

Resolution Copper Mining LLC

Resolution Copper Project

DEIS Design for Alternative 3A Near West Modified Proposed Action (Modified Centerline Embankment - "wet")

Doc. # CCC.03-26000-EX-REP-00002 - Rev. 0

ISO 9001 ISO 14001 OHSAS 18001

M09441A20.734

June 2018

June 8, 2018

Resolution Copper Mining LLC P.O. Box 1944 Superior, Arizona 85273

Ms. Vicky Peacey Senior Manager – Permitting and Approvals

Dear Ms. Peacey:

Resolution Copper Project DEIS Design for Alternative 3A - Near West Modified Proposed Action (Modified Centerline Embankment - "wet") Doc. # CCC.03-26000-EX-REP-00002 – Rev. 0

We are pleased to provide the Environmental Impact Statement (DEIS) Design for the Tailings Storage Facility (TSF) Alternative 3A - Near West Modified Proposed Action (Modified Centerline Embankment) for the Resolution Copper Project.

Yours truly,

KLOHN CRIPPEN BERGER LTD.

Kate Patterson, P.E., P.Eng., M.Eng. Associate, Project Manager

KP:dl/jc

Resolution Copper Mining LLC

Resolution Copper Project

DEIS Design for Alternative 3A Near West Modified Proposed Action (Modified Centerline Embankment - "wet")

Doc. # CCC.03-26000-EX-REP-00002 - Rev. 0

EXECUTIVE SUMMARY

Resolution Copper Mining LLC (RC) is proposing to develop the Resolution Copper project (the Project), an underground copper mine, using the block cave mining method. The mine site is approximately two miles east of the town of Superior in the Pioneer Mining District, Pinal County, Arizona. The project mine plan includes generation of approximately 1.37 billion tons (Bt) of tailings over a 41-year mine life.

The Tonto National Forest (the Forest) is currently in the "alternatives development" portion of the NEPA process which the Forest will use as a component of the Project's environmental impact statement (EIS). A number of tailings storage facility (TSF) alternatives are currently being assessed and will be included in the draft EIS (DEIS). This report presents Alternative 3A – Near West Modified Proposed Action (Modified Centerline Embankment – "wet").

Key elements of Alternative 3A are summarized below. East Plant Site infrastructure, panel cave mining, West Plant Site ore processing, slurry copper concentrate delivery to the filter plant, and other utility corridors would remain the same as currently described in the General Plan of Operations (GPO), which was submitted in 2016.

- The TSF would be located at the Near West site which is located within the Superior Basin entirely on Forest land, approximately 4 miles southwest of the town of Superior, and 4 miles south of the Superstition Wilderness Area. It is founded primarily on bedrock with localized deposits of unconsolidated alluvium confined to ephemeral drainages. The site is primarily used for livestock grazing, ranching, and road access to recreational areas. The Arizona Trail passes approximately ³/₄ mile east of where it follows Rice Water and Whitford Canyons into Reevis Canyon. Vegetation comprises mainly desert shrubs and cacti. The TSF would occupy the area of land bounded by Potts Canyon to the east, Roblas Canyon to the west and Queen Creek to the south.
- Alternative 3A would use a modified centerline raised compacted cycloned sand embankment, to enhance geotechnical resiliency and ability to handle operational upsets. The non-potentially acid generating (NPAG) scavenger (scavenger) tailings stream would be cycloned to create two products: cycloned (underflow) sand used to construct the embankment; and finer overflow tailings deposited into the TSF.
- Potentially acid generating (PAG) pyrite (pyrite) tailings would be discharged subaqueously from a floating barge or pipelines directly into the reclaim pond, to maintain pyrite tailings saturation during operations for the benefit of water quality.
- A pyrite tailings starter cell with an engineered low-permeability layer would be constructed for start-up, in order to maintain pyrite tailings saturation and limit seepage.
- Outside of the pyrite starter cell, a layer of low permeability tailings would develop along the foundation surface due to tailings self-weight consolidation. This would limit seepage into the foundation, supplemented with additional mitigation measures discussed below, as required.

- A series of mitigation measures intended to reduce downstream water quality impacts would be utilized, potentially including: selective engineered low-permeability layers; additional seepage collection dams; lined seepage collection ponds; slurry walls; pump back systems; stream diversion systems and cut-off walls. These mitigation measures and environmental protections will be refined between the DEIS and final EIS if this is the selected alternative.
- To reduce the potential for tailings spills, a modified tailings corridor utilizing a gently sloping route with no drop boxes would be incorporated into the design. There would also be no tunnels or at-grade crossings along the route. A cable stay bridge would be utilized to cross Potts Canyon and the Arizona Scenic Trail. A separate report is included for the Tailings Corridor design (RC 2016b).
- Pyrite tailings would be pumped to the TSF rather than flow by gravity to increase reliability and reduce potential for pipeline upsets (i.e. sanding of the lines) and associated spills.

The main benefits of Alternative 3A are:

- The use of a compacted cycloned sand embankment provides greater operational flexibility, robustness and geotechnical resiliency by creating a free-draining, compacted, non-liquefiable structural shell.
- Dust would be reduced by managing the scavenger beach "wet" via rotation of spigots.
- The adoption of a series of seepage mitigation measures further reduces impacts on downstream receptors.

TABLE OF CONTENTS

EXE	CUTIVE SI	UMMARY	i				
1	INTRO	DDUCTION	1				
	1.1	General	1				
	1.2	Key Elements of Alternative 3A	2				
	1.3	Previous Studies	6				
2	SITE C	CHARACTERIZATION	7				
	2.1	Setting & Topography	7				
	2.2	Land Use	9				
	2.3	Seismicity	9				
	2.4	Regional Geology					
	2.5	Site Geology	11				
	2.6	Site Hydrogeology	16				
	2.7	Climate and Hydrology	17				
3	TAILIN	NGS CHARACTERIZATION					
	3.1	Tailings Types					
	3.2	Geochemical					
	3.3	Geotechnical					
	3.4	Tailings Deposition Slopes	22				
4	DESIG	SN BASIS	23				
	4.1	General	23				
	4.2	Tailings Production Rate	24				
	4.3	BADCT Approach	24				
5	TAILIN	NGS MANAGEMENT PLAN	25				
	5.1	TSF Features	25				
	5.2	Embankment Design	28				
		5.2.1 Overview					
		5.2.2 Downstream Embankment Slope	28				
		5.2.3 Stability	29				
	5.3	Tailings Management Strategy	32				
	5.4	Tailings Delivery and Process Facilities	32				
	5.5	Pyrite Tailings Management	33				
	5.6	Tailings Staging Plan					
6	FOUN	IDATION CHARACTERIZATION AND DESIGN SECTOR DEFINITION	42				
	6.1	General	42				
	6.2	Northeast Design Sector	42				

TABLE OF CONTENTS

(continued)

	6.3	East Design Sector	43
	6.4	Southeast Design Sector	44
	6.5	South Design Sector	44
	6.6	West Design Sector	44
	6.7	Northwest Design Sector	45
	6.8	North Design Sector	46
7	WATER I	MANAGEMENT PLAN	48
	7.1	Surface Water Management System	48
	7.2	Water Balance	50
8	SEEPAGE	E MANAGEMENT PLAN	53
9	DUST M	ANAGEMENT PLAN	61
10	BORROV	V PLAN	62
11	PRELIMI	NARY CLOSURE PLAN	63
12	CLOSING	ì	65
REFER	ENCES		66

List of Tables

Table 3.1	Summary of Tailings Engineering Properties used in Design Assessments	20
Table 3.2	Summary of Hydraulic Parameters	21
Table 3.3	Tailings Slopes	22
Table 4.1	Production Schedule Summary	24
Table 5.1	Comparison of Cycloned Sand Requirements and Availability	28
Table 6.1	Design Sectors	42
Table 7.1	Summary of TSF System Water Requirements from Other Sources	50
Table 7.2	Summary of TSF Active Water Management Requirements (System Surplus)	50
Table 8.1	Alternative 3A Seepage Management Plan	60

TABLE OF CONTENTS

(continued)

List of Figures

Figure 1.1	Site Location and Land Ownership Overview	4
Figure 1.2	Site Location and Land Ownership Details	5
Figure 2.1	Site Location Details	8
Figure 2.2	Regional Seismic Zone (URS 2013)	10
Figure 2.3	Site Geology	15
Figure 4.1	Modified Centerline Schematic	23
Figure 4.2	Annual Tailings Production Schedule	24
Figure 5.1	TSF Layout and Key Features	27
Figure 5.2	Ultimate Embankment Layout	30
Figure 5.3	Ultimate Embankment Layout Sections	31
Figure 5.4	Embankment Rate of Rise	36
Figure 5.5	Tailings Staging End of Stage I (Year 2)	37
Figure 5.6	Tailings Staging End of Stage II (Year 4)	38
Figure 5.7	Tailings Staging End of Stage III (Year 9)	39
Figure 5.8	Tailings Staging End of Stage IV (Year 34)	40
Figure 5.9	Tailings Staging End of Stage V (Year 41)	41
Figure 6.1	Design Sectors	47
Figure 7.1	Water Balance Schematic	51
Figure 7.2	West Plant Water Requirements from TSF and Other Sources	52
Figure 8.1	Seepage Management Level 1	55
Figure 8.2	Seepage Management Level 2	56
Figure 8.3	Seepage Management Level 3	57
Figure 8.4	Seepage Management Level 4	58
Figure 8.5	Seepage Management Schematics	59

List of Appendices

- Appendix I Design Basis Memorandum
- Appendix II Cycloning Assumptions
- Appendix III Embankment Slope Trade-off
- Appendix IV Tailings Staging Plan
- Appendix V Water Balance

1 INTRODUCTION

1.1 General

Resolution Copper Mining LLC (RC) is proposing to develop the Resolution Copper project (the Project), an underground copper mine, using the block cave mining method. The mine site is approximately two miles east of the town of Superior in the Pioneer Mining District, Pinal County, Arizona. The project mine plan includes generation of approximately 1.37 billion tons (Bt) of tailings over a 41-year mine life.

RC submitted a General Plan of Operations (GPO) (RC 2016a) for the Project to the Tonto National Forest (the Forest). The subsequent issue of a Notice of Intent by the Forest (GPO 2016) triggered the beginning of the Forest's environmental analysis of the Project, in accordance with the National Environmental Policy Act (NEPA). The analysis will ultimately lead to the issuance of a Record of Decision on the Project by the Forest.

The Forest is currently in the "alternatives development" portion of the NEPA process which the Forest will use as a component of the Project's environmental impact statement (EIS). Klohn Crippen Berger Ltd. (KCB) has been commissioned by RC to prepare select tailings storage facility (TSF) designs to support the alternatives development process and the draft EIS (DEIS). The alternatives being considered are:

- Alternative 1 No Action;
- Alternative 2 Near West GPO Proposed Action (not to be considered further in the DEIS, but included for comparison);
- Alternative 3A Near West Modified Proposed Action (Modified Centerline Embankment "wet");
- Alternative 3B Near West Modified Proposed Action (High-density thickened NPAG¹ Scavenger and Segregated PAG² Pyrite Cell);
- Alternative 4 Silver King Filtered;
- Alternative 5 Peg Leg Lined;
- Alternative 6 Peg Leg Unlined;

Two additional Alternatives for review and consideration by the Forest are:

- Alternative 7 Peg Leg, Combined; and
- Alternative 8 Skunk Camp.

¹ The Forest use the term (Non-Potentially Acid Generating) NPAG tailings to refer to scavenger tailings described in the GPO (RC 2016a).

² The Forest uses (Potentially Acid Generating) PAG tailings to refer to cleaner tailings described in the GPO (RC 2016a), also referred to as pyrite tailings.

The scope of the Alternative 3A DEIS design is to provide a basis for comparing impacts from TSF alternatives. The design and report is tailored to meet the Forest's requirements for the EIS comparisons.

1.2 Key Elements of Alternative 3A

Key elements of Alternative 3A are summarized below. East Plant Site infrastructure, panel cave mining, West Plant Site ore processing, slurry copper concentrate delivery to the filter plant, and other utility corridors would remain the same as currently described in the GPO (RC 2016a), refer to Figure 1.1.

- The TSF would be located at the Near West site which is located within the Superior Basin, entirely on Forest land, approximately 4 miles southwest of the town of Superior, and 4 miles south of the Superstition Wilderness Area. After removal of recent sediments during site preparation, it will be founded on bedrock. The site is primarily used for livestock grazing, ranching, and road access to recreational areas. The Arizona Trail passes approximately ¾ mile east of where it follows Rice Water and Whitford Canyons into Reevis Canyon. Vegetation comprises mainly desert shrubs and cacti. The TSF would occupy the area of land bounded by Potts Canyon to the east, Roblas Canyon to the west and Queen Creek to the south.
- Alternative 3A would use a modified centerline raised compacted cycloned sand embankment, to enhance geotechnical resiliency and ability to handle operational upsets. The non-potentially acid generating (NPAG) scavenger (scavenger) tailings stream would be cycloned to create two products: cycloned (underflow) sand used to construct the embankment; and finer overflow tailings deposited into the TSF.
- Potentially acid generating (PAG) pyrite (pyrite) tailings would be discharged subaqueously from a floating barge or pipelines directly into the reclaim pond, to maintain pyrite tailings saturation during operations for the benefit of water quality.
- A pyrite tailings starter cell with an engineered low-permeability layer would be constructed for start-up, in order to maintain pyrite tailings saturation and limit seepage.
- Outside of the pyrite starter cell, a layer of low permeability tailings would develop along the foundation surface due to tailings self-weight consolidation. This would limit seepage into the foundation, supplemented with additional mitigation measures discussed below, as required.
- A series of mitigation measures intended to reduce downstream water quality impacts would be utilized, potentially including: selective engineered low-permeability layers; additional seepage collection dams; lined seepage collection ponds; slurry walls; pump back systems; stream diversion systems and cut-off walls. These mitigation measures and environmental protections will be refined between the DEIS and final EIS if this is the selected alternative.
- To reduce the potential for tailings spills, a modified tailings corridor utilizing a gently sloping route with no drop boxes would be incorporated into the design. There would also be no tunnels or at-grade crossings along the route. A cable stay bridge would be utilized to cross

Potts Canyon and the Arizona Scenic Trail. A separate report is included for the Tailings Corridor design (RC 2016b).

• Pyrite tailings would be pumped to the TSF rather than flow by gravity to increase reliability and reduced potential for pipeline upsets (i.e. sanding of the lines) and associated spills.

DEIS Design for Alternative 3A - Near West Modified Proposed Action

(Modified Centerline Embankment - "wet")

Figure 1.1 Site Location and Land Ownership Overview

1.3 Previous Studies

There are several previous studies that are relevant to, and utilized in, the Alternative 3A design which include:

- The Alternative Portfolio for Alternative 3A (KCB 2018a) provides a high-level overview of the conceptual design. This document was produced before much of the modeling or analysis presented in this report were complete.
- An embankment design alternatives trade-off to identify the preferred embankment design (KCB 2017a).
- A subsurface site investigation (SI) that included drilling and pit trenches was completed at the Near West site in 2016/2017.
 - KCB prepared a geotechnical site characterization (KCB 2017b) based on the geotechnical information collected during the SI and subsequent laboratory testing
 - Montgomery and Associates (M&A) observed and documented the hydrogeological SI (M&A 2017a) and prepared a hydrogeological site characterization report (M&A 2017b).
 - Duke Hydrochem collected samples of foundation rock units from the SI and tested them for geochemical characterization to support solute transport modeling (Duke 2017a).
- Geochemical characterization of scavenger and pyrite tailings (Duke Hydrochem 2016 and 2017b).
- Site-specific seismic hazard assessment conducted by Lettis Consultants International, Inc. (LCI) in 2017 (LCI 2017).

Aspects of these studies are discussed in this report. Reference should be made to the original reports for further information.

2 SITE CHARACTERIZATION

2.1 Setting & Topography

The Near West site is in the Superior Basin, which is drained by Queen Creek to the Whitlow Ranch Dam, refer to Figure 1.1 and Figure 2.1. The Superstition Mountains to the north of the site separate the site from the Superstition Wilderness Area.

The site is within the Basin and Range physiographic zone of Arizona (see Figure 2.2), near its northern boundary with the Central Highlands Transition physiographic zone, marked by the southern edge of the Superstition Mountains (Trapp and Reynolds 1995). The Basin and Range province is characterized by broad basins trending northwest-southeast, bounded by isolated mountain ranges composed of fault-block mountains formed during extensional faulting and crustal thinning (Rasmussen 2012). The Central Highlands Transition zone is a northwest trending escarpment marking the transition from the Colorado Plateau to the north with the Basin and Range province to the south. The Superior area is the northernmost extent of the Basin and Range province (Trapp and Reynolds 1995).

The Near West site is founded on a series of bedrock ridges and valleys up to 250 ft high, running north-south. The main valleys from east to west are Benson Canyon, Bear Tank Canyon and East Fork Roblas Canyon. The base elevation of the TSF area is approximately at 2,300 ft, and the northern extents rise up to 2,800 ft. The site is bounded on the east and west by Potts Canyon and Roblas Canyon, respectively, which reduces the size of the catchment area reporting to the TSF.

Within the TSF area, the valleys are ephemeral drainages, the bases of which are infilled with thin sand and gravel alluvial deposits. These streams flow north to south with slopes ranging typically from 3% to 5% and discharge to Queen Creek.

2.2 Land Use

The land management status for Near West and the surrounding area is shown on Figure 1.1 and Figure 1.2. The site is entirely on Forest land. Other key aspects of the Near West site, with respect to land-use, include the following:

- The abandoned Bomboy Mine is located in the southwest corner of the site (see Figure 2.1). The mine consisted primarily of two tunnels and an upraise of 175 feet, connecting the back of the Main Tunnel to the ore vein cropping. In all, nearly 1,000 linear feet of mine development was completed between 1916 and 1971 (USGS 2018).
- The Arizona Trail passes approximately 3/4 mile east of the site through Rice Water Canyon and Whitford Canyon (see Figure 2.1).
- The site is bordered on the south by a section of private land and a railroad (which is owned by RC), beyond which lies Queen Creek and Highway 60 (both approximately 1/4 mile to 1/2 mile south of the site).
- The site is currently used primarily for livestock grazing, ranching and road access to recreational areas. Vegetation comprises mainly desert shrubs and cacti.
- There is one known cave present northwest of the site called Hawks Claw Cave (see Figure 2.3).

2.3 Seismicity

The Near West site is located in an area of low historic seismicity; 17 earthquakes within 124 miles are part of the seismic record that dates back to 1830. Only five of the recorded earthquakes have had a moment magnitude greater than 5. None of the recorded earthquakes have had a moment magnitude greater than 6.

A site-specific seismic hazard assessment was completed for the Near West site in 2017 (LCI 2017). That study calculated peak ground acceleration (PGA) and spectral acceleration at return periods up to 10,000-years and provided both uniform hazard spectra (UHS) and conditional mean spectra (CMS). The results indicated that the hazard from short period ground motions is controlled by the background seismicity (seismicity not associated with known faults) close to the site, whereas the distant San Andreas Fault (~250 miles from Near West, see Figure 2.2) influences the hazard for longer periods, similar to the period of most large earthfill structures. Earthquake design ground motions would be selected for appropriate return period events.

Figure 2.2 Regional Seismic Zone (URS 2013)

Modified from: Drewes et al. (1985)

2.4 Regional Geology

The oldest rocks exposed in the area of the Near West site are facies of the early Proterozoic Pinal Schist (1.7 Ga) that forms the regional basement (Spencer and Richard 1995). Northeast of the site, most of the schist is pelitic, with compositional banding reflecting a combination of metamorphic differentiation and original bedding. This banding is tightly folded (isoclinal) at a small scale with fold axes parallel to the overall foliation plane (dips ~30 degrees to 60 degrees to the southeast) with granular differentiation of minerals. Southwest of the TSF, most of the schist is psammite facies, which transitions from an isoclinal folded and crenulated fabric in the west to a relatively planar fabric in the southeast due to complete transposition of the older fabric (Spencer and Richard 1995). The planar fabric also dips between 30 degrees and 60 degrees to the southeast.

Pinal Schist is disconformably overlain by the middle Proterozoic Apache Group (1.4 Ga to 1.1 Ga), comprising Pioneer Shale, Dripping Spring Quartzite, and Mescal Limestone. Apache Group rocks are highly fractured and in places brecciated as a result of distributed extensional deformation during the Tertiary (Spencer and Richard 1995). During the middle Proterozoic (1.1 Ga), the Apache Group was intruded by a diabase unit, causing contact metamorphism. Diabase generally intrudes along sills; however, it is extensive throughout the Apache Group (Hammer and Webster 1962). The Apache Group is depositionally overlain by Paleozoic rocks including Cambrian Bolsa Quartzite (500 Ma) and

Mississippian Escabrosa Limestone (350 Ma) as well as other limestone units (Spencer and Richard 1995). No rocks with ages between the Mississippian (350 Ma) and the middle Tertiary (34 Ma) are found in the area except Laramide granitic intrusives that are not present within the footprint of the TSF.

Tertiary age extensional faulting was accompanied by the deposition of middle Tertiary age volcanic tuffs and flows, including Apache Leap Tuff (21 Ma to 19 Ma: Dickinson 1991), poorly welded Tuff, Rhyolite, and Basalt. Tertiary Gila Conglomerate and sandstone overlie the volcanics, except at the contact of these units, where they are locally interbedded.

2.5 Site Geology

The foundation of the Near West site is primarily underlain by bedrock of different age and origin incised by narrow drainage channels infilled with alluvial, colluvial and undifferentiated sediments. The early-Proterozoic Pinal Schist brackets the north and south ends of the site, and is exposed between the embankment and Queen Creek, in the south. The schist is overlain by the middle Proterozoic aged Apache Group which consists of siltstone, quartzite, limestone and minor conglomerate and basalt. The Apache group is often intruded by similarly aged diabase. Younger, Paleozoic limestone and quartzite units overlie the Apache Group near the western edge and northwest corner of the site. Tertiary volcanic units include tuff, basalt, and perlitic rhyolite, the last of which forms steep cliffs and ridges in the northeast corner of site. The central and eastern portions of the TSF are dominated by Tertiary aged Gila Conglomerate covers approximately 55% of the TSF footprint. The Gila Conglomerate grades downslope into bedded sandstone in the southeast corner near Potts Canyon. Bedrock is generally exposed at the surface, with the exception of alluvial sediments in stream channels, and "Old Alluvium" deposits concentrated at the south end of the site at lower elevations.

A summary of the primary bedrock and overburden units at the Near West site are summarized below, arranged in order of age (youngest to oldest). Their distribution across the site is shown on Figure 2.3. A more detailed characterization of each unit is provided in the site characterization report (KCB 2017b), and the engineering significance of each is discussed in Section 6.

Quaternary Deposits

The quaternary deposits are unconsolidated soil deposits, and comprise the following:

- Recent Alluvium (Qal): Found in active drainage channels throughout the TSF footprint. Comprised mostly of sand and gravel derived from various rock units. Some clean deposits but fines content can range up to 40% in some areas.
- Old Alluvium (Qoa): Present throughout the TSF footprint on raised terraces adjacent to active channels. Comprised mainly of gravel, sand and fines, and may include intermediate and high plasticity clay deposits.

- Old Lacustrine (Qoa-Lu): Present in the SE corner of the TSF footprint, adjacent to Potts Canyon. Similar in composition to the Qoa but with higher clay content. Clay layers can be 2 ft to 4 ft in thickness.
- Undifferentiated Quaternary Deposits (Qs). Found in low relief areas and in relatively small drainages within the TSF footprint. The composition of this unit is similar to the Qal but typically with higher fines content, ranging from approximately 30% to 50%.

Gila Sandstone (Tss)

The Gila Sandstone is located in the southeast corner of the TSF footprint adjacent to Potts Canyon. Dominantly fine grained, sub-horizontally bedded fine to medium grained sandstone, with some bentonitic clay layers up to 3 mm thick present in the upper 30 ft of the unit.

Gila Conglomerate (Tcg)

Gila Conglomerate is the most widely distributed rock unit on site covering approximately 55% of the TSF footprint. The unit is comprised of sub-horizontal beds of variable composition, ranging from thin silty sand beds to thick massive beds comprised of a wide range of particle sizes from boulders to fines. The dominant grain size of the Tcg coarsens from south to north across the site. Rock quality designation (RQD) in the Tcg is typically high. Structural discontinuities in the Tcg are comprised of open or eroded sub-horizontal bedding planes and rarely observed sub-vertical joints.

Weathering is typically shallow and limited to the upper 30 ft based on drill hole results, although only a few feet of weathering was observed in test trenches.

Tertiary Basalt (Tb)

Tertiary Basalt outcrops at the southeast corner of site where it forms a tabular flow interbedded with Gila Conglomerate. It is a light to dark grey fine grained basalt with some zones of flow breccia. Weathering varies from fresh to moderate with no obvious correlation with depth. RQD ranges from 0% to 50% in the top 60 ft, increasing to 80% to 100% below 60 ft. The Tb is variably described as weak to strong rock (R2 – R4).

Rhyolite (Tp)

Exposed Rhyolite at the northeast corner of site forms prominent bluffs and escarpments. It is predominantly glassy, aphyric perlitic rhyolite with zones of flow brecciation, fracturing and vesicles, and zones of flow banding. It ranges from slightly to moderately weathered. RQD is highly variable, typically ranging from 15% to 80% in the top 100 ft. Below 100 ft it is typically 100% but can be as low as 30%. Intact rock classifies as very weak to medium-strong (R1 to R3).

Tuff (Tt and Tal)

Tertiary tuffs (Apache Leap – Tal and Poorly Welded Tuff – Tt) are widely distributed across the north and south sides of the site. The Tal is exposed in areas of high relief and forms prominent bluffs and escarpments, whereas the Tt is exposed in areas of low relief. The tuffs are dominantly strongly

welded and crystalline and show only moderate weathering, however local examples of Tt completely weathered to hard clay were observed outside of the TSF footprint in drill core. RQD is typically greater than 50%, and in most cases it is 100%. Joints vary from open to closed. The tuffs classify as strong rock (R3 to R4) for samples tested within the TSF footprint.

Escabrosa Limestone (Me)

This unit is not exposed within the TSF footprint and was not encountered during the drilling programs. However, it may be present at depth based on the geologic sequence and is therefore included in this summary.

Martin Limestone (Dm)

Exposed along the west side of the site, within the TSF footprint, this unit is exposed in steep bluffs or ridges. It was not encountered during the drilling program, but observations of outcrops indicate that the rock is fresh, comprised of dipping beds and is closely jointed, parallel to bedding and sub-vertical and is medium strong to very strong (R3-R5).

Bolsa Quartzite (Cb)

Exposed along the west side of the site, within the TSF footprint, this unit is exposed in steep bluffs or ridges. It was not encountered during the drilling program, but observations of outcrops indicate that the rock is fresh and generally comprised of medium to coarse grained quartzite rich sandstone in massive or crudely graded beds interbedded with medium to fine grained, cross bedded and planar bedded sandstone with dark tan to brown laminations. The unit is very closely fractured, parallel to bedding and sub-vertical, and medium strong (R2-R3).

Diabase (Yd)

Exposed in the northwest, north, and northeast portions of the TSF footprint, this unit forms the majority of faulted blocks of Apache Group rocks. At surface the unit is weathered to a regolith and is highly weathered and closely fractured to a depth of up to 60 ft. RQD varies from 0% to 100% from surface to 140 ft. Below 140 ft RQD is typically greater than 50% and often 100%. Below the upper weathered zone, rock strength is weak to medium strong rock (R2-R3).

Mescal Limestone (Ym)

Exposed in the western edge of the TSF, and in fault blocks in the northern portion of the TSF footprint, this unit is composed of massive to laminated calcareous siltstone, with prominent zones of healed brecciation and silicification. RQD is generally greater than 60%, but less than 100%. It is typically fresh, with rare zones of highly weathered rock, especially at contacts with diabase, where zones of dissolution may occur. Core descriptions of strength found medium strong to strong rock (R3-R4).

Dripping Spring Quartzite (Yds)

This unit is exposed within fault blocks on the western, southwestern, and northern edge of the TSF footprint. It is composed of laminated siltstone grading downwards into very fine grained sandstone and coarse grained quartzite. Prominent zones of brecciation are observed at the surface and in drill holes. RQD is variable between 40% and 90%, with occasional zones as low at 0%. Core descriptions classify intact Yds as weak to medium strong rock (R2-R3). Yds is typically moderately weathered.

Pioneer Shale (Yp)

This unit is exposed within fault blocks on the western, southwestern, and northern edge of the TSF and is typically recessive and forms relatively flat areas with little exposed rock or moderate talus slopes. Pioneer shale is composed of deep reddish brown siltstone and fine grained sandstone. RQD is low, and typically 0% to 100 ft depth; below that RQD is variable between 20% and 80%. Strength is very weak to weak rock (R1-R2).

Pinal Schist (Xp)

Pinal Schist is widespread at the surface along the southern and northern margins of the TSF footprint. Along the southern margin of the proposed TSF, areas underlain by Pinal Schist are low rolling ridges and broad drainages. To the north, schist underlies the foothills of the Superstition Mountains with steep canyons and ridges. Schist is medium to fine grained, low to moderate grade metamorphic rock. Generally, Pinal Schist is very closely fractured and broken with common zones of gouge and crushed rock in core samples. RQD is typically low (often zero) with alternating zones of very closely fractured rock, and zones of more widely fractured rock, with no clear trend with depth. Foliation-parallel defects are dominant, and persistence is variably low to high (1 m to 20 m). Joint surfaces are rough to smooth, with some slickensided, highly weathered surfaces with clay gouge. Intact zones of Pinal Schist are medium strong to strong rock (R3-R4) however much of the core is very weak rock (R1) that was too weak to test.

	0	1 Mile
TION	PROJECT RESOLUTION COPPER P DEIS DESIGN FOR ALTERNATIVE 3A - 1 PROPOSED ACTION (MODIFIED CENTE	ROJECT NEAR WEST MODIFIED ERLINE EMBANKMENT)
E R	SITE GEOLO	DGY
oen Berger		
3- -	PROJECT No. M09441A20	FIG No. 2.3

2.6 Site Hydrogeology

M&A completed a conceptual hydrogeologic model for the Superior Basin with a focus on the Near West site (M&A 2017b). The following elements of the conceptual model have been taken directly from the hydrogeological conceptual model report (M&A 2017b):

- The Superior Basin is drained by Upper Queen Creek from its headwaters to an earthen dam known as Whitlow Ranch Dam. Land surface in the basin ranges from 5,560 ft above mean sea level (amsl) in the mountainous terrain north of Superior to 2,056 ft amsl at the inlet of Whitlow Ranch Dam. The proposed TSF facility is in the lowlands of the basin adjacent to an ephemeral reach of Queen Creek. Groundwater leaving the basin is forced to land surface at Whitlow Ranch Dam by a truncation of shallow unconsolidated deposits and narrowing of the bedrock geometry.
- Tests conducted in Gila Conglomerate and Pinal Schist indicate a negative correlation between hydraulic conductivity and test interval depth. Below a depth of 100 ft, the geomean of hydraulic conductivity for all tests in Gila Conglomerate decreases from 7.3 x 10⁻⁶ cm/s to 7.9 x 10⁻⁷ cm/s; the geomean for all tests in Pinal Schist decreases from 2.6 x 10⁻⁵ cm/s to 2.7 x 10⁻⁶ cm/s. In both cases, the geomean of tests conducted above 100 ft versus below 100 ft differs by approximately an order of magnitude.
- Preliminary results of aquifer testing in the Quaternary alluvial deposits indicate that the hydraulic conductivity of the alluvium is on the order of 1.0 x 10⁻¹ cm/s, several orders of magnitude greater than the hydraulic conductivity of the bedrock units. Consequently, the alluvial deposits represent relatively more conductive pathways for groundwater movement through the Superior Basin.
- Measured groundwater levels within the basin approximately mimic the shape of the topography, decreasing in elevation from the highlands around the northern, eastern, and southern boundaries of the basin toward Whitlow Ranch Dam in the west.
- Horizontal hydraulic gradients vary across the site. The gradient is notably reduced along the Queen Creek alluvium and within the perlite near the northeastern corner of the proposed TSF. The flattening of gradients in these two areas is caused by higher hydraulic conductivities in these two hydrogeologic units.
- With few exceptions, existing vertical hydraulic gradients in the proposed TSF foundation are upward which is understood to be indicative of recharge, occurring in the uplands, flowing along deeper groundwater flow paths until reaching the higher conductivity alluvial sediments in drainages.
- Groundwater evapotranspiration occurs in stream channels where deep-rooted riparian vegetation draws water from shallow groundwater within the stream channel alluvial deposits.
- A broad range of water chemistries exist in the Superior Basin. This is attributed to the complex and varied hydrogeology in the basin.

