Linking GoldSim with the PHREEQC Geochemical Model with a Dynamic Link Library Element

Ted Eary MWH Americas, Inc. Fort Collins, Colorado

(ted.eary@mwhglobal.com or ted_eary@yahoo.com)

GoldSim 2007 User Conference, San Francisco

Abstract

The GoldSim contaminant transport module provides capabilities for simulating chemical processes such as partitioning and solubilities. While flexible and easily configurable, these simple processes do not represent complete reaction paths, hence additional chemical relationships are sometimes needed to model complex hydrochemical systems. A versatile approach for representing complex chemical processes of chemical equilibration and aqueous speciation is to rely on GoldSim's dynamic link library (DLL) element. The purpose of this poster is to describe how to set up and use the DLL element to work with the PHREEQC geochemical model.

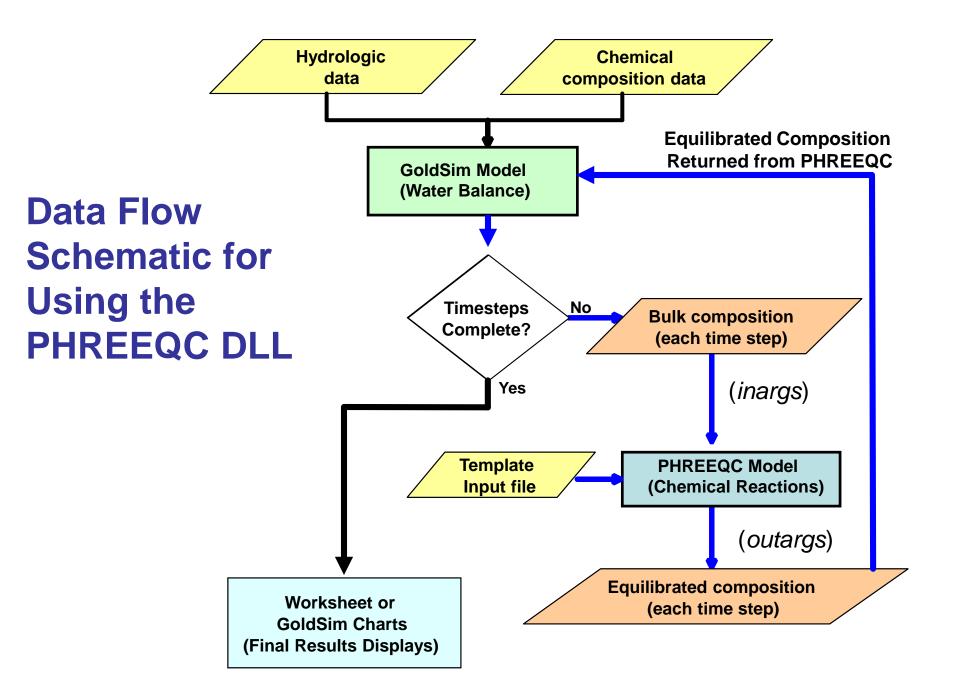
The approach for using an external DLL is based on the following steps for the flow of information to and from PHREEQC:

• A vector of species concentrations representing a complete solution is defined in the GoldSim model.

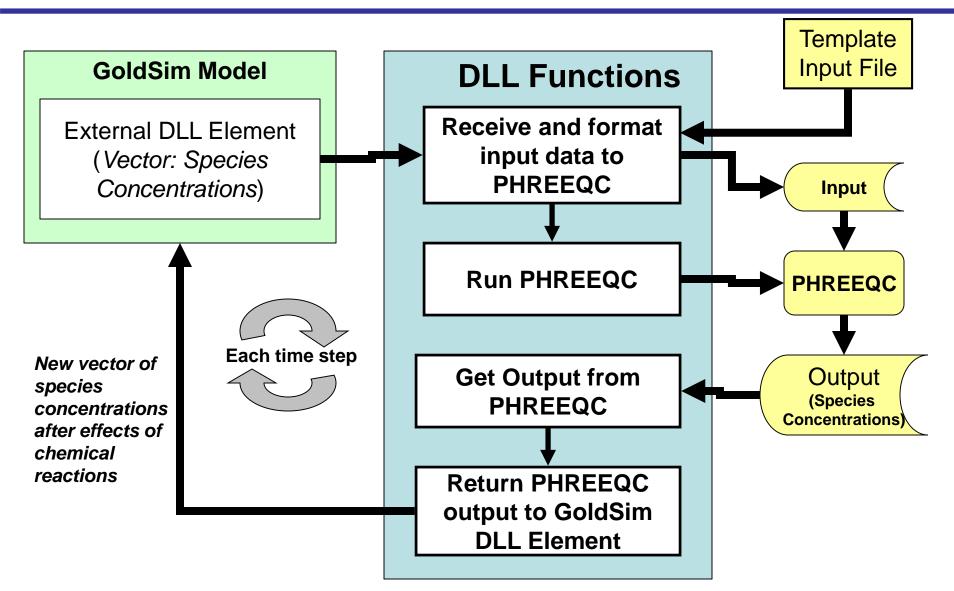
• The species vector is passed to GoldSim's DLL element as the input argument to the DLL interface.

