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Journal of the
SOIL MECHANICS AND FOUNDATIONS DIVISION

Proceedings of the American Society of Civil Engineers

SEISMIC RESPONSE OF HORIZONTAL SOIL LAYERS

By I. M. Idriss,» A. M. ASCE, and H. Bolton Seed,? M. ASCE

INTRODUCTION

In many cases the ground motions developed near the surface of a soil
deposit during an earthquake may be attributed primarily to the upward prop-
agation of shear wavesfrom an underlying rock formation. If the ground sur-
face, the rock surface, or the boundaries between different soil layers are
inclined, analyses of the response of the soil deposit can be made only by
techniques such as the finite-element method. If the ground surface, the rock
surface, and the boundaries between soil layers are essentially horizontal,
however, the lateral extent of the deposit has no influence on the response, and
the deposit may be considered as a series of semi-infinite layers. In such
casesthe ground motions induced by a seismic excitation at the base are only
the result of shear deformations in the soil, and the deposit may be considered
as a one-dimensional shear beam. Methods of analyzing the response of such
deposits form the subject of this paper.

The equation of motionfor the response atany depth of a semi-infinite soil
deposit can be written readily. However, closed-form solutions for these
equations can only be derived for a few idealized conditions involving linear
elastic materials whose properties vary with depth in a manner which can be
represented by a relatively simple mathematical expression. In general, soils
do not behave as linear elastic materials and their properties in any soil
depositare likely to vary in an irregular fashion. In such cases it is necessary
to resort to numerical techniques to evaluate the response of the deposit to a
given base excitation.

Herein closed-form solutions are derived for evaluating the response of soil
layers with linearly elastic properties varying in a prescribed manner. A

Note.—Discussion open until December 1, 1968. To extend the closing date one month,
a written request must be filed with the Executive Secretary, ASCE. This paper is part
of the copyrighted Journal of the Soil Mechanics and Foundations Division, Proceedings
of the American Society of Civil Engineers, Vol. 94, No. SM4, July, 1968. Manuscript
was submitted for review for possible publication on February 14, 1968.
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lumped-mass solution is presented for the evaluation of the response of soil
deposits with linearly elastic but nonuniform material properties. The accuracy
and stability of this elastic lumped-mass solution are studied, and a criterion
for determining the accuracy of the solution is proposed. A previously devel-
oped lumped-mass solution for evaluating the response of a soil deposit with
irregularly varying bilinear stress-strain characteristics is then outlined.
Finally, a simplified method of analyzing conditions of this type by treating
the soils as equivalent linear elastic materialsis presented. Typical examples
of the results obtained using the various analytical procedures are presented
for illustrative purposes.

LINEAR ELASTIC ANALYSES

Closed-Form Solutions

Eavthquake Response.—The equation of motion for the vibration of a semi-
infinite layer subject at its base (see Fig. 1) to a horizontal seismic motion,
Ug,is

o\ 9% u d |: Bi] _ d3u,
p(y) 57— + cO) 37 - 5 Cly) s | == Byl =g saansns (1)

in which p(y) = massdensity at a depth y; ¢(y) = viscous damping coefficient
at a depth y; G(v) = shear modulus at a depth y; and u(y, ) = relative dis-
placement at a depth y at time 7. Considering the layerto be composed of soils
thatare linearly elastic with uniform density and viscous damping character-
istics, and letting the shear modulus variation with depth be prescribed by

G = Kyl e e e (2)
in which K and p are constants, Eq. 1 becomes
9%y ou 9 [ ) Bu} _ .
pw+cﬁ-a—y— K 3 W——pug ............... (3)

Eq. 3 is a second-order hyperbolic partial differential equation. When p =
0 and 7 5 is a known function of time or is equal to zero, Eq. 3 reduces to a
linear hyperbolic partial differential equation whose solution is readily avail-
able in standard mathematical books. Eq. 3, with p = 0 and iig = either zero
or a known function of time, has been utilized by Kanai (14,15),° Mattheisen,
et al. (18), Zeevaert (25), Herrera and Rosenblueth (6), Kobayashi and Kagami
(16), and others in their studies of the seismic response of soil layers.

The solutionof Eq. 3when p # 0 may be obtained by the method of separation
of variables. Letting

w(9, 1) = 0 Vp(3) Xn() oot e (4)

n=1
gives Y, () = (B8,/2°T (1 -0) (v/HP/J_y [By (v/HO] ... .. .. (5)
\n + 2, w, ).(n + w2 X, = -R, flg conennnenniiea (6)

3Numerals in parentheses refer to corresponding items in the Appendix I.—
References.
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in which J_; = Bessel function of the first kind of order - b; 8, = roots of
J_p(By) =0m =1,2,...,;w, = B,YK/p/0HY Y, H is the total thickness of
the layer; 2, = ¢/2pw, is the damping ratio; R, = 1/[(8,/2*°T(1 -b)
Jy —p(B,)] ; T = gamma function; and » and @ are constants related to p by

pe -6 +2b =0
po - 260 +2 =0

These equations have been derived in more detail elsewhere (11).
It should be noted that the above equationsare restricted to p < 1/2. When
p > 1/2, a solution in terms of Bessel functions cannot be obtained.