- Waters sampled from the alluvial units are of calcium-bicarbonate composition.
- Water sampled from the upper 100 ft of the Gila Conglomerate, Apache Group, Pinal Schist and alluvials have similar chemistry. Isotopic analyses indicate that water sampled from a shallower depth are younger than water sampled from depths greater than 100 ft. The test data support that shallower waters are more active which is consistent with the vertical distribution of hydraulic conductivities.
- Based on a groundwater balance for the basin, prepared by M&A (2017b), precipitationderived recharge makes up 95% of the inflow to the basin, the remaining 5% is treated effluent from the Superior Waste Water Treatment Plant. Treated water is sourced from outside the basin. Groundwater evapotranspiration (42%) and discharge through Whitlow Ranch Dam (43%) are the primary groundwater outflows from the basin. Groundwater pumping accounts for the remaining 15%.

2.7 Climate and Hydrology

The Near West site is within a semi-arid climate zone with low average annual precipitation (18 inches) and high estimated average annual potential evapotranspiration, or PET (72 inches). The annual average temperature is 69°F and daily temperatures typically range from 40°F to 100°F.

The region experiences three seasonal types of precipitation event (Applied Weather Associates 2013), comprising the following:

- Winter storms that occur during October through March. These are typically long duration, low intensity events.
- Summer monsoonal storms that occur during June through September. These are typically short duration, high intensity thunderstorms, and are common throughout the monsoon season.
- Tropical storms that occur during August through October. These are rare events but produce the most extreme rainfalls in southern Arizona. They are the dying remnants of oceanic tropical storms and typhoons and are typically moderate duration (~24 hrs), high intensity events.

Refer to the design basis memorandum (DBM) in Appendix I for details on design storm events.

In its current state, drainage at the site occurs through a series of roughly north-south oriented valleys (or canyons) that report to Queen Creek in the south. These drainage valleys are ephemeral streams that are typically dry, but are locally fed by springs.

There are numerous springs and seeps that have been identified within Superior Basin (M&A 2017b). The springs located within the Near West site (Bear Tank Canyon Spring and Benson Spring) have flows less than 2 gpm, and are often dry. There is no evidence to suggest the Perlite Spring located in the perlitic rhyolite in the northeast is a natural spring. It is formed by an impoundment located at the base of a former perlite quarry.

3 TAILINGS CHARACTERIZATION

3.1 Tailings Types

The Resolution project will generate two physically, mineralogically and geochemically discrete tailings streams known as scavenger tailings and pyrite tailings; scavenger tailings will account for approximately 84% of tailings produced by weight and pyrite tailings the remaining 16%.

KCB (2018b) has summarized the existing geotechnical laboratory testing data for the tailings and geotechnical characterization for the DEIS design.

Duke HydroChem (2016 and 2017b) summarized the tailings geochemical laboratory data and characterization for the DEIS design (Duke Hydrochem 2016 and 2017b).

3.2 Geochemical

The scavenger tailings contain a very low percentage of pyrite (with a mean sulfide content of less than 0.1% by weight) and low neutralization potential. Additionally, the release of acidity, sulfate and metal/metalloids from the scavenger tailings are limited by the very low sulfide and residual metal contents (Duke HydroChem 2016).

The pyrite tailings contain a much higher percentage of pyrite (>20% by weight) and are classified as PAG (Duke HydroChem 2016). The pyrite tailings specific gravity ranges from 3.23 to 4.33, with an average of 3.87, which reflects the variability in high-density pyrite content of the samples.

3.3 Geotechnical

Geotechnical properties of the tailings for the DEIS were characterized based on laboratory testing, literature review and comparison with similar projects, refer to Table 3.1 and Table 3.2. Key comments regarding the tailings geotechnical characterization are as follows:

- Properties (particle size distributions, plasticity, specific gravity, consolidation behavior, and hydraulic conductivity) of the pyrite tailings and scavenger "total" tailings were measured in the laboratory. The same suite of testing was performed on the scavenger "beach" and scavenger "fines" tailings, except for consolidation.
- Properties of the cycloned sand and cyclone overflow were estimated from numerical cyclone simulations, pilot-scale cyclone tests, and comparison of scavenger and pyrite tailings index properties with those at other sites.
- The scavenger beach "composite" is not a discrete tailings type, rather an interlayered deposit of scavenger tailings and cyclone overflow that will form the tailings beach. Properties of the composite beach were guided by the characterization of the other tailings types, with consideration for the method of deposition and experience on other projects.
- Shear strength values were estimated based on similar materials at other mines including Bingham Canyon Mine (Kennecott), Pinto Valley Operations and a literature review.

- Average consolidated tailings densities for slurry tailings were selected based on large-strain consolidation testing and KCB experience on similar projects.
- The compacted density of cycloned sand was estimated using the specific gravity of the tailings and a typical void ratio for compacted sand with a similar gradation.

Further details on tailings characterization and engineering design property selection are reported in KCB (2018b).

Ranges or "base case" values are provided for engineering design properties based on laboratory testing and case histories.

Engineering design properties based on the tailings characterization are summarized in Table 3.1. Ranges of values are specified for hydrogeological properties (Table 3.2). Engineering properties have been selected from available characterization data with specific consideration to the objectives of the analysis.

Material	Specific	ic Atterberg y ¹ Limits ^{1,4}	USCS	USCS Particle Si Distribution		Size tion ²		Effective	Peak Undrained	Liquefied Undrained		
Wateria	Gravity ¹		Class	% fines <74 micron	% clay <2 micron	Deposition Method	Tailings Staging (pcf) ³	Angle (φ')	Ratio (Su-p/o'v)	Ratio (Su-LIQ/σ'v)		
Pyrite Tailings	3.87	LL: 18% PI: 3%	ML	80	<20	Subaqueous deposition at 50% solids content	106	27°	0.2	0.05		
Scavenger "Total" Tailings			ML 50 <10		07							
Scavenger "Beach" Tailings			SM	25	2	Subaerial or subaqueous deposition at 65% solids content				0.1		
Scavenger "Fines" Tailings			ML	94	7	-		32°	0.25	(base case); 0.05		
Cyclone Overflow	2.78	2.78	2.78	LL: 20% PI: 1%	ML	90	15	Subaerial or subaqueous deposition at 50% to 60% solids content	81			(sensitivity)
Scavenger Beach "Composite"				-	-	-	Mixture of spigotted scavenger tailings and cyclone overflow					
Cycloned Sand			SP- SM	<20	0	Discharged to hydraulic cells at 60% solids content and compacted	113	34°	N/A	N/A		

Table 3.1 Summary of Tailings Engineering Properties used in Design Assessments

Notes:

1. Represent averages from the tailings tested or cyclone numerical simulations.

2. "Beach" and "Fines" values directly measured from laboratory testing. For rationale behind values selected for other materials refer to the DBM (Appendix I)

3. For long-term, consolidated dry density estimates to be used in other analyses, refer to KCB (2018b).

4. LL = Liquid Limit; PI = Plasticity Index.

5. Su-p = peak undrained strength; Su-LIQ = liquefied undrained strength; and $\sigma'v$ = vertical effective stress.

Table 3.2Summary of Hydraulic Parameters

Material	Horizontal Saturated Hydraulic Conductivity kh (cm/s)	Anisotropy Ratio k _h /k _v	Total Porosity N _{total}	Effective Porosity neffective	Specific Yield S _y
Pyrite Tailings	1 x 10 ⁻⁶ to 1 x 10 ⁻⁷	1 to 10	0.40 to 0.50	0.25 to 0.50	0.20 to 0.30
Scavenger "Total" Tailings	5 x 10 ⁻⁵ to 5 x 10 ⁻⁶	1 to 10	0.30 to 0.40	0.25 to 0.40	0.20 to 0.30
Scavenger "Beach" Tailings	5 x 10 ⁻⁴ to 5 x 10 ⁻⁵	1 to 10	0.30 to 0.40	0.25 to 0.40	0.25 to 0.35
Scavenger "Fines" Tailings	1 x 10 ⁻⁶ to 1 x 10 ⁻⁷	1 to 10	0.40 to 0.50	0.25 to 0.50	0.20 to 0.30
Scavenger Beach "Composite"	5 x 10 ⁻⁵ to 5 x 10 ⁻⁶	10 to 100	0.40 to 0.50	0.25 to 0.50	0.20 to 0.30
Cyclone Overflow	1 x 10 ⁻⁶ to 1 x 10 ⁻⁷	1 to 10	0.40 to 0.50	0.25 to 0.50	0.20 to 0.30
Cycloned Sand	5 x 10 ⁻² to 1 x 10 ⁻³	1 to 10	0.30	0.30	0.30

3.4 Tailings Deposition Slopes

Tailings deposition slopes are a function of particle size distribution, percent solids of discharged slurry, specific gravity, spigot design/arrangement, distance from deposition point and whether tailings will be deposited subaerially or subaqueously. Slopes should be monitored regularly during operations and the tailings deposition plan adjusted as required. Deposition slopes for discharged slurry tailings adopted for deposition modeling are summarized in Table 3.3. They were chosen based on review of case history data from operating cycloned sand tailings impoundments and subaqueous pyrite tailings facilities.

Table 3.3 Tailings Slopes

Tailings Type	Tailings Slopes	Justification		
Scavenger Beach "Composite"	Above Water: 1% for the first 1,500 ft, 0.5% after 1,500 ft. Below Water: 2.5% for the first 1,000 ft, 1.0% after 1,000 ft.	Based on topography and bathymetry surveys from two large, cycloned sand impoundment beaches and slopes below water. These facilities have long exposed beaches, up to five miles.		
Pyrite Tailings	Below Water: 10.0% for the first 100 ft, 0.5% after 100 ft.	Based on topography and bathymetry surveys of subaqueous disposal of high-pyrite tailings from floating barges.		

4 DESIGN BASIS

4.1 General

The DBM, refer to Appendix I, was developed with input and agreement from RC. A summary of key design basis and objectives are outlined below; however, the DBM (Appendix I) should be referenced for further details.

- The pyrite tailings are to be deposited subaqueously from a floating barge and remain saturated throughout operations. This is done to reduce potential for acid rock drainage (ARD) and metal leaching (ML) that can be triggered by pyrite tailings exposure to water and oxygen (Duke 2017b).
- For stability analysis, all potentially liquefiable contractive tailings are assumed to liquefy regardless of the triggering mechanism.
- The design cross section for the perimeter embankment includes an outer compacted cycloned sand structural zone that is raised using a modified-centerline approach (Figure 4.1).
 - The modified-centerline approach was found to be preferred based on a trade-off study of several cross sections and raise methods (KCB 2017a) because of the design resiliency, and benefits for progressive reclamation.
- The downstream slope of the cycloned sand embankment was set to 4H:1V. A trade-off was conducted assessing the impact of steepening the slope to 3H:1V, refer to Section 5.2.2.
- Available "best practice" management methods to reduce seepage as much as practical are included in the DEIS design at this preliminary stage.

Figure 4.1 Modified Centerline Schematic

4.2 Tailings Production Rate

The tailings production schedule is summarized in Table 4.1 and illustrated on Figure 4.2.

Table 4.1 Production Schedule Summary

Item	Production Schedule	
Scavenger Tailings	1,151 Mtons	
Pyrite Tailings	220 Mtons	
Total Tailings (Scavenger and Pyrite)	1,371 Mtons	
Percentage of Pyrite Tailings by Mass	16%	
Number of Production Years	41	

Figure 4.2 Annual Tailings Production Schedule

4.3 BADCT Approach

The TSF would apply for an Aquifer Protection Permit (APP) with an "individual" Best Available Demonstrated Control Technology (BADCT) approach, which is performance based, and allows the applicant to select from all available Demonstrated Control Technologies (DCTs) that constitute BADCT. This process considers site specific characteristics, operational controls, and other DCTs.

Under the individual BADCT approach, the TSF is considered a "tailings impoundment" and will be designed in accordance with Section 3.5 of the BADCT manual (ADEQ 2005). The seepage dams are considered to be "surface ponds" and will be designed in accordance with Section 3.6 of the BADCT manual (ADEQ 2005) and the regulations pertaining to water dams (A.A.C. R12-15).

5 TAILINGS MANAGEMENT PLAN

5.1 TSF Features

Key features of the TSF during start-up and operations include the following:

- A general fill borrow area and rhyolite quarry developed within the TSF footprint to provide a construction fill source for starter dams, drains and erosion protection.
- A compacted, cycloned sand embankment that forms the perimeter of the impoundment.
- Earthfill starter dams to facilitate tailings placement before the cycloned sand embankment is established.
- Earthfill North Dams constructed at the north end of facility to retain the tailings and reclaim pond and provide containment for the North Pyrite Cell.
- A North Pyrite Cell which stores pyrite tailings in the final years of operations in preparation for closure.
- An underdrain system comprised of a sand and gravel blanket drain and rockfill finger drains that underlies the cycloned sand embankment and a portion of the tailings beach.
- Diversion channels upslope of the impoundment to divert non-contact water around the facility.
- A tailings delivery system that delivers scavenger total tailings and pyrite tailings to the TSF for deposition.
- A reclaim pond maintained within the impoundment to provide water for the cyclone system, dust management, pyrite tailings saturation and reclaim to the West Plant.
- Pond transfer and pond reclaim systems that comprise floating pump barges and the mechanical and electrical infrastructure to transfer water between ponds within the TSF and to the West Plant.
- A pyrite tailings deposition barge and associated pipelines and support systems located within the reclaim pond to facilitate subaqueous deposition of pyrite tailings.
- A cyclone system that receives scavenger total tailings at a cyclone house and processes it to produce cyclone underflow (cycloned sand) for embankment construction. A by-product of this operation is cyclone overflow which is thickened and then deposited into the TSF impoundment.
- Tailings thickeners at the TSF for the cyclone overflow prior to deposition in the TSF.
- A seepage management system, comprising the items listed below. These features combined represent the highest level of seepage control (Level 1 to Level 4), refer to discussion on seepage management in Section 8:

- Eleven primary seepage collection dams (SCDs) and five auxiliary seepage collection dams (ASCDs) constructed in natural valleys downstream of the cycloned sand embankment and their associated seepage collection ponds (SCPs).
- Foundation treatment and, potentially, an engineered low-permeability layer³ placed over more permeable portions of the foundation.
- A grout curtain installed around the perimeter of the TSF, between the SCDs.
- Associated mechanical and electrical infrastructure required to return collected seepage water to the reclaim pond.

The majority of the features summarized above are shown on Figure 5.1. The potential areas of the foundation that could be treated (that may include engineered low-permeability layers) are shown on Figure 8.1.

³ The engineered low-permeability layer could be comprised of one or more of the following: compacted fine tailings, geomembrane liner, asphalt, slurry bentonite and/or cemented paste tailings.

5.2 Embankment Design

5.2.1 Overview

The TSF embankment would be constructed of borrow material then raised using compacted cycloned sand by a modified centerline approach. Key components of the design include the following:

- Cycloned sand shell to provide structure support which is compacted to a specified density required to achieve a dilative behavior.
- Underdrain system comprising a sand and gravel blanket drain with gravel primary drains along main drainages and some are extended into the TSF footprint, to maintain a low phreatic surface in the tailings embankment, intercept and direct seepage from the impoundment and hydraulic placement to the downstream SCDs.

The ultimate embankment layout is shown on Figure 5.2. Typical cross sections through the embankment are shown on Figure 5.3.

5.2.2 Downstream Embankment Slope

The cycloned sand embankment for Alternative 3A is assumed to have a downstream slope of 4H:1V and an upstream slope of 1.5H:1V, refer to Figure 5.3. Localized flattening or excavation of weak foundation layers may be required to meet stability criteria in select areas.

A slope trade-off assessment was performed to determine the impact of steepening the downstream embankment slope to 3H:1V and modifying the upstream slope to 1H:1V on: embankment height; amount of cycloned sand required; and forecasted time when progressive reclamation of the embankment slopes can begin. Table 5.1 is a summary of the assessment, refer to Appendix III for additional information.

Table 5.1	Comparison of Cycloned Sand Requirements and Availability
-----------	---

Embankment Slope Configuration	Embankment Elevation (fasl)	Maximum Embankment Height (ft)	Cycloned Sand Volume Required (Myd ³)	Maximum Cycloned Sand Volume Available (Myd ³) ¹	Cycloned Sand Surplus (Myd ³)	Operations "Year" At Which Progressive Reclamation Could Begin
d/s - 4H:1V u/s – 1.5H:1V	2,773	521	204	243	39	28
d/s - 3H:1V u/s – 1H:1V	2,760	504	164	243	79	22

Notes:

1. Refer to Appendix II for information on cycloned sand availability assumptions.

- 2. d/s = downstream
- 3. u/s = upstream
The 3H:1V embankment configuration offers an opportunity to reduce the amount of cycloned sand required for construction and potentially allow for progressive reclamation to start earlier. An additional benefit is faster development of large horizontal cycloned sand placement surfaces which are preferred for dust management and constructability. Local foundation conditions, validation of the simplified assumptions and potential challenges with operating equipment on the steeper slope for reclamation may preclude this optimization,

5.2.3 Stability

The embankment section (see Figure 5.3) is assumed to meet DEIS design stability criteria with typical foundation conditions and the preliminary stability analysis presented in KCB (2017a).

Time: 11:00 AM VCR\M09441A20 2018-05-30 ng File: Z:\M\\ Date: Drawi

5.3 Tailings Management Strategy

Figure 5.5 and Figure 5.9 present the proposed layout of the Near West TSF at start-up and ultimate (end of mine life). The overall tailings management strategy for Alternative 3A is as follows:

- Scavenger tailings and pyrite tailings earthfill starter dams would be constructed to store tailings at start-up before the cycloned sand embankment is established. The pyrite starter cell would include a low permeability layer and flooded for subaqueous deposition of pyrite tailings.
- During operations, a portion of scavenger tailings would be cycloned and the coarser underflow by-product (cycloned sand) would be used as embankment fill which would be placed in hydraulic placement cells.
- Scavenger tailings that are not cycloned and the finer cyclone overflow by-product would be thickened from the cycloned sand embankment crest to maintain a pond in the center portion of the impoundment. The cyclone overflow would be thickened at the TSF prior to deposition.
- After the pyrite starter dam is buried by tailings (post Year 9), pyrite tailings would be subaqueously discharged into the pond surrounded by the scavenger tailings beaches to keep them saturated to prevent the onset of acid-generation, refer to Section 5.4.
- A floating barge would be used to recycle excess water from the pond to the mill for ore processing.
- The perimeter cycloned sand embankment would be raised progressively to maintain adequate capacity for tailings, pond and flood storage.
- A transition to a "dry-cover" facility would be made for closure to minimize the amount of water that is ponded on the TSF surface and reduce infiltration over the long-term.

The overall strategy is discussed further herein including information regarding the supplementary structures necessary to meet project requirements.

5.4 Tailings Delivery and Process Facilities

Scavenger and pyrite tailings slurry would be thickened at the West Plant to 65% and 50% solids, respectively, and delivered to a "tie-in" point at the northeast corner of the TSF (see Figure 5.1). Downstream of the tie-in point, the scavenger tailings would either be distributed along the embankment crest and discharged from spigots for beaching, or sent to a cyclone house. Pyrite tailings would be sent directly to a deposition barge located within the impoundment.

The key facilities located at the tie-in point are summarized below:

- a cyclone separation plant ("cyclone house") which houses slurry dilution tanks, storage tanks, pumps and cyclones;
- cyclone overflow thickeners;
- substation;

- vehicle maintenance and fueling shop;
- warehouse for spares along with outside storage areas;
- administration and locker room facilities; and
- parking facilities.

Downstream of the tie-in point would be the following:

- cycloned sand distribution pipelines to hydraulic cells for embankment construction;
- scavenger tailings ("total" tailings and cyclone overflow) distribution pipelines to the embankment crest;
- pyrite distribution pipeline to the deposition barge and/or floating pipelines; and
- return water line from the reclaim pond.

Further details on the tailings delivery and process facilities is provided in the Tailings Corridor study report (RC 2016b).

5.5 Pyrite Tailings Management

Pyrite tailings would be deposited subaqueously from a floating barge throughout operations. No design has been prepared for the barge but the concept is for the barge to be moved frequently around the pond (to minimize pond volumes) to develop a roughly horizontal subaqueous tailings surface.

The primary advantages of this management approach are related to mitigating potential water quality impacts:

- Pyrite tailings would be maintained in a saturated state throughout operations to prevent or reduce oxidation and potential acid generation until they can be covered and encapsulated with scavenger tailings.
- The finer fraction of scavenger tailings that have a lower hydraulic conductivity than beach tailings, would deposit around and in the reclaim pond encapsulating the pyrite tailings.
- Placing pyrite tailings within the center of the facility increases the horizontal flow pathway length resulting in the longer lag time for seepage to reach the receptors, thus increasing potential for attenuation.
- Pyrite tailings to be stored primarily on the Gila Conglomerate foundation, which has lower bulk permeability compared to some other bedrock units on site.
- Pyrite tailings would be capped for closure to reduce infiltration and oxygen ingress over the long-term.

5.6 Tailings Staging Plan

Tailings deposition has been sub-divided into five major stages, as described below.

• Stage I – Years 0 to 2 (1% of total tailings volume) – see Figure 5.5:

- Scavenger and pyrite tailings are deposited behind their respective starter dams within Bear Tank Canyon.
- Pyrite tailings deposition into the pyrite reclaim pond from a floating barge.
- Operation of separate scavenger and pyrite reclaim ponds. Water in the scavenger pond is pumped to the pyrite pond for reclaim to the cyclone house.
- Cycloning of scavenger tailings to produce fill for embankment construction.
- Stage II Years 3 to 4 (2% of total tailings volume) see Figure 5.6:
 - As Stage I, except another scavenger starter dam (Scavenger Starter Stage II) is commissioned in the valley west of Bear Tank Canyon and scavenger deposition commences there. Commissioned scavenger tailings starter dams are raised with cycloned sand.
 - Pyrite tailings deposition into the pyrite reclaim pond from a floating barge.
- Stage III Years 5 to 9 (14% of total tailings volume) see Figure 5.7:
 - As Stage II, except another scavenger starter dam (Scavenger Starter Stage III) is commissioned in the western most valleys and scavenger deposition commences there. Commissioned starter dams are raised with cycloned sand.
 - Pyrite tailings deposition into the pyrite reclaim pond from a floating barge.
- Stage IV Years 10 to 34 (80% of total tailings volume) see Figure 5.8:
 - Scavenger deposition from the perimeter of the cycloned sand embankment as the embankment is raised.
 - Scavenger and pyrite ponds are merged and operated as one.
 - Pyrite tailings deposition into the reclaim pond in the central portion of the impoundment from a floating barge.
 - Northern Containment Dams are commissioned to retain tailings and the encroaching reclaim pond.
 - Cycloning of scavenger tailings to produce fill for embankment construction.
- Stage V Years 35 to 41 (3% of total tailings volume) see Figure 5.9:
 - Scavenger tailings are deposited along the perimeter of the cycloned sand embankment, from pipes further down the beach and/or mechanical placement to fill in the low spot at the center of the facility and promote grading of the beach towards the North Containment Dams and North Pyrite Cell.
 - Pyrite tailings subaqueous deposition within a separate cell, the North Pyrite Cell, north of the main impoundment.
 - Note that the Stage V layout shown on Figure 5.9 still incorporates a tailings production schedule of 45 years, and although final elevations and layout would be slightly different

for the actual 41 year production schedule, the changes are not material and the tailings management concept would remain unchanged.

The tailings staging plan described above was modeled using the software program MUCK3D (MineBridge Software Inc., version 1.0.5). A detailed discussion on the modeling approach, key assumptions and results are summarized in Appendix IV.

Key observations from the tailings deposition models include the following:

- Pyrite tailings can be deposited subaqueously at all stages to maintain saturation.
- The impoundment layout can store the required tailings and flood storage volumes.
- There is precedent in the industry for compacted cycloned sand embankments to the height predicted (520 ft).
- Long beaches (>400 ft) are maintained even when storing the inflow design flood (PMF) for all years except Year 3 when the beach width would be 200 ft.
- The forecasted rate of embankment rise, above the initial starter dam crests, is shown on Figure 5.4. Rates of rise between 15 ft/yr and 21 ft/yr are expected in the first 14 years before leveling out to less than 11 ft/yr for the remainder of operations, which is within the range for facilities of this type.
- The total cycloned sand volume required to build the embankment is approximately 40 Myd³ less than the total cycloned sand available (243 Myd³), based on the assumed density and cycloned sand availability assumptions provided in the DBM (Appendix I) and discussed in Appendix II. The surplus in cycloned sand could potentially be used for other construction activities to reduce the borrow requirements (e.g. road construction, liner bedding, starter and north dam construction).

Figure 5.4 Embankment Rate of Rise

Date: 2018–05–30 Time: 11:00 AM Drawing File: Z:/M/VCR/M09441A20 - RES-Neor West PFS-PES/400 Drawings/CAD/Alt 3A Neor West Wet TSF/DEIS/FIG_5.5.dwg

Date: 2018-05-30 Time: 11:00 AM Drawing File: Z:\M/VCR\M09441A20 - RES-Near West PFS-PES\400 Drawings\CAD\Alt 3A Near West Wet TSF\DEIS\FIC_5.6d

Date: 2018-05-30 Time: 11:00 AM Drawing File: Z:/M/VCR/M09441A20 - RES-Neor West PFS-PES\400 Drawings\CAD\Alt 3A Neor West Wet TSF\DEIS'

6 FOUNDATION CHARACTERIZATION AND DESIGN SECTOR DEFINITION

6.1 General

The foundation of the TSF has been divided into "design sectors", each of which encompasses a region of broadly similar foundation geology and embankment geometry, and therefore, requires similar foundation treatment and seepage control measures, refer to Figure 6.1. These design sectors are referenced throughout this report in connection to seepage management, particularly in Section 8, where the seepage management plan is described per sector.

Key details on the design sectors are summarized in Table 6.1 and further discussion on the environmental, safety and mitigation measures is provided in the following subsections.

Sector Name	Primary Foundation Geology	Key Design Considerations
Northeast	Rhyolite (Tp) and Tuff (Tt)	Relatively high hydraulic conductivity of the foundation rock units providing a pathway for seepage. Potential for low-strength layers in the foundation.
East	Gila Conglomerate (Tcg)	Potential for reduced foundation strength resulting from Gila Conglomerate saturation, and potential seepage through the Gila Conglomerate into Potts Canyon
Southeast	Gila Sandstone (Tss)	Potential for low-strength layers (montmorillonite clay) in the foundation. The existing site investigation information indicate these layers are potentially present within 30 ft of surface (KCB 2017b).
South	Pinal Schist (Xp) and Tertiary Basalt (Tb)	Control of seepage through the bedrock to prevent flow into Queen Creek, and the potential for low-strength layers within the Pinal Schist.
West	"Mixed" Bedrock Geology	Potential for low-strength or collapsible layers within the Apache Leap tuff, dissolution of the limestone units, and seepage into Roblas Canyon. Limited occurrence of these were observed during the site investigation (KCB 2017b). Existing workings from the abandoned Bomboy Mine may present a collapse risk and pathway for seepage.
Northwest	Gila Conglomerate (Tcg)	Similar considerations to the East Design Sector; however, in this region, the potential seepage and stability considerations are less pronounced because the embankment height is lower and seepage flow is against the regional gradient.
North	"Mixed" Bedrock Geology	Potential for seepage through the foundation towards Potts Canyon.

Table 6.1Design Sectors

6.2 Northeast Design Sector

The Northeast design sector encompasses a region of Tertiary rhyolite (Tp), and a narrow strip of Tertiary tuff (Tt) at the southern boundary of the design sector. This design sector forms part of a ridge leading to Potts Canyon to the east of the TSF. The main design considerations for this design

sector relate to the high hydraulic conductivity and potential for low strength layers in the foundation units.

The hydraulic conductivity of these units is typically in the range of 10^{-5} cm/s to 10^{-6} cm/s; however, zones up to 3 x 10^{-1} cm/s and 2 x 10^{-3} cm/s were recorded in tuff and rhyolite, respectively, during packer testing in the 2016/2017 SI (KCB 2017b). The water level in this region is also lower than the regional trend. These observations imply a potential for seepage to pass through these units into Potts Canyon; seepage management is discussed in Section 8.

There has been a suggestion that low strength layers may exist in these units based on observations of weathered tuff layers in boreholes outside the embankment footprint during the 2016/2017 SI as well as observations of montmorillonite clay-rich weathered layers within the rhyolite. It is currently assumed that rhyolite would form one of the main borrow sources for granular fill required for drains (see Section 10); therefore, blasting/excavation of this unit is already accounted for within the design. If these layers are found to be pervasive and/or persistent in the tuff, it is assumed they could be managed by excavation of a shear key or flattening of the embankment slope, without significantly the overall TSF design.

6.3 East Design Sector

The East design sector extends along a ridge of Gila Conglomerate (Tcg), which separates the TSF from Potts Canyon. The main design considerations for this sector include the potential for reduced foundation strength resulting from Gila Conglomerate saturation, and potential seepage through the Gila Conglomerate into Potts Canyon.

The Gila Conglomerate at the Near West site has an average unconfined compressive strength (UCS) of roughly 1800 psi, classifying as a very weak to weak rock. This strength is significantly higher than that of the tailings and does not impact the stability of the TSF; however, an additional consideration for Gila Conglomerate is that this unit can lose strength during saturation. This potential was assessed in the geotechnical site characterization (KCB 2017b) and a reduced strength of $\phi' = 26^{\circ}$ has been selected for the upper 10 ft of Gila Conglomerate in this DEIS design to account for this possible strength reduction.

It is currently assumed that weathered Gila Conglomerate will not be susceptible to strength loss during undrained loading or liquefaction because there is no reported evidence of this occurring in the region. Samples of crushed Gila Conglomerate tested in the 2017 site characterization (KCB 2017b) were also found to contain between 13 % and 19 % montmorillonite clay in the total mass of the sample, suggesting that the weathered soil will be clay-like and unlikely to liquefy.

