especially if the data for a number of 
CDF's must be elicited judgmentally from busy managers. With PERT and related 
techniques, for example, three points are generally assessed for each component 
activity time in order to estimate its mean and variance, thereby permitting the 
aggregate completion time for the project to be estimated [9], [21]. In risk analysis 
(Monte Carlo) simulations, on the other hand, it is popular to elicit three points per 
distribution and fit a triangular probability density function to these [2], [10], [14]. This 
trend may be furthered by the rapidly increasing availability of easy-to-use financial 
planning software packages that have this capability. 

Three-point approximations (including some which fit a triangular density function 
to the three points) are also used to estimate parameters for distributions in a variety of 
analytical applications contexts [3], [4], [ 13], [23], [24]. Furthermore, when utilizing 
decision or probability trees, it is convenient to assess just several points for each 
distribution at the outset rather than to assess each distribution in detail and subse­
quently devise discrete approximations. In this case, the discrete distribution serves as 
a substitute for the entire continuous distribution. 

This paper compares the accuracy of a number of approximations used to represent 
continuous distributions and/ or to estimate their parameters. Particular emphasis is 
placed on approximations requiring just three points from the underlying CDF due to 
their widespread use [2], [3], [4], [9], [10], [13], [14], [21], [23], [24]. Our basic purpose is 
two-fold: 

(a) To point out the surprisingly large differences in accuracy among approxima­
tions in current use. 

• Accepted by Robert L. Winkler; received October 26, 1981. This paper has been with the authors 2 
weeks for l revision. 

t Gulf Oil Corporation, Pittsburgh. 
t university of Virginia, on leave at the University of Washington. 

595 

0025-1909 / 83 /2905 / 0595$01 .25 
Copyright © 1983, The Institute of Management Sciences 

http://www.jstor.org/page/info/about/policies/terms.jsp


This content downloaded from 128.193.164.203 on Mon, 6 Jan 2014 20:13:57 PM
All use subject to JSTOR Terms and Conditions

596 DONALD L. KEEFER AND SAMUELE. BODILY 

(b) To suggest the use of a simple new three-point approximation, which is a 
straightforward extension of earlier work by Pearson and Tukey. 

The comparisons are based primarily on the ability of the various approximations to 
estimate means and variances. In some applications, this is all that is required as noted 
above. Moreover, the ability to estimate means and variances seems a reasonable 
minimum requirement for any approximation being considered for more demanding 
service-e.g., as a substitute for the CDF as a whole. 

We begin by describing the approximations for the means and variances, including 
several related to more general approximations for the entire CDF. These are com­
pared based on their accuracy when applied to a variety of CDF's from the beta 
family of distributions. (Portions of this work were reported in [7].) Then the perfor­
mance of the best several approximations are studied in the multivariate context using 
members of the Dirichlet family of distributions. Recommendations concerning the 
use of these approximations are provided, and suggestions for further research are 
offered. 

2. Approximations 

This section presents the equations for the approximations studied, along with brief 
comments on their origin. All are based primarily on empirical observation in 
estimating parameters for univariate distributions. Those for the mean are generally 
not related to those for the variance unless stated otherwise. We begin with the 
approximations for the mean. 

The first approximation is the classical PERT formula for the mean [9]: 

mean= [ x(O.O) + 4xm + x(l.O) ]/6, (1) 

where xm and x(p) denote, respectively, the mode and the p fractile of the random 
variable X . Modifications to (1) that use the 0.05 and 0.95 fractiles rather than the 
extremes of the distribution have been proposed by Moder and Rodgers [11] and by 
Perry and Greig [ 16]: 

mean= [ x(0.05) + 4xm + x(0.95) ]/6, (2) 

mean= [ x (0.05) + 0.95xm + x (0.95)] /2.95. (3) 

More recently, Davidson and Cooper [3] developed an approximation using the 0.10 
and 0.90 fractiles and the mode: 

mean = [ x (0.10) + 2xm + x (0.90)] / 4. (4) 

Our own work indicates this approximation can be improved by modifying its 
coefficients as follows: 

mean= O.I6xm + .42[ x(0.10) + x(0.90) ]. (5) 

Approximations utilizing the median rather than the mode have been proposed by 
Pearson and Tukey [15] and by Swanson in Megill [10]: 

mean= 0.63x(0.50) + 0.185[ x(0.05) + x(0.95) ], (6) 

mean= 0.40x(0.50) + 0.30[ x(0.10) + x(0.90) J. (7) 

Most of the simple approximations for the variance involve two symmetrically 
located fractiles in the tails of the distribution. The classical PERT formula [9] is 

variance = ( [ x ( 1.0) - x (0.0)] / 6)2. (8) 
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Alternatives using the 0.05 and 0.95 fractiles rather than the extremes have been 
proposed by Pearson and Tukey [15] and by Moder and Rodgers [11], respectively: 

variance= ([ x(0.95) - x(0.05) J /3.25)2, 

variance = ( [ x (0.95) - x (0.05) J /3.20)2. 

