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Journal of the 

SOIL MECHANICS AND FOUNDATIONS DIVISION 

Proceedings of the American Society of Civil Engineers 

SEISMIC RESPONSE OF HORIZONTAL SOIL LAYERS 

By I. M. Idriss,1 A. M. ASCE, and H . Bolton Seed,2 M. ASCE 

INTRODUCTION 

In many cases the ground motions developed near the surface of a soil 
deposit during an earthquake may be attributed primarily to the upward prop
agation of shear waves from an underlying rock formation. If the ground sur
face, the rock surface, or the boundaries between different soil layers are 
inclined, analyses of the response of the soil deposit can be made only by 
techniques such as the finite-element method. If the ground surface, the rock 
surface, and the boundaries between soil layers are essentially horizontal, 
however, the lateral extent of the deposit has no influence on the response, and 
the deposit may be considered as a series of semi-infinite layers . In such 
cases the ground motions induced by a seismic excitation at the base are only 
the result of shear deformations in the soil, and the deposit may be considered 
as a one-dimensional shear beam. Methods of analyzing the response of such 
deposits form the subject of this paper . 

The equation of motion for the response at any depth of a semi- infinite soil 
deposit can be written readily . However, closed-form solutions for these 
equations can only be derived for a few idealized conditions involving linear 
elastic materials whose properties vary with depth in a manner which can be 
represented by a relatively simple mathematical expression . In general, soils 
do not behave as linear elastic materials and their properties in any soil 
deposit are likely to vary in an irregular fashion. In such cases it is necessary 
to resort to numerical techniques to evaluate the response of the deposit to a 
given base excitation. 

Herein closed-form solutions are derived for evaluating the r e sponse of soil 
layers with linearly elastic properties varying in a prescribed manner. A 

Note . - Discussion open until December 1, 1968. To extend the closing date one month, 
a written request must be filed with the Executive Secretary, ASCE . This paper is part 
of the copyrighted Journal of the Soil Mechanics and Foundations Division, Proceedings 
of the American Society of Civil Engineers, Vol. 94, No. SM4, July, 1968. Manuscript 
was submitted for review for possible publication on February 14, 1968. 

1 Lecturer, Dept. of Civ. Engrg. and Asst. Research Engr., Inst. of Transportation 
and Traffic Engrg., Univ. of California, Berkeley, Calif. 

2 Prof. of Civ. Engrg., Univ . of California, Berkeley, Calif. 
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lumped-mass solution is presented for the evaluation of the response of soil 
deposits with linearly elastic but nonuniform material properties. The accuracy 
and stability of this elastic lumped- mas s solution are studied, and a criterion 
for determining the accuracy of the solution is proposed . A previously devel
oped lumped- mass solution for evaluating the respons e of a soil deposit with 
irregularly varying bilinear stress- strain characteristics is then outlined. 
Finally, a simplified method of analyzing conditions of this type by treating 
the soils as equivalent linear elastic materials is presented. Typical examples 
of the results obtained us ing the various analytical procedures are presented 
for illust rative purposes . 

LINEAR ELASTIC ANALYSES 

Closed- Form Solutions 
Earthquake Response .- The equation of motion for the vibration of a semi

infinite layer subject at its base (see Fig . 1) to a horizontal seis mic motion, 
u g, is 

a2 u au a [ au J 
p(y) ~ + c(y) at - ey G(y) ay = () ~ () - p y dt2 . . . • . . . 1 

in which p(y) = mass density at a depth y ; c(y) = viscous damping coefficient 
at a depth y ; G(y) = shear modulus at a depth y; and u(y, t) = relative dis 
placement at a depth y at time t . Cons idering the layer to be composed of soils 
that are linearly elastic with uniform density and viscous damping character
istics, and letting the shear modulus variation with depth be pres cribed by 

G = KyP ...• .. . . . . .. .. . .... ... . . . ... . . . . ..... . . (2) 

in which K and p are constants, Eq. 1 becomes 

p : ;~ + c ~ - :y [ K yP ~ J = - p ii g . . . . . . . . . . • . . . . (3) 

Eq. 3 is a second- order hyperbolic par tial differential equation. When p = 
0 and ii g is a known function of time or i s equal to zer o, Eq . 3 reduces to a 
linear hyperbolic partial differential equation whose solution is readily avail 
able in standard mathematical books. Eq. 3, withP = 0 andiig= either zero 
or a known function of time, has been utilized by Kanai (14, 15), 3 Mattheisen, 
et al. (18), Zeevaert (25), Herrera and Ro senblueth (6), Kobayashi and Kagami 
(16), and others in their studies of the seismic response of s oil layers . 

The solution of Eq. 3 when p * 0 may be obtained by the method of separation 
of variables . Letting 

gives 

u (y, t) ~ Yn(y) Xn(t) . . . . . . . . .•. .. .. ... .. . . ... . (4) 

n=1 

.. . 
Xn + 2;1. nwn X n + w~. X 11 = - Rn iig . .. . ... .. . 