The hydraulic conductivity of the Gila Conglomerate at the Near West site varies widely between 1×10^{-2} cm/s to 1×10^{-8} cm/s (based on packer testing) with the higher values being associated with localized discontinuities. These discontinuities will be treated, where identified, during foundation preparation. Other seepage control measures to limit the potential for flow through the Gila Conglomerate into Potts Canyon are discussed in Section 8.

6.4 Southeast Design Sector

The Southeast design sector encompasses a region of Gila sandstone (Tss), which was found to contain montmorillonite clay layers with a drained residual friction angle as low as $\phi' = 10^{\circ}$ in the upper 30 ft of this unit. If these layers are persistent and continuous, they would impact the stability of the TSF in this region. Since these layers were observed in two boreholes during the 2016/2017 SI, a shear key trench may be required through this unit in this design sector to remove these layers from the upper 30 ft.

Limited data are available for the hydraulic conductivity of the Tss compared with the Tcg; however, the available data typically plot in the same range. Therefore, it is assumed that similar seepage control measures will be required for this design sector as for the East design sector (see Section 8).

6.5 South Design Sector

The South design sector covers an area dominated by Pinal Schist (Xp) located along the southern perimeter of the TSF, which separates the TSF from the Queen Creek aquifer. The Pinal Schist in this area is intersected by several alluvial drainage channels, and the eastern boundary of the design sector is underlain by Tertiary basalt (Tb). The main design considerations in this region relate to controlling seepage through the bedrock to prevent flow into Queen Creek, and the potential for weak layers within the Pinal Schist. Flow through the alluvial sediments is not a concern since the design incorporates excavation and removal of all alluvium within the footprint of the TSF and SCDs for use as drain material.

The hydraulic conductivity of the basalt ranges from 5 x 10^{-5} cm/s to 9 x 10^{-8} cm/s and the Pinal Schist varies between 2 x 10^{-3} cm/s and 6 x 10^{-8} cm/s.

Due to the importance of controlling seepage towards Queen Creek, a preliminary layout of several levels of seepage control has been included in this design, as discussed in Section 8. The need for, and extent of, each of these layers of seepage control will be evaluated during hydrogeological modeling and additional site characterization before construction.

Pinal Schist commonly has reduced strength along foliation planes. The orientation of foliation along the south design sector is typically favorable to stability.

Gouge filled foliations with a friction angle of $\phi' = 32^{\circ}$ and c' = 14,400 psf have been identified in the Pinal Schist at Near West. Observations at other facilities have found lower strengths (in the order of $\phi' = 27^{\circ}$) on a scale that is large enough to impact stability are possible in this unit. As a result, a strength of $\phi' = 27^{\circ}$ and c' = 1000 psf has been selected for this unit.

6.6 West Design Sector

The West design sector encompasses a region of variable geology, referred to in previous design assessments at Near West as the 'mixed geology' area. This mixed geology area separates the TSF from Roblas Canyon to the west. Examples of the units in this area include Apache Leap tuff (Tal),

Mescal Limestone (Ym), Martin Limestone (Dm), Dripping Spring Quartzite (Ydsl/ Ydsu), Bolsa Quartzite (Cb) and diabase (Yd).

The main design considerations in this area relate to the potential for weak or collapsible layers in the Apache Leap tuff, dissolution of the limestone units, and seepage into Roblas Canyon. Packer testing in these units identified hydraulic conductivities ranging widely between 6×10^{-3} cm/s and 5×10^{-8} cm/s, and observations of fluid losses during drilling suggest there are discrete zones within these units where the hydraulic conductivity is significantly higher than other areas in the rock mass. To mitigate the potential for seepage through these layers reaching Roblas Canyon, and/or causing dissolution of the limestone layers, selective lining of this area has been included together with other seepage control measures in this design, as discussed in Section 8.

Based on the limited observations of weathered material in the 2017 SI, it is assumed that any weathered material will be located close to the surface (i.e. within the upper 10 ft to 20 ft) and would be excavated as part of site preparation; however, deeper zones of weathered tuff (up to roughly 60 ft) were observed in drill holes located outside of the facility footprint, implying that deeper zones of weathering could exist. If these layers are found to be pervasive and/or persistent in the tuff, they could be managed by excavation of a shear key or flattening of the embankment slope, without significantly the overall TSF design.

A 3 ft deep void was observed in the televiewer profile of a highly fractured area of Mescal Limestone in one of the drill holes, which implies that localized dissolution of the limestone units may have occurred in this region. Packer testing found low hydraulic conductivity (10⁻⁷ cm/s) across the zone where the potential voids were observed suggesting this void is limited in extent.

Due to limited observations and extent of these features, and the site and regional geology, the current design assumption is that any existing dissolution features are minor and localized and would not affect the integrity of the TSF. Because dissolution features could be a potential seepage pathway, the implementation of seepage mitigation measures discussed in Section 8 would treat areas to prevent seepage flows where dissolution features are discovered in the future.

An abandoned underground mine and shafts called Bomboy Mine is located in this design sector. These mine workings could potentially impact the TSF by providing a preferential flow path for seepage, or by collapsing under the embankment causing deformation of the embankment and/or seepage control measures. The extent of these mine workings and whether they have collapsed/partially collapsed will be investigated with geophysical methods. It is currently assumed that these workings are intact and the design will incorporate treatment by grouting or removing the hill that they are in.

6.7 Northwest Design Sector

The Northwest design sector covers a region of Gila Conglomerate. The design considerations in this region are similar to those discussed for the East design sector; however, in this region, the potential seepage and stability considerations are less pronounced because the embankment height of this

area (up to 200 ft) is lower than in the East design sector (up to 350 ft) and the seepage flow is against the regional gradient.

The current design assumption is that seepage could develop through this region towards Roblas Canyon, if it is not mitigated, due to potential changes to the groundwater flow regime because of groundwater mounding beneath the TSF. Therefore, an allowance for grouting surface bedrock fracture zones in this region has been included in the seepage control measures (see Section 8); however, the need for this grouting will be reviewed using hydrogeological modeling and additional site characterization in advance of construction.

6.8 North Design Sector

The North design sector includes a similar range of geological units as the West design sector; however, the embankment height in this sector (up to 150 ft) is less than all other sectors because the natural ground elevation is the highest. Therefore, the main design consideration in this area is the potential for seepage through the foundation towards Potts Canyon. As with the Northeast design sector, the embankments in this design sector will impound the pyrite tailings with a consistent water cover over the pyrite tailings.

	0	1 Mile	
TION	PROJECT RESOLUTION COPPER P DEIS DESIGN FOR ALTERNATIVE 3A - 1 PROPOSED ACTION (MODIFIED CENTE	ROJECT NEAR WEST MODIFIED ERLINE EMBANKMENT)	
ER	TITLE		
DESIGN SECTORS		IORS	
ven beiger	PROJECT No. M09441A20	FIG No. 6.1	

7 WATER MANAGEMENT PLAN

7.1 Surface Water Management System

The objectives of the operational water management plan are to:

- divert non-contact water around the TSF to keep separate from contact water;
- minimize water losses and maximize contact water recycled back to the West Plant for ore processing;
- intercept embankment toe seepage and surface runoff from the TSF and recycle the water to the reclaim pond;
- maintain a reclaim pond to keep pyrite tailings saturated;
- store the inflow design flood within the impoundment with adequate freeboard; and
- protect the TSF and diversion structures from erosion from flood events.

The water management concept is shown schematically on Figure 7.1, water management features are shown on Figure 5.1, Figure 5.9, Figure 8.4 and Figure 8.5. The surface water management system includes the following components:

Upstream Water Diversions

Alternative 3A would have the same upstream diversions as Alternative 2 (Near West GPO Proposed Action), as presented in KCB (2014).

The three diversion channels would be constructed north of the TSF to route the upstream catchment around the facility. The diversion channel general layouts are shown on Figure 5.1. They are sized to convey the peak PMF flow, which is the greater peak flow of the 6-hr to 72-hr

Reclaim Pond

The TSF reclaim ponds are sized based on the following:

- Scavenger starter reclaim pond (Year 1 to Year 9) minimum operating pond is sized with a depth of 20 ft (at the deepest point in the pond) to allow for settling of tailings and operation of the reclaim barge.
- Pyrite starter reclaim pond (Year 1 to Year 9) minimum water cover over pyrite tailings of 10 ft, which is a conservative depth for reclaim barge and pyrite deposition barge draft.
- Combined reclaim pond (Year 10 to Year 41) minimum water cover over the pyrite tailings cone peaks of 5 ft, for reclaim barge and pyrite deposition barge draft. The reclaim barge will be located to reclaim clarified water.

Downstream Embankment Runoff Collection Ditches

Lined collection ditches would be constructed along the embankment toe and at underdrain discharges to convey water to the SCDs.

Seepage Collection Dams (SCDs)

Eleven SCDs would be built to collect seepage water from the tailings embankment underdrain system and surface runoff from the embankment slope. The staging of the seepage dams is shown on Figure 5.5 to Figure 5.9 and a typical section is shown on Figure 8.5.

Water from the SCDs will be pumped back into the TSF. The design criteria for the SCD sizing is included in the DBM (Appendix I). The storage capacity will have allowance for the minimum operating volume, maximum seasonal volume (for an average climatic year), volume required for operational upset, volume for critical duration storm even including sediment (Environmental Design Flood and Inflow Design Flood) and minimum freeboard above peak flood level.

The toe of the tailings embankment will be armored to convey seepage that daylights along ridges to the SCDs. The toe of the SCDs will be armored to protect the TSF from flooding in Queen Creek, Roblas Canyon and Potts Canyon.

Seepage collections dams may also be used to manage fines that are suspended in excess surface water from cycloned sand hydraulic placement cells.

Auxiliary Seepage Collection Dams (ASCD)

As part of the staged seepage management plan (see Section 8), Level 3 of the plan includes the construction of additional 'auxiliary' SCDs (ASCD) downstream of the SCDs.

The assumption at this design stage is that the ASCDs would include similar elements as the SCDs, but would be a maximum of approximately 15 ft high. This reduced height compared with the SCDs is because these ASCDs would not collect surface runoff from the TSF and would not be defined as a jurisdictional dam under the Arizona Department of Water Resources (ADWR).

Water Reclaim Systems

Pumping systems (e.g. floating barges, pump stations, siphons) would be utilized to move impounded contact water to central areas where it can be recycled back to the West Plant or used for some other beneficial purpose (e.g. dust management).

The water reclaim systems include the following:

- Pond Reclaim System (PRS) recovers water from the TSF pyrite reclaim pond and delivers it to the cyclone house at the northeast corner of the facility and from the combined TSF reclaim pond after Year 9.
- Pond Transfer Reclaim System (PTRS) during Year 1 to Year 9, transfers water from the scavenger pond to the pyrite pond.
- Seepage Reclaim System (SRS) returns seepage and embankment runoff to the TSF. Includes the SCDs and the additional seepage mitigation infrastructure discussed in Section 8.
- TSF Thickeners overflow water from the TSF thickeners (for cyclone overflow) would be used to dilute cyclone feed stream and surplus would be reclaimed to the West Plant.

 Dust Management – pumps water from the reclaim pond around the embankment to sprinklers.

7.2 Water Balance

A start-up, operational and post-closure contact water balance was completed for monthly average inflows and outflows, the assumptions and results are summarized in Appendix IV. The main objectives of the water balance were to:

- provide an understanding of monthly average inflows and outflows of the TSF system;
- estimate when the TSF system is in a state of "loss" (defined as having less water available than the West Plant requires, not including the other West Plant inflows) or "surplus" (i.e. defined as having more water than the West Plant requires, not including the other West Plant inflows);
- preliminary estimate of seasonal fluctuations of pond water for the sizing of water collection ponds; and
- provide a basis for further water quality and downstream solute transport assessments (completed by others).

The operational TSF water balance is represented schematically on Figure 7.1 and is focused around the water ponds (i.e. seepage collection ponds, TSF reclaim pond). The West Plant water requirements and TSF reclaim rates are shown on Figure 7.2. A summary of the TSF system losses and surpluses are given in Table 7.1 and Table 7.2.

Table 7.1 Summary of TSF System Water Requirements from Other Sources

Flow Description	Operations (acre-ft)	Post-Closure Phase 1 (acre-ft)	Post-Closure Phase 2 (acre-ft)
Additional water required for Pyrite2,000Pond (to maintain saturation)(Years 2 to 5)		0	n/a
TSF system loss (water required for the West Plant from other sources)	531,000	0	0

Table 7.2	Summary	/ of TSF Activ	e Water Mana	gement Reg	uirements (S	System Sur	olus)
				0			/

Flow Description	Operations (acre-ft)	Post-Closure Phase 1 (acre-ft)	Post-Closure Phase 2 (acre-ft)	
TSF Reclaim Pond	1,500 (Years 39 to 41)	0	n/a	
Seepage Collection Ponds	0	0	4,400	

Notes:

Active water management is required when the storage pond does not have capacity to evaporate inflows on an annual basis. Active water management could include pumping water to different locations or using spray evaporators for additional evaporation capacity and/or treating and releasing.

Figure 7.2 West Plant Water Requirements from TSF and Other Sources

8 SEEPAGE MANAGEMENT PLAN

Available "best practice" management methods to reduce seepage as much as practical are included in the DEIS design at this stage. Seepage mitigation measures would be refined and optimized between the DEIS and final EIS if this was the selected alternative. In line with ADEQ requirements, assumed groundwater points of compliance are shown on Figure 8.1 to Figure 8.4.

The seepage management plan described below is shown on Figure 8.1 to Figure 8.5, and summarized in Table 8.1. Seepage mitigations are roughly sequenced in an upstream (nearest to TSF) to downstream (nearest to downstream receptor) direction:

- Level 1– Foundation Treatment and Primary Seepage Collection Measures;
- Level 2 Grout Curtain Extension;
- Level 3 Auxiliary Seepage Collection Dams (ASCDs); and
- Level 4 Downstream Pumping Wells.

Level 1 (Figure 8.1 and Figure 8.5) – Foundation Treatment and Primary Seepage Collection Measures

Level 1 includes foundation treatment (dental concrete, cut-offs, grouting) or selective engineered low permeability layers⁴ to decrease infiltration in the foundation and a primary layer of seepage collection (underdrainage, SCDs, pumpback system). Specific treatments would be reviewed for each design sectors.

Underdrainage would include the following:

- The scavenger starter dams would be constructed above the embankment blanket drain. The intention is that the blanket and finger drains would collect water from the tailings and convey it beneath the starter dams to a series of lined channels located within the drainage channels downstream of the TSF. The lined channels would then convey the collected seepage water to lined SCDs.
- Underdrains would be extended into the impoundment to intercept seepage from the scavenger beach area.

SCDs are included in Level 1 of the seepage control. These dams are located in the drainage valleys and would include the following elements:

- Excavation of all alluvial soil beneath the crest of the dam until competent foundation material is reached and replacement with compacted granular fill.
- An engineered low-permeability layer placed on the upstream face.

⁴ The engineered low-permeability layer could be comprised of one or more of the following: compacted fine tailings, geomembrane liner, asphalt, slurry bentonite and/or cemented paste tailings.

- A cementitious grout curtain that extends to a depth of 100 ft into the foundation, and roughly 100 ft into each abutment.
- Pumpback wells installed in the granular fill beneath the SCD on the upstream side of the grouted core.

Level 2 (Figure 8.2 and Figure 8.5) – Grout Curtain Extension

Level 2 measures include extending the grout curtain installed at the SCDs along the bedrock ridges between the SCDs. This grouting would be completed in a phased manner after additional SI's to identify potential high permeability zones, in which the extent of the first phase would be specified based on monitoring data and groundwater modeling results, which would be reviewed and updated as the grouting progressed and be used to guide any additional grouting.

Level 3 (Figure 8.3 and Figure 8.5) – Auxiliary Seepage Collection Dams

Level 3 measures include the construction of additional 'auxiliary' SCDs (ASCD) downstream of the SCDs. The intent from these ASCDs would be to capture any seepage that bypasses the Level 1 and/or Level 2 controls, either through the bedrock ridges or beneath the grout curtains. The assumption behind these Level 3 ASCDs is that the flow through the bedrock ridges or beneath the grout curtains will ultimately report to drainage channels. Therefore, the ASCDs would be located as far downstream along the drainage channels as feasible to maximize opportunity for seepage capture. The current assumption is that these ASCDs would be located up to a maximum of roughly 750 ft from Queen Creek.

Level 4 (Figure 8.4 and Figure 8.5) – Downstream Pumping Wells

Level 4 measures are intended to be deployed if there are indicators that seepage could or is currently bypassing Level 1 to 3 measures. Level 4 measures include installation and operation of a series of pumping wells in the identified seepage pathways.

CEMENTED PASTE TAILINGS, ETC.

EMENTED PASTE TAILINGS. ETC

CEMENTED PASTE TAILINGS, ETC.

Z	850,000		D NEAR WEST TSF (INCLUDING STARTER DAM CYCLONE HOUSE AND ACCESS ROUTE TIE-IN POINT CONCEPTUAL SECTION LOCATIONS UPSTREAM DIVERSION POINT OF COMPLIANCE (POC) TO BE LOCAT MAXIMUM OF 750 ft DOWNSTREAM OF POLL MANAGEMENT AREA (PMA) ARIZONA NATIONAL SCENIC TRAIL (ARIZONA TRAIL) MAJOR NATURAL DRAINAGES CONTOUR (20ft) CONTOUR (100ft)	IS) FED A .UTION
- 1		<u>SEEPA</u>	<u>GE MANAGEMENT</u>	
5		LEVEL	1	
	0	•	TSF SEEPAGE PUMPBACK WELL	
	45,00		FINGER DRAINS	
	ò			
			PRIMARY SEEPAGE COLLECTION DAM	
Mar.			EXCAVATION (TO FILL) AND REGRADING (SE	EE NOTE 3)
The second			SELECTIVE LINED NORTH AREA (SEE NOTE	4)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			BLANKET DRAIN RHYOLITE QUARRY AREA AND SELECTIVE I	INING (SEE NOTE 4)
<u>P</u>			SELECTIVE LINED WESTERN MIXED GEOLO	OGY AREA (SEE NOTE 4)
MELT STAL		LEVEL	2	
5.111			GROUT CURTAIN EXTENSION	
	000,	LEVEL	3	
	84(	Q	AUXILIARY SEEPAGE COLLECTION DAM	
7			GROUT CURTAIN EXTENSION	
\$\$\$L((				
1EC	000			
	835			
M				
S S S S S S S S S S S S S S				
E.K.				
C)				
		(	0 2,500 Feet 0	0.5 Mile
	_	_	PROJECT RESOLUTION COPPER PR	ROJECT
٥١٦	N		DEIS DESIGN FOR ALTERNATIVE 3A - N PROPOSED ACTION (MODIFIED CENTE	EAR WEST MODIFIED RLINE EMBANKMENT)
R			TITLE	
			SEEPAGE MANAG	EMENT
			LEVEL 3	
en Bei	rge	er	PROJECT No.	IG No.
			WI0344 IA20	0.3



CEMENTED PASTE TAILINGS, ETC.



11:00 AM 09441A20 Time: °. ₽ 2018-05-

## Table 8.1Alternative 3A Seepage Management Plan

Level	Applicable Design Sectors	Applicable Geology Units	Receiving Waterbody	Mitigation
1 (Figure 8.1 and Figure 8.5)	South and Southwest	Pinal Schist, Gila Conglomerate/ Sandstone, and Alluvium	Queen Creek and Roblas Canyon in the southwest corner	<ul> <li>Foundation preparation and treatment (e.g. grouting or dental concrete) beneath embankment</li> <li>Finger drains extending 200 ft upstream of the ultimate embankment crest</li> <li>SCD with engineered low-permeability layer and cutoff trench</li> <li>Drainage layer below SCD low-permeability layer and pumpback well to collect flow bypa blanket drain</li> <li>Grout curtain below SCD and in SCD abutments</li> <li>Pyrite starter pond with engineered low-permeability layer</li> </ul>
	East and Northwest	Gila Conglomerate	Potts Canyon and Roblas Canyon	<ul> <li>Excavation (for borrow) and re-shaping/smoothing</li> <li>Selective foundation treatment/placement of engineered low-permeability layer</li> <li>Blanket drain beneath main embankment</li> </ul>
	West	Paleozoic units (e.g. Bolsa Quartzite, Apache Leap Tuff, Escabrosa Limestone), and Alluvium	Roblas Canyon	<ul> <li>Foundation treatment/placement of engineered low-permeability layer</li> </ul>
	Northeast	Perlitic Rhyolite	Potts Canyon	<ul> <li>Foundation treatment/placement of engineered low-permeability layer</li> </ul>
	North	Pinal Schist and Mixed Geology	Potts Canyon	<ul> <li>Selective foundation treatment/placement of engineered low-permeability layer</li> </ul>
2 (Figure 8.2 and Figure 8.5)	South, Southeast, East, Northwest, and West	All	Queen Creek, Potts Canyon, Roblas Canyon	<ul> <li>Grouting the perimeter of the TSF through the ridges between SCDs</li> </ul>
3 (Figure 8.3 and Figure 8.5)	South and Southwest	Pinal Schist and Alluvium	Queen Creek and Roblas Canyon in the southwest corner	<ul> <li>Construction of ASCD downstream of SCD</li> </ul>
4 (Figure 8.4 and Figure 8.5)	South, Southeast, and West	Alluvium, Pinal Schist and Paleozoic units (e.g. Bolsa Quartzite, Apache Leap Tuff, Escabrosa Limestone)	Queen Creek and Roblas Canyon	<ul> <li>Pumpback wells downstream of SCD and ASCD</li> </ul>



	Purpose			
ssing	<ul> <li>Decrease foundation permeability</li> <li>Collect and direct seepage to SCDs</li> <li>Collect seepage and return to TSF</li> <li>Decrease foundation permeability and limit seepage bypassing collection systems</li> </ul>			
	<ul> <li>Promote positive drainage of seepage</li> <li>Decrease foundation permeability</li> <li>Collect and direct seepage to SCDs</li> </ul>			
	<ul> <li>Decrease foundation permeability</li> </ul>			
	<ul> <li>Decrease foundation permeability</li> </ul>			
	<ul> <li>Decrease foundation permeability</li> </ul>			
	<ul> <li>Decrease foundation permeability and limit seepage bypassing collection systems</li> </ul>			
	<ul> <li>Additional seepage collection</li> </ul>			
	<ul> <li>Additional seepage collection</li> </ul>			

## 9 DUST MANAGEMENT PLAN

The key considerations for dust management of the Alternative 3A TSF are:

- the surface area of the impoundment;
- susceptibility of beach tailings to wind erosion, when dry;
- susceptibility of cycloned sand to wind erosion, when dry;
- embankment slopes that cannot be progressively reclaimed until the later stages of operations; and
- proximity of the Near West site to sensitive receptors (the town of Superior (4 miles northeast), community of Queen Valley (4 miles southwest), Boyce Thompson Arboretum State Park (1.5 miles east) and the Superstition Wilderness Area (4 miles north)).

The conceptual dust management plan for the Alternative 3A is based on the following approach to manage wind erosion of the TSF surface.

- Cycloned sand embankment slope:
  - The embankment would be constructed to establish the ultimate downstream slope as soon as practical to allow progressive reclamation of the slope with an erosion resistant cover. Progressive reclamation is forecast to start after Year 12, ramping up to Year 30 at which point the embankment can be raised horizontally (see Appendix III and Appendix IV).
  - Active hydraulic placement cells would be wetted through construction water and would not need additional dust suppression.
  - Areas that would be exposed for an extended period (inactive areas that have not been progressively reclaimed) would have temporary erosion controls, such as: polymers, wind fences, and/or temporary sand and gravel erosion protection layer.
- Tailings beach:
  - Tailings deposition spigot locations would frequently rotate to keep as much of the beach as wet as practical.
  - Tailings beaches undergoing active tailings deposition are considered wetted and resistant to dust erosion.
  - Inactive tailings beaches are considered to be dry and if left for extended periods, may be wetted by sprinklers or sprayed with polymer, if necessary.
  - Relative to the cycloned sand embankment, tailings beaches are expected to have higher erosion resistance due to suction and formation of a crust at the surface.
- Reclaim pond:
  - Tailings submerged in the reclaim pond would not be exposed to wind erosion.

In addition, service roads would be regularly watered or sprayed with a dust suppressant, as required.

## **10 BORROW PLAN**

Earthfill construction materials are required for the following purposes:

- general fill for dam construction;
- sand and gravel for underdrains, blanket drains and dam zones; and
- riprap for erosion protection.

Based on the Near West foundation characterization (refer to Section 2.5), the most likely general fill borrow source of sufficient quantity is the Gila Conglomerate (Tcg), which outcrops over approximately 55% of the TSF footprint. Experience at the West Plant site indicates a surface layer of the material can be ripped with a dozer but below approximately 5 ft to 10 ft drilling and blasting may be required. All of the material must be processed to varying degrees to produce a well graded 12 in. minus fill material. A preliminary borrow area has been identified within the TSF impoundment near Bear Tank Canyon, upstream of the Pyrite Starter Dam to provide the added benefit of increased tailings storage, see Figure 5.5.

The preferred source of sand and gravel for the blanket drains and underdrains is the alluvial sediments located within the active channels supplemented with processed rock. Based on the volume estimates prepared for the GPO design (KCB 2014), it is expected that roughly 180,000 yd³ of 0.8 inch minus sand and gravel is available in the alluvial channels.

Riprap for erosion protection will be sourced from either the rhyolite quarry in the Northeast design sector, subject to the volume of rhyolite required to supplement the alluvium for drainage rock. If an additional source of riprap is required, this could be sourced from the Apache Leap tuff unit located in the southern part of the West design sector.



## **11 PRELIMINARY CLOSURE PLAN**

The long-term closure goals for Alternative 3A are to have a well-drained, stable embankment and to limit the duration of post closure water management. Management during operations of the PAG pyrite tailings and their location within the facility post-closure is important to reducing the risk of Acid Rock Drainage / Metal Leaching (ARD/ML) in tailings seepage. The tailings deposition strategy is to encapsulate the pyrite tailings within the scavenger tailings to minimize contact with oxygen.

The closure and cover strategy for the facility begins during operations and tailings deposition planning, and continues through to the onset of closure. The primary performance objectives for closure and reclamation of the TSF are to:

- develop a stable landform;
- develop a stable vegetated cover system that limits net infiltration and protects surface water runoff quality;
- minimize ponded water on the closed tailings surface;
- promote high levels of saturation of the pyrite tailings to reduce their exposure to atmospheric oxygen during operations (and post-closure by limiting oxygen ingress);
- protect the reclaimed surface against wind and water erosion; and
- provide a growth medium for vegetation establishment and long-term sustainability.

During operations, the cycloned sand embankment slopes would be progressively reclaimed as soon as practical. Towards the end of operations, scavenger tailings would be strategically deposited within the TSF to promote drainage towards the north (where a closure spillway would be constructed) and pyrite tailings would be stored in a separate cell within the TSF footprint at its northern end. At the end of operations, the scavenger tailings surfaces would be covered with a store-and-release and erosion-resistant cover and revegetated. The pyrite tailings cell would be covered with a layer of scavenger tailings and an erosion resistant cover and revegetated. The downstream slopes of the embankment would be armored and runoff collection channels would be constructed on the slopes to convey surface runoff.

Post closure is separated into three phases for the water balance: active TSF closure, active SCD closure, and passive closure.

Active TSF closure starts immediately after the end of operations and ends when the TSF pond area is reclaimed. During this phase, the TSF pond is maintained to assist with evaporation of impoundment draindown water, which is collected at the SCDs and is pumped back to the TSF reclaim pond. A duration of 25 years was assumed for this period.

#### Phase 1 – Active TSF Closure

Mine Years 42 to 46 (first five years after end of operations):

The embankment slopes are reclaimed (covered and vegetated).

- The tailings beaches are reclaimed (covered and vegetated).
- The TSF reclaim pond is assumed to decrease in volume from approximately 4,000 acre-ft at the end of operations to 1,000 acre-ft.
- Impoundment draindown water that collects at the SCDs and is pumped back to the TSF reclaim pond can be used for dust management on tailings beaches and embankment slopes that are not yet reclaimed.
- A closure spillway and diversions are constructed to convey as much runoff from the natural catchment and reclaimed TSF surfaces around the Seepage Collection Ponds as soon as practical (assumed to be completed by year five).

Mine Years 47 to 66 (years 6 to 25 after end of operations):

- The SCDs are upgraded to provide additional pond storage and surface area to evaporate captured seepage.
- Excess impoundment draindown water that collects at the SCDs is pumped back to the TSF reclaim pond. Between the TSF reclaim pond and Seepage Collection Pond areas, all impoundment draindown water can be managed by evaporation. Active water management is not required during this period.
- At the end of Phase 1 the TSF pond is dewatered and reclaimed.

#### Phase 2 – Active SCD Closure

Mine Years 67 to 141 (years 26 to 100 after end of operations):

- Excess impoundment draindown water collecting at the SCDs can no longer be pumped to the TSF pond and therefore must be actively managed until the Seepage Collection Ponds are able to passively evaporate the inflows, whilst maintaining sufficient storage volume for flood storage.
- Active water management could be treatment and release to the environment.

The duration of this phase depends on the available surface area of the Seepage Collection Ponds.

#### Phase 3 – Passive Closure

- Assumed in perpetuity.
- If water reporting to the Seepage Collection Ponds is of suitable quality to discharge, the collection dams/ponds would be decommissioned when possible.


Resolution Copper Mining LLCDEIS Design for Alternative 3A - Near West Modified Proposed ActionResolution Copper Project(Modified Centerline Embankment - "wet")Doc. # CCC.03-26000-EX-REP-00002 - Rev. 0

### 12 CLOSING

This report is an instrument of service of Klohn Crippen Berger Ltd. The report has been prepared for the exclusive use of Resolution Copper Mining LLC (Client) for the specific application to the Resolution Copper Project, DEIS Design for Alternative 3A, Near West Modified Proposed Action (Modified Centerline Embankment – "wet"). The report's contents may not be relied upon by any other party without the express written permission of Klohn Crippen Berger. In this report, Klohn Crippen Berger has endeavored to comply with generally-accepted professional practice common to the local area. Klohn Crippen Berger makes no warranty, express or implied.