(9) 

(10) 

Moder and Rodgers also proposed an approximation using the 0.10 and 0.90 fractiles, 

variance= ([ x(0.90)- x(0.10)]/2.70) 2, 

which was modified slightly by Davidson and Cooper [3] : 

variance = ( [ x (0.90) - x (0.10) J /2.65)2. 

(11) 

(12) 

Pearson and Tukey [15] also suggested an iterative scheme requiring five rather than 
three fractiles (the 0.025, 0.05, 0.50, 0.95, and 0.975 fractiles). We found that an 
effective three-point approximation for the variance can be obtained by truncating this 
procedure so that it requires only the 0.05, 0.50, and 0.95 fractiles and is no longer 
iterative. The applicability of this approximation is significantly enhanced by eliminat­
ing the need for the 0.025 and 0.975 fractiles, especially in light of the difficulty of 
assessing these points in the tails. Specifically, the variance can be estimated by 

variance= ([ x(0.95) - x(0.05) ]/ [ 3.29 - O.l(a/ a0)2J)2, (13) 

where a= x(0.95) + x(0.05) - 2x(0.50), and a0 is the estimate of the standard devia­
tion from (9). 

Although numerous pairs of the foregoing mean and variance approximations utilize 
the same points from the underlying CDF-e.g., (1) and (8) or (6) and (13)-different 
weights are used to compute the mean and the variance and therefore none corre­
sponds to a single discrete probability distribution. Consequently, these formulas are 
not particularly helpful in applications where a discrete distribution is required to 
substitute for the CDF-e.g., in a probability or decision tree. Ideally, we would like to 
find an approximation that would perform as well as the best of the foregoing 
formulas in estimating means and variances and could also serve as a discrete­
distribution approximation for the CDF. 

A discrete-distribution approximation consists of n outcomes v1 , v2 , • •• , vn having 
probabilities p 1, p2 , ••• , Pn. The mean and variance of the approximation are given by 

n 

mean = ~ p;v; , 
i=l 

n 

variance= ~ (p;v}) - (mean)2. 
i=l 

(14a) 

(14b) 

Again we are interested primarily in the case n = 3 where a continuous random 
variable in a decision tree or probability tree is replaced by a three-fork event node. 

Pearson and Tukey [15] observed that, for any strictly increasing function g( · ) of x, 
the fractiles of g(x) are simple transformations of those of X ; that is, g(p) = g(x(p)). 
Perry and Greig [16] suggested that a sufficiently robust approximation for the mean 
such as (6) might also provide good results in estimating expected utilities for most 
utility functions of interest, since u(x) is basically just another random variable for 
which the mean is to be estimated. Clearly, if an approximation for the mean does 
perform well in estimating the expected utility of a distribution over a variety of utility 
functions, it serves for our purposes as a good approximation for that distribution. 
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Keefer and Pollock [8] concluded that (6) can serve as a very useful approximation 
for calculating expected utilities and suggested a Taylor series interpretation to help 
explain its impressive robustness. Therefore, we propose the "extended Pearson­
Tukey" approximation as the first of the discrete-distribution approximations to be 
studied: 

Vi= x(0.05), 

V2 = X (0.50), 

V3 = x(0.95), 

Pi= 0.185, 

p2 = 0.630, 

p3 = 0.185. 

(15) 

Since (7) also involves only fractiles from the CDF, we also propose the "extended 
Swanson-Megill" approximation: 

Vi= x(0.10), Pi= 0.3, 

V2 = X (0.50), 

V3 = x(0.90), 

P2 = 0.4, 

p3 = 0.3. 

(16) 

In the "bracket-median" approximation, the probability scale of the CDF is divided 
into a number of equal intervals, or brackets, and the median of each is assigned the 
probability of its interval. The error in calculating the mean with this approximation 
can be substantial if only a few intervals are used [19]. Nevertheless, the five-point 
equiprobability bracket-median approach is commonly used in practice as a discrete­
distribution approximation [22, Chapter 5]. It requires the 0.10, 0.30, 0.50, 0.70, and 
0.90 fractiles as indicated below: 

Vi= x(0.10), Pi= 0.20, 

V2 = x(0.30), p2 = 0.20, 

V3 = X (0.50), p3 = 0.20, (17) 

V4 = x(0.70), p4 = 0.20, 

V5 = x(0.90), p 5 = 0.20. 

Brown, Kahr, and Peterson [l] propose two discrete-distribution approximations. 
The first is a three-point approximation based on the median and the extremes of the 
underlying distribution as indicated below: 

v 1 = [3x(O.O) + 5x(0.50)]/8, 

v2 = [ x(O.O) + 14x(0.50) + x(l.0)]/16, 

v3 = [ 5x(0.50) + 3x(l.O) ]/8, 

Pi= 0.25, 

P2 = 0.50, 

p3 = 0.25. 