(5) 

. . . . . . . . (6) 

3 Numerals in parentheses refer to corresponding items in the Appendix I. 
References. 
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in which J_b = Bessel function of the first kind of order - b; (3n = roots of 
J _b ( (3n) = 0, n = 1, 2, . .. , ; u.'n = (311 v' K /p/e H 11 e, H is the total thickness of 
the layer ; X11 = c/2pw11 is the damping ratio; Rn = 1/ [((311 /2)1 + b r(l - b) 
J1 - b ( (3n )] ; r = gamma function; and b and e are constant s related top by 

pe e + 2 /J o 
(7) 

pe 2 e + 2 0 

These equations have been derived in more detail elsewhere (11) . 
It should be noted that the above equations are restricted top < 1/ 2. When 

p > 1/2, a solution in terms of Bessel functions cannot be obtained. 

?<O,t)•O 

l 
H 

u(H,t)•O 

-ult> 

Column of Unit 
Cross Sectional 
Area 

urface 

Base 

FIG. 1.-CROSS- SECTION AND BOUNDARY CONDITIONS OF A SEMI-INFINITE SOIL 
LAYER SUBJECTED TO A HORIZONTAL SEISMIC MOTION AT ITS BASE 
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FIG. 2. - ACCELERATION RECORD USED IN ANALYSES (N- S COMPONENT, 1940 
EL CENTRO EARTHQUAKE) 
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Eq. 5 defines the mode shape of the system, Yn(y), during the nth mode of 
vibration whose circular frequency is w 11 • The values of X 11 ( t) may be computed 
from a solution of Eq . 6 using iterative procedures, such as the one proposed 
by Newmark (19), or direct numerical procedures such as the step- by-step 
(1,24), or a Runge - Kutta (7) process. Once the values of Yn ( y ) and X n (I) are 
determined, the relative displacement at any depth y is given by Eq. 4. The 
relative velocity , relative acceleration, and strain at any depth y at any in
stant of time can be obtained by an appropriate differentiation of Eq. 4. 

A soil layer composed mainly of cohesive soils might be considered to have 
a uniform modulus; but for a layer composed mainly of cohesionless soils the 
modulus will vary with depth. Experimental results (4,5) have shown that the 
modulus of a cohesionless soil varies with the confining pressure to powers 
of about 1/3 or 1/2 . For illustration purposes, this modulus is considered 
herein to be proportional to the cube root of depth. A similar relationship was 
used by Rashid in analyzing the dynamic response of earth dams composed of 
cohesionless soils (22) . 

Soil Layers with Uniform Shear Modulus . - For this case p = 0, G = K, and 
from Eq. 7, b = 1/2 and e = 1. The equation of motion, Eq. 3, then reduces to 

au 2 
. au G a2 u _ .. 

P at 2 + c at - ay2 - - P u g 

which is a standard linear hyperbolic differential equation with constant co
efficient whose solution is readily available. However, the solution may also 
be obtained by substituting p = 0, b = 1/2, and e = 1 in Eqs. 5 and 6. Thus 

(2n - 1) y 
Y,, (y ) = cos 2 H (8a) 

Xn + 2A.n"-'11Xn + w;,X,, = (- l)n (2 11 ~ l)1r (8b) 

wn = (2 n 2-H1)1r ,fcfp .. ..... ..... . ........... (8c) 

Soil Layers with Shear Modulus Proportional to the Cube Root of Depth . -
For this case p = 1/3, G = Ky113 , b = 0.4, and e = 1.2 . Hence 

_, ( (3 )0.4 ( )1/3 ~ (y)S/6] Yn(y ) - I (0.6) T t J_D.4 fn H ... 

- f3n fK1p 
wn - 1.2 Hsi 6 

1 
r(0.6)( f3n! 2)1.4J0.6(f3n) ii g 

(9a) 

(9b) 

... (9c) 

in which f3n are the roots of J -o. 4 ( f3n) = 0, and (31 = 1.7510, (32 = 4.8785, 
(33 = 8.0166, (3 4 = 11.1570 ... etc. 

FORTRAN IV listing of a computer program to evaluate the seismic re 
sponse of a semi-infinite layer for the two special cases outlined above has 
been presented elsewhere (11) . 

These closed-form solutions may be used to evaluate the response of soil 
layers (Fig. 3) having the following uniform properties : total thickness, H = 
50 ft; unit weight, y = 120 pcf; elastic modulus, E = 7 x 105 psf; Poisson's 
ratio, µ = 0.45; shear modulus, G = 2.41 x 105 psf; and damping ratio, >.. = 

.... 
I 
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0 .2 for all modes. The response of this layer to the input base motion shown 
in Fig. 2 is presented in Figs. 3 and 4. The time histories of surface acceler 
ation, velocity, and displacement are presented in Fig . 3. The maximum values 
of strain and stress developed throughout the depth of the layer and the time 
history of shear stress at a depth of 50 ft are shown in Fig. 4. 