• The GoldSim DLL element sends the species vector to the external DLL.

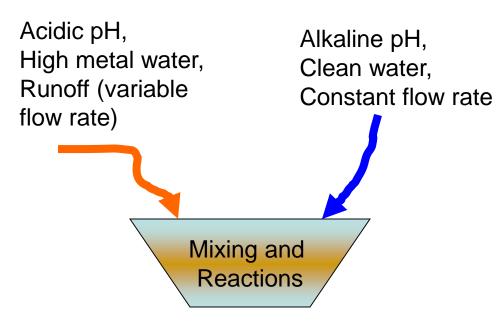
• The DLL receives the species vector and combines it with a template file to build an input file for PHREEQC.


• The DLL executes PHREEQC with the asynchronous CreateProcess method.

• The DLL captures the execution thread for PHREEQC and waits for it to run to completion.


• The DLL reads the PHREEQC output file and returns the new solution composition back to GoldSim through the output interface definition of the DLL element.

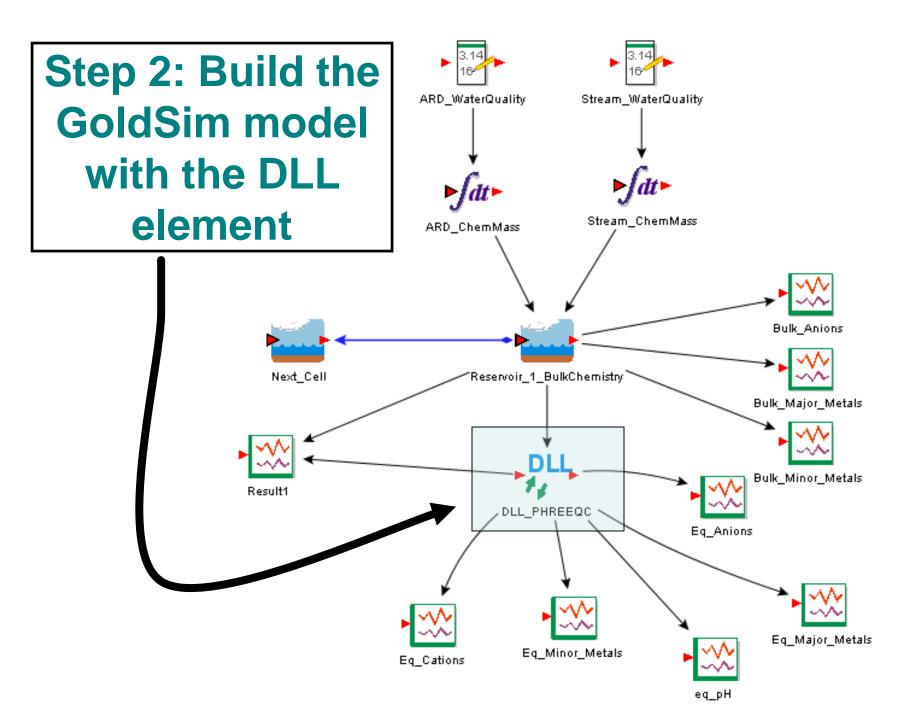
• The above steps are repeated for each time step.


The DLL is written in C++ and compiled with Microsoft Visual C++ Studio. This approach has the advantage of providing a generalized procedure to model complex chemical processes at each time step.

DLL Data Flow Between GoldSim and PHREEQC

Example: Solution Mixing Chemistry

<u>Problem</u>: How to calculate solution chemistry after mixing and reactions? <u>Solution</u>: Use DLL to link to PHREEQC.