(18) 

The second is a five-point approximation that requires the 0.25 and 0.75 fractiles in 
addition to the median and the extremes: 

v2 = x(0.25), p 2 = 0.5[ x(0.50) - x(0.25) ]/[ x(0.25) - x(O.O) ], 

v4 = x(0.75), p4 = 0.5[ x(0.75) - x(0.50) J / [ x(l.O) - x(0.75) ], 

v 1 = x(0.25) - 0.25(1 + 2p2)[ x(0.50) - x(O.O) ], Pi= 0.25(1 - 2p2), 

v5 = x(0.75) + 0.25(1 + 2p4)[ x(l.O) - x(0.50) ], p5 = 0.25(1 - 2p4), (19) 

s = 0.5[ x(0.25) + x(0.50) J + 0.5;i[ x(0.50) - x(O.O) ], 

t = 0.5[ x(0.50) + x(0.75) J + 0.5p4 [ x(l.O) - x(0.50) ], 

P3 = P1 + Ps · 

http://www.jstor.org/page/info/about/policies/terms.jsp


This content downloaded from 128.193.164.203 on Mon, 6 Jan 2014 20:13:57 PM
All use subject to JSTOR Terms and Conditions

3-POINT APPROXIMATIONS FOR CONTINUOUS RANDOM VARIABLES 599 

I. Mode and extremes 2. Mode and 0.05 and 0.95 fractiles 

Probability 
density 

x(O.O) Xm x(l.O) 

Probability 
density 

x(0.05) Xm x(0.95) 

3. Bitriangular from median and 0.05 and 0.95 fractiles 4. Mode, 0.05 and 0.95 fractiles as extremes 

Probability 
density 

x(0.05) x(0.50) x(0.95) 

Probability 
density 

x(0.05) xm 

FIGURE I. Four Three-Point Triangular Models of the Probability Density Function. 

x(0.95) 

For a final philosophy of approximation, we consider triangular probability density 
functions. These approximations are commonly used in risk analysis (Monte Carlo) 
simulations [2], [lO], [14] and may also be used for computing parameters such as 
means and variances [13], [23], [24] as noted earlier. The triangular density function 
generally provides an imperfect representation of the actual density function, but is 
simple and convenient to use. Its use is often based on the premise that very little 
information is available about the actual distribution anyway-e.g., only subjective 
estimates of "high," "low," and "most likely" values. In examining the accuracy of the 
triangular-based formulas for the mean and variance, we are really evaluating the 
appropriateness (or quality of fit) of the triangularity assumption over an assortment of 
probability distributions. 

We consider the four triangular models illustrated in Figure l. The first simply 
defines the triangular density by lines drawn from the mode to each of the extreme 
fractiles. The second fits a triangular density to the 0.05 and 0.95 fractiles and the 
mode. It is defined by determining its extremes, x(O.O) and x(l.O), from two simulta­
neous nonlinear equations in x(0.05), x(0.95), and xm. Geometric relationships plus a 
few lines of algebra give: 

[ x(0.05) - x(O.O) J2 = 0.05[ x(l.O) - x(O.O)] [ xm - x(O.O) ], 

[ x(l.O) - x(0.95) J2 = 0.05[ x(l.O) - x(O.O)] [ x(l.O) - xm]. 

These can be solved to find x(O.O) and x(l.O) by standard numerical iterative methods. 
The third triangular approximation uses the 0.05 and 0.95 fractiles and the median, 
rather than the mode. It is really a "bi-triangular" approximation, since it results from 
placing two right triangles back-to-back at the median, with one triangle fit to the 
median and the 0.05 fractile and the other to the median and the 0.95 fractile. Unless 
the 0.05 and 0.95 fractiles of the underlying distribution are equidistant from its 
median, these two triangles will not have the same height-i.e., the bi-triangular 
density function has a jump, or discontinuity, at the median. The extreme points for 
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the triangles are given directly in terms of the 0.05 (or 0.95) fractiles by': 

x (0.0) = x (0.50) - [ x (0.50) - x (0.05) J; p - vo.10 J, 
x(l.O) = x(0.50) + [ x(0.95) - x(0.50) ]/ [ l - vO. lO J. 

The fourth triangular approximation, due to Warren [23], is identical to the first except 
that it treats the 0.05 and 0.95 fractiles of the underlying distribution as the extremes of 
the approximating triangular density function, which is fit through these two points 
and the mode. 

3. Numerical Comparisons 

3.1. Method of Comparison 

The numerical comparison of the various approximations is based on their ability to 
estimate the mean and variance for a set of beta distributions. The standard beta 
density function with parameters p and q is written : 

0 ,( X ,( l, p > 0, q > 0, 

where B(p, q) is the beta function. (If p and q are integers, then 

B(p,q) = (p- l) ! (q - l)!/(p + q - l)!.) 

(20) 

This family of distributions was chosen for test purposes because it can assume a wide 
variety of shapes likely to arise in practice. The set of 78 distributions used here 
corresponds to all combinations of p and q for which p < q, where each can take on 
the values of 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 30 and 60. It is a modest augmentation of 
the set of 66 distributions used by Perry and Greig [16] for similar comparisons. 

If X is a random variable having a beta distribution as in (20), then its expected 
value, or mean, and variance are given by 

mean= p/(q + p) = p/n, (21a) 

variance= pq/[ (p + q)2(p + q + l) J = pq/[ n2(n + l) ], (21b) 

where n = p + q. The (unique internal) mode is given by (p - 1)/(n - 2) for the set of 
distributions considered. 