k, 2h1 
m2 

k2 2h2 
m3 

mi- I 

m; 
k; _, 2h;_, 

H 

mi+I 
k; 2h; 

mN 

kN 2hN 

PIG. 7. - LUMPED- MASS IDEALIZATION OP A SEMI- INFINITE LAYER (LINEAR 
ELASTIC SOLUTION) 

The response of a soil layer with modulus proportional to the cube root of 
depth, to the same input base motion is shown in Figs . 5 and 6. The properties 
of this layer are: total thickness, H = 100 ft; total unit weight, y 1 = 125 pcf; 
buoyant unit weight, Yb = 60 pcf; elastic modulus , E = 2 .5 x 105 y 11 3 psf; 
Poisson's ratio,µ= 0.25; shear modulus, G = 1 x 105 y 113 psf; and damping 
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ratio, ;\ = 0.2 for all modes . The time hi stories of surface acceleration, 
velocity, and displacement determined for the layer are shown in Fig. 5. The 
maximum values of strain and stress developed throughout the depth of this 
laye r together with the time hi story of shear s t r ess at a depth of 50 ft are 
presented in Fig . 6 . 

Similar s olutions can readily be developed for other layers with material 
proper ties varying with depth in a regular manner . 

Lumped- Mass Solution 
Earthquake Response .- To analyze the res ponse of a s oil deposit having 

ir regular ly varying, but linearly elas tic, s oil properties , it is necessary to 
use a lumped- mass type of analysis. The depos it, which may cons ist of several 
sublayers of varying properties , i s idealized (Fig . 7) by a series of discrete 
(lumped) masses interconnected by springs that re s is t lateral deformations. 
These springs represent the stiffnes s prope r tie s of the material between any 
two discrete mas ses . Damping i s assumed linearly vi s cous . 

When the deposit is subjected to a horizontal seis mic motion through its 
base, the equation of motion of the s ys tem may be repr esented in matrix form 
as 

[M]{ii} + [ c ]{u} + [K] {u} = {R(t)} . . ... . ... . .... . . .. . (10) 

in which [M ], [ C], and [K ] are the mass , vis cous damping, and stiffness 
matrices, respectively, {R(t )} is the earthquake load vector, and {u} is the 
relative displacement vector (dots represent differentiation with respect to 
time). These matrices and vectors are of order N, where N i s the ·number of 
lumped masses used in idealizing the layer. 

Details of the formulation of thes e matrices and vectors and the method 
used to solve Eq. 10 are given elsewher e (11) . In general, however, once the 
geometry and material propertie s of the depos it and the earthquake motion at 
the base are known, the evaluation of the seis mic re s ponse of the deposit in 
volves the following steps : 

1. The deposit is idealized by subdividing it into N levels. The mass and 
stiffness matr ices of the resulting s ys tem are computed from the known geom 
etry and material properties of the layer. 

2. The mass and stiffness matr ices are used to set up the character istic 
va lue problem of the system, viz . 

. . . . . . . . . . . . . . . . . . . . . . . . . (11) 

in which cf,J i s the mode shape at level i duringthe nth mode of vibration whos e 
circular frequency is wn . The solution of Eq . 11 gives the mode s hapes and 
frequencie s of the system. 

3 . The nor mal equations a r e solved for the re s pons e of each mode at each 
instant of time and the modal r esponses a r e superposed to give the time his 
tory of displacement at each level i 

N 

ui (t) = I c/lJ X n (l) . . . . . . . . . . . . . . . . . . . . . . . . . . . . (12) 
n -1 

in which Xn ( t ) is the normal coordinate for the nth mode. Velocities , acceler 
ations, and strains are obtained by appropriate differentiation of Eq . 12 . 
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FORTRAN IV listing of a computer program to evaluate the seismic re 
sponse of a soil deposit by the lumped- mass solution has been presented 
elsewhere (11). 

The lumped-mass analysis may be used to evaluate the response of deposits 
composed of a number of different layers (Fig . 8). This deposit has a total 
depth of 200 ft and its mass was lumped at 20 levels for analysis purposes . A 
damping ratio of 0.2 was used for all modes, and the acceleration record shown 
in Fig. 2 was used as input base motion . The resulting time history of accel
erations at the ground surface is shown in Fig. 8 . The maximum values of 
shear st rain and shear stress developed throughout the depth of the deposit 
and the time history of shear stress at a depth of 3 5 ft are presented in Fig. 9. 