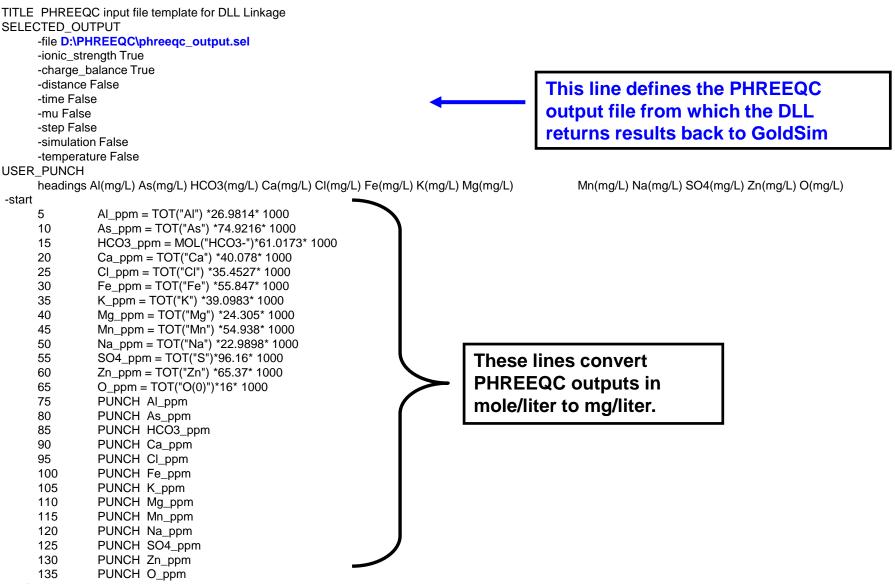


Steps for Setup

Step 1: Define species and starting solutions (must be charge-balanced)

Analyte	Acidic Runoff	Alkaline Streamflow	
Al, mg/L	180	0.005	
As, mg/L	0.5	0.0001	
HCO ₃ , mg/L	0.001	130	
Ca, mg/L	550	40	
CI, mg/L	50	5	
Fe, mg/L	60	0.01	
K, mg/L	40	8	
Mg, mg/L	375	22	
Mn, mg/L	8.4	0.2	
Na, mg/L	60	12	
SO ₄ , mg/L	4117	107.8	
Zn, mg/L	2.1	0.0005	1
O, mg/L	8	8	
pH, s.u.	3.09	8.36	

De	finitio	on							
E	leme	nt ID:	Species			Ap	pearance		
D	escr	iption:	List of chemi	cal species					
Specify Decay using: Half-lives 💌 Number of Species: 14									
Г	Spe	cies List —							
	#	ID	We	eight	Half-Life		RC)aughter1	
	1	Al	26.9814	g/mol					
	2	As	74.9216	g/mol					
	3	нсоз	61.0173	g/mol					
	4	Са	40.078 <u>o</u>	j/mol					
	5 Cl 35.4527 g/mol		g/mol						
	6	Fe	55.847 <u>o</u>	µmol					
	7	к	39.0983						
8 Mg 24.		24.305 <u>o</u>	24.305 g/mol						
		Mn	54.938 <u>o</u>						
		Na	22.9898						
		SO4	96.16 g/						
	12	Zn	65.37 g/						
						-			
		Add	Delete	Edit	Export		Import	Sort	
L	_								