#### **KLOHN CRIPPEN BERGER LTD.**

Joseph Quinn, P.Geo. (AB), Ph.D. Associate, Senior Engineering Geologist

Jim Casey, P.E. Geotechnical Engineer

Kate Patterson, P.E., M.Eng. Associate, Project Manager

Rick Friedel, P.E. Principal, Senior Geotechnical Engine





#### REFERENCES

- Applied Weather Associates. 2013. Probable Maximum Precipitation Study for Arizona. Phoenix, AZ: Prepared for Arizona Department of Water Resources.
- Arizona Department of Environmental Quality (ADEQ). 2005. Arizona Mining Guidance Manual BADCT.
- Dickinson, W. R. 1991. *Tectonic setting of faulted Tertiary strata associated with the Cataline core complex in southern Arizona. Special Paper 264*. Colorado: The Geological Society of America, Inc.
- Duke HydroChem. 2016. Geochemical Characterization of Resolution Tailings Update: 2014-2016. June.
- Duke HydroChem. 2017a. Geochemical Data Summary: In Situ Geologic Units at Near West. October.
- Duke HydroChem. 2017b. Technical Memorandum: Geochemical Reactivity of Unsaturated Pyrite Tailings. March.
- Hammer, D.F., and Webster, R.N. 1962. Some geologic features of the Superior area, Pinal County, Arizona. *in: Webster, R.H.; Peirce, H.W. [eds.], New Mexico Geological Society* 13th Annual Fall Field Conference Guidebook, 175 p.
- Klohn Crippen Berger Ltd. (KCB). 2014. Near West Tailings Management Mine Plan of Operations Study. Prepared for Resolution Copper Mining. September.
- Klohn Crippen Berger Ltd. (KCB). 2017a. Near West Tailings Storage Facility Embankment Design Alternatives Analysis. March.
- Klohn Crippen Berger Ltd. (KCB). 2017b. Near West Tailings Storage Facility Geotechnical Site Characterization Report. October.
- Klohn Crippen Berger Ltd. (KCB). 2018a. Resolution Project Alternative Portfolio for Analysis Alternative 3A – Near West Modified Proposed Action (Modified Centerline Embankment). January.
- Klohn Crippen Berger Ltd. (KCB). 2018b. Resolution Copper Project Tailings Storage Facility DEIS Designs Tailings Geotechnical Characterization. April.
- Lettis Consultants International, Inc. (LCI). 2017. Updated Site-Specific Seismic Hazard and Development of Time Histories for Resolution Copper's Near West Site, Southern Arizona. November.
- Montgomery and Associates. 2012. "Hydrogeologic Data Submittal, Tailings Prefeasibility Study, Whitford, Silver King, and Happy Camp sites", October 23.
- Montgomery and Associates. (M&A). 2013a. Draft Report Technical Memorandum, Phase I Hydrogeologic Field Investigations, Near West Tailings Site, Pinal County, Arizona. April.

- Montgomery and Associates. (M&A). 2013b. Technical Memorandum, Phase II Hydrogeologic Field Investigations, Near West Tailings Site, Pinal County, Arizona. May 10.
- Montgomery and Associates. (M&A). 2017a. Construction, Development and Testing of Hydrologic Wells at the Near West Tailings Site. October 18.
- Montgomery and Associates. (M&A). 2017a. Conceptual Hydrogeologic Model for Proposed Near West Tailings Storage Facility. November 25.
- Rasmussen, J.C. 2012. Geologic History of Arizona. Rocks and Minerals, Vol. 87, no. 1, p. 56-63.
- Resolution Copper Mining (RC). 2016a. General Plan of Operations, Resolution Copper Mining. Initial Submittal November 15, 2013; Revised May 9, 2016. Retrieved on December 15, 2017 from <a href="http://www.resolutionmineeis.us/documents/resolution-copper-gpo">http://www.resolutionmineeis.us/documents/resolution-copper-gpo</a>.
- Resolution Copper Mining (RC). 2016b. Resolution Copper Tailings Corridor Pre-Feasibility Study. September.
- Spencer, J.E., and Richard, S.M. 1995. Geologic map of the Picketpost Mountain and the southern part of the Iron Mountain 7 ½' Quadrangles, Pinal County, Arizona. Arizona Geological Survey, Open File Report 95-15.
- Trapp, R.A., and Reynolds, S.J. 1995. Map Showing Names and Outlines of Physiographic Areas in Arizona Used by the Arizona Geological Survey with Comprehensive Base Map. Arizona Geological Survey Open File Report 95-2a, b, Scale 1:1,000,000.
- United States Geological Survey (USGS). 2018. "Bomboy Mine". Accessed April 3, 2018. https://mrdata.usgs.gov/mrds/show-mrds.php?dep_id=10109779
- United States Government Publishing Office (GPO). 2016. Tonto National Forest; Pinal County, AZ;
   Resolution Copper Project and Land Exchange Environmental Impact Statement: Federal Register,
   Vol. 81 No. 53. March 18. Retrieved on March 8, 2018 from
   <a href="http://www.resolutionmineeis.us/sites/default/files/project-files/federal-register-noi-20160318.pdf">http://www.resolutionmineeis.us/sites/default/files/project-files/federal-register-noi-20160318.pdf</a>.
- URS Corporation. 2013. Site Specific Seismic Hazard Analyses for the Resolution Mining Company Tailings Storage Facilities Options, Southern Arizona. June.



# **APPENDIX I**

## **Design Basis Memorandum**

180608R-Alt_3A_ModCent-Rev0.docx M09441A20.734



# **Resolution Copper Project**

# DEIS Design for Alternative 3A – Near West Modified Proposed Action (Modified Centerline Embankment – "wet")

# **Technical Memorandum**

## **Appendix I – Design Basis Memorandum**



## DISCLAIMER

This document is an instrument of service of Klohn Crippen Berger Ltd. The document has been prepared for the exclusive use of Resolution Copper Mining LLC (Client) for the specific application to the Resolution Copper Project. The document's contents may not be relied upon by any other party without the express written permission of Klohn Crippen Berger. In this document, Klohn Crippen Berger has endeavored to comply with generally-accepted professional practice common to the local area. Klohn Crippen Berger makes no warranty, express or implied.



## 1 INTRODUCTION

## 1.1 General

This is the design basis memorandum (DBM) for the design of Alternative 3A – Near West Modified Proposed Action (Modified Centerline Embankment – "wet") which is one of the tailings storage facility (TSF) design alternatives that Resolution Copper Mining LLC (RC) intends to include in the draft environmental impact statement (DEIS) for the proposed Resolution Copper Project. This TSF is located at the Near West location in Pinal County, Arizona. The DBM outlines the design objective as well as the design criteria and assumptions. This DBM is considered a "live" document that will be reviewed and updated throughout the design process.

## **1.2 Design Objective**

The objective of the TSF is to store the tailings produced by the proposed Resolution Copper Project. The design incorporates findings from alternative studies and site specific data collected from site investigations, where applicable.

The design regulations and guidelines are outlined in Section 1.3, and the design criteria and assumptions are tabulated in Section 2.

The scope of the DEIS design is to provide a basis for comparing impacts from TSF alternatives.

## 1.3 Design Regulations and Guidelines

The TSF design is governed and guided by the regulations and guidelines listed below. The general approach adopted in this design is to set the design criteria based on the governing regulations, and then to supplement these regulations with guidelines from international practice where the governing regulations are not specific. Where international guidelines are more stringent than the governing regulations, consideration is also given to the additional measures needed to meet the more stringent guidelines.

## Governing

Tailings Storage Facility and Seepage Collection Dams

- Arizona State Legislature. 2016. Arizona Administrative Code (A.A.C.).
  - Title 18. Environmental Quality. Chapter 9: Department of Environmental Quality Water Pollution Control. Chapter 11: Department of Environmental Quality, Article 1: Water Quality Standards.
  - Arizona State Legislature. 2016. Arizona Revised Statues (A.R.S.).
    - Title 49 The Environment.
- Regulatory agency: Arizona Department of Environmental Quality (ADEQ).
- Environmental Protection Agency (EPA). Clean Water Act (CWA) 33 U.S.C. §1251 et seq. (1972).
- Rio Tinto. 2017. D5 Management of Tailings and Water Storage Facilities.

#### Seepage Collection Dams (only)

In addition to the above governing regulations, the seepage collection dams are regulated by the Arizona Department of Water Resources (ADWR). The additional application Arizona Administrative Code (A.A.C.) is Title 12. Natural Resources. Chapter 15. Department of Water Resources (A.A.C. R12-15).

#### Guidance

- Arizona Department of Environmental Quality (ADEQ). 2005. Arizona Mining Guidance Manual BADCT (Best Available Demonstrated Control Technology).
- British Columbia Ministry of Energy and Mines (MEM). 2016. *Health, Safety and Reclamation Code for Mines in British Columbia*.
- Canadian Dam Association (CDA). 2007a. Dam Safety Guidelines (with 2013 revision).
- Canadian Dam Association (CDA). 2007b. *Technical Bulletin: Hydrotechnical Considerations for Dam Safety*.
- Canadian Dam Association (CDA). 2014. *Technical Bulletin: Application of Dam Safety Guidelines to Mining Dams*.
- Federal Emergency Management Agency (FEMA). 2005. *Federal Guidelines for Dam Safety Earthquake Analyses and Design of Dams. FEMA-65.*
- Federal Emergency Management Agency (FEMA). 2013. *Selecting and Accommodating Inflow Design Floods for Dams. FEMA-P-94*.
- United States Army Corps of Engineers (USACE). 2002. Coastal Engineering Manual. Engineer Manual 1110-2-1100, U.S. Army Corps of Engineers, Washington, D.C. (in 6 volumes).
- United States Army Corp of Engineers (USACE). 2004. General Design and Construction Considerations for Earth and Rock-Fill Dams. EM 1110-2-2300.
- United States Army Corp of Engineers (USACE). 2003. *Slope Stability. EM 1110-2-1902.*

## 1.4 BADCT Approach

The TSF will apply for an Aquifer Protection Permit (APP) with an "individual" Best Available Demonstrated Control Technology (BADCT) approach, which is performance based, and allows the applicant to select from all available Demonstrated Control Technologies (DCTs) that constitute BADCT. This process considers site specific characteristics, operational controls, and other DCTs.

Under the individual BADCT approach, the TSF is considered a "tailings impoundment" and will be designed in accordance with Section 3.5 of the BADCT manual (ADEQ 2005). The seepage dams are considered to be "surface ponds" and will be designed in accordance with Section 3.6 of the BADCT manual (ADEQ 2005) and the regulations pertaining to water dams (A.A.C. R12-15).

## 2 DESIGN CRITERIA

#### Table 2.1 Design Criteria

	Item	Design Criteria	Reference
1.0	Tailings Storage Facility (TS	F) Embankment Design	
1.01a	CDA Consequence Classification	to be confirmed following inundation study	<ul> <li>CDA (2007a)</li> </ul>
1.01b	Rio Tinto Risk Category	Class IV (considered Class IV until all necessary mitigations have been included in design)	<ul> <li>D5 Standard (Rio Tinto 2017)</li> </ul>
1.02	Storage capacity	Capacity to store all NPAG scavenger (scavenger) and PAG pyrite (pyrite) tailings production	<ul> <li>RC requirement</li> </ul>
1.03	Downstream slope	<ul> <li>No steeper than 2H:1V</li> </ul>	<ul> <li>MEM (2016)</li> </ul>
1.04	Minimum Factor of Safety	<ul> <li>Static (upstream or downstream) – 1.5 (during operation and long term)</li> <li>Liquefied/post-cyclic – 1.2</li> <li>Rapid drawdown – N/A</li> </ul>	<ul> <li>BADCT (ADEQ 2005) supplemented with MEM (2016)</li> <li>D5 Rio Tinto (2017)</li> <li>CDA (2007a)</li> <li>N/A</li> </ul>
1.05	Deformations (seismic or static, e.g. settlement)	<ul> <li>For cases with no liquefiable materials, horizontal seismic coefficient for pseudo-static analysis = 0.6 x Peak ground acceleration (PGA). This seismic coefficient is selected to maintain consistency with the requirements of the seepage collection dams, as per A.A.C R12-15-1216.</li> <li>For elements of the TSF sensitive to deformation, a simplified deformation analysis is required.</li> <li>Predicted deformations shall not jeopardize containment integrity (e.g. does not reduce freeboard sufficiently to lead to an uncontrolled release of fluid tailings, does not impact the functionality of the drains, etc.).</li> </ul>	<ul> <li>BADCT (ADEQ 2005)</li> <li>D5 Rio Tinto (2017)</li> </ul>
1.06	Seismicity	<ul> <li>Maximum Credible Earthquake (MCE). Earthquake design ground motions will be selected in future design stages for appropriate return period events.</li> </ul>	<ul> <li>BADCT (ADEQ 2005) supplemented with MEM (2016), CDA (2014), D5 Rio Tinto (2017) and industry practice</li> </ul>
1.07	Pond Storage Capacity	See Figure 2.1 Storage capacity = minimum operating volume + maximum average seasonal volume + volume required for operational upset + volume for critical duration storm event including sediment (Environmental Design Flood and Inflow Design Flood) + volume required for "dry" freeboard (Table 2.1, Item 1.11)	<ul> <li>BADCT (ADEQ 2005)</li> </ul>



	Item	Design Criteria	Reference
1.08	Storage Volume for Operational Upset Conditions	RC to confirm after RC internal risk audit and to be updated in next stage of design.	
1.09	Environmental Design Flood (EDF)	Minimum requirement for BADCT is 100-year 24 hr. Design will assume 200-year 24 hr; EDF will be confirmed through water balance and water quality modeling.	BADCT (ADEQ 2005)
1.10	Inflow Design Flood (IDF) For Dam Safety	Return Period:         Probable Maximum Flood (PMF) <u>Duration:</u> For individual BADCT, the facility-specific critical design storm duration is established by considering several durations and determining which results in the maximum required storage capacity to contain the design flood volume. Therefore, the duration will be confirmed during the flood routing and water balance calculations:         • with a spillway: spillway sized for the critical duration of 6 hr to 72 hr; and         • without a spillway: minimum of 72 hr (to be confirmed based inflows and discharge rates).	<ul> <li>BADCT (ADEQ 2005)</li> <li>FEMA (2013)</li> <li>MEM (2016)</li> <li>D5 Rio Tinto (2017)</li> </ul>
1.11	"Dry" Freeboard	<ul> <li>Wind and wave run-up + 2 ft</li> <li>Wind event annual exceedance probability = 2-year</li> <li>Wave height and run-up to be calculated using industry standard methods</li> <li>Earthquake-induced settlements of the embankment crest to be assessed and included in minimum freeboard determination</li> </ul>	<ul> <li>BADCT (ADEQ 2005)</li> <li>CDA (2007b)</li> <li>USACE (2002)</li> </ul>
1.12	Beach length	<ul> <li>Will become part of the Quantitative Performance Objectives (QPO)</li> <li>Sufficient to achieve seepage and hydraulic gradient criteria during normal operations and periods of flood storage.</li> <li>Sufficient to provide a secondary defense against loss of fluid tailings in the event of downstream slope displacement.</li> </ul>	
1.13	Seepage	Water quality requirements at the point of compliance are to be assessed.	<ul> <li>BADCT (ADEQ 2005), Clean</li> <li>Water Act (EPA) and Arizona</li> <li>State Legislature (A.A.C. R18-11)</li> </ul>
1.14	Drains	<ul> <li>Provide drains/filters satisfying USACE (2004) guidelines to mitigate potential for internal erosion.</li> <li>Drains designed to maintain phreatic surface to acceptable levels within the embankment with adequate safety factor to account from clogging and uncertainty.</li> </ul>	• USACE (2004)



	Item	Design Criteria	Reference
1.15	Construction and Operations	<ul> <li>Quantifiable performance objectives to be defined prior to construction.</li> <li>All construction and borrow materials with contingency to be defined prior to construction.</li> </ul>	<ul> <li>MEM (2016)</li> </ul>
1.16	Closure	Planned closure landscape is to be a physically stable landform without a permanent water pond that meets point of compliance criteria.	<ul> <li>D5 Rio Tinto (2017)</li> </ul>
1.17	Closure Surface Diversions	The design criteria will be selected based on consequence of failure, e.g. impact on other structures or environment.	<ul><li>BADCT (ADEQ 2005)</li><li>D5 Rio Tinto (2017)</li></ul>
1.18	External Erosion Protection	The design criteria will be selected based on consequence of failure, e.g. impact to structural zones, containment, other structures or the environment. BADCT requires, at a minimum, that if the TSF is within the 100-year flood plain, drainage controls must be designed to protect the TSF from damage or flooding for 100-year peak streamflows.	<ul> <li>BADCT (ADEQ 2005)</li> </ul>
2.0	Seepage Collection Dams		
2.01	Assumed downstream hazard classification	High (will be reviewed for each individual seepage dam in future design stages)	• A.A.C R12-15-1216
2.02	Downstream slope	As per Table 2.1, item 1.03	
2.03	Stability Factor of Safety (FOS)	<ul> <li>End of construction – Static (upstream or downstream) – 1.3 (≤ 50 ft high), 1.4 (&gt; 50 ft high)</li> <li>Steady state seepage – Static – 1.5</li> <li>Rapid drawdown – 1.2</li> </ul>	<ul> <li>A.A.C R12-15-1216</li> <li>D5 Rio Tinto (2017)</li> </ul>
2.04	Deformations (seismic or static, e.g. settlement)	<ul> <li>Pseudo-static - FOS = 1.0 with horizontal seismic coefficient = 0.6 x Peak ground acceleration.</li> <li>As per Table 2.1, item 1.05, where elements are sensitive to deformations, a simplified deformation analysis will be conducted to identify the potential displacements for comparison with allowable deformations for that element.</li> <li>Predicted deformations shall not jeopardize containment integrity (e.g. does not impact the integrity of the dam core or the spillway, etc.)</li> </ul>	<ul> <li>A.A.C R12-15-1216 and BADCT (ADEQ 2005)</li> <li>D5 Rio Tinto (2017)</li> </ul>
2.05	Seismicity	<ul> <li>MCE, assumed to be mean 1:10,000 year return period:</li> <li>Sensitivity to 95th percentile to be considered</li> </ul>	<ul> <li>A.A.C R12-15-1216 supplemented with MEM (2016) and CDA (2007a)</li> <li>D5 Rio Tinto (2017)</li> </ul>
2.06	Pond Storage Capacity	See Table 2.1, item 1.07	
2.07	Storage Volume for Operational Upset Conditions	One week of average seepage and precipitation to account for a period of pump shut-down	



	Item	Design Criteria	Reference
2.08	Environmental Design Flood (EDF)	Minimum requirement for BADCT is 100-year 24 hr. TSF design will assume 200-year 24 hr; EDF will be confirmed through water balance and water quality modeling.	<ul> <li>BADCT (ADEQ 2005)</li> </ul>
2.09	Inflow Design Flood (IDF) For Dam Safety	Storm to be routed through spillway - Probable Maximum Flood (PMF) <u>BADCT:</u> <u>Return Period:</u> if failure of dam would pose an imminent risk to human life and/or high downstream         incremental consequences the PMF should be used. <u>Duration:</u> For individual BADCT, the facility-specific critical design storm duration is established by         considering several durations and determining which results in the maximum required         storage capacity to route the design flood volume. The range of storm duration to be         considered are 6 hr to 72 hr. <u>A.A.C R12-15-1216:</u> For a high hazard potential dam, the applicant shall design the dam to withstand an         inflow design flood that varies from .5 PMF to the full PMF, with size increasing         based on persons at risk and potential for downstream damage. The applicant shall         consider foreseeable future conditions.         FEMA (2013):	<ul> <li>BADCT (ADEQ 2005)</li> <li>A.A.C R12-15-1216</li> <li>D5 Rio Tinto (2017)</li> <li>FEMA (2013)</li> </ul>
2.10	Freeboard	<ul> <li>PMF for a dam classified as high hazard.</li> <li>Largest of:</li> <li>IDF + wave run up with a critical wind annual exceedance probability of the 1 in 2 year event</li> <li>UDF + 2 ft</li> </ul>	<ul> <li>A.A.C R12-15-1216 with consideration from CDA (2007b)</li> </ul>
	Low level outlet (or	• 5 ft	
2.11	discharge - pump)	Can discharge 90% of storage volume within 30 days (minimum capacity).	A.A.C R12-15-1216
2.12	Seepage	See Table 2.1, item 1.13	
2.13	Drains	<ul> <li>Provide core and drains/filters satisfying USACE (2004) guidelines to limit potential for internal erosion.</li> <li>Drains designed to maintain phreatic surface to acceptable levels within the embankment with adequate safety factor to account from clogging and uncertainty.</li> </ul>	<ul> <li>BADCT (ADEQ 2005), USACE (2004) and A.A.C R12-15-1216</li> </ul>
2.14	Crest width	Minimum of dam height (centerline) divided by 5, plus 5 ft. Minimum crest width = 12 ft, maximum crest width = 25 ft.	• A.A.C R12-15-1216



	Item	Design Criteria	Reference
2.15	Erosion protection	Well graded, durable riprap, sized to withstand wave action, placed on a well graded pervious sand and gravel bedding or geotextile with filtering capacity suitable for the site.	• A.A.C R12-15-1216
2.16	External Erosion Protection	The design criteria will be selected based on consequence of failure, e.g. impact on other structures or environment. (BADCT requires, at a minimum, that if the TSF is within the 100-year flood plain, drainage controls must be designed to protect the TSF from damage or flooding for 100-year peak streamflows.)	BADCT (ADEQ 2005)

#### Figure 2.1 Pond Capacity Determination (ADEQ 2005)







## **3 DESIGN BASIS**

	Item	Design Basis	Comments
1.0	General Design Basis		
1.01	TSF location	<ul> <li>Near West site, Pinal County, Arizona (USFS land)</li> <li>Coordinates (Arizona State Plane Central NAD83): 920,000' E, 880,000' N</li> </ul>	
1.02	Mine Flow Sheet	Selective	
1.03	Mine life	41 years	Received from RC
1.04	TSF operating life	41 years	Received from RC
1.05	Tailings types	<ul> <li>Two types of tailings are produced:</li> <li>scavenger tailings (84% of total weight); and</li> <li>pyrite tailings (16% of total weight).</li> </ul>	Received from RC
1.06	Tailings technology	Thickened slurry (scavenger and pyrite tailings).	
1.07	Tailings delivery	See process schematic (Figure 3.1)	
1.08	Total tailings production	1.37 billion short tons	Received from RC
1.09	Ore and tailings production schedule	Table 3.2	
1.10	Units	U.S. Customary	
1.11	Embankment raise methodology	Hydraulically placed cycloned sand modified centerline (see Figure 3.2)	КСВ (2017а)
1.12	Cycloned sand availability	Cycloned Sand Recovery: 45% Cyclone uptime: 50% (Year 1-2); 70% (Year 3-5); 80% (Year 6-41) Cycloned sand retention in hydraulic cells: 90%	Lower bound recovery from Krebs simulations (KCB 2018) To account for reduced efficiency at the start of operations; communicated by RC
2.0	Topography		
2.01	Projection	Arizona State Plane Central	
2.02	Datum	NAD83	
2.03	Unit of measurement	U.S. Customary	
2.04	Survey	2013 LiDAR survey received from RC on June 5/6, 2013.	



	Item	Design Basis			Design Basis							Comments
3.0	Seismicity											
3.01	Ground Motions	Not consider 8.02).	ed in anal	ysis at	this stage of	of desig	gn (ref	fer to T	Fable	3.1, lt	em	
4.0	Climate and Hydrology											
4.01	Average precipitation (in inches)	J F 2.0 2.0	M A 2.0 0.8	<b>M</b> 0.3	J J 0.3 1.9	A 2.8	<b>S</b> 1.5	<b>0</b> 1.2	N 1.4	<b>D</b> 2.1	<b>Total</b> 18.2	Data collected at the Superior climate station (ID: 028348) with gaps filled using data from the regional climate stations.
4.02	Wet and dry year precipitations	Consideratio this stage of	n to wet a design.	nd dry	vyears for t	he wat	er bal	ance v	vill no	ot be n	nade at	
4.03	Average annual pan evaporation	96.5 in	96.5 in					Pan evaporation data collected at the Roosevelt 1 WNW climate station (ID: 027281). Free water surface evaporation determined using the Evaporation Atlas for the Contiguous 48 United States (NOAA 1982).				
4.04	Evapotranspiration for reference surface/crop (in inches)	<b>J F</b> 2.9 3.4	<b>M A</b> 5.0 6.6	M 8.5	<b>J</b> 9.2 9.0	<b>A</b> 8.0	<b>S</b> 7.0	<b>0</b> 5.8	N 3.8	<b>D</b> 3.1	<b>Total</b> 72.3	Calculated using the Penman-Monteith combined equation in Hydrus1D based on the generated Superior climate data set and reference vegetation parameters.
4.05	Natural catchment runoff coefficient	0.15	0.15						Calculated by dividing the average annual runoff from the nearby USGS hydromet station by the average annual precipitation at site (KCB 2014).			
		Storm		PMP [	Depth (inche	;)						
		Туре	6 hour Duratior		24 hour Duration	72 h	our tion					Applied Weather Associates PMP Evaluation Tool
4.06	Probable Maximum Precipitation (PMP)	General Winter	4.9		9.0	13.	3					Determined as the critical storm for design. For the Near West site catchment.
		Tropical	12.4		16.3	20.	4					
		Local	12.1		-	-						
4.07	Runoff coefficient during storm events	1.0										To account for high antecedent moisture conditions and the predominantly exposed rock in the catchment
4.08	Extreme point precipitation depths	See Table 3.3	3									From NOAA Atlas 14 (NOAA 2018).



	Item	Design Basis		Comments
5.0	Tailings Characteristics and	Deposition		
		Scavenger Tailings	Pyrite Tailings	
5.01	Target gradation produced at mill	<i>"Total" Tailings:</i> Target P80 = 160 microns 50% fines (<74 microns) <10% clay (<2 microns)	Target P80 = 75 to 80 microns 80% fines (<74 microns) <20% clay (<2 microns)	Scavenger "Total" Tailings: Provided by RC. Pyrite Tailings: Provided by RC. Clay content assumed from previous test work on cleaner tailings. See Figure 3.3.
5.02	Target gradation produced by cyclones	Cycloned Sand (Underflow): Target P80 = 200 microns <20 % fines (<74 microns) 0% clay (<2 microns) Cyclone Overflow: Target P80 = 60 microns 90% fines (<74 microns) 15% clay (<2 microns)	N/A	Provided by RC. See Figure 3.3. Target fines content for cycloned sand to be less than 20%, based on seepage performance and constructability from other cycloned sand embankment case histories.
5.03	Specific gravity	2.78	3.87	Average values from KCB laboratory testing programs on scavenger "total" tailings and cleaner tailings.
5.04	Solids content pumped from the mill	65%	50%	Provided by RC
5.05	Cyclone solids content	Cyclone Feed: 35% Cyclone Overflow: 25% Cycloned Sand: 70%	N/A	From most recent Krebs simulations (KCB 2018).
5.06	Solids content discharged into TSF	<i>"Total" Tailings:</i> 65% Cyclone Overflow: 50% to 60% Cycloned Sand: 60%	50%	Cycloned sand solids content based on case history data and construction performance at other large cycloned sand embankments that use hydraulic cell construction.
5.07	Liquefaction assumption	All potentially liquefiable tailings will li mechanism.	quefy at the TSF, regardless of triggering	
5.08	Pyrite tailings management	N/A Subaqueous deposition		



	Item	Design Basis		Comments
5.09	Tailings beach slopes (above water)	1% within 1,500 ft of discharge point, 0.5% thereafter	N/A	Scavenger Tailings - Based on topography and bathymetry surveys from two large, cycloned sand impoundment beaches and slopes below water.
5.10	Tailings beach slopes (below water)	2.5% within 1,000 ft of water's edge; 1.0% thereafter	10% within 100 ft of discharge point; 0.5% thereafter	miles. Pyrite Tailings - Based on topography and bathymetry surveys of subaqueous disposal of high-pyrite tailings from floating barges.
5.11	Dry beach runoff coefficient	0.15	N/A	Estimated based on Hydrus1D infiltration modeling
5.12	Dry density for staging assessment	Interlayered "Total" Tailings and Cyclone Overflow (Composite Beach): 75 pcf (first 5 years of operations); 81 pcf (remaining years of operations) Cycloned Sand (compacted): 113 pcf	106 pcf	КСВ (2018)
6.0	Cyclone Plant Design			
6.01	No. of Clusters	2		
6.02	Feed Tonnage	5,040 dry stph		
6.03	Feed Flow	45,267 USGPM		
6.04	Solids Content of Feed, Overflow, Underflow	see Table 3.1, Item 5.05		
6.05	Pressure Drop	15 psi		
6.06	Target No. of Spare Cyclones per Cluster	2		
6.07	Target No. of Spare Ports per Cluster	1		

Table 3.1	Design Assumptions, Constraints & Data Sources (cont'd)	
-----------	---------------------------------------------------------	--

	Item	Design Basis	Comments
6.08	Selected Cyclone Model	gMAX15U	
6.09	Selected Cyclone Vortex	6.75 inches	
6.10	Selected Cyclone Apex	3 inches	
6.11	Selected Cyclone Diameter	15 inches	
6.12	Selected Operating Cyclones per Cluster	24	
6.13	Selected No. of Spare Cyclones per Cluster	2	
6.14	Selected No. of Cyclones Installed per Cluster	26	
6.15	Selected No. of Spare Ports per Cluster	2	
7.0	Thickener Design		
7.01	Thickener Type	High-Density	
7.02	No. of Thickeners	2	
7.03	Design Tonnage	144,000 tpd ore	
7.04	Diluted Feed %solids	20%	
7.05	Underflow %solids (Cyclone Overflow Feed)	50%	
7.06	Underflow %solids (Scavenger Total Tailings Feed)	n/a	
7.07	Unit Settling Rate	0.98 ft²/tpd	
7.08	Sizing Design Allowance	15%	
7.09	Thickener Diameter	250 ft	



	Item	Design Basis	Comments
8.0	Tailings Storage Facility (TS		
8.01	Design criteria	As per Table 2.1.	
8.02	Stability	Embankment section (Figure 3.2) assumed to meet design stability criteria for DEIS	Based on preliminary stability analyses reported in KCB (2017a) and typical assumed foundation conditions at the Near West site (KCB 2017b)
8.03	Perimeter Embankment Crest width	100 ft	Sufficient to accommodate 2-way vehicle traffic, pipelines and any other equipment required to be on the crest (e.g. cyclones).
8.04	Perimeter Embankment Downstream Slope	4H:1V (see Figure 3.2)	For ease of progressive reclamation. A trade-off assessing the impacts to steepening to 3H:1V has been completed (Appendix III).
8.05	Perimeter Embankment Upstream Slope	1.5H:1V (see Figure 3.2)	Assumed based on preliminary stability analysis reported in KCB (2017a)
8.06	Liner	Engineered low-permeability liner ² in the pyrite starter cell; selective engineered liner placement over permeable portions of the foundation	
8.07	Drainage	Sand and gravel drainage blanket in the embankment footprint; gravel/rockfill finger drains in existing drainage channels in the embankment footprint	
8.08	TSF Surfaces: slope, cover and revegetate to shed water, limit infiltration, erosion and return the landscape to a similar condition prior to mining.ClosurePyrite management: limit oxygen ingress through subaqueous deposition, cover and encourage saturation of the pyrite tailings in the long term (i.e. removal of the pond).		Approach agreed by RC
9.0		Pond Management	
9.01	Pond Management	<ul> <li>Permanent water pond located on the tailings surface. Tailings strategically deposited to keep pond cover over pyrite tailings.</li> </ul>	D5 Rio Tinto (2017)
9.02	Minimum operating pond volume       •       Minimum amount to keep pyrite tailings saturated and provide operating pond depth.		