Accuracy and Stabili ty of the Lumped-Mass Solution .-The lumped- mass 
solution is essentially a finite difference method for the solution of the hyper -

so- ---------- -------r----.------,---r-----, 

30 -

10 
N 

5 

3 

= :::.::=.:::. ::: 
----::::. ----- ---- --

-----
1~-- +--'----+--'--'--'-'-'-'--- ~---+---+--+-'-~~--~---+-~~ ....... ~ 
0.01 0.03 0.05 0.1 0.3 0.5 1.0 3.0 s.o 10.0 

Period, T1 - Seconds 

FIG. 10.- N VERSUS T 1 F OR EQUAL VALUES OF ERS 

bolic partial differential equation of motion (Eq. 3) . Associated with this 
method are essential questions of accuracy and stability. The accuracy and 
stability of the lumped- mass solution has been evaluated (11) for layers com 
posed of uniform material properties and for layers with modulus proportional 
to the cube root of depth . The accuracy and stability of the lumped-mass 
representation for thes e layers were ascertained by performing analyses using 
varying values of N and comparing the results to those of the closed-form 
solutions. These studies indicated that the accuracy depends on the number of 
divisions, N, used, and on the fundamental period, T1 , of the layer as depicted 
in Fig. 10 where ERS is the percentage error in the lumped- mass representa
tion. The stability of the solution depends on the time interval, A/, used in 
integrating the normal equations and the value of the lowest period, TNN (i.e ., 
period of the highest mode of vibration), included in the analysis . Based on 
these results, proposed criteria for the accuracy and s tability of the lumped
mass representation are outlined below . 
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TABLE !.-CRITERION FOR THE ACCURACY OF THE LUMPED-MASS SOLUTION 
ILLUSTRATIVE EXAMPLE FOR SOIL DEPOSIT 296 FEET THICK: DETERMINA

TION OF VALUES OF N ; 

Segment 
Modulus , G; , in Unit weight, Yi, Period, (T); , 

N ; from Fig. 10 
thousands of in pounds per thickness , pounds per in seconds ERS < 1% ERS < 5% 

H;, in feet squa r e foot 
cubic foot 

280 105 0 .137 3 2 
10 

600 105 0.093 3 2 
10 

200 120 0.345 4 3 
20 

143 102 0.754 5 4 
40 

250 102 0.285 4 3 
20 

800 126 0.133 3 2 
15 

357 110 1.67 11 5 
135 

571 125 0.469 4 3 
45 

"'i:,N; = 37 24 

TABLE 2.-CRIT ERION FOR THE ACCURACY OF LUMPED - MASS SOLUTION 
IL LUSTRATIVE EXAMPLE FOR SOIL DEPOSIT 296 FT THICK: RESULTS OF 

ANAL YSES 

'Z Ni 
T 1N,a in ERS, as a 

F rom Table 1 N 
Used in analysis seconds percentage 

ERS < 1% ERS < 5% 

37 24 8 3.60 19 

14 3.53 6 

24 3 .51 1.5 

37 3.51 0.3 

46 3.51 -

a T is the fundamental period of the layer determined from a solution of the char 
acteri!ftc value problem of the lumped- mass system (Eq. 11). 

-
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Criterion for the A ccuracy of the Lumped-Mass Solution . --The number of 
divisions, N, to be used in analyzing the response of a soil deposit with any 
distribution of material properties, may be chosen with the aid of Fig. 10 
as follows: 

1. The deposit is divided into several segments, each having uniform ma
terial properties, and the period ( T1 )i of each segment is computed using 
Eq. 8c 

4H· i 

-J c i g/-r ; 
(13) 

in which Hi is the thickness of the i th segment whose shear modulus is G i and 
whose unit weight is y ;, and g is the acceleration of gravity. 

2. Each segment is then divided into N i levels . The number N; is obtained 
from Fig. 10 by entering the figure with the computed value of ( T1 ); . The 
entire deposit is divided into at least N levels when N = "'E, N; . 

This procedure and the adequacy of the proposed criterion were ascertained 
(11) by analyzing several deposits having nonuniform material properties . The 
determination of the values of N ; and the results of the analyses for one of 
these deposits are presented in Tables 1 and 2. The values of Ni for each 
segment of the deposit were chosen from Fig . 10 for values of ERS < 1 % and 
ERS < 5% and are listed in Table 1 . The response of the deposit was then 
evaluated using values of N less than, equal to, and greater than the values of 
"'E,N; listed in Table 1, in order to check the adequacy of the criterion. The 
results of these analyses (Table 2) indicate the adequacy of the proposed 
criterion. 

Criterion for the Stability of the Lumped-Mass Solution . -Analyses of a 
number of deposits have indicated that the lumped- mass representation remains 
stable if TNN "' 2A t when a step- by- step (1,24) analysis procedure is used, 
and if TNN ;,: 5A I when Newmark's (19) iterative procedure is used for the in
tegration of the normal equations . 

BILINEAR ANALYSIS 

Under conditions of strong ground shaking the stress- strain relationships 
of most soils have the nonlinear form illustrated in Fig . ll(a). In such cases, 
the stress - strain relationship can be taken into account conveniently in a re 
sponse analysis by idealizing the curved form for any soil layer by the equiva
lent bilinear system shown in Fig. 11 ( b). 