Assuming that the data for the approximations are assessed with perfect accuracy, 
we can compare the estimates of the mean and variance from the approximations with 
the actual, or true, values from (21). This simulates the situation where only those 
points required by each approximation are elicited from the expert (with perfect 
accuracy), while the type of distribution remains unknown. 

Performance is measured in terms of the error and percentage error, which for an 
actual value z and an approximate value from the formula, z, are defined as follows : 

Error= z -z, 

% Error = 100( z - z) / z. 

(22a) 

(22b) 

Most of the results obtained here are easily generalized to beta-distributed variables 
having the same values of p and q, but bounds other than O and I. For instance, the 
error in the mean for a beta-distributed variable Y ranging between a and b can be 
found by multiplying the error for X by ( b - a), while the error in the variance for Y is 
that for X multiplied by (b - a)2. The percentage error in the variance is independent 
of the range. However, the percentage error in the mean calculated for X applies to Y 
only as long as the lower bound on Y is zero. 
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3.2. Results 

Table l shows the maximum and average absolute errors and percentage errors for 
the various approximations using the test set of beta distributions. Overall, note the 
wide variation in performances: e.g., the Pearson-Tukey approximation for the mean 
outperforms the PERT and the first triangular approximation by more than three 
orders of magnitude on average absolute error. We now examine specific results in 
more detail, beginning with those for the mean. 

3.2.l. Approximating the Mean. Clearly, the Perry-Greig, the Pearson-Tukey, the 
modified Davidson-Cooper, the Swanson-Megill, and the fourth triangular model are 
superior to the others as approximations for the mean. Note that these approximations 
are also among the simplest to use of those considered. Despite this result, many of the 
less desirable formulas apparently are still commonly used : e.g., the PERT-type 
formulas [2 l] or the first triangular approximation [2], [ l O], [ 13], [ 14]. Especially poor 
performances are provided by the original PERT approximation, the Brown-Kahr­
Peterson approximations, and the first triangular model. The Pearson-Tukey approxi­
mation is extremely accurate, with a maximum percentage error of less than l / l O of 
1% and an average percentage error of about 0.02%. 

3.2.2. Approximating the Variance. The truncated Pearson-Tukey approximation 
appears to be the best for estimating the variance, but it is followed very closely by the 
extended Pearson-Tukey. The latter may be the approximation to use in practice since 
it is simpler. 

There are six other approximations that perform reasonably well: the two-point 
Pearson-Tukey, the extended Swanson-Megill, the second and third triangular mod­
els, the Davidson-Cooper, and the first of the Moder-Rodgers approximations. 
Particularly poor approximations are the first triangular model (unfortunately perhaps 
the most commonly used triangular model), the original PERT, and the two Brown­
Kahr-Peterson approximations. Again, the differences in performance between the 
best and the worst are very large. In general the formulas utilizing the 0.05 and 0.95 
fractiles (Pearson-Tukey) do somewhat better than those utilizing the 0.10 and 0.90 
fractiles. 

3.2.3. Approximating the CDF. Of those approximations that could be used to 
substitute for the entire CDF, the clear winner is the extended Pearson-Tukey 
approximation. The extended Swanson-Megill approximation also does well overall, 
although not as well for the variance as for the mean. The five-point bracket-median 
approach performs reasonably well in estimating the mean but poorly in estimating the 
variance. The first triangular model and both Brown-Kahr-Peterson approximations 
perform very poorly and should be avoided. 

Of the triangular models, the fourth provides the best estimates for the mean, but 
consistently underestimates the variance by over 50% (by ignoring the tails of the 
underlying distribution). The bi-triangular model appears to be the best of the four 
overall, since it is best in estimating the mean while only slightly inferior in estimating 
the variance. Furthermore it has an advantage from an assessment standpoint because 
it uses the median-which lends itself to convenient consistency checks-rather than 
the mode. However, all the triangular models are clearly outperformed by the 
extended Pearson-Tukey approximation in estimating this set of means and variances. 

3.3. Supplementary Comparisons and Caveats 

The extended Pearson-Tukey (EP-T) approximation appears to be very promising 
based on these comparisons. Ample evidence of its usefulness in estimating means and 
variances for univariate distributions is provided in Table l. It also seems to be a 
logical choice as a three-point approximation for the entire CDF. In risk analysis 
simulations where discrete distributions are acceptable (e.g., if the "lumpiness" intro-
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TABLE I 

Summary of Errors and Percentage Errors in the Mean and Variance for Beta Distributions 

Approximating the Mean Approximating the Variance 

Maximum Average Absolute Maximum Average Absolute 

Approximation (Equation) Error % Error Error % Error Error % Error Error % Error 0 
0 

