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A Bilinear Source-Scaling Model for M–log A Observations

of Continental Earthquakes

by Thomas C. Hanks and William H. Bakun

Abstract The Wells and Coppersmith (1994) M–log A data set for continental
earthquakes (where M is moment magnitude and A is fault area) and the regression
lines derived from it are widely used in seismic hazard analysis for estimating M,
given A. Their relations are well determined, whether for the full data set of all
mechanism types or for the subset of strike-slip earthquakes. Because the coefficient
of the log A term is essentially 1 in both their relations, they are equivalent to constant
stress-drop scaling, at least for M � 7, where most of the data lie. For M � 7,
however, both relations increasingly underestimate the observations with increasing
M. This feature, at least for strike-slip earthquakes, is strongly suggestive of L-model
scaling at large M. Using constant stress-drop scaling (Dr � 26.7 bars) for M �
6.63 and L-model scaling (average fault slip ū � �L, where L is fault length and
� � 2.19 &times 10�5) at larger M, we obtain the relations

2M � log A � 3.98 � 0.03, A � 537 km
and

2M � 4/3 log A � 3.07 � 0.04, A � 537 km .

These prediction equations of our bilinear model fit the Wells and Coppersmith (1994)
data set well in their respective ranges of validity, the transition magnitude corre-
sponding to A � 537 km2 being M � 6.71.

Introduction

The moment magnitude (M)–fault area (A) relations of
Wells and Coppersmith (1994), hereafter WC94, are used in
seismic hazard analyses throughout the world because of the
common practice of estimating earthquake size from obser-
vations or inferences of fault length (L) and fault width (W),
of which A is the product. These relations are

M � (0.98 � 0.03) log A � (4.07 � 0.06), (1)

the regression line for 148 earthquakes of all mechanism
types (strike-slip, reverse, and normal; Table 2A and Figure
16a of WC94); and

M � (1.02 � 0.03) log A � (3.98 � 0.07), (2)

the regression line for 83 strike-slip earthquakes (Table 2A
of WC94), where A has units of km2. The regression lines
(1) and (2) are well determined, as indicated by the small
standard errors (�1 sigma) for the regression coefficients,
and they are essentially identical to the model constant

stress-drop (30 bars) relationship M � log A � 4.03 we
develop below.

In both cases, however, these regression lines slightly,
but noticeably, underestimate M, for a given A, at M ' 7,
as is evident from Figure 16a of WC94 and Figure 1 here.
Systematically underestimating M for large earthquakes by
just 0.2 units is equivalent to underestimating seismic mo-
ment by a factor of 2, if seismic moments are determined
from these biased estimates of M. For seismic hazard anal-
yses constrained by the balance of elastic strain energy ac-
cumulated through plate motions and released through earth-
quakes, generally reckoned in terms of seismic moment
sums, such biased estimates of seismic moments will result
in more numerous, smaller-magnitude earthquakes. This in
turn will lead to correspondingly—and erroneously—higher
mean annual rates of occurrence for M ' 7 earthquakes, the
magnitude range affected by the systematic bias.

Equations (1) and (2) arise from the massive database
compiled in WC94, fault-rupture data for 244 continental,
crustal (depth � 40 km) earthquakes of all mechanism types
in both interplate and intraplate settings. These data include
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Figure 1. Model equations (7) and (13) and WC94
M–log A data for continental strike-slip earthquakes.
Unlabeled symbols denote 75 M �5.0 continental,
strike-slip earthquakes that qualified for the WC94
regression analysis (see text). The labeled (by year of
occurrence) symbols denote five additional M �7.5,
continental, strike-slip earthquakes with M–log A
data given in Table 1.

seismic moment, moment magnitude, rupture length, rupture
width, rupture area, and rupture displacements for each
event. A data set of this scope and size is not without limi-
tations, naturally. That only 148 of the possible 244 earth-
quakes were used in the WC94 regression relationship is
testimony to the uncertainty residing in this data set, much
of it attending earthquakes occurring at early dates or in
remote places (or both). In the modern era, yet another prob-
lem arises in the multiplicity of often inconsistent estimates
for these fault-rupture parameters, as they might be obtained
from geologic field observations, aftershock locations, geo-
detic inversions, and waveform analysis (at local, regional,
and teleseismic distances). Finally, the continental-crust cri-
terion of WC94 excludes earthquakes at subduction zones,
both those at the interface and those within the downgoing
slab, and thus excludes the world’s truly great earthquakes.
These caveats notwithstanding, we know of no data set that
is better for the many purposes this one serves, and the sys-
tematics of the WC94 data set are impressive, as is their
concordance with the simple source-scaling relationships we
will present in this article, both above and below M � 7
(Fig. 1).