dug -
dy(o.r)-o7

/Jurfuce

_— Column of Unit
Cross Sectional
Area

FIG. 1.—CROSS-SECTION AND BOUNDARY CONDITIONS OF A SEMI-INFINITE SOIL
LAYER SUBJECTED TO A HORIZONTAL SEISMIC MOTION AT ITS BASE
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FIG. 2.—ACCELERATION RECORD USED IN ANALYSES (N-S COMPONENT, 1940
EL CENTRO EARTHQUAKE)
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Eq. 5 defines the mode shape of the system, ¥,(y), during the nth mode of
vibration whose circular frequency is w,,. The values of X, (/) may be computed
from a solution of Eq. 6 using iterative procedures, such as the one proposed
by Newmark (19), or direct numerical procedures such as the step-by-step
(1,24), or a Runge-Kutta (7) process. Once the values of ¥,(y) and X,, (/) are
determined, the relative displacement at any depth y is given by Eq. 4. The
relative velocity, relative acceleration, and strain at any depth y at anyin-
stant of time can be obtained by an appropriate differentiation of Eq. 4.

A soil layer composed mainly of cohesive soils might be considered to have
a uniform modulus; but for a layer composed mainly of cohesionless soils the
modulus will vary with depth. Experimental results (4,5) have shown that the
modulus of a cohesionless soil varies with the confining pressure to powers
of about 1/3 or 1/2. For illustration purposes, this modulus is considered
hereinto be proportional tothe cube root of depth. A similar relationship was
used by Rashid in analyzing the dynamic response of earth dams composed of
cohesionless soils (22).

Soil Layers with Uniform Shear Modulus.—Forthiscase p = 0, G = K, and
fromEq. 7,5 = 1/2 and & = 1. The equation of motion, Eq. 3, then reduces to
du? o 9%u

ot ¢ O P

p

which is a standard linear hyperbolic differential equation with constant co-
efficient whose solution is readily available. However, the solution may also
be obtained by substituting p =0, » = 1/2, and 0 =1 in Egs. 5 and 6. Thus

_ 2n - 1) y
YH(-‘) = COSs _—2—— -7_1— ......................... (8(1)
X C, ¢ 03 X, = (- 1) e 81
X, +2 0w, X, + w2 X, = (- 1) T i SRR (80)
PR . L LA (8c)

2H

Soil Layers with Shear Modulus Proportional to the Cube Root of Depth.—
For this case p = 1/3, G = Ky*/3,b = 0.4, and § = 1.2. Hence

- I B,, \>4 v\1/3 v \5/6
= I(0.6 . s I e R L T 9
Y, () (0.6) (—2&> (}—1> J OAF" (f ) } (9a)
o . 1 .
X, +20w, X, + w3 X, = - T(0.6)(3, /27 o () il g (90)
VK/
Wy =TB.ZZZ—}IE7PB— .................................. (9C)

in which B, are the roots of J_g, (B8,) = 0, and B8, = 1.7510, B, = 4.8785,
B, = 8.0166, B, = 11.1570 . .. etc.

FORTRAN IV listing of a computer program to evaluate the seismic re-
sponse of a semi-infinite layer for the two special cases outlined above has
been presented elsewhere (11).

These closed-form solutions may be used to evaluate the response of soil
layers (Fig. 3) having the following uniform properties: total thickness, H =
50 ft; unit weight, ¥ = 120 pcf; elastic modulus, E = 7 X 10° psf; Poisson’s
ratio, p = 0.45; shear modulus, G = 2.41 X 10° psf; and damping ratio, A =

——p—

i —— ) w—
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0.2 for all modes. The response of this layer to the input base motion shown
in Fig. 2 ispresented in Figs. 3 and 4. The time histories of surface acceler-
ation, velocity, and displacement are presented in Fig. 3. The maximum values
of strain and stress developed throughout the depth of the layer and the time
history of shear stress at a depth of 50 ft are shown in Fig. 4.

Miy ki __JL

Ky 2hy

FIG. 7.—LUMPED-MASS IDEALIZATION OF A SEMI-INFINITE LAYER (LINEAR
ELASTIC SOLUTION)

The response of a soil layer with modulus proportional to the cube root of
depth, to the same input base motionis shown in Figs. 5 and 6. The properties
of this layer are: total thickness, H = 100 ft; total unit weight, y; = 125 pcf;
buoyant unit weight, y; = 60 pcf; elastic modulus, E = 2.5 X 105 y¥/ 3 psf;
Poisson’s ratio, p = 0.25; shear modulus, G = 1 X 105 y*/3 psf; and damping
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ratio, A = 0.2 for all modes. The time histories of surface acceleration,
velocity, and displacement determined for the layer are shown in Fig. 5. The
maximum values of strain and stress developed throughout the depth of this |
layer together with the time history of shear stress at a depth of 50 ft are ! \
presented in Fig. 6. ! ‘
Similar solutions can readily be developed for other layers with material l |
properties varying with depth in a regular manner. f
Lumped-Mass Solution ¢ |
|
|