Original PERT (1) 0.14552 451. 0.05224 41.7 z 
> 

Moder-Rodgers (2) - 0.04494 - 23.6 0.01148 6.09 t'"' 
0 

Perry-Greig (3) - 0.00486 2.05 0.00065 0.37 r 
Davidson-Cooper (4) - 0.03499 -19.1 0.00915 4.88 :;,:: 
Modified Davidson-Cooper (5) - 0.00139 0.74 0.00024 0.14 tTl 

tTl 
Pearson-Tukey Two-Point (6) 0.00015 0.07 0.00004 0.02 'Tl 

tTl 
Swanson-Megill (7) 0.00103 0.33 0.00012 0.05 :,:i 

Original PERT (8) 0.02728 5506. 0.01768 549. > z 
Pearson-Tukey (9) 0.00085 - 7.5 0.00023 2.2 0 
Moder-Rodgers (IO) 0.00201 6.3 0.00055 4.5 V, 

> 
Moder-Rodgers (11) - 0.00167 - 20.7 0.00071 8.8 s:: 
Davidson-Cooper (12) 0.00271 - 17.7 0.00042 5.6 C 

tTl 
Pearson-Tukey Truncated (13) - 0.00086 - 1.7 0.00006 0.38 t'"' 

Extended Pearson-Tukey ( 15) 0.00015 0.07 0.00004 0,02 - 0.00080 - 1.6 0.00006 0.46 tT1 

Extended Swanson-Megill (16) 0.00103 0.33 0.00012 0.05 0.00552 I I.I 0.00042 2.7 
0, 
0 

5-Point Bracket Median (17) - 0.00398 - 3.35 0.00133 0.75 - 0.00551 - 30.2 0.00215 21.5 0 

3-Point Brown-Kahr-Peterson (18) 0.11326 351.1 0.04549 34.65 - 0.03242 4152. 0.01111 365.9 r= 
-< 

5-Pt. Brown-Kahr-Peterson (19) 0.05510 170.8 0.02076 16.22 0.01362 2634. 0.01019 280.6 
Triangular Number I 0.30663 950.6 0.12675 95.5 0.05415 10928. 0.03456 1040. 
Triangular Number 2 0.01267 I I.I 0.00420 2.40 - 0.00260 - 7.4 0.00040 3.7 
Triangular Number 3 0.00703 4.89 0.00212 1.16 - 0.00260 - 8.7 0.00044 4.1 
Triangular Number 4 - 0.00589 - 1.62 0.00055 0.27 - 0.02784 - 55.7 0.00616 54.2 
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duced is not undesirable), it may be used in place of triangular-density approxima­
tions. Similar remarks apply to the extended Swanson-Megill (ES-M) approximation, 
although its somewhat lower accuracy must be considered. These two approximations 
do, however, have limitations. 

As an illustration, consider a set of lognormal probability distributions. If Y is a 
normally distributed random variable with mean µy and standard deviation ay, then 
the random variable X defined by Y = IogX is lognormally distributed. Both the 
extent to which the density function of X is skewed and the extent to which it is 
peaked increase rapidly as ay (the standard deviation of the associated normal 
distribution) increases. Table 2 shows the error and percentage error in the mean and 
variance of X as a function of ay for the EP-T and ES-M approximations. Note that, 
although the former significantly outperforms the latter, both approximations deterio­
rate markedly as ay increases, particularly in their ability to estimate the variance. 

These approximations work well for smooth unimodal probability density functions 
that are not extremely skewed or peaked-the type of function that usually results 
from judgmental assessment. However, if the distribution appears to be highly skewed 
or sharply peaked (a suspicion based perhaps on initial assessments) then it is 
imprudent to use a three-point approximation even to estimate only the mean and 
variance. 

One way to view the quality of the approximation for the "entire distribution" is via 
the measure of fit used in the Kolmogorov-Smirnov goodness-of-fit test. This is 

D = MaxlF(x) - S(x)I 
X 

(23) 

where F(x) is the actual CDF and S(x) is the approximating CDF. 
For the approximations using simple fixed fractiles, the measure D will be a 

constant unaffected by the shape of the underlying distribution. But for those approxi­
mations using the mode and for the Brown-Kahr-Peterson approximations, D will 
depend on the shape of the underlying distribution. Figure 2 shows the determination 
of D values for the EP-T, ES-M, and five-point bracket median approximations, which 
turn out to be 0.315, 0.2, and O. l, respectively. Thus the five-point bracket median 
approximation has the best "fit" of the three based on this measure. 

The triangular distributions would also have low D's. Although the D value for the 
bi-triangular model depends on the shape of the underlying distribution, it would 
require a highly unusual distribution to give a D value higher than 0.1. 

According to this measure, then, it appears that one of the better triangular 
approximations ( e.g., the bi-triangular) or even the five-point bracket median approxi­
mation might be preferable to the EP-T and ES-M approximations if one were 
primarily concerned with the closeness of the fit of the CDF. However, if this is the 
major concern, more detailed assessment of the CDF and fitting of a continuous 
approximating curve may be in order [ 19]. 