The bulk of this article is devoted to the development
of M–log A relations that span the transition from small
earthquakes with circular geometry to large earthquakes with
rectangular geometry. This transition should be better ex-
pressed for strike-slip earthquakes, because fault width W

can be much larger for the largest thrust-faulting earthquakes
than for the largest strike-slip earthquakes. Thus, the data
we explore here is the strike-slip subset of the full WC94
data set. Given the restriction to continental earthquakes, the
strike-slip subset contains all but one of the earthquakes with
M � 7.5. It is worth noting, however, that neither the M–
log A data themselves (WC94 Fig. 16a) nor the empirical
relations developed separately for strike-slip, reverse, or nor-
mal faulting earthquakes (WC94 Fig. 16b and Table 2A)
allow any distinction to be made between these mechanism
types.

Figure 1 shows the 83 continental strike-slip earth-
quakes in the WC94 data set that qualified for their regres-
sion analysis, less 8 earthquakes with M � 5. In this context
“qualifying” means that the estimates of M, L, and W (and
thus A) are well determined. We have also included in Figure
1 five additional great continental, strike-slip earthquakes,
identified by their year of occurrence, which doubles the data
set at M � 7.5. These are the 1857 Fort Tejon, California;
1905 Bulnay, Mongolia; 1920 Haiyuan, China; 1939 Erzin-
can, Turkey; and 1957 Gobi-Altay, Mongolia earthquakes.
They are plotted with the M and A data shown in Table 1.

These five earthquakes did not qualify for the WC94
regression analysis, because of uncertainties in M, L, or W,
primarily in W, but much new data for these earthquakes
have recently become available. Even so, the values of W
are basically assumed, although we have tended toward the
larger possible values—which, as we shall see shortly, push
the data toward the WC94 regression lines and away from
the model we prefer.

Small Earthquake Scaling

We begin with the circular-fault, r3-scaling appropriate
to small earthquakes with dimension 2r � Ws, the seismo-
genic width (or depth) of the continental crust:

3M � 16/7Drr , (3)0

where M0 is seismic moment, Dr is the earthquake stress
drop, and r is the radius of the circular crack (Brune, 1971).
For A � pr2,

logM � 3/2 log A � logDr � 0.387, (4)0

Moment magnitude (Hanks and Kanamori, 1979) is

M � 2/3logM � 10.7. (5)0

Substituting equation (4) into (5) yields

M � log A � 2/3 logDr � 10.958. (6)

Finally, for an average earthquake stress drop of 30 bars
(3 � 107 dyne/cm2) (e.g., Aki, 1972; Thatcher and Hanks,
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Table 1
Supplemental M �7.5 Earthquakes

Date Name
Length
L (km)

Width
W

(km)*
Area A
(km2) u (m)

l (1011

dyne/cm2)
M0 (1028

dyne-cm) M Sources

1857 Fort Tejon, California 300 15 4500 5 3.00 0.68† 7.85 Sieh (1978); Stein and Hanks
(1998)

1905 Bulnay, Mongolia 350 20 7000 8 3.30 1.85† 8.14 D.P. Schwartz (personal
commun., 2001)

1920 Haiyuan, China 220 20 4400 8.3 3.30 1.2‡ 8.02 Chen and Molnar (1977); Zhang
et al. (1987)

1939 Erzincan, Turkey 327 20 6540 4 3.15 0.82† 7.91 Stein et al. (1997)
1957 Gobi-Altay, Mongolia 260 20 5200 4 3.30 1.5‡ 8.08 Okal (1976); Chen and Molnar

(1977); Kurushin et al.
(1997); D. P. Schwartz
(personal commun., 2001)

*Assumed values.
†Derived from M0 � luA, where A � LW.
‡Derived from seismic data.