Earthquake Response.—To analyze the response of a soil deposit having
irregularly varying, but linearly elastic, soil properties, it is necessary to
use a lumped-mass type of analysis. The deposit, which may consist of several

sublayers of varying properties, is idealized (Fig. 7) by a series of discrete 3 -

(lumped) masses interconnected by springs that resist lateral deformations. lod _;;'_- %g

These springs represent the stiffness properties of the material between any 7 2 i == @
= . E

two discrete masses. Damping is assumed linearly viscous. | ) |

When the deposit is subjected to a horizontal seismic motion through its } ‘ t
base, the equation of motion of the system may be represented in matrix form
as 1 ‘ : 1

(M) {ii} +[Cl{a} + [K] {ud = {R(} . oo (10)

in which [M ], [C], and EK] are the mass, viscous damping, and stiffness ‘ :
matrices, respectively, R(I)} is the earthquake load vector, and {u} is the N
relative displacement vector (dots represent differentiation with respect to ‘
time). These matrices and vectors are of order N, where N is the number of
lumped masses used in idealizing the layer.

Details of the formulation of these matrices and vectors and the method
used to solve Eq. 10 are given elsewhere (11). In general, however, once the
geometry and material properties of the deposit and the earthquake motion at
the base are known, the evaluation of the seismic response of the deposit in-
volves the following steps: 2

|
0 —

06
04
02
08 -

6 uonDsaRARY

1. The deposit is idealized by subdividing it into N levels. The mass and
stiffness matrices of the resulting system are computed from the known geom-
etry and material properties of the layer.

2. The mass and stiffness matrices are used to set up the characteristic

value problem of the system, viz.
[K] {07} = w2 [M]{0"} i (11) )

Surfoce Motion —————«=

|

Shear Modulus, G-10%psf
4
T
|
T
|
T
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I
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T
|
T
|
I
}
|
|
[
|
]

inwhich ¢7 is the mode shape at level i duringthe 2" mode of vibration whose 4
circular frequency is w,. The solution of Eq. 11 gives the mode shapes and
frequencies of the system. ! r
3. The normalequations are solved for the response of each mode at each
instant of time and the modal responses are superposed to give the time his- |
tory of displacement at each level {
N |
ugldl = J, W ElE] csaniinmmsionisnnieengsnans (12)

n-=1
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FIG. 8.—SURFACE RESPONSE OF DEPOSIT WITH NONUNIFORM LINEAR ELASTIC PROPERTIES
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in which X, () is the normal coordinate for the nth mode. Velocities, acceler- &
ations, and strains are obtained by appropriate differentiation of Eq. 12. -
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! FORTRAN IV listing of a computer program to evaluate the seismic re- !
sponse of a soil deposit by the lumped-mass solution has been presented
elsewhere (11).

~ integrating the normal equations and the value of the lowest period, Tyy (i.e.,
period of the highest mode of vibration), included in the analysis. Based on
these results, proposed criteria for the accuracy and stability of the lumped-
mass representation are outlined below.

!
U 1 !
3 ; i' The lumped-mass analysis may be used to evaluate the response of deposits o
.3 T S composed of a number of different layers (Fig. 8). This deposit has a total W
‘{1 \ \ = depth of 200 ft and its mass was lumped at 20 levels for analysis purposes. A l
|4 § B \ | | Q damping ratio of 0.2 was used for all modes, and the acceleration record shown !
2% ‘ ‘ / &~ ! in Fig. 2 was used as input base motion. The resulting time history of accel- 't
g O erations at the ground surface is shown in Fig. 8. The maximum values of 1
& =
E (% T f = e e shear strain and shear stress developed throughout the depth of the deposit X
E < :5 ! and the time history of shear stress at a depthof 35 ftare presented in Fig. 9. !
=) /> M ¥ Accuracy and Stability of the Lumped-Mass Solution.-—-The lumped-mass
o e 3 2 8 8 > E \ solution is essentially a finite difference method for the solution of the hyper-
58 > F : 0 » S MRS S Smmee's
g / = ‘ \ \
" ( g i | o
-E, o C 8 30
5 z | |
2 Z ¥
2 o] . —
%o — 3 ] S
° ¢ 3 8§ 8 @& ] y = .
S o | g 7
= i B —
. . 18 2 )
J | T = |
g
% | = A
ST " \
a ' £ |
g1 11 > £ R |
- sl | f
é | a | ) L L . I‘
g . N 2 g 0.0l 003 005 ol 03 05 10 30 50 100 |
% /:> d i Period, T, - Seconds ‘
[ L = = | , '
o > A { FIG. 10.—N VERSUS T, FOR EQUAL VALUES OF ERS |
°© g 8 8 8 3 ~ = : |
E bolic partial differential equation of motion (Eq. 3). Associated with this y
=15 1= s Ts P o method are essential questions of accuracy and stability. The accuracy and
Sla |o oo S @ & stability of the lumped-mass solution has been evaluated (11) for layers com- |
ol 22 = a8 osed of uniform material properties and for layers with modulus proportional
~ ~ = 10 ~ o z p
~ g g 2 8 g = I e to the cube root of depth. The accuracy and stability of the lumped-mass
z ] e - - N o representationfor these layers were ascertained by performing analyses using
Z 3 8 4sd - 14G¢ 40 ydag D 4D SSAUS DAYS = . -
) Lé i g = 17 varying values of N and comparing the results to those of the closed-form |
e |2 2 |e ] E solutions. These studies indicated that the accuracy depends on the number of
|3 g 3|2 A = ! divisions, N, used, and on the fundamental period, 7;, of the layer asdepicted ;
° ) S g 2 § I in Fig. 10 where ERS is the percentage error in the lumped-mass representa- ,
1834-yideq = tion. The stability of the solution depends on the time interval, A{, used in s
Q0
=
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Cviterion for the Accuracy of the Lumped-Mass Solution.--The number of
divisions, N, to be used in analyzing the response of a soil deposit with any g
distribution of material properties, may be chosen with the aid of Fig. 10
as follows:

1. The deposit is divided into several segments, each having uniform ma-
terial properties, and the period (T,); of each segment is computed using !

Eq. 8c
[, — ERION FOR THE ACCURACY OF THE LUMPED-MASS SOLUTION . }
'ITI?L]?JLS?F}:;AT(I:\%TEXAMPLE FOR SOIL DEPOSIT 296 FEET THICK: DETERMINA- (T,); =— 4 H; (13) [
R G VAT OF M & 1) G——f———i e |
— T i inwhich H; isthe thickness of the i th segment whose shear modulus is G; and "‘
Segment Niﬁ‘i‘;ﬁf,;dgﬂ;[m Unit weight, vi, | period, (7)), N; from Fig. 10 whose unit weight is v;, and g is the acceleration of gravity. )
thickness, in pounds per in seconds o 02 2. Eachsegment is then divided into N; levels. The number N; isobtained
Hy in feet | DOUNGS BOT cubic foot il from Fig. 10 by entering the fi ith th ted value of (T,);
i square foot g. y entering the figure wi e computed value of (7,);. The
entire deposit is divided into at least N levels when N = ZN;. |
10 280 105 0.137 3 ; :
10 600 13(5) g'giz Z 3 This procedure and the adequacy of the proposed criterionwere ascertained
ig ?22 102 0:754 5 4 (11) by analyzing several deposits having nonuniform material properties. The
20 250 102 0.285 4 3 determination of the values of N; and the results of the analyses for one of
15 800 126 0.133 3 2 these deposits are presented in Tables 1 and 2. The values of N; for each
135 357 110 1.67 11 :53 segment of the deposit were chosen from Fig. 10 for values of ERS < 1% and
45 571 125 ki . ERS < 5% and are listed in Table 1. The response of the deposit was then
IN; =31 24 evaluated using values of N less than, equal to, and greater than the values of
| l ZN; listed in Table 1, in order to check the adequacy of the criterion. The
— results of these analyses (Table 2) indicate the adequacy of the proposed
TABLE 2.—CRITERION FOR THE ACCURACY OF LUMPED-MASS SOLUTION criterion.
II‘I;\LBULSI'}[;ATE\I}I?I?%I\MPLE FOR SOIL DEPOSIT 296 FT THICK: RESULTS OF Criterion for ihe Stability of the Lumped-Mase Solubion.—Avsigses of &
ANALYSES number of deposits have indicated that the lumped-mass representation remains
stable if Tyy = 2A/ when a step-by-step (1,24) analysis procedure is used, ,‘
SN; and if T)y = 5A7 when Newmark’s (19) iterative procedure is used for the in- 1
From Table 1 N T, N»2 in ERS, as a tegration of the normal equations. 1
Used in analysis seconds percentage
[v/4 n [ {
BEms] TR _ BILINEAR ANALYSIS A
37 24 8 3.60 19 3 -
14 3.53 6 Under conditions of strong ground shaking the stress-strain relationships ]
94 3.51 1.5 of most soils have the nonlinear form illustrated in Fig. 11(a). In such cases, |
~ the stress-strain relationship can be taken into account conveniently in a re- i
37 3.51 0.3 : A P . ’
sponse analysis by idealizing the curved form for any soil layer by the equiva-
46 3.51 - ! lent bilinear system shown in Fig. 11(b).