A lumped- mass solution to evaluate the seismic response of a clay layer 
with varying bilinear stress- strain characteristics has previously been pre 
sented by Parmelee et al. (20). The layer was represented by the model shown 
in Fig . 12 with each of the linkages, connecting adjacent pairs of masses , con
sisting of a Kelvin model attached in series to a das hpot. The spring of the 
Kelvin model was cons idered to have idealized force - di splacement character 
istics corresponding to the soil stress- strain char acteristics shown in Fig. 
ll(b) . The dashpot of the Kelvin model represented vis cous damping in the 
soil. The other dashpot, which is attached in series to the Kelvin model, is 
considered to represent creep characteristics of the soil. 
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Test results on silty clay soil samples, reported by Parmelee et al. (20) 
indicated that the creep dashpot coefficients were large numbers, on the order 
of 105 psf-sec to 108 psf - sec, and that these coefficients increased with the 
strength of the soil. A large creep coefficient results in essentially no dis 
placement across the creep dashpot, i.e., the dashpot is "locked," and the re 
sults are unaffected by creep. Consequently, the creep dashpot has been 
considered locked and no creep effects are included in the analyses . 

The change in shear stress, t:. a X)' i, developed within segment i of the layer 
(between masses in i and mi+ 1 ) i s given by 

t:.axy i=Ci t:. Exyi+(3i t:.E xyi · ·· ·· · ·· · • ·· ··•·•····· (14) 

in which Ci is the shear modulus, /3i is the viscous damping coefficient, and 
t:. EX)' i is the change in shear strain (dots represent differentiation with respect 
to time). The value of Ci to be us ed in Eq. 14 is equal to either C1 i or C2 i and 
is controlled by the yield shear strain Eyi for that segment. The moduli C1 i 

,,,,,,.,-

(o) Strc,s-Slron Cu-vc 
(bl 81hneor ldeol!zchon 

FIG. 11.- STRESS- STRAIN CHARACTERISTICS OF SOIL 

and C
2 

i and the yield shear strain, Eyi, are determined from appropriate 
dynamic tests [e .g. , Parmelee et al. (20) and Thiers and Seed (23)) . The vis
cous damping coefficient can also be evaluated from appropriate dynamic 
tests (20). The variations of all these parameters throughout the depth of the 
layer are ascertained by performing tests on samples obtained from various 

depths within the layers . 
The derivation of the equations of motion for the lumped- mass representa-

tion shown in Fig. 12 has been covered in detail elsewhere (20,21, 11). In 
general, however, the solution proceeds as follows: 

1. The geometry and material properties of the layer and the earthquake 
motion to be applied at the base are ascertained. 

2. The layer is divided into N levels and the mass of each level is lumped 
at the top of the level. (The choice of the number N may be made using the 

criterion outlined earlier .) 

• 
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3. The values of k i and c1 (spring stiffness and viscous damping coeffi 
cients, respectively, of the Kelvin model connecting masses mi and mi +1 ) are 
determined from the known values of Gi and (3 i. This is done by equating the 
change in force in the Kelvin model to that in the corresponding segment of the 
layer . The change in force, 6. Fi, in the layer is equal to the change in shear 
stress (Eq. 14) times the area, which i s unity in thi s case . The change in force 
in the Kelvin model is given by 

6.F\ = lzi Auf + c1 Auf .. .. . .. . . . . ... ... . .. . . . . ... (1 5) 

in which Auf and t..uf are the changes in displacement and velocity , respec 
tively, across the Kelvin model. [Note that the displacement, uf, across the 
Kelvin model is equal to (u} - ur + 1 ), in which ur i s the relative displacement 
of mass mi, when the creep effects are not included.] The values of k1 i and 
lz2 i are evaluated from Eq. 15 by subs tituting G1 i and G2 i, re spectively, into 
Eq . 14. The use of either k 1 i or k 2 i in the equations of motion is controlled by 
the yield displacement, uyi, which is evaluated from the yield shear strain, 
Eyi , by 

Uy i = 2 hi Eyi .. • • • ... . . .... . . . . ..........•.... . (16) 

4. The equations of motion are set up using the values of mi, c1, and k i 
and are solved using a step- by- step (24) procedure. Initially, the spring stiff
ness coefficient k i = lz 1 i is used for each segment of the layer. The behavior, 
within each segment, continues to be controlled by k1 ; until a limiting dis 
placement uf = uyi is reached, at which stage further displacements are 
evaluated using k 2 i . When the force, F i , is reversed, behavior is again con
trolled by 7z1 i until a displacement change equal to 2uy i has occurred. Sub
sequent displacements are determined using k 2 i until reloading occurs. On 
reloading, the coefficient k1 i is again operative until a change of displacement 
of 2uyi has taken place and the coefficient k 2 i again controls the behavior . 
Similar behavior is considered to develop during subsequent cycles. 

5. The response values (including accelerations, velocities, displacements, 
strains and stresses) of each segment of the layer, throughout the duration of 
the input base motion, are evaluated from the solution of the equations of 
motion. Appropriate plotting routines are used to plot the time history of any 
specified response value of any segment of the layer . 

Parmelee et al. (20) presented a computer pr ogram, written in FORTRAN 
II, to perform the evaluation of the seismic r esponse of a layer with hys teretic 
bilinear stress- strain characteris tics. For the purpose of this study, the pro
gram was modified and rewritten in FORTRAN IV, details of which are given 
elsewhere (11) . 