1973; Kanamori and Anderson, 1975; Hanks, 1977) and
with log A (cm2) � 10.0 � log A (km2), the units of WC94,

M � log A � 4.03. (7)

The retention of three significant figures in the intercept
value of equation (7) seems excessive, but it is necessary for
the accurate estimation of seismic moment that modern seis-
mic hazard analyses now require.

Equation (7) is shown in Figure 1 as the dashed line.
Up to about M � 7 and A � 1000 km2, equation (7) is a
surprisingly good match to the data, given the very simple
model construct. For 5 � M � 7, the regression lines (1)
and (2) differ from equation (7) by no more than 0.03 units
in M, about the thickness of the dashed line. At larger M
and A, however, the data trend systematically away from and
above equation (7)—which is true for equations (1) and (2)
as well.

Large Earthquake Scaling

The mismatch of data and models at A � 1000 km2 and
M � 7 suggests that an increasing stress drop sets in beyond
these values of A and M, about where we expect the tran-
sition from A � pr2 geometry at small magnitude to the
A � LW geometry at large magnitude to occur, at least for
continental strike-slip earthquakes. One way to achieve this
appearance of increasing stress drop is through L-model
scaling, for which the average faulting displacement ū in-
creases with L. Conversely, W-model scaling provides for ū
to saturate with W � Ws, no matter how much larger L might
be than W.

The arguments for and against L-model scaling vis-à-
vis W-model scaling have ebbed and flowed for two decades
now (e.g., Scholz, 1982; Scholz et al., 1986; Romanowicz,
1992, 1994; Romanowicz and Rundle, 1993; Scholz,

1994a,b; 1997). Most of this controversy preceded publi-
cation of WC94, but to our knowledge the WC94 data set
has never been brought to bear on the important matters of
L-affaire, so to speak.

For the rectangular faults associated with large, conti-
nental strike-slip earthquakes,

M � lūLW, (8)0

where l is the shear modulus and A � LW. For W-model
scaling, ū is constant with increasing L and fixed W � Ws.
Then, because of the moment–magnitude relation (5), M
�2/3 log A, which makes matters worse, not better, in
matching data above the constant stress-drop line M � log
A � 4.03.

The L-model scaling possibilities are more promising.
Indeed, the regression relation between ū and L for strike-
slip earthquakes found in Table 2C of WC94,

logū � (�1.70 � 0.23) � (1.04 � 0.13) log L, (9)

is by itself evidence for L-model scaling. Standard errors of
the regression coefficients are again given as �1 sigma, and
it does not hurt much to set the coefficient of the log L term
in equation (9) to 1.00, so to recover the first-order approx-
imation

ū � �L (10)

upon inversion of the logarithmic form (9). This inversion
yields � � 0.02 m of average slip per 1 km of fault length,
or 2 � 10�5. Similarly, the logarithmic uncertainty in equa-
tion (9) means that the 1-sigma uncertainty of � in equation
(10) is a factor of 1.7, permitting the range 1.2 � 10�5 �
� � 3.4 � 10�5.

Using equation (10) in equation (8), we have,
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Figure 2. (a) Prediction equations (7a) and (13a),
with data as in Fig. 1. (b) Magnitude residuals for the
Wells and Coppersmith (1994) relation (equation 2)
and the bilinear prediction equations proposed in this
study (equations 7a and 13a).

2 2M � l�L W � l�A /W, (11)0

and using this in turn in the moment–magnitude relation (5)
yields

M � 4/3 log A � 2/3 log(l�/W) � 10.7. (12)

With the choices of l � 3 � 1011 dyne/cm2, � � 2 �
10�5, W � Ws � 1.5 � 106 cm, and the area conversion
to km2,

M � 4/3log A � 3.03. (13)

Equation (13) crosses equation (7) at A � 1000 km2 and
M � 7.00, and we plot it in Figure 1 for A and M in excess
of these values. Within its range of validity, it too is a very
good match to the data, as is the constant stress-drop relation
(7) at smaller magnitude.