. . s : v A lumped-mass solution to evaluate the seismic response of a clay layer

? r”ﬁ’ iz the fundamentel tlile riOd . éije Las};eg dsit;;r?g&edégom BESRR R with varying bilinear stress-strain characteristics has previously been pre-
acteristic value problem of the lumped-m - e sented by Parmelee et al. (20). The layer was represented by the model shown :
in Fig. 12 witheach of the linkages, connecting adjacent pairs of masses, con- !
sisting of a Kelvin model attached in series to a dashpot. The spring of the ‘
Kelvin modelwas considered to have idealized force-displacement character-
istics corresponding to the soil stress-strain characteristics shown in Fig.
11(b). The dashpot of the Kelvin model represented viscous damping in the
soil. The other dashpot, which is attached in series to the Kelvin model, is
considered to represent creep characteristics of the soil.
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Test results on silty clay soil samples, reported by Parmelee et al. (20)
indicated that the creep dashpot coefficients were large numbers, on the order
of 10% psf-sec to 10® psi-sec, and that these coefficients increased with the
strength of the soil. A large creep coefficient results in essentially no dis- us
placement across the creep dashpot, i.e., the dashpot is “locked,” and the re- { e : m,
sults are unaffected by creep. Consequently, the creep dashpot has been u \
considered locked and no creep effects are included in the analyses. g

The change in shear stress, AOyyis developed within segment ¢ of the layer 2h
(between masses m; and 7 4 1) is given by ct :

AO'\..\.i = G; Aéxy.i + B; A€y AR L EEE RN R (14) —Moving Reference

in which G;is the shear modulus, B; is the viscous damping coefficient, and
A €y, ; isthe change in shear strain (dots represent differentiationwith respect
totime). The valueof G; to be used inEq. 14 isequal to either G,; or G;; and
is controlled by the yield shear strain €y; for that segment. The moduli G, i

~-Fixed Reference

Shear Stress Sheor Stress ur
« ..

Gy Uir 2h|_|

2h;

(0) Stress-Stran Curve (b) Bilinear |dealization

FIG. 11.—STRESS-STRAIN CHARACTERISTICS OF SOIL

and G,; and the yield shear strain, €y;, are determined from appropriate
dynamic tests [e.g., Parmelee et al. (20) and Thiers and Seed (23)] . The vis-
cous damping coefficient can also be evaluated from appropriate dynamic
tests (20). The variations of all these parameters throughout the depth of the
layer are ascertained by performing tests on samples obtained from various
depths within the layers.

The derivation of the equations of motion for the lumped-mass representa-
tion shown in Fig. 12 has been covered in detail elsewhere (20,21,11). In
general, however, the solution proceeds as follows:

1. The geometry and material properties of the layer and the earthquake

motion to be applied at the base are ascertained. FIG. 12.—1,
. 12.—LUMPED-M/ 2 A ;

9. The layer is divided into N levels and the mass of each level is lumped SOLUTION) MASS IDEALIZATION OF A SEMI-INFINITE LAYER (BILINEAR
at the top of the level. (The choice of the number N may be made using the

criterion outlined earlier.)
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3. The values of %; and c‘f (spring stiffness and viscous damping coeffi-
cients, respectively, of the Kelvin model connecting masses m; and m; .,) are
determined from the known values of G; and ;. This is done by equating the -
change inforce inthe Kelvin model tothat inthe corresponding segment of the = -
layer. The change in force, AF;, in the layer is equal to the change in shear
stress (Eq. 14) timesthe area, whichis unity inthis case. The change in force
in the Kelvin model is given by

10

BFj =g 8uF « 00 Bl wos v mwnionmannins ppum s wansns

in which A7 and Au§ are the changes in displacement and velocity, respec-
tively, across the Kelvin model. [Note that the displacement, u? , across the
Kelvin modelis equal to (u} - u}.,),in which «7 isthe relative displacement
of mass m;, when the creep effects are not included.] The values of 2, ; and
k,; are evaluated from Eq. 15 by substituting G, ; and G, ;, respectively, into
Eq.14. The use of either &, ; or k,; inthe equations of motion is controlled by | = "
the yield displacement, u,;, which is evaluated from the yield shear strain, =1 | |

6),5, by _ =
.

s
Time - Seconds

Il_\,i = 2]12' €y1' ..................................

4. The equations of motion are set up using the values of m;, c?, and & ; ‘ ‘ B ‘
andare solved using a step-by-step (24) procedure. Initially, the spring stiff- ‘ ‘ | |
ness coefficient 2; = %, ; is used for each segment of the layer.The behavior, I i
within each segment, continues to be controlled by %, ; until a limiting dis- [RRP—
placement u$ = u,; is reached, at which stage further displacements are
evaluated using 2, ; . When the force, F; , is reversed, behavior is again con-
trolled by %, ; until a displacement change equal to 2%,; has occurred. Sub-
sequent displacements are determined using %, ; until reloading occurs. On
reloading, the coefficient %, ; is again operative until a change of displacement
of 2u,; has taken place and the coefficient %, ; again controls the behavior.
Similar behavior is considered to develop during subsequent cycles.