² The engineered low-permeability liner could be comprised of one or more of the following: compacted fine tailings, geomembrane liner, asphalt, slurry bentonite, and/or cemented paste tailings

	Item	Design Basis			Comments	
9.03	Minimum operating pond depth	<ul> <li>Seepage Co by a sump o</li> <li>TSF Reclaim</li> </ul>	llection Dams: 10 f rr other means). Pond:	t for reclaim pump	(could be accounted for	
		Pond	Years of Operation	Minimum Operating Depth (ft)	Minimum Water Cover above Maximum Tailings El. (ft)	
		Scavenge	r 1 to 9	20	n/a²	
		Pyrite	1 to 9	n/a¹	10	
		Combined P and Scaven	yrite ger 10 to 41	n/a¹	5	
		<ol> <li>No minimu height abo</li> <li>No minimu depth in th positioned</li> </ol>	Im depth. Water co ve the maximum ta Im water cover. Mi Ie lowest part of the ).	ver is determined l ilings elevation. nimum water deptl e pond (where the		



#### Table 3.2Mine and Tailings Production Schedule

Description	Voor	Mine Year	Modeling Vear	Tailings Tonnage (tons/year)						
Description	Tear	Wille fear	Would fing rear	Scavenger	Pyrite	Total				
Care and Maintenance	and Maintenance 2017 - 1		-	-	-					
Care and Maintenance	are and Maintenance 2018 - 2		-	-	-					
Care and Maintenance	2019	-	3	-	-	-				
Care and Maintenance	2020	-	4	-	-	-				
Construction	2021	-	5	-	-	-				
Construction	2022	-	6	-	-	-				
Construction	2023	-	7	-	-	-				
Construction	2024	-	8	-	-	-				
Construction	2025	-	9	-	-	-				
Construction	2026	-	10	-	-	-				
Construction	2027	-	11	-	-	-				
First Ore	2028	1	12	5,346,486	766,631	6,113,118				
Ramp up	2029	2	13	7,187,504	991,640	8,179,144				
Ramp up	2030	3	14	7,897,945	1,014,556	8,912,501				
Ramp up	2031	4	15	15,085,826	2,110,526	17,196,352				
Ramp up	2032	5	16	21,902,288	3,328,288	25,230,577				
Ramp up	2033	6	17	28,780,765	4,569,518	33,350,283				
Ramp up	2034	7	18	34,178,734	5,793,075	39,971,810				
Full Production	2035	8	19	37,849,588	7,340,459	45,190,047				
Full Production	2036	9	20	37,128,274	8,184,034	45,312,308				
Full Production	2037	10	21	36,749,978	8,772,867	45,522,845				
Full Production	2038	11	22	37,121,210	8,792,910	45,914,120				
Full Production	2039	12	23	38,040,923	8,019,027	46,059,950				
Full Production	Ill Production 2040 13 24		24	37,486,298 6,800,935		44,287,232				
Full Production	2041	14	25	39,582,789	6,518,836	46,101,626				
Full Production	Ill Production 2042 15		26	39,666,729	6,589,905	46,256,634				
Full Production	Production 2043 16 27		27	39,211,923	6,919,174	46,131,097				
Full Production	Production 2044 17 28		28	38,679,739	7,360,739	46,040,478				
Full Production	2045	18	29	38,273,841	7,838,027	46,111,868				



Description	Neer			Tailings Tonnage (tons/year)						
Description	Year	wine year	wodeling year	Scavenger	Pyrite	Total				
Full Production	2046	19	30	38,130,733	8,150,877	46,281,610				
Full Production	2047	20	31	38,448,597	7,968,471	46,417,068				
Full Production	2048	21	32	38,926,908	7,537,946	46,464,854				
Full Production	2049	22	33	39,028,952	7,382,565	46,411,517				
Full Production	2050	23	34	39,006,219	7,367,901	46,374,120				
Full Production	2051	24	35	38,564,309	7,824,341	46,388,650				
Full Production	2052	25	36	38,008,651	8,406,901	46,415,552				
Full Production	2053	26	37	37,822,090	8,629,862	46,451,952				
Full Production	2054	27	38	38,599,981	7,902,469	46,502,450				
Full Production	2055	28	39	39,472,443	6,988,070	46,460,513				
Full Production	2056	29	40	39,579,974	6,796,869	46,376,843				
Full Production	2057	30	41	39,595,841	6,786,681	46,382,522				
Full Production	2058	31	42	39,503,382	6,740,343	46,243,725				
Ramp Down	2059	32	43	31,481,866	5,391,484	36,873,350				
Ramp Down	2060	33	44	24,576,943	4,320,111	28,897,054				
Ramp Down	2061	34	45	18,707,166	3,478,519	22,185,685				
Ramp Down	2062	35	46	13,146,108	2,643,079	15,789,186				
Ramp Down	2063	36	47	9,566,562	1,952,428	11,518,989				
Ramp Down	2064	37	48	4,993,554	1,079,281	6,072,835				
Ramp Down	2065	38	49	2,121,484	545,241	2,666,725				
Ramp Down	2066	39	50	928,110	274,819	1,202,929				
Ramp Down	2067	40	51	326,877	99,724	426,602				
Ramp Down	Ramp Down 2068 41 52		52	19,505	19,505 4,936					
Closure	2069	-	53	-	-	-				
			TOTAL TAILINGS	1,150,727,095	219,984,066	1,370,711,161				

#### Table 3.2Mine and Tailings Production Schedule (cont'd)

Notes: Tailings production schedule supplied by Resolution Copper.

Mine plan descriptions, mine years and modeling years supplied by Resolution Copper.

Average Recurrence Interval (years)	5 min	10 min	15 min	30 min	60 min	2 hr	3 hr	6 hr	12 hr	24 hr	2 day	3 day	4 day	7 day	10 day	20 day	30 day	45 day	60 day
Precipitation in inches																			
1	0.2	0.4	0.4	0.6	0.7	0.9	0.9	1.1	1.3	1.6	1.8	2.0	2.1	2.4	2.7	3.3	4.0	4.7	5.5
2	0.3	0.5	0.6	0.8	1.0	1.1	1.2	1.4	1.7	2.0	2.3	2.5	2.7	3.0	3.4	4.2	5.1	6.0	6.9
5	0.4	0.6	0.8	1.1	1.3	1.5	1.5	1.8	2.1	2.6	2.9	3.2	3.5	3.9	4.3	5.4	6.5	7.7	8.7
10	0.5	0.8	0.9	1.3	1.6	1.7	1.8	2.1	2.4	3.0	3.5	3.8	4.1	4.7	5.1	6.4	7.6	8.9	10.1
25	0.6	0.9	1.1	1.5	1.9	2.1	2.2	2.5	2.8	3.6	4.2	4.6	5.0	5.8	6.2	7.7	9.1	10.6	11.9
50	0.7	1.0	1.3	1.7	2.2	2.4	2.5	2.8	3.2	4.1	4.7	5.2	5.7	6.7	7.2	8.7	10.3	12.0	13.3
100	0.8	1.2	1.5	2.0	2.4	2.7	2.8	3.1	3.5	4.6	5.3	5.9	6.5	7.6	8.2	9.8	11.6	13.3	14.7
200	0.9	1.3	1.6	2.2	2.7	3.0	3.1	3.4	3.9	5.1	5.9	6.6	7.4	8.7	9.2	10.9	12.9	14.6	16.1
500	1.0	1.5	1.8	2.4	3.0	3.4	3.6	3.9	4.4	5.8	6.8	7.7	8.5	10.2	10.7	12.4	14.7	16.5	17.9
1000	1.1	1.6	2.0	2.7	3.3	3.7	3.9	4.2	4.7	6.4	7.4	8.5	9.5	11.4	12.0	13.6	16.1	17.9	19.3

#### Table 3.3Precipitation Depth-Duration-Frequency Estimates for the TSF

Note: From NOAA Atlas 14 (NOAA 2018) For the Near West site.



#### Figure 3.1 Process Schematic





#### Figure 3.2 Modified Centerline Raise











## **ADDITIONAL REFERENCES**

- Klohn Crippen Berger Ltd. (KCB). 2014. *Near West Tailings Management Mine Plan of Operations Study.* September 5.
- Klohn Crippen Berger Ltd. (KCB). 2017a. Near West Tailings Storage Facility Embankment Design Alternatives Analysis. March 2.
- Klohn Crippen Berger Ltd. (KCB). 2017b. *Near West Tailings Storage Facility Geotechnical Site Characterization Report.* October 2017.
- Klohn Crippen Berger Ltd. (KCB). 2018. *Resolution Tailings Geotechnical Characterization Rev. 1. April 24*.
- Lettis Consultants International Inc. (LCI). 2017. Updated Site-Specific Seismic Hazard and Development of Time Histories for Resolution Copper's Near West Site, Southern Arizona. November 27.
- National Oceanic and Atmospheric Administration (NOAA). 2018. "NOAA Atlas 14 Point Precipitation Frequency Estimates: AZ." Accessed January 15, 2018. <u>https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_map_cont.html</u>



# **APPENDIX II**

# **Cycloning Assumptions**

180608R-Alt_3A_ModCent-Rev0.docx M09441A20.734



# **Resolution Copper Project**

# DEIS Design for Alternative 3A – Near West Modified Proposed Action (Modified Centerline Embankment – "wet")

**Technical Memorandum** 

**Appendix II – Cycloning Assumptions** 



## DISCLAIMER

This document is an instrument of service of Klohn Crippen Berger Ltd. The document has been prepared for the exclusive use of Resolution Copper Mining LLC (Client) for the specific application to the Resolution Copper Project. The document's contents may not be relied upon by any other party without the express written permission of Klohn Crippen Berger. In this document, Klohn Crippen Berger has endeavored to comply with generally-accepted professional practice common to the local area. Klohn Crippen Berger makes no warranty, express or implied.



## Appendix II Cycloning Assumptions

### II-1 INTRODUCTION

This appendix explains the cyclone assumptions that will be adopted in the design basis memorandum (DBM), refer to Appendix I.

## II-2 GENERAL

The total amount of cycloned sand that is available for embankment construction, specified as a percentage of the total NPAG scavenger (scavenger) mass, is determined by the multiplication of three variables: cyclone recovery (%); cyclone uptime (%); and hydraulic cell retention (%). Design assumptions for each are discussed in the following subsections.

## II-3 CYCLONE RECOVERY

In December 2017 and January 2018, a series of single-stage cyclone simulations based on feed gradations that are considered to best represent the range expected from the mill (refer to Appendix I) and a model developed from running actual RC samples through a test skid were performed by Krebs. The results of these simulations have been adopted for the DEIS (KCB 2018).

The cyclone simulations were optimized to maximize cycloned sand recovery¹ while maintaining a cycloned sand fines content less than 20% to meet design criteria, refer to Appendix I. The simulation results are provided in the tailings characterization report (KCB 2018). Based on the simulations:

- the most efficient cyclone system for the average feed gradation is 41 gMAX15U cyclones with
   6.75 inch vortex and 3 inch apex; and
- for the range of tailings feed gradations tested, the minimum cycloned sand recovery value estimated from the simulations was 45% of the scavenger tailings and the maximum was 57%.
  - 45% cycloned sand recovery has been adopted for design.

## II-4 CYCLONE UPTIME

Cyclone uptime is the percentage of the year during which cycloning can occur. Uptime is expected to be lower in the early years of operations as the production rate is relatively low as mining ramps up (refer to Section 0), adjustments are made in the milling process and operational experience is gained. Uptime has been reduced in the early years of operations to account for this, refer to Table II-1.

¹ Percentage of the scavenger tailings cyclone feed that is converted to cyclone underflow (cycloned sand), by mass

## II-5 CYCLONED CELL RETENTION

Cycloned sand cell retention is the percentage of cycloned sand that remains in the hydraulic cells after discharge, spreading and compaction. A sand cell retention of 90% has been assumed for the DEIS designs, refer to Appendix I, and will be confirmed in future design stages based on case history data from other large cycloned sand dams that use the hydraulic cell construction method.

## II-6 SUMMARY OF RESULTS

The cyclone assumptions are summarized in Table II-1.

#### Table II-1 Summary of Cyclone Assumptions

Item	DEIS Design Assumption					
Cycloned Sand Recovery	45%					
Cell Retention	90%					
Cyclone Uptime	50% (Year 1 to Year 2) 70% (Year 3 to Year 4) 80% (Year 5 to Year 41)					
Cycloned Sand Availability ¹	20% (Year 1 to Year 2) 28% (Year 3 to Year 4) 32% (Year 5 to Year 41)					

Notes:

1. Availability = Cycloned Sand Recovery x Cell Retention x Cyclone Uptime. As percentage (by mass) of tailings feed through the cyclones.

#### REFERENCES

Klohn Crippen Berger Ltd. (KCB). 2018. Resolution Tailings Geotechnical Characterization. Rev. 1. Prepared for Resolution Copper Mining. April 24.



# **APPENDIX III**

## **Embankment Slope Trade-off**



# **Resolution Copper Project**

# DEIS Design for Alternative 3A – Near West Modified Proposed Action (Modified Centerline Embankment – "wet")

# **Technical Memorandum**

# **Appendix III – Embankment Slope Trade-Off**



## DISCLAIMER

This document is an instrument of service of Klohn Crippen Berger Ltd. The document has been prepared for the exclusive use of Resolution Copper Mining LLC (Client) for the specific application to the Resolution Copper Project. The document's contents may not be relied upon by any other party without the express written permission of Klohn Crippen Berger. In this document, Klohn Crippen Berger has endeavored to comply with generally-accepted professional practice common to the local area. Klohn Crippen Berger makes no warranty, express or implied.



## Appendix III Embankment Slope Trade-Off

## III-1 INTRODUCTION

The design for Alternative 3A - Near West Modified Proposed Action (Modified Centerline Embankment) includes a hydraulically placed and compacted cycloned sand embankment with a minimum 4H:1V downstream slope, and 1.5H:1V upstream slope, refer to Figure III-1. The 4H:1V downstream slope was selected primarily for ease of trafficability by construction equipment during slope reclamation, with the understanding that steeper slopes may meet geotechnical stability criteria (KCB 2017a).

This appendix summarizes the impact on required cycloned sand volume and progressive reclamation for an alternate configuration on a relative basis, with the downstream embankment slope steepened to 3H:1V, and the upstream slope modified to 1H:1V, refer to Figure III-2. The alternate configuration was assumed to meet design criteria based on the analyses reported in KCB (2017a) and typical foundation conditions (KCB 2017b). For both configurations, the slope may need to be shallower, and/or the structural zone widened, in local areas dependent on foundation conditions.

#### Figure III-1 Configuration of Cycloned Sand Embankment - Alternative 3A






## III-2 VOLUME COMPARISON

The embankment height and cycloned sand volume required for both the 4H:1V and 3H:1V embankments, refer to Table III-1, were estimated using the three-dimensional (3D) software program, MUCK3D (Minebridge Software, v.2017.1.3). Key points of comparison between the options are:

- The 3H:1V embankment configuration requires less (20%) cycloned sand to construct than the 4H:1V configuration, therefore requiring less cyclone operation time and fill placement costs;
  - Surplus available cycloned sand could be used for other purposes around the TSF (e.g., internal berms, road construction or as sand bedding), thus potentially offsetting costs for potential external borrow.
  - The required embankment crest elevation of the 3H:1V configuration is 13 ft lower than the 4H:1V configuration, thus maximizing the slurry storage volume and reducing visual impact.

Table III-1	<b>Comparison of Cycloned Sand Requirements and Availability</b>

Embankment Slope Configuration	Embankment Elevation (fasl)	Maximum Embankment Height (ft)	Cycloned Sand Volume Required (Myd ³ )	Maximum Cycloned Sand Volume Available (Myd ³ ) ¹	Cycloned Sand Surplus (Myd ³ )
d/s - 4H:1V u/s – 1.5H:1V	2,773	521	204	243	39
d/s - 3H:1V u/s – 1H:1V	2,760	504	164	243	79

Notes:

1. Refer to Appendix II for information on cycloned sand availability assumptions.

## III-3 PROGRESSIVE RECLAMATION

A staging assessment was performed to forecast when progressive reclamation could begin for the 3H:1V and 4H:1V embankment configurations. Progressive reclamation was assumed to start once the ultimate downstream slope had been established. A detailed tailings staging plan has not been performed for the 3H:1V embankment configuration, rather, a number of simplified assumptions were made for the purposes of the current relative comparisons which will need to be validated if the study advances. These simplified assumptions are summarized below:

- Required crest elevations were assumed to be the same for both configurations until Year 15 when narrow valleys are being infilled and rates of rise are highest. After Year 15, while the tailings production rate is relatively constant, the annual crest elevation for the 3H:1V configuration (8 ft/yr) was slightly reduced compared to the 4H:1V configuration (9 ft/yr) to account for its lower ultimate crest elevation. These values are based on the tailings staging assessment, refer to Appendix IV.
- The same starter dam volumes and locations, and borrow excavations, were assumed for both configurations. Sizing criteria is provided in Appendix IV.

 There are no demands on cycloned sand other than the cycloned sand embankment (e.g., internal dykes, berms).

Cycloned sand requirements for both slope configurations and the maximum cycloned sand available are plotted over the life of mine on Figure III-3. The red and blue lines represent the total amount of cycloned sand that is required to build the embankments out to its ultimate exterior slope based on the forecasted minimum crest elevation required for tailings storage, refer to Table III-1, and a crest width at ultimate height of 100 ft. When there is a deficit between the total cycloned sand required and the total available (i.e. red or blue line is above the dashed black line), the ultimate exterior slope cannot be established. During this period, the embankment crest would be raised to the required elevation for tailings storage and the interim embankment slopes would be maintained as required for embankment stability. The time at which the quantities are equal is assumed to be the earliest time that progressive reclamation could start: 4H:1V configuration at Year 28; 3H:1V configuration at Year 22. During operations, progressive reclamation would be expected to start after these forecasted times due to operational and construction considerations.



Figure III-3 Comparison of Cycloned Sand Requirements and Time to Progressive Reclamation

#### III-4 CONCLUSIONS

The 3H:1V embankment configuration offers an opportunity to reduce the amount of cycloned sand required for construction and potentially allow for progressive reclamation to start earlier.

#### REFERENCES

Klohn Crippen Berger Ltd. (KCB). 2017a. Near West Tailings Storage Facility Embankment Design Alternatives Analysis - Draft. Prepared for Resolution Copper Mining. March.

Klohn Crippen Berger Ltd. (KCB). 2017b. Near West Tailings Storage Facility Geotechnical Site Characterization Report. Prepared for Resolution Copper Mining. October.



# **APPENDIX IV**

# **Tailings Staging Plan**

180608R-Alt_3A_ModCent-Rev0.docx M09441A20.734



# **Resolution Copper Project**

# DEIS Design for Alternative 3A – Near West Modified Proposed Action (Modified Centerline Embankment – "wet")

**Technical Memorandum** 

**Appendix IV – Tailings Staging Plan** 



# DISCLAIMER

This document is an instrument of service of Klohn Crippen Berger Ltd. The document has been prepared for the exclusive use of Resolution Copper Mining LLC (Client) for the specific application to the Resolution Copper Project. The document's contents may not be relied upon by any other party without the express written permission of Klohn Crippen Berger. In this document, Klohn Crippen Berger has endeavored to comply with generally-accepted professional practice common to the local area. Klohn Crippen Berger makes no warranty, express or implied.



# Appendix IV Tailings Staging Plan

## Table of Contents

IV-1	INTRODUCTION	1
IV-2	DEPOSITION STRATEGY AND STAGING. IV-2.1 Deposition Strategy IV-2.2 Deposition Staging IV-2.3 Earthfill Dams.	
IV-3	MODELING INPUT PARAMETERS AND ASSUMPTIONS IV-3.1 General IV-3.2 Borrow Area IV-3.3 Tailings Process Flow Diagram	
	IV-3.5 Impoundment Layout IV-3.6 Cycloned Sand Embankment Raise Methodology IV-3.7 Operating Pond IV-3.8 Flood Storage	
IV-4	TAILINGS DEPOSITION OUTPUTSIV-4.1 Embankment Elevation and Rate of RiseIV-4.2 Cycloned Sand Usage and Time to Progressive ReclamationIV-4.3 Water Management	
IV-5	CONCLUSIONS	13

#### List of Tables

Table IV-1	Earthfill Dam Details	5
Table IV-2	Tailings Deposition Properties	7
Table IV-3	Minimum Pond Depths	9
Table IV-4	Contingency Storage Volumes and Depths	10

#### **List of Figures**

Figure IV-1	Tailings Process Flow Diagram	6
Figure IV-2	Cycloned Sand Embankment Raising Using the Sloped Embankment Construction	
	Method (Assumed for Deposition Modeling)	8
Figure IV-3	Cycloned Sand Embankment Raising Using the Horizontal Slice Embankment	
	Construction Method	8
Figure IV-4	Combination of Raise Methodologies	9
Figure IV-5	Cycloned Sand Embankment Elevation and Rates of Rise	10
Figure IV-6	Cyclone Sand Volume Requirements vs. Elevation	11
Figure IV-7	Available and Required Cycloned Sand vs. Mine Year	12
Figure IV-8	Minimum Operating Pond Volumes and Areas	13

#### List of Appendices

Appendix IV-A	Staging Figures
Appendix IV-B	Catchment Areas and Flood Volumes



## IV-1 INTRODUCTION

This appendix presents the tailings staging plan for the Draft Environmental Impact Statement (DEIS) Design for the Tailings Storage Facility (TSF) Alternative 3A - Near West Modified Proposed Action (Modified Centerline Embankment). Modeling presented herein was completed using the tailings deposition software Muck3D (MineBridge Software Inc., version 1.0.5).

Key objectives of this the tailings staging assessment were as follows:

- Size the earthfill dam structures.
- Develop a tailings deposition strategy that:
  - promotes continuous saturation of the PAG pyrite (pyrite) tailings (also referred to as "cleaner" tailings);
  - provides required tailings and flood storage volumes;
  - promotes a wide subaerial "beach above water" (beach) length; and
  - minimizes the rate of rise.
- Estimate annual cycloned sand requirements to support embankment construction.
- Determine the ultimate elevation of the cycloned sand embankment.
- Identify potential periods when rapid pond volume changes are required to maintain pyrite tailings saturation; large annual cycloned sand volumes are required for construction; and beach lengths less than the minimum design requirements could develop. Starter dam, seepage dam and northern dam designs will be presented in other appendices.

# IV-2 DEPOSITION STRATEGY AND STAGING

## IV-2.1 Deposition Strategy

The tailings deposition strategy begins with deposition of both scavenger and pyrite tailings on the eastern side of the TSF, within Bear Tank Canyon (Catchment C2) (refer to Figure IV-A.1). The natural topography of the canyon provides an opportunity to meet the required storage volume in early years (Years 0 to the end of Year 2) while constraining tailings deposition to a single catchment. This would also reduce starter dam fill volume requirements compared with discharging initially in several catchments. As Bear Tank Canyon is progressively filled, additional starter dams are constructed in valleys further to the west until the embankment crest is established around the TSF perimeter to the ultimate crest elevation. Later in the mine life, in preparation for closure, pyrite tailings are deposited in a separate cell at the northern end of the TSF (North Pyrite Cell), and scavenger tailings are deposited within the center of the impoundment to cover the previously discharged pyrite tailings and push the reclaim pond to the north.

# IV-2.2 Deposition Staging

The tailings deposition strategy is characterized by five stages based on the progression of starter dams and pond arrangements, with the key activities carried out during the stages summarized below. For the location of the catchments and structures described, refer to Figure IV-A.1. Details from the staging assessment (elevations, pond volumes, etc.) are provided in Appendix IV-A. For comparison purposes, the percentage of the total tailings volume that is deposited in each stage is provided in brackets.

- Stage I Years 0 to 2 (Figures IV-A.3 and IV-A.4) (1% of total tailings volume):
  - a. Construction of the Scavenger Starter Dam Stage I and Pyrite Starter Dam in Bear Tank Canyon (prior to Year 0).
  - b. Impounding of water behind the Pyrite Starter Dam in preparation for subaqueous pyrite tailings deposition (prior to Year 0).
  - c. Subaqueous pyrite tailings deposition behind the Pyrite Starter Dam.
  - d. Scavenger tailings deposition behind the Scavenger Starter Dam Stage I.
  - e. Cycloning of scavenger tailings to produce fill for cycloned sand embankment construction and hydraulic cell construction (beginning in Year 1). These activities continue in Stages II through IV.
  - f. Operation of separate scavenger and pyrite reclaim ponds located within the impoundment. Water in the scavenger pond is pumped to the pyrite pond via submersible pumps and/or floating pump barges and overland pipelines to maintain a water cover over the pyrite tailings.
  - g. Construction of the Scavenger Starter Dam Stage II in Catchments C3 and C4 (Year 2).
- Stage II Years 3 to 4 (Figures IV-A.5 and IV-A.6) (2% of total tailings volume):
  - a. Continued subaqueous pyrite tailings deposition behind the Pyrite Starter Dam.
  - b. Continued scavenger tailings deposition in Bear Tank Canyon and in Catchment C3 and C4 behind the Scavenger Stage II Starter Dam.
  - c. Raising of Scavenger Starter Dam Stage I and Stage II with cycloned sand to achieve a crest elevation of El. 2,432 ft (~5 ft raise) by the end of Year 4.
  - d. Scavenger and pyrite reclaim ponds located within the impoundment. Water in the scavenger ponds is pumped to the pyrite pond via submersible pumps and/or floating pump barges and overland pipelines.
  - e. Construction of the Scavenger Starter Dam Stage III in Catchments C9, C10 and C12 (Year 4).
- Stage III Years 5 to 9 (Figures IV-A.7 and IV-A.8) (14% of total tailings volume):
  - a. Continued subaqueous pyrite tailings deposition behind the Pyrite Starter Dam.

- b. Scavenger tailings deposition distributed between Bear Tank Canyon and Catchments C3, C4, C9, C10 and C12. Scavenger Starter Dam Stage III is commissioned.
- c. Raising of Scavenger Starter Dam Stage I and Stage II to El. 2,445 (~13 ft raise) with cycloned sand by the end of Year 5.
- d. Separate scavenger and pyrite reclaim ponds. Water in the scavenger ponds is pumped to the pyrite pond via submersible pumps and/or floating pump barges and overland pipelines.
- Stage IV Years 10 to 34 (Figures IV-A.9 to IV-A.13) (80% of total tailings volume):
  - a. Scavenger tailings deposition in all TSF catchments from the embankment perimeter.
  - b. Pyrite tailings deposition in the central portion of the impoundment. Pyrite tailings are strategically deposited overtop of the Gila Conglomerate which has relatively low hydraulic conductivity (foundation characterization and seepage management requirements are currently ongoing under other scopes).
  - c. Raising of the perimeter embankment with cycloned sand.
  - d. Scavenger and pyrite reclaim ponds are merged and operated as one within the impoundment when the scavenger tailings overtop the Pyrite Starter Dam.
  - e. Construction of the Northeast and Northwest Containment Dams (Year 15) and Northeast and Northwest Dams at the northern end of Bear Tank Canyon (Year 32). The Northeast and Northwest Dams will retain the North Pyrite Cell which is commissioned for water storage in Stage IV. The containment dams are water retaining structures that will contain the TSF reclaim pond as it is pushed north in Stage V.
- Stage V Years 35 to 41 (Figures IV-A.14 to IV-A.15) (3% of total tailings volume):
  - a. Scavenger tailings deposition on the tailings beach to fill in the low spot in the impoundment and promote grading of the beach to the north towards the Northeast and Northwest Containment Dams.
  - b. Cessation of scavenger cycloning and embankment raising as all scavenger tailings are directed to the center of the impoundment.
  - c. Pyrite tailings deposition in the North Pyrite Cell.
  - d. Scavenger reclaim pond is located in the center of the impoundment. Pyrite reclaim pond is located in the North Pyrite Cell. Water in the scavenger pond is pumped to the North Pyrite Cell via submersible pumps and/or floating pump barges and overland pipelines. The volume of the scavenger pond is gradually reduced so that no water remains in the impoundment at end of operations.

The Stage V layout shown on Figure IV-A.15 still incorporates a tailings production schedule of 45 years, and although final elevations and layout would be slightly different for the actual 41 year production schedule, the changes are not material and the tailings management concept would remain unchanged.

Tailings deposition was modeled annually or biennially (every two years). The tailings configuration for each modelling scenario is illustrated for select years on the figures provided in Appendix IV-A. Figures also include details on: tailings discharge elevation; subaerial beach length; pond elevation, volume and depth. Primary Seepage Collection Dams are shown on the figures for reference, however they were not relevant to the staging assessment. Methodology, input information and assumptions used for modeling are discussed in Section IV-3.

# IV-2.3 Earthfill Dams

Earthfill dams would be constructed as required from borrow materials sourced within the TSF footprint to provide tailings and water storage (starter dams, seepage dams and north dams) and support for tailings distribution and processing infrastructure. Dam design assumptions summarized in this section are preliminary and were made for the staging assessment.

Assumptions for starter dam sizing are summarized below:

- Scavenger Stage I (to El. 2,427 ft, refer to Figure IV-A.2): sized to store two years of scavenger tailings production. This assumption was made to provide sufficient storage to allow for challenges that may arise at the start of operations in producing cycloned sand and developing hydraulic cells for embankment construction.
- Scavenger Stage II (to El. 2,427 ft, refer to Figure IV-A.2): sized to store one year of scavenger tailings production in Year 3, assuming cycloned sand construction is underway.
- Scavenger Stage III (to El. 2,445 ft): sized to match the scavenger tailings elevation (at the end of Year 5) in the adjacent cells within one year.
- Pyrite (to El. 2,517 ft, refer to Figure IV.A-2): sized to store seven years of tailings. This dam is strategically sited in a narrow portion of Bear Tank Canyon to maximize storage volume and minimize earthfill requirements. The footprint is adjacent to the main borrow area to increase the storage for the pyrite tailings.
- All starter dams are designed to store the Probable Maximum Flood (PMF) (refer to Section IV-3.8) above their minimum operating pond level, operational upset storage, seasonal fluctuations; therefore, do not require spillways.

The Northwest and Northeast Containment Dams contain the reclaim pond and tailings during the final years of operations as the pond is pushed to the north in preparation for closure. Figure IV-A.10 through Figure IV-A.17 show the northern containment dams with 3H:1V upstream and 2H:1V downstream slopes. The dams would be constructed from borrow materials sourced within the TSF footprint and/or from cycloned sand; dam sections and construction details will be reviewed and refined as required in the next phase of design. The west abutment of the Northwest Containment Dam was modeled as a vertical face for simplicity but during construction will be benched or sloped into the adjacent cycloned sand embankment.

The Northeast and Northwest Dams impound the North Pyrite Cell in the final years of operations when pyrite tailings are deposited separately from the scavenger tailings.



Locations of the starter dams and other earthfill dams are shown on Figure IV-A.1. Further details on these dams are summarized in Table IV-1. Refer to Section IV-1 for discussion on how the dam details may be impacted by the DEIS tailings production schedule.

Dam	Crest Elevation	Dam Height	Earthfill Volume
Dam	fasl	ft	Myd ³
Scavenger Starter Stage I	2427	132	4.7
Scavenger Starter Stage II	2427	139	4.0
Scavenger Starter Stage III	2445	128	3.2
Pyrite Starter	2517	138	2.5
Northwest Containment Dam	2805	242	5.5
Northeast Containment Dam	2805	195	3.7
Northwest Dam	2807	185	2.2
Northeast Dam	2807	55	0.03
	25.8		

#### Table IV-1 Earthfill Dam Details

## IV-3 MODELING INPUT PARAMETERS AND ASSUMPTIONS

#### IV-3.1 General

The required model input parameters for this Muck3D modeling are:

- baseline topography;
- discharge locations (i.e. spigots);
- tailings subaerial beach and below water slopes;
- tailings dry density;
- sequence of spigot discharge (the program does not allow for simultaneous discharge from multiple spigots); and
- deposition rate (tons/year) per spigot.