Finally, we note that there are applications in which a specific interval of a CDF is 
important. This may occur in decision analysis, for example, if a decision "switches" 
depending upon whether or not a critical level of an uncertain quantity ( e.g., product 
demand) is reached. In such cases, it is important that this critical interval of the CDF 
be appropriately represented in a discrete-distribution approximation. Here, it is 
generally desirable to assess enough points to construct a smooth curve representing 
the CDF and subsequently to tailor a discrete-distribution approximation to the curve, 
with particular emphasis on representing the critical interval. Again, a general-purpose 
three-point approximation cannot always be expected to be appropriate. 

Still, if one is looking for simplicity and is not overly concerned with the details of 
the distribution, the EP-T approximation can be recommended over the alternative 
simple approximations in current use. Simplicity is often especially important when 
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TABLE2 

Errors and Percentage Errors for Lognormal Distributions 
(Mean of Associated Normal Distribution /1.y = 0.) 

Extended Pearson- Tukey Extended Swanson- Megill 

O'y Mean Variance Mean Variance 

0.1 Error 0.00000 - 0.00001 - 0.00008 - 0.00023 
%Error 0.00 - 0.07 -0.01 - 2.23 

0.2 Error 0.00000 - 0.00027 - 0.00038 - 0.00193 
%Error 0.00 - 0.64 - 0.04 - 4.54 

0.3 Error - 0.00006 - 0.00180 - 0.00113 - 0.00855 
%Error -0.01 - 1.74 -0.11 - 8.30 

0.4 Error - 0.00027 - 0.00723 - 0.00271 - 0.02732 
%Error - 0.03 - 3.55 - 0.25 - 13.42 

0.5 Error - 0.00080 - 0.02284 - 0.00570 - 0.07189 
%Error -0.07 - 6.26 - 0.50 - 19.71 

0.6 Error - 0.00192 - 0.06248 - 0.01093 - 0.16755 
%Error - 0.16 - 10.06 - 0.91 - 26.98 

0.7 Error - 0.00404 - 0.15526 - 0.01956 - 0.36063 
%Error - 0.32 - 15.04 - 1.53 - 34.94 

0.8 Error - 0.00782 - 0.36068 - 0.03318 - 0.73624 
%Error -0.57 - 21.21 - 2.41 - 43.30 

0.9 Error - 0.01421 - 0.79834 - 0.05395 - 1.45169 
%Error - 0.95 - 28.46 - 3.60 - 51.75 

1.0 Error - 0.02466 - 1.70697 - 0.08477 - 2.80078 
%Error - 1.50 - 36.55 - 5.14 - 59.96 

I.I Error - 0.04127 - 3.56312 - 0.12956 - 5.34013 
%Error - 2.25 -45.15 - 7.07 - 67.66 

1.2 Error - 0.06707 - 7.32412 - 0.19359 - 10.14279 
%Error - 3.26 - 53.88 - 9.42 - 74.61 

1.3 Error - 0.10643 - 14.93459 - 0.28396 - 19.31998 
%Error -4.57 - 62.35 - 12.20 - 80.66 

1.4 Error - 0.16557 - 30.40591 - 0.41023 - 37.12212 
%Error -6.21 - 70.22 - 15.40 - 85.73 

1.5 Error - 0.25331 - 62.17219 - 0.58528 - 72.32489 
%Error - 8.22 - 77.20 - 19.00 - 89.81 

there are many uncertain quantities, particularly when they interact. Indeed, it is in 
such multivariate contexts that the approximations considered here are most widely 
utilized. Use of the EP-T approximation and others in this context is explored in the 
next section. 

4. Multivariate Applications 

Most applications of approximations for the mean, the variance, or for the entire 
CDF involve more than one random variable. Specifically, the multivariate problem is 
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FIGURE 2. Derivation of the Kolmogorov- Smirnov Measure for Three Approximations. 

to obtain the probability distribution of the variable, V= h(X1,X2, • •• , Xn), where 
X; , i = l, 2, ... , n are random variables. For example, V may be a payoff variable 
computed from random revenue and cost variables using standard accounting relation­
ships. Unless h is a particularly simple function, the distribution of V may not be easy 
to determine analytically. Consequently, approximations (or Monte Carlo simulation) 
play an important role in practical applications. As in the univariate case, it is often 
sufficient-and generally easier-to calculate parameters such as the mean and vari­
ance of V. 

4. l. First Considerations 

The approximation approach we examine replaces a probability or decision tree 
with continuous event nodes by one with discrete fractiles, for example as shown in 
Figure 3. In Figure 3, the EP-T approximation is used for each random variable; thus 
three fractiles of X1 are assessed (the 0.05, 0.50, and 0.95), then three fractiles of X2 

conditional on X1 are assessed for each outcome of X1, and so on ending with the 
fractiles of Xn, conditional on values X 1,X 2 , •• • , X,, _ 1• Clearly 3n assessments are 
needed in all (although we give suggestions for short-cuts later). If the X;'s are 
probabilistically independent, the conditioning is unnecessary and only 3n fractiles 
would have to be assessed to generate the 3n endpoints. In the general situation, with 
some independent and some dependent random variables, the order in which the 
random variables appear in the tree could be chosen so that variables dependent on 
other random variables would appear to the right of them in the tree. 