5. The response values (including accelerations, velocities, displacements,
strains and stresses) of each segment of the layer, throughout the duration of
the input base motion, are evaluated from the solution of the equations of
motion. Appropriate plotting routines are used to plot the time history of any
specified response value of any segment of the layer.

o2
ol }
o
o1
o

Surfoce Moton ————— o
Basa Motion

120

Parmelee et al. (20) presented a computer program, written in FORTRAN
10, to perform the evaluation of the seismic response of a layer with hysteretic
bilinear stress-strain characteristics. For the purpose of this study, the pro-
gram was modified and rewritten in FORTRAN IV, details of which are given
elsewhere (11).

The use of the bilinear lumped-mass solution may be illustrated by obtain-
ing the response of a soil layer having the following properties: total thickness °
of layer, H = 30 ft; unit weight, y = 120 pecf; initial (or primary) shear
modulus, G, = 100,000 psf; secondary shear modulus, G, = 40,000 psf; yield
shear strain, €, = 0.1% ; and viscous damping coefficient, 8 = 20 psf-sec.

For computation purposes the layer was divided into 15 segments. The
choice of this number was made in accordance with the criteria proposed
earlier in this report. The fundamental period of the layer is equal to 0.733
sec if G = G, and equal to 1.16 sec when G = G, . The shortest period, Ty, ° —_—

Shear Moduus, G-10%psf
60
Gy
L e E—
|
|
|
|
1

FIG. 13.—SURFACE RESPONSE OF LAYER WITH BILINEAR STRESS-STRAIN CHARACTERISTICS
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of the system (i.e., period of the 15th mode when G = G

sec.
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1) is equal to 0.0384

The response of the layer was evaluated using the acceleration record shown
in Fig. 13 as input base motion. This acceleration record is the first 10 sec
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of that recorded at Taft during the 1952 Kern County,
A time increment, A¢, equal to 0.01sec was used in th
of the equations of motion to assure a stable solution

The time history of surface acceleration, evaluated

“200

L.

DEVELOPED AT MIDHEIGHT OF LAYER WITH

California, earthquake.
e numerical integration
(Tyy > 24at).

for this layer using the



1024 July, 1968 w4

bilinear solution, together with a trace of the input base motion are s;ov»;nt;r;
Fig. 13. The maximum values of strain and stress developed thrgugv out -
dei)th of the layer and the time histtogy ong,heaﬁ stress and shear strain a
i ig ver are presented In Iig. 1. '

mng; lstg;ic(:)tfirtgec};iespond?ng values of the shear stress.ar\d.stram developﬁd
at different instants of time from the time history. plot§ in Fig. 14, ttl;}e; cyc-éc
nature of the stress-strain relationship developed in soil elements a : irrg;s:
height of the layer may be determined. The forms Qf the seque?_ce to jm e
strain cycles determined inthis way are plotted in Fig. 15. Thet u;szsc e(ﬁ .
cvele developed during the periodof ground shaking from 0 sec to .é 5590 ,sec

s;acond cycle was completed in the time interval fro_m 4.26 sOec o .r'Od Of.
Altogether seven complete cycles were developed during the 1 —_sec p(la i ac

grouknd shaking;six of these are shown in Fig. 15. These hysteI-'e-twdc.yc ef' eai
E)e used to evaluate equivalent linear parameters that can l?e ut1}1ze mf au 1;“1

elastic solution to evaluate the soil response as described in the following

section.

EQUIVALENT LINEAR ANALYSIS

The use of an equivalent linear system to compute the .response of a non—f
linear system has been found to provide a reasonably satisfactory means o

AW = Area (ABCDA)
W = Areas (OBF + ODE)

Not 25 A

(a) Equvalent Lineor Modulus (b) Equivalent Viscous Dampng Ratio
FIG. 16.—EVALUATION OF EQUIVALENT LINEAR PARAMETERS FROM BILINEAR
HYSTERETIC STRESS-STRAIN CYCLE

evaluating dynamic behavior of single-degree-of—freedo.m sy'stt.ems0 f iascic:lt;slzxj
(12,13) and Hudson (9) characterized the effects_of nonlinearities S
degree-of-freedom system by an equivalent v1sc9us damgmg. 31;1 o
Bogoliuboff (2,17) proposed the use of both an equivalent 1mfear ;c;))m sg s
stant, andan equivalent damping ratio for a single-degree-of-free y

having nonlinear characteristics. 'Caughy (3) extended
technique to the analysis of a nonlinear
random excitation, and suggested mean

the Kryloff-Bogoliuboff
single—degree-of—freedom system‘ with
s for obtaining the equivalent linear
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spring constant and the equivalent viscous damping ratio to be used in the
linear system. He proposed that the linear system, which gives the minimum
mean squared difference between the differential equations of motion of the
nonlinear and linear systems, be chosen as the equivalent linear system.