## IV-3.2 Borrow Area

A borrow area within the Gila Conglomerate was modeled in Bear Tank Canyon, upstream of the Pyrite Starter Dam (refer to Figure IV-A.1). The borrow excavation will provide 27 Myd³ of fill to support construction of the starter dams and north dams. The excavation will also provide additional storage capacity in the TSF. The borrow area would be excavated progressively, as much as practical, starting at the south end and progressing to the north. The calculated excavation volume does not account for volume increase (bulking) during excavation or volume decreases that may occur during construction fill processing. The borrow plan is preliminary for the purposes of tailings staging and further details, such as borrow area layout and use of multiple borrow sources, will be developed in future design stages. Further investigation will be conducted to identify other borrow areas for different stages of construction/operation.

## IV-3.3 Tailings Process Flow Diagram

The tailings process flow diagram is shown schematically on Figure IV-1. The maximum amount of cycloned sand that could be produced and placed in the cycloned sand embankment, as a percentage of the total scavenger tailings tonnage, is approximately 32% to 33% (from Year 5 onwards). This assumption is based on the following:

- 45% cycloned sand recovery from the cyclone system, based on cyclone simulations performed by Krebs;
- 90% cycloned sand retention in the hydraulic cells; and
- 50% cyclone uptime in Years 1 to 2, 70% in Years 3 to 4 and 80% in Years 5 to 41 (to account for reduced cyclone efficiency at the start of operations).

Rationale behind these assumptions is provided in Appendix I.

#### Figure IV-1 Tailings Process Flow Diagram



- Notes: 1. A more detailed flowsheet with balance water flows is included in Appendix V.
  - 2. Cycloned sand not retained from the embankment cells (4% of scavenger tailings tonnage) was deposited within the impoundment using the total scavenger/overflow density.

# IV-3.4 Tailings Properties

Tailings properties are summarized in Table IV-2. Discussion on the basis for the assigned tailings densities is provided in Appendix I. A lower density for the total scavenger tailings and cyclone overflow was chosen in Years 0 through 5 for staging to provide additional storage contingency for early year planning.

Tailings slopes (the angle that the tailings deposit at) are based on a review of case history data from operating cycloned sand tailings impoundments. The tailings deposition slopes are determined by particle size distribution, percent solids of discharged slurry, specific gravity, spigot design/arrangement and whether or not tailings will be deposited subaqueously. The tailings deposition slopes should be monitored during early operations and the staging plan should be adjusted to suit.

Tailings Stream	Tailings Type	Dry Density (pcf)	Tailings Slopes ¹	Total Tonnage (Mtons)	Total Volume (Myd ³ )
	Total	Vears (0-5): 75	Above Water:	236	217
Scavenger	Cyclone Overflow ²	Years (6-41): 81	1% for the first 1,500 ft, 0.5% after 1,500 ft Below Water:	544	499
	Cycloned Sand ²	113	2.5% for the first 1,000 ft, 1.0% after 1,000 ft	370	243
Pyrite	Total	106	Below Water: 10.0% for the first 100 ft, 0.5% after 100 ft. These slopes are understood to be conservative at this stage of design and will be reviewed in future design stages.	220	154

#### Table IV-2 Tailings Deposition Properties

Notes: 1. Scavenger tailings slopes are based on topography and bathymetry surveys from two large, cycloned sand impoundment beaches and slopes below water. These facilities have long exposed beaches, up to five miles. Pyrite tailings slopes are based on topography and bathymetry surveys of subaqueous disposal of high-pyrite tailings from floating barges.

2. Cycloned sand and cyclone overflow quantities are based on available cycloned sand (i.e., cycloning as per Section IV-3.3).

## IV-3.5 Impoundment Layout

The ultimate impoundment layout was based on the following:

- Cycloned sand embankment toe offset a minimum of 30 ft elevation below the crest of ridges which bound the impoundment around its perimeter.
- Cycloned sand embankment toe offset a minimum of 1,650 ft horizontally from Queen Creek (refer to Figure IV-A.1). This requirement was established through discussions with RC.
- Cycloned sand embankment toe offset a minimum of 1,000 ft horizontally from Roblas Creek (refer to Figure IV-A.1). This requirement was established through discussions with RC.

# IV-3.6 Cycloned Sand Embankment Raise Methodology

Minimum required cycloned sand volumes were calculated assuming a 4H:1V downstream embankment slope. Through discussions with RC, 4H:1V is the slope that is preferred for reclamation, and therefore it was chosen for the staging assessment. A trade-off assessment on steepening the slope to 3H:1V has been conducted, refer to Appendix III.

For modeling purposes, it was assumed that a constant downstream embankment slope would be maintained throughout operations ("sloped methodology"). The raising scheme used is shown schematically on Figure IV-2. This assumption is different than the proposed method of embankment construction using hydraulic cells, but was made to simplify modeling. Hydraulic cell construction and sequencing of construction to balance the rate of rise (Figure IV-5) with the downstream expansion of the cycloned sand shell, will be addressed in future design stages.

The crest elevation of the cycloned sand embankment was set at the start of each year to be high enough to store all tailings produced that year as well as flood storage, refer to Appendix I.

An alternative embankment raising methodology would be building the embankment in horizontal slices, as illustrated on Figure IV-3 ("horizontal slice methodology"). This method allows for progressive reclamation of the outer embankment slope.

Due to construction constraints and cycloned sand availability, the actual embankment raising methodology would use a combination these strategies, refer to Figure IV-4.

#### Figure IV-2 Cycloned Sand Embankment Raising Using the Sloped Embankment Construction Method (Assumed for Deposition Modeling)



#### Figure IV-3 Cycloned Sand Embankment Raising Using the Horizontal Slice Embankment Construction Method









# IV-3.7 Operating Pond

The majority of water in the operating pond is delivered with the tailings slurry, originating from thickeners located at the West Plant. The pond volume is maintained for pyrite tailings saturation, with excess water reclaimed back to the West Plant.

Minimum operating pond depths are required for subaqueous discharge of pyrite tailings and to provide enough draft for floating barge pump operation. Minimum depths are summarized in Table IV-3, and are illustrated schematically on the staging figures provided in Appendix IV-A.

Greater control over the reclaim pond could be possible once the pyrite and scavenger ponds combine because of the reduced complexity of operating one pond rather than multiple. The minimum water cover over the pyrite tailings from Year 10 until the end of operations was reduced from 10 ft to 5 ft to reflect this.

Pond	Years of Operation	Minimum Operating Depth (ft)	Minimum Water Cover Above Maximum Tailings El. (ft)
Scavenger	1 to 9	20 (Figure IV-A.8)	n/a²
Pyrite	1 to 9	n/a ¹	10 (Figure IV-A.8)
Combined Pyrite and Scavenger	10 to 41	n/a ¹	5 (Figure IV-A.9)

#### Table IV-3 Minimum Pond Depths

Notes: 1. No minimum depth. Water cover is determined based on the minimum height above the maximum tailings elevation.

2. No minimum water cover. Minimum water depth is based on minimum depth in the lowest part of the pond (where the reclaim barge will be positioned).

Additional pond volume above the minimum depth was assumed to account for seasonal variations (changes in precipitation and evaporation throughout the year that impact pond level) and operational upsets (i.e. pump breakdown), refer to Table IV-4. The maximum seasonal depth was based on the expected average seasonal precipitation, evaporation and operational fluctuations. The operational upset volume was assumed to be equal to one week of reclaim based on the GPO design water balance (KCB 2014). Both are preliminary assumptions and will be confirmed during future water balance modelling and by the RC internal risk audit.

Years	Maximum Seasonal Depth	Operational Upset Storage Volume
Years 1 to 8	3 ft above the minimum operating	50 acre-ft per pond
Years 9 to 41	pond elevation	200 acre-ft per pond

#### Table IV-4 Contingency Storage Volumes and Depths

#### IV-3.8 Flood Storage

The inflow design flood for the facility is the PMF based on the 72-hr Tropical Probable Maximum Precipitation (PMP), which is 20.4 inches, refer to Appendix I. The impoundment must be capable of fully storing the PMF volume unless a spillway is available for discharge. During the PMF, a minimum subaerial beach length of 400 ft is required to ensure adequate freeboard above the peak flood level. During the potential Stage V, the PMF would be routed through a spillway discharging from the North Pyrite Cell to either Potts Canyon or Roblas Canyon (refer to Figure IV-A.15). The catchment areas and PMF volumes for different stages of the TSF construction are provided in Appendix IV-B. Refer to Appendix I for a summary of flood routing assumptions.

## IV-4 TAILINGS DEPOSITION OUTPUTS

#### IV-4.1 Embankment Elevation and Rate of Rise

Predicted embankment crest elevations and the corresponding rates of rise are shown on Figure IV-5. The ultimate crest elevation is 2,770 fasl. The highest rates of rise occur early in operations as narrow valley bottoms with limited storage capacity are being filled. The rate of rise levels out in later years of operation to less than 10 ft/yr.



Figure IV-5 Cycloned Sand Embankment Elevation and Rates of Rise

# IV-4.2 Cycloned Sand Usage and Time to Progressive Reclamation

The total amount of cycloned sand required to raise the embankment to its ultimate elevation is approximately 200 Myd³ (310 Mtons). Given the assumptions summarized in Section IV-3.3, a maximum of 243 Myd³ of cycloned sand can be produced. There is a potential 43 Myd³ surplus of cycloned sand (~20% of total available sand) over the life of operations, which could potentially be used for other construction activities to reduce the borrow requirements (e.g. road construction, liner bedding, starter and north dam construction).

The cumulative volume of cycloned sand required is plotted against crest elevation on Figure IV-6. Required and available cumulative cycloned sand volumes are plotted against mine year on Figure IV-7. During the mine life, there is always adequate cycloned sand available for embankment construction using the sloped embankment construction methodology. In Year 28 there is enough cumulative cycloned sand to construct the embankment using the horizontal slice construction methodology.

Assuming the available cycloned sand is only used for embankment construction, the majority of the outer slope can be progressively reclaimed after Year 28. At this point, cycloned sand production can be ramped down. If cycloned sand is utilized for other construction activities (e.g. road construction, liner bedding, starter and north dam construction), the year at which the slope can be reclaimed will be delayed.



#### Figure IV-6 Cyclone Sand Volume Requirements vs. Elevation



Figure IV-7 Available and Required Cycloned Sand vs. Mine Year

# IV-4.3 Water Management

In Year 10 the scavenger operating pond combines with the pyrite operating pond (Figure IV-8). The maximum pond volume and area occurs in Year 26. The planned impoundment can store the PMF with a minimum beach length of 400 ft in all years except Year 3, when the beach reduces to 200 ft when the pond is confined to the narrow valleys in Catchments C3 and C4 (refer to Figure IV-A.2). During this period, water could be transferred with pumps and overland pipelines from these catchments to Bear Tank Canyon to reestablish the beaches. Other strategies include excavation of connector channels to connect the catchments or construction of a temporary spillway.





Figure IV-8 Minimum Operating Pond Volumes and Areas

# IV-5 CONCLUSIONS

Key conclusions from the tailing staging assessment are as follows:

- Earthfill dams require significant borrow fill quantity, exceeding 24 Myd³. This estimate does not include the Seepage Collection Dams or any other TSF features. It is expected that a suitable borrow source of Gila Conglomerate within the TSF footprint could provide this quantity (shown on Figure IV-A.1), with the added benefit of providing additional tailings storage capacity.
- The deposition strategy is generally capable of achieving the performance objectives:
  - Pyrite tailings are deposited subaqueously to maintain saturation.
  - The impoundment layout is capable of storing the required tailings and flood storage volumes.
  - There is precedent in the industry for cycloned sand embankments of the height predicted (514 ft).
  - Long beaches (>400 ft) are maintained during flood conditions for all years except for Year 3. Construction of a spillway or modifications to the staging plan may be required during this time to maintain an adequate beach length.

Rates of embankment crest rise between 15 ft/yr and 21 ft/yr are expected in the first 14 years before leveling out to less than 11 ft/yr for the remainder of operations. High rates of rise present a construction challenge, but there is precedent in industry for hydraulic cell embankment construction at the rate predicted. If required, the potential for static liquefaction resulting from the rate of rise will be managed by compacting the cycloned sand to maintain a dilatant condition and compaction of a portion of the upstream beach.



#### REFERENCES

- Applied Weather Associates (AWA). 2013. Probable Maximum Precipitation Study for Arizona. Prepared for the Arizona Department of Water Resources, July.
- Klohn Crippen Berger Ltd. (KCB). 2014. Near West Tailings Management Mine Plan of Operations Study. September.

MineBridge Software Inc. 2016. Muck3D Ooze Version 4.0.5. [Computer software].

Resolution Copper Mining (RC). 2016. General Plan of Operations, Resolution Copper Mining. Initial Submittal November 15, 2013; Revised May 9, 2016. Retrieved on December 15, 2017 from <u>http://www.resolutionmineeis.us/documents/resolution-copper-gpo</u> or http://www.resolutionmineeis.us/eis-documents.



# **APPENDIX IV-A**

**Staging Figures** 











Scavenger Starter Dams			
enger Stage I	Scavenger Stage II		
ear Tank)	(C3 + C4)		
132	139		
2427	2427		
2418	2402		
2398	2387		
2409	2399		
4.6	4.0		

Scavenger Starter Dam Pond			
enger Stage I	Scavenger Stage II		
ear Tank)	(C3 + C4)		
324	238		
471	415		
50	50		
586	1264		

Starte	r Dam
138	
0543	
2517	
2487	
2407	
2497	
2512	
2312	
25	
2.5	

e Dam	Pond
5088	
6060	
50	
4359	

	-		
	PROJECT DEIS DESIGN FOF ACTIC	RESOLUTION COPPER PF ALTERNATIVE 3A - NEAR W N (MODIFIED CENTERLINE	ROJECT /EST MODIFIED PROPOSED EMBANKMENT)
	TITLE	STARTER DAM SIZ	ZING
er	SCALE	PROJECT No.	FIG No.
	AS SHOWN	M09441A20	IV-A.2



		Starter Dams		
	Units	Scavenger Stage I (Bear Tank)	Pyrite	
Maximum Embankment Height	ft	132	138	
Minimum Operating Pond Depth	ft	20 (see Figure 1)	10 (see Figure 2)	
Embankment El.	fasl	2427	2517	
Tailings El.	fasl	-	-	
Minimum Operating Pond El.	fasl			
Stored PMF El.	fasl	-	-	
Embankment Borrow Fill Volume	Myd ³	4.6	2.5	

		Starter Dam Ponds		
	Units	Scavenger Stage I (Bear Tank)	Pyrite	
Minimum Operating Storage	acre-ft	TBD	TBD	
Maximum Seasonal Storage	acre-ft	TBD	TBD	
Upset Storage	acre-ft	50	50	
72-hr PMF Storage	acre-ft	586	4359	

#### FIGURE 1 SCAVENGER MINIMUM POND DEPTH SCHEMATIC





	PROJECT RESOLUTION COPPER PROJECT DEIS DESIGN FOR ALTERNATIVE 3A - NEAR WEST MODIFIED PROPOSED ACTION (MODIFIED CENTERLINE EMBANKMENT)				
	TITLE	YEAR 0			
		(STAGE I)			
or					
	SCALE	PROJECT No.	FIG No.		
	AS SHOWN	M09441A20	IV-A.3		



Stage I (Bear Tank)	Pyrite	
132	138	
0	0	
2427	2517	
2418	2436	
2398	2446	
e confirmed	to be confirmed	
2402	2450	
2409	2476	
324	1102	
see Figure 1)	10 (see Figure 2)	
950	-	

	Scavenger Tailings				
	Overflow	Sum			
9	5.7	5.9	13.6		
3	6	6	15		
3	6	6	15		

3. Distribution of scavenger and pyrite tailings tonnages are based on the GPO production schedule, see Appendix II for a detailed comparison of the production schedules

e Tailings	
	0.9
	1
	1

2. Distribution of scavenger and pyrite tailings tonnages are based on the GPO production schedule, see Appendix II for a detailed comparison of the production schedules

4.0	
138.9	
2,426.8	

	PROJECT DEIS DESIGN FOR ACTIC	RESOLUTION COPPER PR ALTERNATIVE 3A - NEAR W N (MODIFIED CENTERLINE I	OJECT /EST MODIFIED PROPOSED EMBANKMENT)
	TITLE	END OF YEAR	2
		E I)	
SCALE AS SHOWN		PROJECT No. M09441A20	FIG NO. IV-A.4



	Units	Scavenger Stage I (Bear Tank)	Scavenger Stage II (C3 + C4)	F	yrite	
Maximum Embankment Height	ft		132		138	
Embankment Rate of Rise	ft/yr		0		0	
Embankment Maximum El.	fasl		2427		2517	
Tailings El.	fasl	2418	2402		2444	
Minimum Operating Pond El.	fasl	2398	2387		2454	
Maximum Storage El.	fasl	to be confirmed to be confirmed			confirmed	
Upset Storage El.	fasl	2402 2392 2457			2457	
PMF El.	fasl	2409	2399		2482	
Minimum Operating Storage ¹	acre-ft	:	1004	:	1416	
Minimum Operating Pond Depth	ft	20 (se	e Figure 1)	10 (se	e Figure 2)	
Beach Length from PMF El.	ft	800 200 -		-		
1- Distribution of scavenger and pyrite tailings tonnages are based on the GPO production schedule, see Appendix II for a detailed comparison of the production schedules.						
	Unite	Scavenger Tailings				
	Onits	Underflow Overflow Total Su		Sum		
Tailings Placed ¹	Myd ³	1.4	4.2	1.9	7.5	

	Unite	
	Units	Underflow
Tailings Placed ¹	Myd ³	1.4
Tailings Placed ¹	Mtons	2
Cumulative Tailings	Mtons	5
1- Distribution of scavenger and pyrite tailings toppages are based	on the GPO productio	n schedule, see Annendix II fr

	Units	Pyrite
Tailings Placed ¹	Myd ³	
Tailings Placed ¹	Mtons	
Cumulative Tailings	Mtons	

#### 1- Distribution of scavenger and pyrite tailings tonnages are based on the GPO production schedule, see Appendix II for a detailed comparison of the production schedules.

#### FIGURE 1 SCAVENGER MINIMUM POND DEPTH SCHEMATIC



CLIENT

OUR SELVES, ARE VTIAL FOR A DRIZATION	RESOLUTION C O P P E R
i OF IONS, OR NG OUR ISERVED DVAL	Klohn Crippen Berger

4 10 2

8

8 23

the GPO production schedule, see Appendix II for a detailed comparison of the production schedules.

e Tailings	
	0.5
	1
	2

	PROJECT	RESOLUTION COPPE	R PROJECT
	DEIS DESIGN FC	R ALTERNATIVE 3A - NEA	R WEST MODIFIED PROPOSED
	ACTI	ON (MODIFIED CENTERLI	NE EMBANKMENT)
	TITLE	END OF YEA	NR 3
sr.		(STAGE II	)
-	SCALE	PROJECT No.	FIG NO.
	AS SHOWN	M09441A20	IV-A.5



	Units	Scavenger Stage I & II (C3 +C4 + Bear Tank)		F	yrite
Maximum Embankment Height	ft	:	158		138
Embankment Rate of Rise	ft/yr		3		0
Embankment Maximum El.	fasl	2	430		2517
Tailings El.	fasl	2	430		2454
Minimum Operating Pond El.	fasl	2	411		2464
Maximum Storage El.	fasl	to be c	onfirmed	to be	confirmed
Upset Storage El.	fasl	2416		2468	
PMF El.	fasl	2422		2489	
Minimum Operating Storage ¹	acre-ft	198		:	2098
Minimum Operating Pond Depth	ft	20 (see Figure 1)		10 (se	e Figure 2)
Beach Length from PMF El.	ft	760			-
1- Distribution of scavenger and pyrite tailings tonnages are bas	ed on the GPO production	schedule, see Appendix II for a	a detailed comparison of the pr	oduction schedules.	
			Scave	nger Tailings	
	Units	Underflow Overflow		Total	Sum
Tailings Placed ¹	Myd ³	2.7	8.1	3.6	14.4
Tailings Placed ¹	Mtons	4	8	4	16
Cumulative Tailings	Mtons	9	18	12	39

	Units	Pyrite Tailings
Tailings Placed ¹	Myd ³	1.1
Tailings Placed ¹	Mtons	2
Cumulative Tailings	Mtons	4
1- Distribution of scavenger and pyrite tailings tonpages are based on t	he GPO productio	n schedule, see Annendix II for a detailed comparison of the r

Scavenger Stage III (C9, C10 + C12) Starter Dam					
Embankment Borrow Fill Myd ³ 3.2					
Maximum Embankment Height	ft	128.0			
Embankment Maximum El.	fasl	2,445.0			



the production schedules. compar

	DEIS DESIGN FO	RESOLUTION COPPER R ALTERNATIVE 3A - NEAR ON (MODIFIED CENTERLIN	PROJECT WEST MODIFIED PROPOSED E EMBANKMENT)				
	END OF YEAR 4						
	(END OF STAGE II)						
er	SCALE	PROJECT No.	FIG No.				
	AS SHOWN	M09441A20	IV-A.6				



	Units	Scaven	ger Stage III		Pyrite	
Maximum Embankment Height	ft		193		138	
Embankment Rate of Rise	ft/yr		19		0	
Embankment Maximum El.	fasl	ź	2464		2517	
Tailings El.	fasl	2	2462		2477	
Minimum Operating Pond El.	fasl	2	2440		2487	
Maximum Storage El.	fasl	to be o	confirmed	1	to be confirmed	
Upset Storage El.	fasl	2	2445		2490	
PMF El.	fasl	2452			2504	
Minimum Operating Storage ¹	acre-ft	119			3843	
Minimum Operating Pond Depth	ft	20 (see Figure 1)		1	LO (see Figure 2)	
Beach Length from PMF El.	ft	990			-	
1- Distribution of scavenger and pyrite tailings tonnages are bas	ed on the GPO production	n schedule, see Appendix II for	a detailed comparison of the pr	oduction schedules.		
			Scave	nger Tailings		
	Unite	Underflow	Overflow	Total	Sum	

	-	Scavenger Tailings			
	Units	Underflow	Overflow	Total	Sum
Tailings Placed ¹	Myd ³	5.1	14.0	6.3	25.4
Tailings Placed ¹	Mtons	8	15	7	30
Cumulative Tailings	Mtons	23	48	25	96

	Units	Pyrite Tailings
Tailings Placed ¹	Myd ³	2.5
Tailings Placed ¹	Mtons	4
Cumulative Tailings	Mtons	10



1- Distribution of scavenger and pyrite tailings tonnages are based on the GPO production schedule, see Appendix II for a detailed comparison of the production schedules

ndix II for a detailed comparison of the production schedules.

PROJECT RESOLUTION COPPER PROJECT DEIS DESIGN FOR ALTERNATIVE 3A - NEAR WEST MODIFIED PROPOSED ACTION (MODIFIED CENTERLINE EMBANKMENT)							
END OF YEAR 6							
(STAGE III)							
SCALE AS SHOWN	PROJECT No. M09441A20	FIG NO. IV-A.7					



		the be	6	car Chara III			
Maximum Embankmant	lloight	Units	Scaveng	ger Stage III	Pyr	Pyrite	
Embankment Pate of Bir	Height	TL ft/ur		257	13	8	
	se	it/yr		20	0		
Embankment Maximum	El.	fasl	2	2525	25:	.7	
Tailings El.		fasl	2	2523	250	)6	
Minimum Operating Por	nd El.	fasl	2	2495	25:	.6	
Maximum Storage El.		fasl	to be o	confirmed	to be cor	nfirmed	
Upset Storage El.		fasl		2	502		
PMF EI.		tasi		2	518		
Minimum Operating Sto	rage ¹	acre-ft		66	712	25	
Minimum Operating Por	nd Depth	ft	20 (see	e Figure 1)	10 (see F	igure 2)	
Beach Length from PMF	El.	ft		450	0		
1- Distribution of scavenger and pyrite	e tailings tonnages are based	on the GPO prod	luction schedule, see Append	ix II for a detailed comparison of	the production schedules.		
				Scaveng	er Tailings		
		Units	Underflow	Overflow	Total	Sum	
Tailings Placed ¹		Myd ³	6.7	18.4	8.2	33.3	
Tailings Placed ¹		Mtons	10	20	9	39	
Cumulative Tailings		Mtons	53	107	51	211	
1- Distribution of scavenger and pyrite t	ailings tonnages are based on t	the GPO production	n schedule, see Appendix II for	a detailed comparison of the prod	uction schedules.		
		Units	Pyrite 1	<b>Failings</b>			
Tailings Placed ¹		Myd³		4.2			
Tailings Placed ¹		Mtons		6			
Cumulative Tailings		Mtons		26			
NOT FOR COL	NSTRUCTION	REPORT DATE	D: JUNE 2018	hnource			
					RESOLUTION COPPER P		
	DE	SOL	UTION	ACT	ION (MODIFIED CENTERLINE	EMBANKMENT)	
AS A MUTUAL PROTECTION TO OUR CLIENT, THE PURUE, AND OURSELVES, ALL REPORTS AND DRAWINGS ARE SUBMITTE FOR THE CONTRENTIAL INFORMATION OF OUR CLIENT FOR A SPECIFIC REPOLET, AND AUTHORIZATION FOR USE AND/OR PUBLICATION OF DATA, STATEMENTS, CONCUSSIONS, OF ABSTRACTS FARDMENT AND REGARDING OUR REPORTS AND DRAWINGS & ISESERVED PENDING OUR WRITTEN APPROVAL.		C O P	PER	TITLE	END OF YEAR (END OF STAGE	9	
		onn Cri	ppen serge	SCALE	PROJECT No.	FIG No.	
				AS SHOWN	M09441A20	IV-A.8	

	Unit	s Scaveng	Scavenger Stage III		Pyrite	
Maximum Embankment He	ight ft		257	1	138	
Embankment Rate of Rise	ft/y	r	20		0	
Embankment Maximum El.	fasl	2	2525	2!	517	
Tailings El.	fasl		2523	2	506	
Minimum Operating Pond E	il. fasl		2495	2	516	
Maximum Storage El.	fasl	to be	confirmed	to be co	onfirmed	
Upset Storage El.	fasl			2502		
PMF El.	fasl			2518		
Minimum Operating Storag	e ¹ acre-	ft	66	7:	125	
Minimum Operating Pond	Depth ft	20 (se	e Figure 1)	10 (see	Figure 2)	
Beach Length from PMF El.	ft		450		0	
1- Distribution of scavenger and pyrite taili	ngs tonnages are based on the GPC	D production schedule, see Append	lix II for a detailed comparison	of the production schedules.		
			Scave	nger Tailings		
	Unit	s Underflow	Overflow	Total	Sum	
Tailings Placed ¹	Myd	³ 6.7	18.4	8.2	33.3	
Tailings Placed ¹	Mtor	ns 10	20	9	39	
Cumulative Tailings	Mtor	ns 53	107	51	211	
1- Distribution of scavenger and pyrite tailings	s tonnages are based on the GPO pro	duction schedule, see Appendix II for	a detailed comparison of the pr	oduction schedules.		
	Unit	s Pyrite	Tailings			
Tailings Placed ¹	Myd	3	4.2			
Tailings Placed ¹	Mtor	าร	6			
Cumulative Tailings	Mtor	าร	26			
		ATED: ILINE 2018				
CLIENT	r		PROJECT	RESOLUTION COPPER	PROJECT	
AS A MUTUAL PROTECTION TO OUR CLIENT, THE PUBLIC, AND OURSELVES, ALL REPORTS AND DRAWNINGS ARE BY MORPMATION OF OUR CLIENT TO A SPECIDIC PROJECT, AND AUTHORIZATION FOR USE AND/OR PUBLICATION OF DATA, STATEMENTS, SIGNAL SCHEME PENDING OUR WRITTEN APPROVAL.		P P E R	DEIS DESIGN AC	FOR ALTERNATIVE 3A - NEAF CTION (MODIFIED CENTERLIN END OF YEA (END OF STAG	R WEST MODIFIED PROPOSED RE EMBANKMENT) R 9 SE III)	
	Kiohn 🤇	Crippen Berge	SCALE	PROJECT No.	FIG No.	
			AS SHOWN	M09441A20	IV-A.8	