Best-Fit Models

We calculate best fits of the data to equations (7) and
(13) on the basis of leaving the log A coefficients as fixed
by the source-scaling analysis but allowing the intercept val-
ues to be determined by a least-squares fit to the data. This
procedure allows us to determine best estimates of Dr in
equation (7) and � in equation (13). We performed this cal-
culation in two steps. First, we operated on equation (7) with
data M � 7.00 and on equation (13) with the data at M �
7.00. This round of calculations yielded an intercept value
of 3.98 instead of the 4.03 in equation (7), a very modest
change corresponding to a 12% reduction in Dr (that is,
Dr � 26.7 bars). For equation (13), the intercept value
changed from 3.03 to 3.09, also a fairly modest change cor-
responding to a 15% increase in �, well within the permis-
sible range. Because of the small difference in slope between
these two lines, however, the crossover values change con-
siderably, to A � 467 km2 and M � 6.65 from A � 1000
km2 and M � 7.00.

The second iteration was to adjust the intercept value of
equation (13) using only data at A � 467 km2 and M �
6.65, without operating again on equation (7). This results
in the following prediction equations, which we recommend
to those who seek to estimate the size of shallow-focus, con-
tinental, strike-slip earthquakes given an estimate of A:

2M � log A � 3.98 � 0.03, A � 537 km (7a)

and

2M � 4/3log A � 3.07 � 0.04, A � 537 km . (13a)

The uncertainty estimates are the 1-sigma uncertainties in
the intercept values and show that the best-fit prediction
equations (7a) and (13a) are not significantly different from
the model equations (7) and (13).

The prediction equations (7a) and (13a) are shown in
Figure 2a, which reproduces the data in Figure 1. The poor
resolution in determining the crossover pair A � 537 km2

and M � 6.71 is unfortunate, in that it does not allow us to
define well the dimensions at which the faulting-geometry
transition occurs. For A � 537 km2 and W � 15 km, the
crossover L is 36 km, about 2W, as would be expected from
image-source solutions for vertical rectangular cracks in an
elastic halfspace rupturing from the surface down to 15 km
depth (Chinnery, 1963).

Figure 2b shows residuals of the data with respect to
the WC94 relation, equation (2), and the bilinear model de-
veloped here, equations (7a) and (13a). For A � 500 km2,
the residuals for both models are evenly distributed about
zero, indicating that both models fit the data equally well;
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as we have noted earlier, equations (2) and (7a) are in fact
indistinguishable from one another for A � 500 km2. For
A � 500 km2, the WC94 residuals take on an increasingly
positive character, and for A � 3000 km2 and M � 7.5 are
absolutely and entirely positive for the eight largest earth-
quakes. Residuals for the model proposed here, equations
(7a) and (13a), show no trend for A � 500 km2 and are
relatively small for the eight largest earthquakes except for
the 1939 earthquake.

To put the graphical display of Figure 2b on a more
quantitative basis, we have computed the v2 (chi-squared)
statistic ( ) for the several2 2 obs calcv � R{[1/r ][M � M ]}i i i

ranges of A described below. (We use ri � r � 0.22, which
includes contributions from uncertainty in the estimates of
M and A, which are assumed to be independent. Separately,
we have calculated the standard deviation of all of the resid-
uals Mi

obs � Mi
calc, to be 0.225 for Figure 2b, top, and 0.214

for Figure 2b, bottom, in sensible agreement with the sigma
of 0.22 estimated from data uncertainties alone.) For A �
537 km2, v2 for equation (2) is 1.04 times that for equation
(7a), the latter being a slightly but inconsequentially better
fit than the former for events in this range of A. For A � 537
km2, the difference in the misfits is greater: v2 is 25.2 for
equation (2) and 19.0 for equation (13a) for the 20 strike-
slip events in this range of A. Finally, for the eight largest
events with A � 3000 km2, v2 is 6.59 for equation (2) but
just 2.90 for equation (13a).