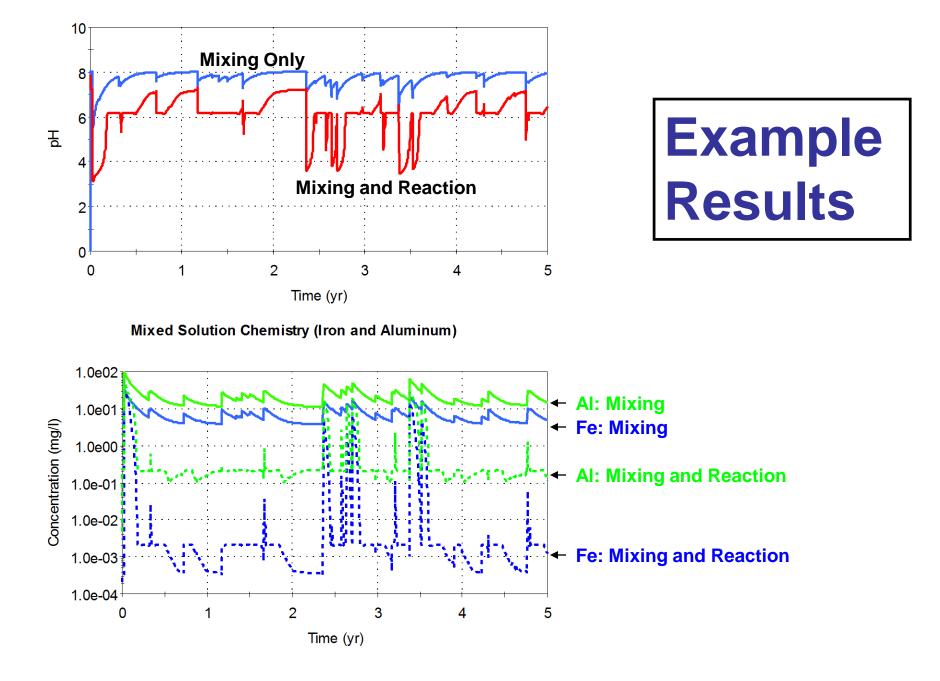

Step 3: Define the DLL element properties

External Properties : DLL_P*_xEQC X	External Ph. porties : DLL_PHREEQC
Definition Interface Element ID: DLL_PHREEQC Description:	Definition Interface Input Interface Definition # Name Definition 1 Argument1 Reservoir_1_BulkChemistry.Concentration_in_Water
Options DLL Path: .\DLL\DLL_Link_v1\Debug\DLL_Link_v1.dll Image: Lock onto this file Function Name: linkToPHREEQC Image: Run in separate process The element defines 1 inputs and 1 outputs.	Input to external DLL (PHREEQC): Species vector (inarg[])
Image: Final Values Image: Time Histories OK Cancel	Output from external DLL (PHREEQC): New Species vector (outarg[])

Step 4: Edit the DLL code to match the number of chemical species

// Exposed function for use in the GoldSim DLL. extern "C" void __declspec(dllexport) linkToPHREEQC(int XFMethod, int *XFState, const double inarg[], double *outarg) int i: //Follow standard logic outlined in the GoldSim manual for c++, page 637-638. inarg[]: Species vector switch (XFMethod) from GoldSim. outarg[]: Species vector case XF INITIALIZE: returned to GoldSim break: case XF REP VERSION: outarg[0] = VERSN; break: case XF REP ARGUMENTS: outarg[0] = 14; //number of inargs (equal to the number of chemical species in GoldSim) outarg[1] = 14; //number of outargs (equal to the number of chemical species returned to GoldSim) numArgs = 14; //Define this as a global variable for use elsewhere break: case XF CALCULATION: **DLL Functions** ReadTemplate(inarg, numArgs); // Read the template file for PHREEQC input // Run PHREEQC from here RunPHREEQC(): GetPHREEQCOutput(): // Get the PHREEQC output to return to GoldSim //The following loop sets the return values (outarg) equal to the equilibrated concentrations from PHREEQC output for(i = 0; i < numArgs; i++) { outarg[i] = eqConcentration[i]; } //eqConcentrations[] is a global variable break: case XF_CLEANUP: break; return;

Step 5: Revise the PHREEQC Input Template Read by the DLL



# SURFACE 1 Hfo_sOH 0.000005 6 Hfo_wOH 0.0002 #	00 0.1		
SOLUTION 1 units mg/L temperature	12		
redox	O(0)/O(-2)		The
-GoldSimStart Al As C(4) Ca Cl Fe K Mg Mn Na S(6) Zn O(0) -GoldSimEnd	1.1255E+1 3.1344E-2 1.2188E+2 7.1875E+1 7.8125E+0 3.7594E+0 1.0E+1 4.4063E+1 7.125E-1 1.5E+1 3.5838E+2 1.3172E-1 8.E+0		spe "-G "-G All fror PH
pH 7.00 charge EQUILIBRIUM_PHAS Gypsum Calcite CO2(g) O2(g) -0.7 Ferrihydrite Jurbanite AI(OH)3(a) USE Surface 1 END	SES 0 -2.9 1 0 0 0	C C 1 C C C C))

The DLL places concentrations from the species vector between the

"-GoldSimStart" and "-GoldSimEnd" tags.

All the other lines are used unchanged from this template file to build the PHREEQC input file.

Summary

Advantages:

• Complete integration of the PHREEQC geochemical model with a GoldSim model.

Generalized procedure to model complex chemical processes.

• Provides the ability to include the effects of large number of different types of chemical processes on solution compositions on a per time-step basis.

Disadvantages:

- Cannot not use the mass balance features of GoldSim.
- Run times increased because of overhead to run DLL, which in turn runs PHREEQC and returns output.
- Has not been extensively tested except for relatively simple systems, so robustness is still a question.
- Requires some knowledge of C++.

Example available for download at: http://www.goldsim.com/ModuleSiteMap.asp Model ID: 57 – Linking Geochemical Codes to GoldSim