Mainum Enbankment Height       ft       257       138         Embankment Rate of Rise       ft/yr       20       0         Embankment Maximum El.       fast       2523       2506         Minimu Operating Pond El.       fast       12495       2518         Minimum Operating Storage ¹ acre-ft       266       7125         Minimum Operating Pond Depth       ft       20 (see Figure 1)       10 (see Figure 2)         Beach Length from PMF El.       ft       20 (see Figure 1)       10 (see Figure 2)         Beach Length from PMF El.       ft       20 (see Figure 1)       10 (see Figure 2)         Italiags Placed ¹ ft       20 (see Figure 1)       10 (see Figure 2)         Italiags Placed ¹ Moris       51       107       51       211         Italiags Placed ¹ Moris       53       107       51       211         Italiags Placed ¹ Moris       53       107       51       211         Italiags Placed ¹ Moris       26			Units	Scaveng	er Stage III	Ру	rite	
Impainment Rate of Rise       ft/yr       20       0         Embankment Naximum EL       fast       2525       2517         Tailings EL       fast       2523       2506         Maximum Storage EL       fast       2495       2516         Maximum Storage EL       fast       2502         PM EL       fast       2502         Minimum Operating Pond EL       fast       2502         Minimum Operating Pond Depth       ft       20 (see Figure 1)       10 (see Figure 2)         Bach Length Fon PME EL       ft       450       0       0         - to attatute at carege and public large torange and total public diverse where the total attatute comparison of the public diverse where the total attatute comparison of the public diverse where the total attatute comparison of the public diverse where the total attatute comparison of the public diverse where the total attatute comparison of the public diverse where the total attatute comparison of the public diverse where the total attatute comparison of the public diverse where the total attatute comparison of the public diverse where the total attatute comparison of the public diverse where the total attatute comparison of the public diverse where the total attatute comparison of the public diverse where the total attatute comparison of the public diverse where the total attatute comparison of the public diverse where the total attatute comparison of the public diverse where the total attatute comparison of the public diverse where the total attattatute comparison of the public diverse where total a	Maximum Embankment	Height	ft	2	257	138		
Embancent Maximum EI.       fasi       2525       2517         Tailings EI.       fasi       2253       2306         Minimum Operating Pond EI.       fasi       2495       2516         Maximum Storage EI.       fasi       2502         Minimum Operating Pond EI.       fasi       2502         Minimum Operating Storage II.       fasi       2502         Minimum Operating Storage ¹ acce-ft       66       7125         Minimum Operating Pond Depth       ft       20 (see Figure 1)       10 (see Figure 2)         Beach Length from PMF EI.       fasi       20 (see Figure 1)       10 (see Figure 2)         Beach Length from PMF EI.       fasi       20 (see Figure 1)       10 (see Figure 2)         Jamings Placed ¹ fasi       0.0       9       333         Curulative Tailings Placed ¹ Mons       53       107       51       211         1 ¹ allings Placed ¹ Mons       53       107       51       211       211         1 ² allings Placed ¹ Mons       53       107       51       211       211         1 ² allings Placed ¹ Mons       53       107       52       21       211         1 ² allings Pl	Embankment Rate of Ris	e	ft/yr		20	(	)	
Tailings Placed ¹ fasi       2523       2506         Minimum Operating Pond EI.       fasi       10 be confirmed       to be confirmed         Uppet Storage II.       fasi       2502         PMF EI.       fasi       2518         Minimum Operating Pond Depth       ft       20 (see Figure 1)       10 (see Figure 2)         Beach Length from PMF EI.       ft       20 (see Figure 1)       10 (see Figure 2)         - 0 abolition of Revenger adjorts tallelitic tenapes are back to the dop outcloss tackeds: a sequent IF the stabile tenapes and the productor schedule.         You and the manager adjorts tallelitic tenapes are back to the dop outcloss tackeds: a sequent IF the stabile tenapes and the productor schedule.         You and the manager adjorts tallelitic tenapes are back to the dop outcloss tackeds: a sequent IF the stabile tenapes and the productor schedule.         You and the manager adjorts tallelitic tenapes are back to the dop outcloss tackeds.         You and the dop outcloss tacked on the dop outcloss tackeds.         You and the dop outcloss tacked on the dop outcloss tacked on the dop outcloss tacked.         You and the dop outcloss tacked on the dop outcloss tacked on the dop outcloss tacked.         You and the dop outcloss tacked on the dop outclos tacked on the dop outcloss tacked on the dop outclos	Embankment Maximum	El.	fasl	2	525	25	2517	
Maximum Operating Poord EL       fasi       2495       2516         Maximum Storage EL       fasi       0       be confirmed       10 be confirmed         Uppet Storage EL       fasi       2502         PMF EL       fasi       2518         Minimum Operating Storage ² acce-ft       66       7125         Minimum Operating Poord Depth       ft       20 (see Figure 1)       10 (see Figure 2)         Bach Length from PMF EL       ft       450       0         - 1 obtober of acerger and yrite talling twoges up takes on the OP protection schedule, see Ageodic II for a cettal comparison of the protection schedule.       0         1 obtober of acerger and yrite talling twoges or totace talling.       Mons       53       107       51       211         1 obtober of acerger and yrite talling twoges or totace talling.       Mons       53       107       51       211         1 allings Placed ¹ Mons       53       107       51       211       21         1 allings Placed ¹ Mons       53       107       51       211         1 allings Placed ¹ Mons       53       26       211       26         1 allings Placed ¹ Mons       26       26       26       26       26	Tailings El.		fasl	2	523	25	06	
Maintom Storage EI.       fasl       to be confirmed       to be confirmed         Upset Storage EI.       fasl       2502         PMF EI.       fasl       2518         Minimum Operating Mond Depth       ft       20 (see Figure 1)       10 (see Figure 2)         Beach Length from PMF EI.       ft       450       0         1- Outputsed of scoreger and pyrte tailings tonages are based on the GPD production schedule, we Appendix If or a detailed computer of the production schedule.       Scoreger Tailings         Tailings Placed ¹ Myd ³ 6.7       18.4       8.2       33.3         Tailings Placed ¹ Myd ³ 6.7       18.4       8.2       33.3         Tailings Placed ¹ Myd ³ 6.7       18.4       8.2       33.3         Tailings Placed ¹ Myd ³ 6.7       18.4       8.2       33.3         Tailings Placed ¹ Myd ³ 4.2       2.0       9       3.07       5.1       211         Tailings Placed ¹ Myd ³ 6.7       2.6       0       0       0.0       1.0       2.0       0       3.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0 <td>Minimum Operating Pon</td> <td>d El.</td> <td>fasl</td> <td>2</td> <td>495</td> <td>25</td> <td>16</td>	Minimum Operating Pon	d El.	fasl	2	495	25	16	
Uppet Storage EL       fasl       2502         PMF EL       fasl       2518         Minimum Operating Storage ¹ acce-ft       66       7125         Back Length from PMF EL       ft       20 (see Figure 1)       10 (see Figure 2)         Back Length from PMF EL       ft       450       0	Maximum Storage El.		fasl	to be c	onfirmed	to be co	nfirmed	
PMF EL.       fasl       2518         Minimum Operating Storage ¹ acce-ft       66       7125         Minimum Operating Storage ¹ ft       20 (see Figure 1)       10 (see Figure 2)         accurating Storage ¹ ft       20 (see Figure 1)       10 (see Figure 2)         accurating Storage ¹ ft       20 (see Figure 3)       10 (see Figure 2)         accurating Storage ¹ ft       20 (see Figure 4)       0 (see Figure 2)         accurating Storage ¹ ft       20 (see Figure 4)       0 (see Figure 2)         accurating Storage ¹ ft       20 (see Figure 4)       0 (see Figure 4)         accurating Storage ¹ Minon       10 (see Figure 4)       33.31         accurating Storage ¹ Minon       10 (see Figure 4)       33.31         accurating storage and prote talings       Minon       10 (see Figure 4)       33.31         accurating Storage ¹ Minon       10 (see Figure 4)       42.6         failings Placed ¹ Minon       6       6       6         Curating Minon       6       6       6       6       6         Curating Storage ¹ Minon       6       6       6       6         Curatin Mont       <	Upset Storage El.		fasl		2	502		
Minimum Operating Storage ¹ acre-ft       66       7125         Minimum Operating Pond Depth       ft       20 (see Figure 1)       10 (see Figure 2)         1       10 (see Figure 2)       0       0         1       10 (see Figure 2)       0       0         1       0       10 (see Figure 2)       0         1       0       0       0       0         1       0       Scavenger Tailings       0       0         1       0       0       0       0       0         1       0       0       0       0       0         1       10       20       9       33       0       20       9       39         1       10       20       9       39       0       20       10       51       211         1       10       20       9       39       107       51       211       11         1       10       20       9       39       107       51       211       11         1       10       10       20       9       39       107       51       211         1       10       10 <t< td=""><td>PMF El.</td><td></td><td>fasl</td><td></td><td>2</td><td>518</td><td></td></t<>	PMF El.		fasl		2	518		
Minimum Operating Pond Depth       ft       20 (see Figure 1)       10 (see Figure 2)         Beach Length from PMF EL       ft       450       0         1 - Distribution of scienting Pond Depth       ft       450       0         1 - Distribution of scienting Pond Pond Pondocton schedule, see Agenduitin Br of datability comparison of the production schedule.       0         Scienting Pond Depth       ft       450       0         Scienting Pond Depth Fillings         Units       Units       Units       Units       Scienting Pond Depth         Tailings Placed ¹ Myod 6.7       18.4       8.2       333.3         Tailings Placed ¹ Myod 6.7       18.4       8.2       333.3         Comparison of science and prote tailings torrages are taxed on the CPD productor schedule, see Agenduit for a defailed comparison of the odation schedule.         Minima Porte Tailings       Minima Porte Tailings         Listing Placed ¹ Minima Porte Tailings       Colspan="2">Colspan= 2         Tailings Placed ¹ Minima Porte Tailings         Minin Science Addition Schedule, see Agenduit I	Minimum Operating Stor	age ¹	acre-ft		66	71	25	
Beach Length from PMF EI.       ft       450       0         1: Elastivation of scaverager and grytte tailings tomages are based on the GPO production schedule, see Agendult If or a databate comparison of the andication schedule.       Scaverager Tailings         Tailings Placed ¹ Mixed ¹ 0       0       9       39         Tailings Placed ¹ Mixed ¹ 0       20       9       39         Tailings Placed ¹ Mixed ¹ 0       20       9       39         Tailings Placed ¹ Mixed ¹ 0       20       9       39         Tailings Placed ¹ Mixed ¹ 10       20       9       39         Tailings Placed ¹ Mixed ¹ 10       20       9       39         Tailings Placed ¹ Mixed ¹ Pyrite Tailings       12111       111         1: bathateo of azonger and pyrite tailings tomages are based on the GPD production schedule, see Agendul If for a datalate comparison of the production schedule.       Tailings Placed ¹ Mixed ¹ Tailings Placed ¹ Mixed ¹ Mixed ¹ Pyrite Tailings       1211         1: bathateo of scheduler and pyrite tailing tomages are based on the GPD production schedule, see Agendul I for a datalate comparison of the production schedule.       Execoutrition schedule.       1211	Minimum Operating Pon	d Depth	ft	20 (see	e Figure 1)	10 (see	Figure 2)	
1: britherion of scorenger and prythe tailings toranges are based on the GPD production schedule, see Appendix II for a fraided comparison of the groduction schedule.       Scorenger Tailings         1: britherion of scorenger and prythe tailings toranges are based on the GPD production schedule, see Appendix II for a distaled comparison of the production schedule.       Scorenger Tailings         1: britherion of scorenger and prythe tailings toranges are based on the GPD production schedule.       Scorenger Tailings       Scorenger Tailings         1: britherion of scorenger and prythe tailings toranges are based on the GPD production-schedule.       Scorenger Tailings       Scorenger Tailings         1: britherion of scorenger and prythe tailings toranges are based on the GPD production-schedule.       Scorenger Tailings       Scorenger Tailings         1: britherion of scorenger and prythe tailings toranges are based on the GPD production-schedule.       Scorenger Tailings       Scorenger Tailings         1: britherion of scorenger and prythe tailings toranges are based on the GPD production-schedule.       Scorenger Tailings       Scorenger Tailings         1: britherion of scorenger and prythe tailings toranges are based on the GPD production-schedule.       Scorenger Tailings       Scorenger Tailings         1: britherion of scorenger and prythe tailings toranges       Scorenger Tailings       Scorenger Tailings       Scorenger Tailings         1: britherion of scorenger and prythe tailings toranges       Scorenger Tailings       Scorenger Tailings       Scorenger Tai	Beach Length from PMF	El.	ft		450	(	)	
Scavenger Tailings         Linits       Underflow       Overflow       Total       Sum         1ailings Placed ¹ Mtons       10       20       9       33         1 classes       Mtons       53       100       20       9       33         2 classes       Mtons       53       100       21       210         2 classes       Mtons       53       100       51       210         2 classes       Mtons       53       100       51       210         2 classes       Mtons       60       100       50       210         2 classes       Mtons       60       200       9       33         2 classes       Mtons       60       200       200       200       200         2 classes       Mtons       60       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200	1- Distribution of scavenger and pyrite	tailings tonnages are based	on the GPO prod	uction schedule, see Appendi	x II for a detailed comparison of	the production schedules.		
Units       Overflow       Colspan="2" integer 1000000000000000000000000000000000000					Scavens	ver Tailings		
Image: Placed 1       Units       Description         Tailings Placed 1       Mtons       10       20       9       333         1- statistical of scorege and prote tailings       Mtons       10       20       9       331         2 - statistical of scorege and prote tailings transported of the production schedule, see Agreendule II for a detailed comparison of the production schedule.       Text and the statistical comparison of the production schedule.         1 - statistical of scorege and prote tailings compares are based on the GPD production schedule, see Agreendule II for a detailed comparison of the production schedule.       Text and the statistical comparison of the production schedule.         1 - statistical of scorege and prote tailings compares are based on the GPD production schedule, see Agreendule II for a detailed comparison of the production schedule.       Text and the schedule comparison of the production schedule.         2 - statistical of scorege and prote tailings compares are based on the GPD production schedule, see Agreendule II for a detailed comparison of the production schedule.       Text and the schedule comparison of the production schedule.         2 - statistical of scorege and prote tailings compares are based on the GPD production schedule, see Agreendule II for a detailed comparison of the production schedule.       Text and the schedule comparison of the production schedule.         2 - statistical of scorege and prote tailings compares are based on the GPD production schedule, see Agreendule II for a detailed comparison of the production schedule.       Text and the schedule comp			Units	Underflow	Overflow	Total	Sum	
Import rules       Import dots	Tailings Placed ¹		Myd ³	67	18 /	82	33.3	
Image: Index:       Image: Index:<	Tailings Placed ¹		Mtons	10	20.4	0.2 Q	20.5	
In control coverage       Interview       Inter			Mtons	53	107	51	211	
Implementation       Implementation       Implementation         Implementation       Implementation       Implementation       Implementation         Implementation       Implementation       Implementation       Implementation       Implementation         Implementation       Implementation       Implementation       Implementation       Implementation       Implementation         Implementation       Implementation       Implementation       Implementation       Implementation       Implementation         Implementation       Implementation       Implementation       Implementation       Implementation       Implementation         Implementation       Implementation       Implementation       Implementation       Implementation       Implementation         Implementation       Implementation       Implementation       Implementation       Implementation       Implementation         Implementation       Implementation       Implementation       Implementation       Implementation       Implementation         Implementation       Implementation       Implementation       Implementation       Implementation       Implementation         Implementation       Implementation       Implementation       Implementation       Implementation       Implementation       Implementation	1- Distribution of scavenger and pyrite ta	ilings tonnages are based on t	the GPO production	n schedule, see Appendix II for a	a detailed comparison of the prod	uction schedules.	211	
Tailings Placed ¹ Myd ³ 4.2         Tailings Placed ¹ Mtons       6         Currulative Tailings       Mtons       26         - 1 Distribution of scaverger and perfet tailings teenages are based on the GPD production schedule, see Appendix I for a detailed comparison of the production schedules.         - 1 Distribution of scaverger and perfet tailings teenages are based on the GPD production schedule, see Appendix I for a detailed comparison of the production schedules.         - 2 Distribution of scaverger and perfet tailings teenages are based on the GPD production schedule, see Appendix I for a detailed comparison of the production schedules.         - 2 Distribution of scaverger and perfet tailings teenages are based on the GPD production schedule, see Appendix I for a detailed comparison of the production schedules.         - 2 Distribution of scaverger and perfet tailings teenages are based on the GPD production schedule, see Appendix I for a detailed comparison of the production schedules.         - 2 Distribution of scaverger and perfet tailings teenages are based on the GPD production schedule, see Appendix I for a detailed comparison of the production schedules.         - 2 Distribution of scaverger and perfet tailings			Units	Pvrite T	ailings			
Tailings Placed       Notes       6         1ailings Placed       Mtons       6         Curulative Tailings       Mtons       26         J- Is betrivation of sevenger and pyrite tailings tomages are based on the GPO production schedule, see Appendix II for a detailed comparison of the production schedules.       The production schedules.         Interview       To be reado with KLOHN CRIPPEN BERGER REPORT DATED: JUNE 2018       Interview       RESOLUTION COPPER PROJECT         Dis BERGEN WITH KLOHN CRIPPEN BERGER REPORT DATED: JUNE 2018       Interview       RESOLUTION COPPER PROJECT       Dis Designer Notes         Interview       Interview       Interview       RESOLUTION COPPER PROJECT       Dis Designer Notes         Interview       Interview       Interview       RESOLUTION COPPER PROJECT       Dis Designer Notes         Interview       Interview       Interview       RESOLUTION COPPER PROJECT       Dis Designer Notes         Interview       Interview       Interview       RESOLUTION COPPER PROJECT       Dis Designer Notes         Interview       Interview       Interview       RESOLUTION COPPER PROJECT       Dis Designer Notes         Interview       Interview       Interview       Interview       END OF YEAR 9       Interview         Interview       Interview       Interview       Interview	Tailings Placed ¹		Mvd ³		4.2			
Image: Distribution of scalenger and pyrite tailings tomages are based on the GPD production schedule, see Appendix II for a detailed comparison of the production schedules.         Image: Distribution of scalenger and pyrite tailings tomages are based on the GPD production schedule, see Appendix II for a detailed comparison of the production schedules.         Image: Distribution of scalenger and pyrite tailings tomages are based on the GPD production schedule, see Appendix II for a detailed comparison of the production schedules.         Image: Distribution of scalenger and pyrite tailings tomages are based on the GPD production schedule, see Appendix II for a detailed comparison of the production schedules.         Image: Distribution of scalenger and pyrite tailings tomages are based on the GPD production schedule, see Appendix II for a detailed comparison of the production schedules.         Image: Distribution of scalenger and pyrite tailings tomages are based on the GPD production schedule, see Appendix II for a detailed comparison of the production schedules.         Image: Distribution of pyrite tailings tomages are based on the GPD pyrite tailings.         Image: Distribution of pyrite tailings tomages are based on the GPD pyrite tailings.         Image: Distribution of pyrite tailings tomages are based on the GPD pyrite tailings.         Image: Distribution of pyrite tailings tomages are based on the GPD pyrite tailings.         Image: Distribution of pyrite tailings.	Tailings Placed ¹		Mtons		6			
2 - Definition of scavenger and pyrite talings tomages are based on the GPD production schedule, see Appendix II for a detailed comparison of the production schedules.  A - Definition of scavenger and pyrite talings tomages are based on the GPD production schedule, see Appendix II for a detailed comparison of the production schedules.  DEDEDEDEDEDEDEDEDEDEDEDEDEDEDEDEDEDED	Cumulative Tailings		Mtons		26			
NOT FOR CONSTRUCTION         Description         Author Protection to Darkings and Dawnings								
AS A MUTILA POTETION TO OUR CLERN THE PUBLICATION OF CLERN THE PUBLICAT	NOT FOR CON TO BE READ WITH KLO	ISTRUCTION	REPORT DATED	D: JUNE 2018	BROJECT			
	AS A MUTUAL PROTECTION TO OUR CLIENT, THE PUBLIC, AND OURSCUTS, ALL REPORTS AND DRAWINGS ARE SUBMITTED FOR THE COMFIDENTIAL INFORMATION OF OUR CLIENT FOR A SPECINC PROJECT, AND AUTHORIZATION FOR USE AND/OR PUBLICATION OF CASTSTACTS FROM DE RECARDING OUR BEFORTS AND DRAWINGS IS RESERVED PENDING OUR WRITTEN APPROVAL.	RE			DEIS DESIGN FC	RESOLUTION COPPER DR ALTERNATIVE 3A - NEAR ION (MODIFIED CENTERLIN END OF YEAI (END OF STAG	project west modified proposed e embankment) R 9 E III)	
AS SHOWN M09441A20 IV-A.8				hheu peiĝei	SCALE AS SHOWN	PROJECT No. M09441A20	FIG No. IV-A.8	





nger Sta	oge IV	P	rite					
275		138						
17			0					
2542		2	517					
2540		2	516					
	25	521						
e confirm	med	to be c	onfirmed					
	25	24						
	25	31						
	64	73						
	5 (see F	igure 1)						
	8	90						
or a detailed	comparison of the produc	tion schedules.						
	Scavenge	er Tailings						
0	verflow	Total	Sum					
j	18.3	8.2		33.1				
)	20	9		39				
or a detailed	127	60		250				
or a detailed	comparison of the produc	tion schedules.						
e railing	s							
	4.6							
	/							
or a detailed	32 comparison of the produc	tion schedules.						
or a detailed comparison of the production schedules.								
5 ft								
Ţ								
•								
<b>T</b>								
	T	OP OF PYRITE TAIL	INGS					
				,				
	DROIFCT							
RESOLUTION COPPER PROJECT								
	DEIS DESIGN FOR ALTERNATIVE 3A - NEAR WEST MODIFIED PROPOSED ACTION (MODIFIED CENTERLINE EMBANKMENT)							
	END OF YEAR 10							
		(STAGE IV	()					
or								
GI GI	SCALE	PROJECT No.	FIG No.					
		M09441A20	11/-	۵ ۵				
	AS SHOWIN	10103441A20	I V -					



		Units	Scavena	er Stag	e IV	Pv	vrite
Maximum Embankment	Height	ft		351	138		.38
Embankment Rate of Ris	se	ft/yr		9			0
Embankment Maximum	Fl	fasl		2612		2	517
Tailings Fl		fasl		2608		2	583
Minimum Operating Por	nd El	fasl		-000	2	588	565
Maximum Storage El		fasl	to be (	confirm		to be co	onfirmed
Linset Storage Fl		fasl			2u 21	592	
PMF El.		fasl			2	597	
Minimum Operating Sto	rage ¹	acre-ft			6	803	
Minimum Operating Sto	nd Denth	ft			5 (500	Figure 1)	
Reach Length from PME	FI	ft			J (366		
1. Distribution of servenger and purite t	LI.	IL	n schodulo, soo Annondix II for	a dotailod co	maarican of the produ	stien schedules	
1- Distribution of scavenger and pyrite t	annigs tornages are based on		n schedule, see Appendix in for	a uetalleu co			
					Scaveng	er Tailings	
1.2		Units	Underflow	Ον	erflow	Total	Sum
Tailings Placed ^{1, 2}		Myd°	13.9		38.0	17.0	68.9
Tailings Placed ^{1, 2}		Mtons	21		42	19	81
Cumulative Tailings		Mtons	125		250	115	490
<ol> <li>Distribution of scavenger and pyrite ta</li> <li>Includes deposition from the beginnir</li> </ol>	ailings tonnages are based on f ng of Year 15 to the end of Yea	he GPO production 16.	n schedule, see Appendix II for	a detailed co	mparison of the produ	ction schedules.	
		Units	Pyrite 1	<b>Failings</b>			
Tailings Placed ^{1, 2}		Myd³			7.3		
Tailings Placed ^{1, 2}		Mtons			10		
Cumulative Tailings		Mtons			67		
			5 ft TOP OF PYRITE TAILIN	NGS			
NOT TO SCALL							
		Units	Northwest Co	ontainn	nent Dam	Northeast Co	ntainment Dam
Embankment Borrow	Fill	Myd³	5.5			3	3.7
Maximum Embankme	nt Height	ft	242		195		.95
Embankment Maximu	im El.	fasl	2,805			2,	805
NOT FOR CO	NSTRUCTION						
TO BE READ WITH KI (	HN CRIPPEN BERGER	] REPORT DATEI	D. IUNE 2018				
					PROJECT		
					DEIS DESIGN FO	R ALTERNATIVE 3A - NEAF	R WEST MODIFIED PROPOSED
	RE	SUL	UTIUN		ACTI	ON (MODIFIED CENTERLIN	NE EMBANKMENT)
AS A MUTUAL PROTECTION TO OUR CLIENT, THE PUBLIC, AND OURSELVES,		C 0 P	PER		TITLE		
ALL REPORTS AND DRAWINGS ARE SUBMITTED FOR THE CONFIDENTIAL INFORMATION OF OUR CLIENT FOR A							0.16
SPECIFIC PROJECT, AND AUTHORIZATION FOR USE AND/OR PUBLICATION OF						END OF YEAR	X 10
ABSTRACTS FROM OR REGARDING OUR REPORTS AND DRAWINGS IS RESERVED						(STAGE IV	)
PENDING OUR WRITTEN APPROVAL.		ohn Cri	nnen Rerae	<b>,</b>			
		<b></b>	ppen berge	•	SCALE	PROJECT No.	FIG No.
						M09441420	IV-A 10
					AJ JITO WIN	1000441820	14 / 1.10

		Units	nits Scavenger Stag		ge IV Pyrite	
Maximum Embankment	t Height	ft	3	351	138	
Embankment Rate of Ri	se	ft/yr		9		0
Embankment Maximum	ı El.	fasl	2	612	25	517
Tailings El.		fasl	2	608	25	583
Minimum Operating Po	nd El.	fasl			2588	
Maximum Storage El.		fasl	to be c	onfirmed	to be co	onfirmed
Upset Storage El.		fasl			2592	
PMF El.		fasl			2597	
Minimum Operating Sto	prage ¹	acre-ft			6893	
Minimum Operating Po	nd Depth	ft		5 (se	e Figure 1)	
Beach Length from PMF	El.	ft		·	1000	
1- Distribution of scavenger and pyrite t	ailings tonnages are based on t	the GPO productio	n schedule, see Appendix II for a	detailed comparison of the pro	oduction schedules.	
				Scaver	nger Tailings	
		Unite	Underflow	Overflow	Total	Sum
Tailings Placed ^{1, 2}		Mud ³	12.0	28.0	17.0	50m
Tailings Placed		Mtons	15.9	56.0	17.0	00.9
Cumulative Tailings		Mtons	125	42	19	400
1. Distribution of scavenger and pyrite t	ailings tonnages are based on t	IVILOIIS the GPO production	IZJ n schedule, see Appendix II for a	detailed comparison of the pro	oduction schedules.	490
2. Includes deposition from the beginni	ng of Year 15 to the end of Year	r 16.				
		Unite	Durito T	ailinga		
Tailin an Diana d ¹ , ²		Drits	Pyrite I	anngs		
		Ινιγά		7.3		
Tailings Placed		Nitons		10		
1. Includes deposition from the beginni	ng of Year 15 to the end of Yea	IVITONS	2 Distribution of se	b/	nages are based on the GPO producti	on schedule, see Annendix II for a
FIGURE 1 MINIMUN	A POND DEPTH S	СНЕМАТІС	detailed compariso	n of the production schedules.		· · · · · · · · · · · · · · · · · · ·
			<b>F (</b> )			
			1			
			TOP OF PYRITE TAILIN	GS		
NOT TO SCALE						
		Units	Northwest Co	ntainment Dam	Northeast Cor	ntainment Dam
Embankment Borrow	Fill	Myd ³	-	5.5	3	3.7
Maximum Embankme	ent Height	ft	2	242	1	95
Embankment Maximu	ım El.	fasl	2,	805	2,805	
NOT FOR CO	NSTRUCTION	]				
TO BE READ WITH KL	OHN CRIPPEN BERGER	] REPORT DATEI	D: JUNE 2018			
	CLIENT			PROJECT		DROJECT
				DEIS DESIGN	FOR ALTERNATIVE 3A - NEAF	WEST MODIFIED PROPOSED
	RE	SOL	UTION	AC	CTION (MODIFIED CENTERLIN	IE EMBANKMENT)
AS A MUTUAL PROTECTION TO OUR		C 0 P	PER	TITLE		
CLIENT, THE PUBLIC, AND OURSELVES, ALL REPORTS AND DRAWINGS ARE SUBMITTED FOR THE CONFIDENTIAL						
INFORMATION OF OUR CLIENT FOR A SPECIFIC PROJECT, AND AUTHORIZATION FOR USE AND/OR PUBLICATION OF					END OF YEAF	R 16
DATA, STATEMENTS, CONCLUSIONS, OR ABSTRACTS FROM OR REGARDING OUR REPORTS AND DRAWINGS IS RESERVED					(STAGE IV	)
PENDING OUR WRITTEN APPROVAL.		alan Crit	nnon Borgo	,		
			ppen bergel	SCALE	PROJECT No.	FIG No.
						11/ 1 40
				AS SHOWN	M09441A20	IV-A.10

	Units	Scaveng	er Stage IV	e IV Pyrite	
Maximum Embankment Height	ft	3	351	138	
Embankment Rate of Rise	ft/yr		9	0	
Embankment Maximum El.	fasl	2	612	25:	17
Tailings El.	fasl	2	608	258	33
Minimum Operating Pond El.	fasl			2588	
Maximum Storage El.	fasl	to be c	onfirmed	to be cor	nfirmed
Upset Storage El.	fasl		2	2592	
PMF El.	fasl			2597	
Minimum Operating Storage ¹	acre-ft			5893	
Minimum Operating Pond Depth	ft		5 (see	Figure 1)	
Beach Length from PMF El.	ft			1000	
1- Distribution of scavenger and pyrite tailings tonnages are based on	the GPO productio	n schedule, see Appendix II for a	detailed comparison of the proc	luction schedules.	
	·		Scovon		
	Linite	Underflerr	Scaven	ger Tallings	Cum
Teilinge Discod ^{1/2}	Units	Undernow	Overnow	17 O	Sum
	iviya	13.9	38.0	17.0	68.9
Tailings Placed '	Mitons	21	42	19	81
1. Distribution of scavenger and pyrite tailings tonnages are based on	IVITONS the GPO production	125 n schedule, see Appendix II for a	detailed comparison of the proc	uction schedules.	490
2. Includes deposition from the beginning of Year 15 to the end of Yea	r 16.	······			
			-11-		
1.2	Units	Pyrite T	ailings		
Tailings Placed ^{-/ 2}	Myd°		7.3		
Tailings Placed ^{1, 2}	Mtons		10		
Cumulative Tailings	Mtons 16		67		and the second second second
FIGURE 1 MINIMUM POND DEPTH S	CHEMATIC	detailed compariso	n of the production schedules.	ages are based on the GPO production	schedule, see Appendix in for a
		-			
			-		
		5 ft			
	*****				
			C.S.		
		TOP OF PTRITE TAILIN	65		
NOT TO SCALE					
	Units	Northwest Co	ntainment Dam	Northeast Cont	tainment Dam
Embankment Borrow Fill	Myd ³	!	5.5	3.	7
Maximum Embankment Height	ft	2	242	195	
Embankment Maximum El.	fasl	2,	805	2,805	
	1	· ·			
		D. 11 INE 2040			
IU BE READ WITH KLOHN CRIPPEN BERGER	KEPUKI DATEI	D: JUNE 2018	PPOIECT		
				RESOLUTION COPPER P	
DF	SOI	ΙΙΤΙΠΝΙ	ACT	ION (MODIFIED CENTERLINE	E EMBANKMENT)
			TITLE	- ,	,
CLIENT, THE PUBLIC, AND OURSELVES, ALL REPORTS AND DRAWINGS ARE SUBBITTED FOR THE CONTREMENTION	5 0 F				
SUBMITTED FOR THE CURFIDENTIAL INFORMATION OF OUR CUENT FOR A SPECIFIC PROJECT, AND AUTHORIZATION				END OF YEAR	16
FOR USE AND/OR PUBLICATION OF DATA, STATEMENTS, CONCLUSIONS, OR ABSTRACTS FROM OR REGARDING OUR				(STAGE IV)	
REPORTS AND DRAWINGS IS RESERVED PENDING OUR WRITTEN APPROVAL.					
	ohn Cri	ppen Bergei	SCALE	PROJECT No.	FIG No.
			AS SHOWN	M09441A20	IV-A.10







	Units	Scavenger Stage IV	Pyrite	
Maximum Embankment Height	ft	390	138	
Embankment Rate of Rise	ft/yr	10	0	
Embankment Maximum El.	fasl	2650	2517	
Tailings El.	fasl	2648	2624	
Minimum Operating Pond El.	fasl	2629		
Maximum Storage El.	fasl	to be confirmed	to be confirmed	
Upset Storage El.	fasl	263	2	
PMF El.	fasl	2637		
Minimum Operating Storage ¹	acre-ft	9045		
Minimum Operating Pond Depth	ft	5 (see Figure 1)		
Beach Length from PMF El.	ft	980		

		Scavenger Tailings				
	Units	Underflow	Overflow	Total	Sum	
Tailings Placed ^{1, 2}	Myd ³	13.5	37.0	16.6	67.1	
Tailings Placed ^{1, 2}	Mtons	21	41	18	79	
Cumulative Tailings	Mtons	166	331	152	650	

1. Distribution of scavenger and pyrite tailings tonnages are based on the GPO production schedule, see Appendix II for a detailed comparison of the production schedules.

2. Includes deposition from the beginning of Year 19 to the end of Year 20.

	Units	Pyrite Tailings
Tailings Placed ^{1, 2}	Myd ³	9.3
Tailings Placed ^{1, 2}	Mtons	13
Cumulative Tailings	Mtons	92

1. Distribution of scavenger and pyrite tailings tonnages are based on the GPO production schedule, see Appendix II for a detailed comparison of the production schedules. 2. Includes deposition from the beginning of Year 19 to the end of Year 20.