Any of the three-point approximations could be used in this fashion in multivariate 
applications (or the tree could be expanded to use a five-point approximation). One 
would expect, however, that the best univariate approximations would work best in the 
multivariate situation as well. This is obvious in some situations-e.g., if the X;'s are 
independent and can thus be treated individually and h is a simple function such as a 
sum or product. More generally, we note that the expectation (or variance) of V can be 
decomposed into a sequence of one-dimensional expectations ( or variance computa­
tions). For example the expectation of V = h(X, Y) can be written as 

E[V] = LEy[h(Ylx)]fx(x)dx where 

Ey[h(Ylx)] = fyh(x,y)fy 1 x(Ylx)dy. 

(24a) 

(24b) 

The stagewise approach described above involves three EP-T approximations of (24b) 
at X = x(0.05), x(0.50), and x(0.95), respectively, together with an EP-T approxima­
tion of (24a) using these results. The point is that if the individual EP-T approxima-
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A general probability tree with n random variables, * x, * x, • • • * x" V(x,,x,, ,x.) 

is approximated by 
x,,(0.95) V(x1(0.95), xi(0.95), ... , x,,(0.95)) 

xi(0.95) • • • x,,(0.5) V(x 1(0.95), xi(0.95), ... , x,,(0.50)) 

• 0.185 x,,(0.05) V(x 1(0.95),xi(0.95), ... , x,,(0.05)) 

xi(0.05) • 

X1(0.05) • 

Vis then approximated by 3" outcomes having probabilities (0.63)"' (0.185)" - "' where m is the number of 
variables set at their median. 

FIGURE 3. An Approach to a Multivariate Approximation Using the Extended Pearson- Tukey Uni­
variate Approximation. 

tions are good enough, the overall approximation will also be good. These arguments 
also hold if V is a utility function expressing preferences for payoff levels. 

The prime candidates for use in multivariate applications are therefore the EP-T and 
the ES-M approximations. From the comments in §3.3, of course, some caution is 
called for in applying the EP-T or ES-M to approximate the CDF of V or even its 
mean and variance. Moreover, even if V is a function of independent random 
variables and only the mean of V is being estimated, there will be cumulative effects 
due to combining the errors in the individual approximations, even though E [ V] 
= h(E(X1), E(X2), .•• , E(Xn)). For highly nonlinear h, these errors will be more 
pronounced. Without probabilistic independence, the interactions between variables 
may exaggerate the errors even further. Our purpose in this section is to obtain 
preliminary indications of the quality of approximations involving more than one 
random variable. 

4.2. Multivariate Numerical Comparisons 

As a first step towards investigating the general multivariate case, we present some 
results for the bivariate case: i.e., V = h(X, Y). In particular, we consider two of the 
most common forms for h( · , · ), the sum and the product forms: 

h(X,Y)=X+Y, 

h(X, Y) = XY. 

(25a) 

(25b) 

For each form and for each of the bivariate test distributions, we examine the 
performance of the various approximations in estimating the mean and variance of V 
and the covariance of X and Y. These particular terms are important in themselves, 
but the covariance term takes on added importance in light of its role in approximat­
ing the means and variance of more complex nonlinear functions with many variables. 

Howard [6] has suggested the following approximations for the mean and variance 
of V: 

(26a) 

- " ah ah var(V)-~ ax axcov(X;,X1 ), 
l ,j I j 

(26b) 
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where all derivatives are evaluated at the means of the variables, and cov(X;, X;) 
= V ar(X;). Assuming that the means and variances of each X; can be approximated 
accurately enough, the usefulness of these approximations will depend on the accuracy 
in approximating the covariance and the appropriateness of Howard's quadratic 
approximations (26) in the specific situation. 

One reason for using Howard's approximations rather than computing the mean 
and variance from the complete probability tree is that it can reduce the number of 
assessments and computation necessary when n is large and probabilistic dependence 
is present. An estimate of covariance is needed for each pair of variables. Using 
three-point approximations, nine fractiles are needed for each of the n(n - 1)/2 
pairs of variables. These same fractiles could also provide the approximations for 
the mean and variance of each X; except one. The total number of fractiles assessed, 
4.5n(n - 1) + 3, will be less than the 3" assessments for the complete tree when n > 3. 
For example, with 6 random variables, the complete tree requires 729 assessments 
while using a three-point covariance approximation in Howard's expressions requires 
138 separate fractiles. 

Howard [6] suggests a procedure for estimating covariances to be used in his 
approximations that is based on drawing curves representing the relationship of the 
mean of Xj conditional on X; values. We submit that a decision maker will find our 
method of providing conditional fractiles easier (he does not have to supply the whole 
curve), that he will be able to do it more consistently (consistency checks can be 
incorporated into the fractile assessment), and that he will have greater confidence in 
his answers. Indeed, if it were just as easy for decision makers to provide means as to 
provide the median or other fractiles, there would be no need for three-point approxi­
mations for the mean at all. 

The approximations studied for estimating E( V), var( V) and cov(X, Y) were the 
best of the three-point approximations, i.e. the EP-T and ES-M approximations. In 
addition, the five-point bracket median approach was included for comparison. 