Discussion

As new data become available and as old data are re-
visited, the model equations (7) and (13) and the prediction
equations (7a) and (13a) can of course be expected to
change, although there are certain aspects of both the data
and the models that suggest a robustness to them. There is
little that is new in the constant stress-drop equations (7) and
(7a), for example. Even before the advent of moment mag-
nitude, the log M0 � 3/2 log A relationship in equation (4)
was known to Kanamori and Anderson (1975) and Wyss
(1979). These studies also recognized the magnitude–fault
area dependencies in equations (6) and (7), but in the form
of surface-wave magnitude Ms � log A. That earthquake
stress drops are a scale-invariant property of crustal earth-
quakes, although with considerable scatter, has also been
known for decades, both as a static property (e.g., Aki, 1972;
Thatcher and Hanks, 1973; Kanamori and Anderson, 1975;
Hanks, 1977) and as a dynamic property (e.g., Hanks and
McGuire, 1981; Boore, 1983; Fletcher et al., 1984; Choy
and Boatwright, 1995). Absolute values of stress drops re-
turned from different scaling relations can differ by a factor
of 2 or so, as can dynamic versus static stress drops returned
from the same scaling model. Nevertheless, the average
static stress drop of 30 bars or so (with a full-range scatter
of several factors of 2) recovered for these shallow-focus,
continental, strike-slip, M �7 earthquakes in or near plate-
boundary settings is very much the expected result.

For M ' 7, our application of L-model scaling is po-
tentially more controversial, but the concordance of data and
model for M ' 7 in Figures 1 and 2 is impressive. Both this
concordance and the empirical relation between ū and L
found by WC94 and reproduced here as equations (9) and
(10) provide strong support for L-model scaling. The trend
of the data for M ' 7 and its agreement with L-model scaling
apparent in Figures 1 and 2 should also be apparent as trends
of stress drop increasing with M or M0. In his Figure 4,
Scholz (1982) shows that stress drop increases systemati-
cally for interplate strike-slip earthquakes fromDr� 10 bars
at M0 � 1026 dyne-cm (M � 6.6) to Dr � 100 bars at M0

� 1028 dyne-cm (M � 8). For thrust-faulting earthquakes,
this trend occurs at much larger magnitude, because W can
be so much greater for the largest thrust-faulting earthquakes
than for the largest strike-slip earthquakes. The data, notably,
are not the same: only 5 of the 14 strike-slip earthquakes
found in Table 1 and Figure 4 of Scholz (1982) qualified for
the regression analysis of WC94. Together with the 1857
and 1939 earthquakes, 7 of these 14 earthquakes are pre-
sented in Figures 1 and 2, but only 4 of these have M �
6.71, our crossover magnitude.

L-model scaling does, however, have important impli-
cations for the different ways in which earthquakes must
work above and below the transition magnitude, as recently
discussed by Kanamori and Heaton (2000). Very recently,
Shaw and Scholz (2001) have suggested, on the basis of both
ū–L observations and synthetic ū–L data produced by three-
dimensional dynamic rupture models, that L-model scaling
works only up to an aspect ratio (L/W) of approximately 10.
For L/W ' 10, the average faulting displacement no longer
increases with fault length. We do not see this here, although
our data set (M–log A) and theirs (ū–L) are not directly com-
parable, even though our model estimates at large M do
incorporate L-model scaling (equation 10). Even more puz-
zling in this context are the results of Atkinson and Silva
(1997) that the dynamic stress differences governing the ex-
citation of high-frequency strong ground motion decrease
with increasing magnitude above M � 5.5. The unusually
low amplitudes of high-frequency strong ground motion for
the recent Izmit, Turkey (17 August 1999; M � 7.4), and
Chi-Chi, Taiwan (21 September 1999; M � 7.6), earth-
quakes are also consistent with the findings of Atkinson and
Silva (1997).

However these issues—so important to knowing the in-
ner workings of crustal earthquakes—may be resolved, our
bilinear model equations (7) and (13) and prediction equa-
tions (7a) and (13a) fit the WC94 continental, strike-slip
earthquake M–log A data without bias—but not without the
uncertainty arising from the natural variability in earthquake
data of this sort. The prediction equations work equally well
for the reverse- and normal-faulting earthquakes of WC94.
In the case of equations (13 and 13a), the test is not strong,
because only one of these non-strike-slip earthquakes has
M � 7.5. It does suggest, however, a limit for W of 20 km
or so for such earthquakes in the continents, unlike the case
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for the great subduction earthquakes in oceanic environ-
ments, for which W can be much larger.
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