An equivalent linearization procedure may also be used to evaluate the
seismic response of soil layers. The procedure involves the determination of
an equivalent linear modulus, Geq, and an equivalent damping ratio, Aeq, for
use in a linear elastic solution. For a single hysteretic stress-strain cycle,
the value of Geq may be taken as the chord modulus of the loop; i.e., the slope
of the line joining the extreme points of the hysteresis loop as shown in Fig.
16(a). For a response involving a number of cycles of different stress and
strain amplitudes, it would be appropriate to use the average value, Eeq, of
the values of Geq corresponding te the different cycles.

Similarly an average value of the equivalent viscous damping ratio,Teqh,
corresponding to the hysteretic damping of the nonlinear system may be eval-

TABLE 3.—EQUIVALENT LINEAR PARAMETERS FOR HYSTERETIC
CYCLES OF BILINEAR SOLUTION

Equivalent Linear Shear Equivalent Viscous Damping
Cycle Number Modulus, Geq; in pounds Ratio, Aeqh, as
per square foot a percentage
1 61,000 I 13.5
2 58,000 Y
3 66,000 12.7
4 55,000 11.2
5 90,000 7.5
6 68,000 12.1
g 60,000 .3
c‘eq = 66,000 Aegh = 11.8

uated. For a single hysteretic stress-strain cycle the equivalent viscous
damping Aegh , may be determined by the method originally proposed by Jacob-
sen (12) and illustrated in Fig. 16(b). For a response involving a number of
different stress-strain cycles the average value Xegqh would be adopted. It
should be noted, however, that the equivalent total damping ratio, Aeq, would
be the sum of the average viscous damping ratio Aegh which is equivalent to
the hysteretic damping in the bilinear system and the actual viscous damping,
Ayig » Of the bilinear system even if the yield strain, €ys is not exceeded; i.e.,

Aeq = _>\eqh + )‘V'j.S
The value of A yjg would be determined directly from the viscous damping co-
efficient B, of the bilinear system.
The usefulness of this procedure may be illustrated by using it to compute
the response of the 30-ft clay layer shown in Fig. 13, to the same base motion

for which response values are presented in Figs. 13, 14, and 15.
Equivalent linear parameters may be determined from the stress-strain




1026 July, 1968 SM 4

cyclesfor soil elements at the midheight of the layer shown in Fig. 15. Vglues
of Geqand Xegh for these cycles and a seventh cycle not shown in the figure
are listed in Table 3, together with the average values, Geq and ?\eqh. The
viscous damping ratio, Ayis, of the bilinear system corresponding to the
damping coefficient 8 = 20 psf-sec is about 6% . Thus appropriate _values.of
the equivalent linear modulus, Geq, and equivalent linear damping ratio,
Aeq, might be taken as

Geq = Geq = 66,000 psf

Xeq =—Xeqh + Ayig = 118 + 6 = 17.8%
Similar valuesfor Geq and Aegh might have been determined by computing the

values of Geq and Xeqgh for the hysteresis cycle corresponding .to tl_le average
strain developed during the period of ground shaking at the midheight of the

layer.
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FIG. 17.—RESPONSE SPECTRA FOR BILINEAR AND EQUIVALENT LINEAR
SOLUTIONS

The response of the 30-ft layer having a unit weight of 120 pcf, a shgar
modulus of 66,000 psf, and a damping ratio of 17.8% to the base acceler.atu?n
record shown in Fig. 13, as determined by a linear lumped-mass analy§1§, is
shown in Fig. 17 and Table 4. For computation purposes the layer was divided
into 15 segments. The fundamental period of the layer was found to be 0.902
sec and the shortest period included in the analysis (i.e., period of the 1§th
mode) is 0.047 sec. The time interval, A7, used in the numerical intejgrah.on
of the equation of motion was 0.01 sec, thereby assuring a stable solution with
a high degree of accuracy. '

The most important response values in the seismic analysis of soil layers
are usually: (1) The surface accelerations, from which response spectra can
be obtained; and (2) the shear stresses developed at various depths within the
layer. For the 30-ft layer under discussionthe maximum surface acceleration

SM 4 HORIZONTAL SOIL LAYERS 1027

obtained by the bilinear solution was 0.26 g and that determined by the equiv-
alent linear solution was 0.24 g. The relative velocity and pseudo-absolute
acceleration spectrafor a single-degree-of-freedom structure with a damping
ratio of 5%, obtained using the time history of surface accelerations of both
solutions, are shown in Fig. 17. The maximum values of spectral velocity and
acceleration are equal to 3.2 fps and 0.75 g for the bilinear solution. The cor-
responding maximum spectral values for the equivalent linear solution are
equal to 3.5 fps and 0.8 g. The spectral intensity [i.e., the area under the
relative velocity spectrum between a period of 0.1 sec to a period of 2.5 sec
(8)] is equal to 3.94 ft for the spectrum of the bilinear solution, and that for
the spectrum of the equivalent linear solutionis equal to 4.08 ft. The maximum
value of shear stresses obtained by the two solutions, within the upper 15 ft of
the layer, are listed in Table 4. It may be seen from these results that the
response values determined by the equivalent linear solution are in good
agreement with those determined by the bilinear solution.