The use of the bilinear lumped- mass solution may be illustrated by obtain
ing the response of a soil layer having the following properties: total thickness 
of layer, H = 30 ft; unit weight, y = 120 pcf; initial (or primary) shear 
modulus, G1 = 100,000 psf; secondary shear modulus, G2 = 40,000 psf; yield 
shear strain, Ey = 0 .1% ; and viscous damping coefficient, (3 = 20 psf- sec . 

For computation purposes the layer was divided into 15 segments . The 
choice of this number was made in accordance with the criteria proposed 
earlier in this report. The fundamental period of the layer is equal to O. 733 
sec if G = G1 and equal to 1.16 sec when G = G2 • The shortest period, TNN, 
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of the system (i.e., period of the 15th mode when G = G
1

) is equal to 0.0384 
sec . 

The response of the layer was evaluated using the acceleration record shown 
in Fig. 13 as input base motion . This acceleration record is the first 10 se c 
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FIG. 15. - HYSTERETIC CYCLES DEVELOPED AT MIDHEIGHT OF LAYER WITH 
BILINEAR STRESS-STRAIN CHARACTERISTICS 

of that recorded at Taft during the 19 52 Kern County, California, earthquake . 
A time increment, At, equal to 0 .01 sec was used in the numerical integration 
of the equations of motion to assure a stable solution ( T NN > 2A t ). 

The time history of surface acceleration, evaluated for this layer using the 
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bilinear solution, together with a trace of the input base motion are shown in 
Fig. 13. The maximum values of strain and stress developed throug_hout the 
depth of the laye r and the time history of shear stress and shear strain at the 
midheight of the layer are pres ented in Fig. 14 . . 

By selecting corresponding values of the shear stress _and _strain develop~d 
at different instants of time from the time history plots in Fig . 14, the cyclic 
nature of the stress- strain relationship developed in soil elements at the mid
height of the layer may be determined. The forms of the sequen_ce of stress 
strain cycles determined in this way are plotted in Fig . 15. The first complete 
cycle developed during the period of ground shaking from O sec to 4 .25 sec; the 
second cycle was completed in the time interval from 4 .26 sec to 5.9~ sec. 
Altogether seven complete cycles were developed during the lO~sec period of 
ground shaking; six of these are shown in Fig. 15 . These hyste~e.hc C_Ycles_ may 
be used to evaluate equivalent linear parameters that can be uhhzed in a lin~ar 
elastic solution to evaluate the soil response a s de s cribed in the following 

section . 

EQUIVALENT LINEAR ANALYSIS 

The use of an equivalent linear system to compute the re s ponse of a non
linea r system has been found to provide a reasonably satisfactory means of 

lo) E.qi..volcnl U'IC<J" MooM 

,,_ ..... 

t:,,.W • Area ( ABCOA ) 

W • Areo,(OBF+ODE) 

,_. r. 1v1-

(bl - Vl,cou, °""""" -
FIG. 16. - EVALUATION OF EQUIVALENT LINEAR PARAMETERS FROM BILINEAR 
HYSTERETIC STRESS- STRAIN CYCLE 

evaluating dynamic behavior of s ingle - degree - of- freedo_m sy~t.ems. Jac_obsen 
(12 13) and Hudson (9) characterized the effects of nonlinearities of a single 
de;ree - of-freedom system by an equivalent vis c~us dam~ing . Kry_loff and 
Bogoliuboff (2, 17) proposed the use of both an equivalent linear spring con
stant, and an equivalent damping ratio for a single - degree - of - freedom s~stem 
having nonlinear characteristics . Caughy (3) extended the Kryloff- Bogohub~ff 
technique to the analysis of a nonlinear single- degree - of -freedo~ system_ with 
random excitation, and suggested means for obtaining the equivalent linear 
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spring constant and the equivalent viscous damping ratio to be used in the 
linear system . He proposed that the linear system, which gives the minimum 
mean squared difference between the differential equations of motion of the 
nonlinear and linear systems, be chosen as the equivalent linear system . 

An equivalent linearization procedure may also be used to evaluate the 
seismic response of soil layers. The procedure involves the determination of 
an equivalent linear modulus, Geq, and an equivalent damping ratio A for 
use in a linear elastic solution. For a single hysteretic stress- str~in e~;cle, 
the val~e of _G~q_may be taken as the chord modulus of the loop; i.e., the slope 
of the hne Joining the extreme points of the hysteresi s loop as shown in Fig . 
16(a). For a response involving a number of cycles of different stress and 
strain amplitudes, it would be appropriate to use the average value G of ' eq, 
the values of Geq corresponding to the different cycles . 