The performances of the approximations were compared using the multivariate 
analog of the beta distribution, the Dirichlet distribution. The Dirichlet density 
function has three parameters: Px > 0, Py > 0, and q > 0. It is given by 

J(x, y) = [f(Px +Py + q)/(f(Px)f(py)f(q)) ]xP<-yP·· - 1(1 - x - yt- 1 (27) 

where f( ·) is the gamma function . The parameters Px, Py, and q were allowed to range 
separately over the values 2, 3, 6, 10, 20, and 60, giving 216 different bivariate 
distributions. 

Exact expressions for E(X + Y), var(X + Y), E(XY), var(XY) and cov(X, Y) are 
available in terms of Px, Py, and q for use in calculating errors (although for space 
reasons we will not give the expression here) [17]. Errors have been averaged over the 
216 different Dirichlet distributions. 

4.3. Multivariate Results 

Table 3 summarizes the results. Of the approximations, only the EP-T does well for 
all of the factors. The errors with ES-M are tolerable for many uses but are higher for 
the variances and the covariance than with the EP-T. The five-by-five bracket-median, 
as anticipated from the results in Table 1, misses on the variances and the covariance; 
there seems to be little reason to use it rather than one of the other two. 

The error in the cov(X, Y) using the EP-T is so low (and the errors in means and 
variances so low from §2) that it seems reasonable to use it for large n to get the terms 
in Howard's approximations (26). Again, an important consideration is the accuracy of 
the quadratic approximation of (26) itself. These results are also, of course, encourag­
ing for those situations where the more direct probability tree approach of Figure 3 is 
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TABLE3 

Errors and Percentage Errors in the Means and Variances of the Sum and Product of Two 
Uncertain Quantities and in Their Covariance 

Average Average Average Absolute 
Absolute Error Error Percentage Error 

mean(X + Y) 0.0012955 - 0.0004114 0.35139 
Five by Five var(X + Y) 0.0011715 - 0.0011715 22.40927 
Bracket Median mean(XY) 0.0006014 0.0002503 1.18503 

var(XY) 0.0001295 - 0.0001295 21.42346 
cov(X, Y) 0.0006207 0.0006207 23.74023 

mean(X + Y) 0.0000322 0.0000102 0.00764 
Three by Three var(X + Y) 0.0000259 0.0000158 0.40679 
EP-T mean(XY) 0.0000177 - 0.0000045 0.03297 

var(XY) 0.0000054 0.0000003 0.57851 
cov(X, Y) 0.0000141 - 0.0000124 0.43388 

mean(X + Y) 0.0001109 - 0.0000269 0.02139 
Three by Three var(X + Y) 0.0001907 - 0.0001202 2.78590 
ES-M mean(XY) 0.0000832 0.0000094 0.12581 

var(XY) 0.0000363 - 0.0000280 3.95458 
cov(X, Y) 0.0000686 0.0000230 2.79328 

employed. This approach would seem the logical choice if n is relatively small or if the 
variables are independent. 

4.4. Further Research 

This section has only provided a start on the problem of approximating the 
moments in multivariate applications. But the results for the EP-T approximation are 
encouraging. It would not be difficult to evaluate errors in approximations for 
polynomial functions in more than one variable. Similarly, performance of various 
approximations in estimating higher order moments could be investigated. The results 
here give a very rough idea, however, of how these explorations will turn out. 

It may be useful to develop more specific methods for approximating certain 
multivariate probability distributions. It may also be possible to develop a better 
approximation to f(x, y), the joint probability distribution in X and Y, by appropriate 
selection of fewer than nine points in X X Y space. Any work on this idea, however, 
should reflect concerns for how the points may be assessed. People are able to assess 
the fractiles of YI X; would they be able to assess selected fractiles of the joint 
distribution of X and Y? Since covariance ( or correlation) plays such a key role in 
estimating the central moments of a function of uncertain quantities, another useful 
development would be approximations based on limited assessment data developed 
specifically for estimating the covariance ( or correlation). 

5. Conclusions 

The results reported here indicate the EP-T approximation is a widely-applicable 
general-purpose three-point approximation for continuous probability distributions. It 
is more accurate-often by a wide margin-than its competitors in estimating means 
and variances of distributions typical of those elicited via judgmental assessments. 
Since the approximation itself is a discrete distribution, it can be used to substitute for 
continuous distributions where appropriate. 

From the probability assessment standpoint, it has the advantage of utilizing the 
median, which naturally lends itself to straightforward consistency checks, rather than 
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the mode. On the other hand, it does require the 0.05 and 0.95 fractiles (as do many of 
its competitors), which are somewhat more difficult to assess accurately than points 
closer to the center of the distribution. The second-best approximation studied here, 
the ES-M approximation, may be an attractive alternative if this is a major concern, 
since it utilizes the 0.10 and 0.90 fractiles in addition to the median. 

As emphasized throughout, such approximations definitely do have limitations. If 
three-point approximations are to be used, however, it makes sense to use the best ones 
available. At the very least, it would be prudent to avoid using those that perform very 
poorly in simple tasks such as estimating means and variances. 
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