TABLE 4.—MAXIMUM VALUES OF SHEAR STRESSES DETERMINED BY
BILINEAR AND EQUIVALENT LINEAR SOLUTIONS

Maximum Shear Stress, in pounds per square foot

Depth, in feet -
Bilinear solution Equivalent linear solution
1 31 26
3 86 78
5 145 131
7 172 167
8 245 215
11 273 251
13 297 283
15 301 J 309

Thus, it would appear that the response of a deposit, composed of essentially
horizontal layers, to a horizontal excitation at the base can be made using a
linear lumped-mass analysis incorporating appropriate values of the equivalent
modulus and equivalent damping factor at the various depths. Such vaiues can
be determined readily from soil test data presented in the form of hysteresis
loops corresponding to the average strain developed in a particular layer.
While there is some analytical evidence to show that the applicability of the
procedure may well be limited to cases where the bilinear moduli G; and G,
are not very different, e.g., the ratio G, /G, is not more than 4 or 5, available
experimental results indicate that this conditionis often satisfiedin the bilinear
representation of soil behavior. Thus, the use of this procedure provides a
convenient approach for the analysis of many field problems.

SUMMARY AND CONCLUSIONS

Methods of analysis of the response of soil layers during earthquakes have
been presented. These include linear elastic analyses, a bilinear analysis, and
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an equivalent linear analysis. All these methods require that: (1) The surface
of the layer, the interface between any two sublayers and the base of the layer
be essentially horizontal; (2) the material properties of the layer be constapt
along any horizontal plane;and (3) the applied seismic excitation be also hori-
zontal. Variations from these conditions, however, can be readily handled
using finite elements (10).

Both closed-form solutions and a lumped-mass representation were pre-
sented for the analysis of soil layers with linearly elastic properties. Once
the geometry and material properties of the layer and the input base seisn.ﬁc
motion are determined, these solutions provide response values (including
accelerations, velocities, displacement, stresses and strains) throughout the
layer for the duration of the input base motion. The closed-form solutions were
utilized to evaluate the accuracy and stability of the lumped-mass analysis,
and criteria for the accuracy and stability of the lumped-mass representation
have been proposed. . _

A lumped-mass representation has also been used for the analysis of soil
layers having bilinear stress-straincharacteristics. Alsoresponse values can
be calculated throughout these layers once the geometry and material prop-
erties of the layers and the applied base motion are known. Finally a procedure
has been outlined for obtaining equivalent linear parameters for soils with
bilinear stress-strain characteristics. The results obtained by this procedure
have been shownto be in good agreement with those determined by the bilinear
solution. This result offers considerable advantages for the evaluation of level
ground response in engineering practice.
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APPENDIX II.—NOTATION

constant as defined in Eq. 7;

viscous damping matrix;

viscous damping coefficient at a depth y;

viscous damping coefficient of the Kelvin model connecting masses
m; and m; ,, as shown in Fig. 12;

= modulus of elasticity;

equivalent linear shear modulus as shown in Fig. 16;

= shear modulus at depth y;

initial or primary shear modulus of the bilinear system as shown
in Fig. 11;

= secondary shear modulus of the bilinear system as shown in Fig. 11;

total thickness of a semi-infinite deposit as shown in Figs. 1, 7,
and 12;

thickness of the segment of the deposit between level i and level
i + 1 as shown in Figs. 7 and 12;

index;

Bessel function of the first kind of order -b;

constant as defined in Eq. 2;

stiffness matrix;

secondary spring stiffness coefficient of the Kelvin model;
mass matrix;

lumped mass of level 7 ;

number of levels into which a semi-infinite deposit is divided;
index;

constant as defined in Eq. 2;

modal participation factor as defined in Eq. 6;

earthquake load vector;

fundamental period of a semi-infinite layer determined by a closed-
form solution;

fundamental period of a semi-infinite deposit determined by a
lumped-mass solution;

period of the highest mode of vibration included in the analysis;

= time ordinate;

relative displacement vector;

displacement at base of a semi-infinite deposit;
relative displacement of level 7 ;

displacement across Kelvin model as shown in Fig. 12;
yield displacement of the bilinear system;

= relative displacement at depth y at time {;

= normal coordinate for nth

mode of vibration;

normal coordinates vector;
nth mode shape at a depth y of a semi-infinite layer determined by
a closed-form solution;

xy

HORIZONTAL SOIL LAYERS

= depth ordinate;

viscous damping coefficient as defined in Eq. 14;

roots of Bessel function J_; (8,,) = 0;

gamma function;

unit weight;

change in force across Kelvin model of bilinear system;
time increment; '
shear strain;

yield shear strain;

constant as defined in Eq. 7;

equivalent linear damping ratio:

equivalent hysteretic damping ratio as shown in Fig. 16;
damping ratio for »th mode of vibration; ,
viscous damping ratio:

Poisson’s ratio;

mass density;

= shear stress;

erctor of mode shape for »th mode of vibration; and
circular frequency of #th mode of vibration.
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