Similarly an average value of the equivalent viscous damping ratio X h . . . ' eq ' 
corresponding to the hysterehc damping of the nonlinear system may be eval -

TABLE 3. - EQUIVALENT LINEAR PARAMETERS FOR HYSTERETIC 
CYCLES OF BILINEAR SOLUTION 

Equivalent Linear Shear Equivalent Viscous Damping 
Cycle Number Modulus, Geq, in pounds Ratio, Aeqh, as 

per square foot a percentage 

1 61,000 13.5 
2 58,000 12.7 

3 66,000 12.7 

4 55,000 11.2 
5 90,000 7.5 

6 68,000 12.1 
7 60,000 13.3 

- -
G eq = 66,000 Aeqh = 11.8 

uated. For a s ingle hysteretic stres s - strain cycle the equivalent viscous 
damping Aeqh, may be determined by the method originally proposed by Jacob
sen (12) and illustrated in Fig. 16( b). For a response involving a number of 
different s tress-strain cycles the average value ~eqh would be adopted. It 
should be noted, however, that the equivalent tota.!_ damping ratio, Aeq, would 
be the s um of the average vi s cous damping ratio Aeqh which is equivalent to 
the hysteretic . ~amping in the bilinear system and the actual viscous damping, 
Avis, of the bilinear system even if the yield strain, Ey, is not exceeded; i.e., 

A eq = ~eqh + Avis 

The value of Avis would be determined directlyfrom the vi scous damping co
efficient {3, of the bilinear sys tem . 

The usefulness of this procedure may be illus trated by using it to compute 
the response of the 30-ftclay layer shown in Fig. 13, to the same base motion 
for which response values are pres ented in Figs . 13, 14, and 15 . 

Equivalent linear parameters may be determined from the s tress - strain 
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cycles for soil elements at the midheight of the layer shown in Fig. 15 . Values 
of Geq and Aeqh for these cycles and a s eventh cycle not s~own in !_he figure 
ar e listed in Table 3, together with the average values , Geq and Aeqh. The 
viscous damping ratio, Avis , of the bilinear system corresponding to the 
damping coefficient f3 = 20 psf - sec is about 6% . Thus appropriate values of 
the equiva lent linear modulus, Geq , and equivalent linear damping ratio , 
A eq, might be taken as 

G·eq = G eq 66,000 psf 

Aeq = Xeqh + Avis = 11.8 + 6 = 17.8% 

Similar values for Geq and Xeqh might have been determined by computing the 
values of Geq and Aeqh for the hys teres is cycle corresponding to the average 
strain developed during the period of ground s haking at the midheight of the 

layer. 
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FIG. 17. - RESPONSE SPECTRA FOR BILINE AR AND EQUIVA LENT LINE AR 
SOLUTIONS 

The response of the 30- ft layer having a unit weight of 120 pcf, a shear 
modulus of 66,000 psf, and a damping ratio of 17 .8% to the base acceleration 
record shown in Fig . 13, a s determined by a linear lumped- mas s analysis, is 
shown in Fig. 17 and Table 4. For computationpurposes the layer was divided 
into 15 s egments . The fundamental period of the layer was found to be 0.902 
sec and the shortes t per iod included in the analysis (i.e., period of the 15th 
mode) i s 0.047 sec. The time interval, /H, used in the numerical integration 
of the equation of motion was 0 .01 sec, thereby assuring a stable solution with 
a high degree of accuracy . 

The most impor tant re spons e values in the sei smic analys is of s oil layers 
are usually: (1) The surface accelerations , from which respons e spectra can 
be obtained; and (2) the shear stresse s developed at various depths within !he 
layer . For the 30-ft layer under dis cussion the maximum surface acceleration 
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obtained by the bilinear solution was 0.26 g and that determined by the equiv
alent linear solution was 0.24 g . The relative velocity and ps eudo- absolute 
acceleration spectra for a single -degree - of - freedom structure with a damping 
ratio of 5%, obtained us ing the time history of surface accelerations of both 
solutions, are shown in Fig. 17 . The maximum values of spectral velocity and 
acceleration a re equal to3.2 fps and 0.75 g for the bilinear solution . The cor
responding maximum spectral values for the equivalent linear solution are 
equal to 3 .5 fps and O .8 g . The spectral intensity [i.e ., the area under the 
relative velocity spectrum between a period of O .1 sec to a period of 2 .5 sec 
(8)] is equal to 3 .94 ft for the spectrum of the bilinear solution, and that fo r 
the spectrum of the equivalent linear solution is equal to 4.08 ft. The maximum 
value of shear stresses obtained by the two solutions, within the upper 15 ft of 
the layer, are listed in Table 4. It may be seen from these results that the 
respons e values determined by the equivalent linear solution are in good 
agreement with those determined by the bilinear solution . 

T ABLE 4.-MAXIMUM VALUES OF SHEAR ST RESSES DE T ERMINED BY 
BILINE AR AND EQUIVALENT LINEAR SOLUTIONS 

Depth, in feet 

1 

3 

5 

7 

9 

11 

13 

15 

Maximum Shear Stre ss , in pounds per square foot 

Bilinear solution 

31 

86 

145 

17 2 

245 

273 

297 

301 

Equivalent linear solution 

26 

78 

131 

167 

215 

251 

283 

309 

Thus, it would appear that the res ponse of a deposit, composed of e ssentially 
horizontal layers , to a horizontal excitation at the base can be made using a 
linear lumped- mass analysis incor porating appropriate values of the equivalent 
modulus and equivalent damping factor at the various depths. Such values can 
be determined readily from soil te st data presented in the form of hys teres i s 
loops corres ponding to the average str ain developed in a particular layer . 
While there is some analytical evidence to show that the applicability of the 
procedure may well be limited to cases where the bilinear moduli G1 and G 2 

are not ver y different, e .g ., the ratio G1 / G2 is not more than 4 or 5, available 
experimental results indicate that this condition i s often satisfied in the bilinear 
representation of soil behavior . Thus, the use of this procedure provides a 
convenient appr oach for the analys is of many field problems. 

SUMMARY AND CONCLUSIONS 

Methods of analys is of the response of s oil layers dur ing earthquakes have 
been presented . These include linear elastic analyses , a bilinear analy s is , and 
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an equivalent linear analysis. All these methods require that: (1) The surface 
of the layer, the interface between any two sublayers and the base of the layer 
be essentially horizontal; (2) the material properties of the layer be constant 
along any horizontal plane; and (3) the applied seismic excitation be also hori 
zontal. Variations from these conditions, however, can be readily handled 
using finite elements (10) . 

Both closed-form solutions and a lumped- mass representation were pre 
sented for the analysis of soil layers with linearly elastic properties. Once 
the geometry and material properties of the layer and the input base seismic 
motion are determined, these solutions provide response values (including 
accelerations, velocities, displacement, stresses and strains) throughout the 
layer for the duration of the input base motion. The closed-form solutions were 
utilized to evaluate the accuracy and stability of the lumped- mass analysis, 
and criteria for the accuracy and stability of the lumped- mass representation 
have been proposed. 

A lumped-mass representation has also been used for the analysis of soil 
layers having bilinear stress-strain characteristics. Also response values can 
be calculated throughout these layers once the geometry and material prop
erties of the layers and the applied base motion are known. Finally a procedure 
has been outlined for obtaining equivalent linear parameters for soils with 
bilinear stress-strain characteristics . The results obtained by this procedure 
have been shown to be in good agreement with those determined by the bilinear 
solution. This result offers considerable advantages for the evaluation of level 
ground response in engineering practice . 
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APPENDIX IL - NOTATION 

constant as defined in Eq. 7; 
viscous damping matrix; 
viscous damping coeffi cient at a depth y; 

SM 4 

viscous damping coefficient of the Kelvin model connecting masses 
mi and mi + 1 as shown in F ig . 12; 
modulus of elasticity; 
equivalent linear shear modulus as s hown in Fig . 16; 
shear modulus at depth y ; 
initial or primary shear modulus of the bilinear sys tem as s hown 
in Fig. 11; 
secondary shear modulus of the bilinear system a s shown in Fig . 11; 
total thickness of a semi- infinite depos it as shown in Figs. 1, 7, 
and 12; 
thickness of the segment of the deposit between level i and level 
i + 1 as shown in Figs . 7 and 12; 
index ; 
Bessel function of the fir s t kind of order - b; 
constant as defined in Eq. 2; 
stiffness matrix ; 
initial or primary spring s tiffnes s coefficient of the Kelvin model; · 
secondary spring s tiffness coefficient of the Ke lvin model; 
mass matrix; 
lumped mass of level i ; 
number of levels into which a semi - infinite deposit i s divided; 
index; 
constant a s defined in Eq. 2; 
modal participation factor a s defined in Eq . 6; 

earthquake load vector; 
fundamental period of a semi - infinite laye r deter mined by a closed
form solution; 
fundamental period of a semi- infinite deposit determined by a 
lumped- mass solution; 
period of the highes t mode of vibration included in the analys i s ; 
time ordinate; 
relative di s placement vector; 
displacement at bas e of a semi- infinite depos it; 
relative di s placement of level i ; 
displacement across Kelvin model as shown in Fig . 12; 
yield di splacement of the bilinear system; 

relative displacement at depth y at time t ; 
normal coordinate for nth mode of vibration; 

{X( t)} normal coordinates vector; 
Y

11
( y ) = nth mode s hape at a depth y of a semi- infinite layer dete r m ined by 

a closed-form solution; 
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depth ordinate; 
= vis cous damping coefficient a s defined in Eq. 14; 
= roots of Bessel function J - b ( (3 ,,) = Q; 
= gamma function; 

unit weight; 
change in force across Kelvin model of bilinear system · 
time increment ; ' 
shear strain ; 
yield shear str ain ; 
constant as defined in Eq . 7 ; 
equivalent linear dampino- ratio · 
equiv~lent h!steretic da;ping r~tio as shown in Fig . 16; 
dampmg rat10 for nth mode of vibration · 
vis cous damping ratio ; ' 
Poisson's ratio ; 
mass density; 
shear stress; 
vector of mode shape for nth mode of vibration · and 
circular frequency of n th mode of vibration . ' 
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