	PROJECT RESOLUTION COPPER PROJECT DEIS DESIGN FOR ALTERNATIVE 3A - NEAR WEST MODIFIED PROPOSED ACTION (MODIFIED CENTERLINE EMBANKMENT)							
	пте							
	END OF YEAR 20							
	(STAGE IV)							
or								
<b>G</b> I	SCALE	PROJECT No.	FIG No.					
	AS SHOWN	M09441A20	IV-A.11					
	AS SHOWN	M09441A20	IV-A.11					



nger Stage IV	Pyrite	
448	138	
9	0	
2705	2517	
2703	2680	
2685		
e confirmed	to be confirmed	
2688		
2693		
9732		
5 (see	Figure 1)	
	920	

Scavenger Tailings						
	Overflow	Total	Sum			
3	37.7	16.8	69.8			
3	41	18	83			
)	455	207	891			

e Tailings	
	8.5
	12
	129

hwest Dam		
0.0		
0		
0		

	PROJECT DEIS DESIGN FOF ACTIC	RESOLUTION COPPER PROJECT DEIS DESIGN FOR ALTERNATIVE 3A - NEAR WEST MODIFIED PROPOSED ACTION (MODIFIED CENTERLINE EMBANKMENT)					
	TITLE	END OF YEAR 2	26				
07	(STAGE IV)						
CI	SCALE AS SHOWN	project №. M09441A20	FIG NO.				


		Unite	Scavena	er Stage IV	Dur	ite
Maximum Embankment H	Height	ft	Staveng	484	13	8
Embankment Rate of Rise	2	ft/yr		9	(	
Embankment Maximum F	=	fasl	2	740	25	17
Tailings El.		fasl	2	738	27	15
Minimum Operating Pond	d El.	fasl		2	2720	
Maximum Storage El.		fasl	to be o	confirmed	to be co	nfirmed
Upset Storage El.		fasl		2	2723	
PMF El.		fasl		2	2727	
Minimum Operating Stora	age ¹	acre-ft		٤	3681	
Minimum Operating Pond	d Depth	ft		5 (see	Figure 1)	
Beach Length from PMF E	ΞΙ.	ft			940	
1- Distribution of scavenger and pyrite tail	lings tonnages are based on t	ne GPO production	n schedule, see Appendix II for	a detailed comparison of the prod	luction schedules.	
				Scaven	ger Tailings	
1.2		Units	Underflow	Overflow	Total	Sum
Tailings Placed ^{1, 2}		Myd°	19.2	38.5	17.2	75.0
Tailings Placed ^{1, 2}		Mtons	29	42	19	90
Cumulative Tailings 1. Distribution of scavenger and pyrite tailings	ings tonnages are based on t	Mtons	271 schedule, see Appendix II for a	a detailed comparison of the prod	245 Juction schedules.	1,055
2. Includes deposition from the beginning	of Year 29 to the end of Year	30.	FL F			
	1	Units	Pyrite 1	ailings		
Tailings Placed ^{1, 2}		Mvd ³		7.2		
Tailings Placed ^{1, 2}		Mtons		10		
Cumulative Tailings		Mtons		151		
1. Distribution of scavenger and pyrite taili	ings tonnages are based on the	ne GPO production	n schedule, see Appendix II for a	a detailed comparison of the prod	luction schedules.	
FIGURE 1 MINIMUM		ΉΕΜΔΤΙΟ				
NOT TO SCALE				5 ft	TOP OF PYRITE TAILI	NGS
NOT FOR CON	STRUCTION					
TO BE READ WITH KLOF	IN CRIPPEN BERGER R	EPORT DATED	D: JUNE 2018			
AS A MUTUAL PROTECTION TO OUR CLIENT, THE PUBLIC, AND OURSELVES, ALL REPORTS AND DWANNISS ARE SUBMITTED FOR THE CONFIDENTIAL INFORMATION OF OUR CLIENT FOR A ON FOR USE AND/OR PUBLICATION OF DATA, STATEMENTS, CONCLUSIONS, OR ASSTRACTS FROM OR REGARDING OUR REPORTS AND DRAWING SI RESERVED PENDING OUR WRITTEN APPROVAL	IENT	SOLI c o p	UTION P E R	PROJECT DEIS DESIGN F( ACT TITLE	RESOLUTION COPPER I OR ALTERNATIVE 3A - NEAR 'ION (MODIFIED CENTERLINI END OF YEAR (STAGE IV)	PROJECT WEST MODIFIED PROPOSED E EMBANKMENT) 30
	<b>V</b> Kid	ohn Cri	ppen Berge	SCALE AS SHOWN	project no. M09441A20	FIG NO. IV-A.13

		Units	Scaveng	er Stage IV	Pyri	te	
Maximum Embankment	Height	ft		484	13	8	
Embankment Rate of Ris	e	ft/yr		9	0		
Embankment Maximum	El.	fasl	2	740	251	.7	
Tailings El.		fasl	2	2738	271	.5	
Minimum Operating Pon	d El.	fasl		27	20		
Maximum Storage El.		fasl	to be o	confirmed	to be cor	ıfirmed	
Upset Storage El.		fasl		27	23		
PMF El.		fasl		27	27		
Minimum Operating Stor	age ¹	acre-ft		86	581		
Minimum Operating Pon	d Depth	ft		5 (see F	igure 1)		
Beach Length from PMF	El.	ft		94	40		
1- Distribution of scavenger and pyrite ta	ilings tonnages are based on t	he GPO production	n schedule, see Appendix II for	a detailed comparison of the produc	tion schedules.		
				Scavenge	er Tailings		
		Units	Underflow	Overflow	Total	Sum	
Tailings Placed ^{1, 2}		Myd ³	19.2	38.5	17.2	75.0	
Tailings Placed ^{1, 2}		Mtons	29	42	19	90	
Cumulative Tailings		Mtons	271	539	245	1,055	
<ol> <li>Distribution of scavenger and pyrite ta</li> <li>Includes deposition from the beginning</li> </ol>	ilings tonnages are based on t g of Year 29 to the end of Year	he GPO production	n schedule, see Appendix II for a	a detailed comparison of the produc	tion schedules.		
	,						
		Units	Pyrite 1	Tailings			
Tailings Placed ^{1, 2}		Myd ³		7.2			
Tailings Placed ^{1, 2}		Mtons		10			
Cumulative Tailings		Mtons		151			
<ol> <li>Distribution of scavenger and pyrite ta</li> <li>Includes deposition from the beginning</li> </ol>	lings tonnages are based on t g of Year 29 to the end of Year	* 30.	n schedule, see Appendix II for a	a detailed comparison of the produc	tion schedules.		
FIGURE 1 MINIMUM	POND DEPTH S	CHEMATIC	2				
NOT TO SCALE				5 ft	TOP OF PYRITE TAILIN	IGS	
NOT FOR COM	ISTRUCTION						
TO BE READ WITH KLO	HN CRIPPEN BERGER F	, REPORT DATED	D: JUNE 2018				
c	RE	SOL	UTION	PROJECT DEIS DESIGN FOR ACTIC	RESOLUTION COPPER P & ALTERNATIVE 3A - NEAR \ DN (MODIFIED CENTERLINE	ROJECT VEST MODIFIED PROPOSED EMBANKMENT)	
AS A MUTULA PROTECTION TO OUR CLINT THE PUBLIC, MAD DURSELVES, ALL REPORTS AND DRAWINGS ARE SUBMITTED FOR THE CONTREMILA INFORMATION OF OUR CLIENT FOR A SPECIFC PROJECT, AND AUTHORIZATION FOR USE ANA/DOR PUBLICATION OF DATA STATEMENTS, COULSIONS, ON ASSTRACTS FROM OR REGARDING OUR REPORTS AND DRAWINGS INSERVED PENDING OUR WRITTEN APPROVAL.		COP	PER	TTLE	END OF YEAR (STAGE IV)	30	
		onn Crij	ppen Berge	SCALE AS SHOWN	PROJECT No. M09441A20	FIG NO.	

	Unit	s Scaveng	ger Stage IV	Pyri	te	
Maximum Embankment H	eight ft		484	13	8	
Embankment Rate of Rise	ft/yr		9	0		
Embankment Maximum El	. fasl		2740	251	.7	
Tailings El.	fasl	2	2738	271	5	
Minimum Operating Pond	El. fasl		27	720		
Maximum Storage El.	fasl	to be o	confirmed	to be cor	nfirmed	
Upset Storage El.	fasl		27	723		
PMF El.	fasl		27	727		
Minimum Operating Storag	ge ¹ acre-	ft	86	581		
Minimum Operating Pond	Depth ft		5 (see l	Figure 1)		
Beach Length from PMF El	. ft		9	40		
1- Distribution of scavenger and pyrite tailing	gs tonnages are based on the GPO proc	luction schedule, see Appendix II for	a detailed comparison of the produ	ction schedules.		
			Scavenge	er Tailings		
	Unit	s Underflow	Overflow	Total	Sum	
Tailings Placed ^{1, 2}	Myd	³ 19.2	38.5	17.2	75.0	
Tailings Placed ^{1, 2}	Mton	is 29	42	19	90	
Cumulative Tailings	Mton	s 271	539	245	1,055	
<ol> <li>Distribution of scavenger and pyrite tailing</li> <li>Includes deposition from the beginning of</li> </ol>	gs tonnages are based on the GPO prod f Year 29 to the end of Year 30.	luction schedule, see Appendix II for	a detailed comparison of the produce	ction schedules.		
1.2	Unit	s Pyrite	Failings			
Tailings Placed ^{1, 2}	Myd	5	7.2			
Tailings Placed ^{1, 2}	Mton	IS	10			
Cumulative Tailings	Mton	S	a detailed comparison of the produc	rtion schedules		
2. Includes deposition from the beginning of	f Year 29 to the end of Year 30.	action schedule, see Appendix in for				
NOT TO SCALE			5 ft	TOP OF PYRITE TAILIN	NGS	
NOT FOR CONS	TRUCTION					
TO BE READ WITH KLOHN	N CRIPPEN BERGER REPORT D	ATED: JUNE 2018				
AS A MUTUAL PROTECTION TO OUR CLIENT, THE PUBLIC, AND OURSELVES, SUBMITED FOR THE CONTROL THE SUBMITED FOR THE CONTROL THAT INFORMATION OF OUR CLIENT FOR A SPECIFIC PROJECT, MOS JUTHORIZATION	RESO c o	LUTION PPER	PROJECT DEIS DESIGN FO ACTIO	RESOLUTION COPPER P R ALTERNATIVE 3A - NEAR N DN (MODIFIED CENTERLINE END OF YEAR	ROJECT WEST MODIFIED PROPOSED EMBANKMENT) 30	
SPECUPIC-PRIVACL, AND AUTHORATION FOR USE AND/OR PUBLICATION OF DATA, STATEMENTS, CONCLUSIONS, OR ARSTRACTS FROM OR REMAINING SIS MESERVED PEROINS AND DRAWINGS IS MESERVED PEROING OUR WRITTEN APPROVAL.		Crippen Berge	SCALE AS SHOWN	(STAGE IV)	FIG NO.	





	Units	Scaveng	ver Stage IV	Pyr	ite
Maximum Embankment Hei	ght ft	Staveng	520	13	8
Embankment Rate of Rise	ft/yr		8	C	
Embankment Maximum El.	fasl	2	2773	25:	17
Tailings El.	fasl	2	2773	27	51
Minimum Operating Pond E	l. fasl		-	2756	
Maximum Storage El.	fasl	to be o	confirmed	to be co	nfirmed
Upset Storage El.	fasl		2	2757	
PMF El.	fasl		2	2760	
Minimum Operating Storage	e ¹ acre-ft		8	3867	
Minimum Operating Pond D	epth ft		5 (see	Figure 1)	
Beach Length from PMF El.	ft			1280	
1- Distribution of scavenger and pyrite tailin	ngs tonnages are based on the GPO pro	oduction schedule, see Append	ix II for a detailed comparison o	f the production schedules.	
			Scaven	ger Tailings	
<b>-</b>	Units	Underflow	Overflow	Total	Sum
Tailings Placed ^{-, -}	Myd	21.3	38.7	17.3	77.3
Tallings Placed	Mtons	33	42	19	1 220
1. Distribution of scavenger and pyrite tailings	tonnages are based on the GPO production	on schedule, see Appendix II for	a detailed comparison of the proc	Luction schedules.	1,220
2. Includes deposition from the beginning of Ye	ear 31 to the end of Year 41.				
	Units	Pyrite 1	Tailings		
Tailings Placed ^{1, 2}	Myd ³	, i	7.5		
Tailings Placed ^{1, 2}	Mtons		11		
Cumulative Tailings	Mtons		172		
NOT TO SCALE	JND DEPTH SCHEMATI		5 ft	TOP OF PYRITE TAIL	NGS
NOT FOR CONS	TRUCTION	ED: JUNE 2018			
CLIENT	RESOL	UTION	DEIS DESIGN FO	RESOLUTION COPPER F OR ALTERNATIVE 3A - NEAR ON (MODIFIED CENTERLINE	ROJECT WEST MODIFIED PROPOSED EEMBANKMENT)
AS A MUTULAL PROTECTION TO OUR CLIBY THE FUBLE, AND CARELYES, ALL REPORTS AND DRAWINGS ARE SUBMITTED FOR THE CONFIDENTIAL INFORMATION OF OUR CLIENT FOR A SPECIFC PROJECT, AND AUTHORIZATION FOR USE AND/OR PUBLICATION OF DATA, STATEMENTS, CONCLUSIONS, OR ABSTRACTS FROM OR REGADING OUR REPORTS AND DRAWING IS RESERVED PENDING OUR WRITTEN APPROVAL.		PER		END OF YEAR (END OF STAGE	34 E IV)
		ippen Berge	SCALE AS SHOWN	PROJECT No. M09441A20	FIG NO. IV-A.14

		Units	Scaven	ger Stage IV	Ру	rite		
Maximum Embankment	Height	ft		520	138			
Embankment Rate of Ris	se	ft/yr		8		0		
Embankment Maximum	El.	fasl		2773	25	517		
Tailings El.		fasl		2773	27	/51		
Minimum Operating Por	nd El.	fasl			2756			
Maximum Storage El.		fasl	to be	confirmed	to be co	onfirmed		
Upset Storage El.		fasl			2757			
PMF El.		fasl			2760			
Minimum Operating Sto	rage ¹	acre-ft			8867			
Minimum Operating Por	nd Depth	ft		5 (see	e Figure 1)			
Beach Length from PMF	El.	ft			1280			
1- Distribution of scavenger and pyrite	e tailings tonnages are based	on the GPO prod	luction schedule, see Append	lix II for a detailed comparison	of the production schedules.			
				Scaven	ger Tailings			
		Units	Underflow	Overflow	Total	Sum		
Tailings Placed ^{1, 2}		Myd ³	21.3	38.7	17.3	77.3		
Tailings Placed ^{1, 2}		Mtons	33	42	19	94		
Cumulative Tailings		Mtons	314	624	282	1,220		
1. Distribution of scavenger and pyrite ta	ailings tonnages are based on t	he GPO production	n schedule, see Appendix II for	a detailed comparison of the pro	duction schedules.			
2. Includes deposition from the beginnin		41.						
		Units	Pyrite 1	Failings				
Tailings Placed ^{1, 2}		Myd ³		7.5				
Tailings Placed ^{1, 2}		Mtons		11				
Cumulative Tailings		Mtons		172				
1. Distribution of scavenger and pyrite ta	ailings tonnages are based on t	he GPO production	n schedule, see Appendix II for	a detailed comparison of the pro	duction schedules.			
NOT TO SCALE				5 ft	TOP OF PYRITE TAIL	LINGS		
NOT FOR CO	NSTRUCTION							
TO BE READ WITH KLC	OHN CRIPPEN BERGER F	EPORT DATE	D: JUNE 2018	,				
	SOL	UTION	DEIS DESIGN F	RESOLUTION COPPER PROJECT DEIS DESIGN FOR ALTERNATIVE 3A - NEAR WEST MODIFIED PROPOSE ACTION (MODIFIED CENTERLINE EMBANKMENT)				
AS A MUTUAL PROTECTION TO OUR CLIENT THE PUILE, AND OURSELVES, ALL REPORTS AND DRAWINGS ARE SUBMITTED FOR THE CONFIDENTIAL INFORMATION OF OUR CLIENT FOR A SPECIFIC PROJECT, AND AUTHORIZATION FOR USE AND/OR PUBLICATION OF DATA, STATEMENT, SCHLESIONS AND DATA, STATEMENT, SCHLESIONS AND		C O P	PER	TITLE	END OF YEAR 34			
REPORTS AND DRAWINGS IS RESERVED PENDING OUR WRITTEN APPROVAL	К	ohn Cri	ppen Berge	r scale	PROJECT No.	, FIG No.		
				AS SHOWN	M09441A20	IV-A.14		

		Units	Scaven	ger Stage IV	Ру	rite		
Maximum Embankment	Height	ft		520	138			
Embankment Rate of Ris	se	ft/yr		8		0		
Embankment Maximum	El.	fasl		2773	25	517		
Tailings El.		fasl		2773	27	/51		
Minimum Operating Por	nd El.	fasl			2756			
Maximum Storage El.		fasl	to be	confirmed	to be co	onfirmed		
Upset Storage El.		fasl			2757			
PMF El.		fasl			2760			
Minimum Operating Sto	rage ¹	acre-ft			8867			
Minimum Operating Por	nd Depth	ft		5 (see	e Figure 1)			
Beach Length from PMF	El.	ft			1280			
1- Distribution of scavenger and pyrite	e tailings tonnages are based	on the GPO prod	luction schedule, see Append	lix II for a detailed comparison	of the production schedules.			
				Scaven	ger Tailings			
		Units	Underflow	Overflow	Total	Sum		
Tailings Placed ^{1, 2}		Myd ³	21.3	38.7	17.3	77.3		
Tailings Placed ^{1, 2}		Mtons	33	42	19	94		
Cumulative Tailings		Mtons	314	624	282	1,220		
1. Distribution of scavenger and pyrite ta	ailings tonnages are based on t	he GPO production	n schedule, see Appendix II for	a detailed comparison of the pro	duction schedules.			
2. Includes deposition from the beginnin		41.						
		Units	Pyrite 1	Failings				
Tailings Placed ^{1, 2}		Myd ³		7.5				
Tailings Placed ^{1, 2}		Mtons		11				
Cumulative Tailings		Mtons		172				
1. Distribution of scavenger and pyrite ta	ailings tonnages are based on t	he GPO production	n schedule, see Appendix II for	a detailed comparison of the pro	duction schedules.			
NOT TO SCALE				5 ft	TOP OF PYRITE TAIL	LINGS		
NOT FOR CO	NSTRUCTION							
TO BE READ WITH KLC	OHN CRIPPEN BERGER F	EPORT DATE	D: JUNE 2018	,				
	SOL	UTION	DEIS DESIGN F	RESOLUTION COPPER PROJECT DEIS DESIGN FOR ALTERNATIVE 3A - NEAR WEST MODIFIED PROPOSE ACTION (MODIFIED CENTERLINE EMBANKMENT)				
AS A MUTUAL PROTECTION TO OUR CLIENT THE PUILE, AND OURSELVES, ALL REPORTS AND DRAWINGS ARE SUBMITTED FOR THE CONFIDENTIAL INFORMATION OF OUR CLIENT FOR A SPECIFIC PROJECT, AND AUTHORIZATION FOR USE AND/OR PUBLICATION OF DATA, STATEMENT, SCHLESIONS AND DATA, STATEMENT, SCHLESIONS AND		C O P	PER	TITLE	END OF YEAR 34			
REPORTS AND DRAWINGS IS RESERVED PENDING OUR WRITTEN APPROVAL	К	ohn Cri	ppen Berge	r scale	PROJECT No.	, FIG No.		
				AS SHOWN	M09441A20	IV-A.14		







Maximum Embankment Height       Units       Scareinger stugge v       Pyritte         Embankment Rate of Rise       ft/yr       0       0         Embankment Rate of Rise       ft/yr       0       0         Embankment Maximum El.       fasl       2806       2517         Tailings El.       fasl       2806       2783         Maximum Operating Pond El.       fasl       2795         Minimum Operating Storage I.       ft       5         1. The Moren PMF El.       ft       1030       220         1. The Moren PMF El.       ft       1030       23.9       220         1. The Moren PMF El.       ft       103.9       220       23.9       220         1. The Moren PMF El.       ft       10.0       1.2       28.0       <		1 Incides	Conversion	Change M				
Immunite London Lindon Lindon       Immunite Lindon       Immunite Lindon         Embankment Rate of Rise       If. Vyr       0       0         Embankment Rate of Rise       If. Vyr       0       0         Immunite Lindon       fasi       2806       2733         Mainimum Operating Pond El.       fasi       2788       0 be confirmed         Unrouted PMF EL ⁴ fasi       2796       1030         Unrouted PMF EL ⁴ fasi       2796         Minimum Operating Storage ¹ acce-ft       1030         Lindon operating Pond Depth       ft       5 (in North Pond only)         Beach Length from PMF EL       ft       1030         Lindon of access and point states to the Pondentane underk war-Apareties for advanted access and a	Maximum Embankment Heigh	t ft	Scaven	ser Stage V	13			
Individual Nuclei Nu	Embankment Rate of Rise	ft/vr		0	1.	) )		
Emblankment waskmum EL       Tasis       2000       2.517         Tailings EL       Tasis       2000       2.788         Maximum Operating Pond EL       Tasi       2.788         Maximum Operating Pond EL       Tasi       2.788         Unrouted PMF EL ² Tasi       2.795         Minimum Operating Pond EL       ftasi       2.796         Minimum Operating Pond EL       ftasi       2.796         Minimum Operating Pond Depth       ft       5.(in North Pond only)         Baech Length from PMF EL       ft       1.0330         1       Distributed subjects and subjects and subjects and subjects are Augued in for a Statuled company of the additume subdate.       2.000         1       Distributed subjects and su		fe el		000		47		
Hallings CL, and a start of the start o	Embankment Maximum El.	fasi	2	806	25	17		
Immunity Operating Port DEL:       433       to be confirmed       2786         Upget Storage EI.       fasi       to be confirmed       2791         Unrouted PMF EI. ² fasi       2796         Minimum Operating Storage ¹ accreft       1896         Minimum Operating Pond Depth       ft       1030         Londout of Version Pond Depth       ft       1040       22.0         Lallings Placed ^{1,2} Myd ⁴ 9.3       8.8       3.9       22.0         Lallings Placed ^{1,2} Myd ⁴ 16	I dillings El.	facl	2	.800	27	83		
Image: Not de Commined       10 de Commined       10 de Commined         Uppet Storage El.       1 asi       2791         Unrouted PMF EL ² 1 asi       2795         Minimum Operating Storage ¹ acce-ft       1836         Minimum Operating Storage ¹ ft       5 (in North Pond only)         Eech Length from PMF EL       ft       1030         1: Other Storage ¹ ft       1030         1: Other Storage ¹ ft       1030         1: Other Storage       ft       104       20         1: Other Storage       ft       ft       104       20         1: Other Storage       ft       Motos       14       10       4       28         1: Other Storage       ft       Motos       16       12       120       1301       1324       1396         1: Other Storage	Maximum Storage El	fasl	to be (	onfirmed	2788 to be co	nfirmed		
Depresentation       Out       27.24         Immune Operating Storage ¹ acre-ft       1896         Minimum Operating Storage ¹ ft       1000         Immune Operating Storage ¹ ft       ft       1000	Linset Storage Fl	fasl		Johnnined	2791	innineu		
Iminimum Operating Storage in the cent of the storage in the cent of the storage in the storage	Unrouted PMF El. ²	fasl			2796			
Minimum Operating Pond Depth       ft       S (in North Pond only)         Back Length from PMF El.       ft       1030         10 Jondbood of decayers and byte tables tomegas are bladed to the 200 publicitor schedule, see Ageendie II for a statisfie of the publicitor schedule sc	Minimum Operating Storage ¹	acre-ft			1896			
Beach Length from PMF EL       ft       1030 <ul> <li>Decide to discovergit and price talling to tongget and price talling to totoget and price talling to totoget and price</li></ul>	Minimum Operating Pond Dep	oth ft		5 (in No	rth Pond only)			
1. Declaration of charanger and protocoling balance balance and a declaration balance and a general to the statistic competence of the production includeus 2. The Mer will be conderd fringings talgings at the ord of YT St  1. The Mer will be conderd fringings allower at the ord of YT St  1. The Mer will be conderd fringings allower at the ord of YT St  1. The Mer will be conderd fringings allower at the ord of YT St  1. The Mer will be conderd fringings allower at the ord of YT St  1. The Mer will be conderd fringings allower at the ord of YT St  1. The Mer will be conderd fringings allower at the ord of YT St  1. The Mer will be conderd fringings allower at the ord of YT St  1. The Mer will be conderd fringings allower at the ord of YT St  1. The Mer will be conderd fringing allower at the ord of YT St  1. The Mer will be conderd fringing allower at the ord of YT St  1. The Mer will be conderd fringing allower at the ord of YT St  1. The Mer will be conderd fringing allower at the ord of YT St  1. The Mer will be conderd fringing allower at the ord of YT St  1. The Mer will be conderd fringing allower at the ord of YT St  1. The Mer will be conderd fringing allower at the ord of YT St  1. The Mer will be conderd fringing allower at the ord of YT St  1. The Mer will be conderd fringing allower at the ord of YT St  1. The Mer will be conderd fringing allower at the ord of YT St  1. The Mer will be conderd fringing allower at the ord of YT St  1. The Mer will be conderd fringing allower at the ord of YT St  1. The Mer will be conderd fringing allower at the ord of YT St  1. The Mer will be conderd fringing allower at the ord of YT St  1. The Mer will be conderd fringing allower at the ord of YT St  1. The Mer will be conderd fringing allower at the ord of YT St  1. The Mer will be conderd fringing allower at the ord of YT St  1. The Mer will be conderd fringing allower at the ord of YT St  1. The Mer will be conderd fringing allower at the ord of YT St  1. The Mer will be conderd fringing allower at the ord of Y	Beach Length from PMF El.	ft			1030			
2. The PM with the rougher spinory at the end of the S. <b>Scaveneger Tailings India Underflow Overflow Total Sum India Placed</b> ^{1,2} Myd ³ 9.3 8.8 3.9 22.0 <b>India Placed</b> ^{1,2} Myd ³ 9.3 8.8 3.9 22.0 <b>India Placed</b> ^{1,2} Myd ³ 9.3 8.8 3.9 22.0 <b>India Placed</b> ^{1,2} Myd ³ 9.3 8.8 3.9 22.0 <b>India Placed</b> ^{1,2} Myd ³ 9.3 8.8 3.9 22.0 <b>India Placed</b> ^{1,2} Myd ³ 9.3 8.8 3.9 22.0 <b>India Placed</b> ^{1,2} Myd ³ 9.3 8.8 3.9 22.0 <b>India Placed</b> ^{1,2} Myd ³ 9.3 8.8 3.9 22.0 <b>India Placed</b> ^{1,2} Myd ³ 9.3 8.8 3.9 22.0 <b>India Placed</b> ^{1,2} Myd ³ 9.3 8.8 3.9 22.0 <b>India Placed</b> ^{1,2} Myd ³ 9.3 8.8 8 3.9 22.0 <b>India Placed</b> ^{1,2} Myd ³ 9.3 8.8 8 3.9 22.0 <b>India Placed</b> ^{1,2} Myd ³ 9.3 8.8 8 3.9 22.0 <b>India Placed</b> ^{1,2} Myd ³ 9.3 8.8 8 3.9 22.0 <b>India Placed</b> ^{1,2} Myd ³ 9.3 8.8 8 3.9 22.0 <b>India Placed</b> ^{1,2} Myd ³ 9.3 8.8 8 3.9 22.0 <b>India Placed</b> ^{1,2} Myd ³ 9.3 8.8 8 3.9 22.0 <b>India Placed</b> ^{1,2} Myd ³ 9.3 8.8 8 3.9 22.0 <b>India Placed</b> ^{1,2} Myd ³ 9.3 8.8 8 3.9 22.0 <b>India Placed</b> ^{1,2} Myd ³ 9.3 8.8 8 3.9 22.0 <b>India Placed</b> ^{1,2} Myd ³ 9.3 8.8 8 3.9 0.0 2.0 <b>India Placed</b> ^{1,2} Myd ³ 9.3 8.8 8 3.9 0.0 2.0 <b>India Placed</b> ^{1,2} Myd ³ 9.3 8.8 8 3.9 0.0 2.0 <b>India Placed</b> ^{1,2} Myd ³ 9.3 8.8 8 3.9 0.0 2.0 <b>India Placed</b> ^{1,2} Myd ³ 9.3 8.8 8 3.9 0.0 2.0 <b>India Placed</b> ^{1,2} Myd ³ 9.3 8.8 8 3.9 0.0 2.0 <b>India Placed</b> ^{1,2} Myd ³ 9.3 8.8 8 3.9 0.0 2.0 <b>India Placed</b> ^{1,2} Myd ³ 9.3 8.8 8 3.9 0.0 2.0 <b>India Placed</b> ^{1,2} Myd ³ 9.3 8.8 8 3.9 0.0 2.0 <b>India Placed</b> ^{1,2} Myd ³ 9.3 8.8 8 3.9 0.0 <b>India Placed</b> ^{1,2} Myd ³ 9.3 8.8 8 3.9 0.0 2.0 <b>India Placed</b> ^{1,2} Myd ³ 9.3 8.8 8 3.9 0.0 2.0 <b>India Placed</b> ^{1,2} Myd ³ 1.6 <b>India Placed</b> ^{1,2} Myd ³ 9.3 1.6 <b>India Placed</b> ^{1,2} Myd ³ 1.6 <b>India Placed</b> ^{1,2} Myd	1. Distribution of scavenger and pyrite tailings ton	nages are based on the GPO production	n schedule, see Appendix II for a	a detailed comparison of the pro	oduction schedules.			
Units         Underflow         Overflow         Total         Sum           Tailings Placed ^{1,2} Myo ³ 9,3         8.8         3,9         22.0           Tailings Placed ^{1,2} Mtons         14         10         4         28           Cumulative Tailings         Mtons         345         716         322         1,396           1         Status         Mtons         16         324         1,396           1         Status         Mtons         2         166         2           Cumulative Tailings         Mtons         2         196         2         2           Cumulative Tailings         Mtons         196         2         2         2           Cumulative Tailings         Mtons         196         2         2         2           Cumulative Tailings         Mtons         196         2         2         2           Cumulative Tailings	<ol><li>The PMF will be routed through a spillway at the</li></ol>	e end of Yr 45.		Scave	nger Tailings			
Tailings Placed ^{1,2} Myd ³ 9.3       8.8       3.9       22.0         Tailings Placed ^{1,2} Mtons       14       10       4       28         Cumulative Tailings       Mtons       356       7.16       32.4       1,396         1. bitdution of neuroper production schedule, see Appendix II for a dataled comparison of the production schedule.       1.       1.       3.24       1.396         2. Includes deposition from the GPO production schedule, see Appendix II for a dataled comparison of the production schedule.       1.       1.       1.         1. Distribution of schedule schedule appendix II for a dataled comparison of the production schedule.       1.       1.       1.       1.         1. Distribution of schedule schedule appendix II for a dataled comparison of the production schedule.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.		Units	Underflow	Overflow	Total	Sum		
Tailings Placed ^{1,2} Mons       14       10       4       28         Cumulative Tailings       324       1,396         1. Industs deposition from the GPD production schedule, see Appendix I for a detailed comparison of the production schedules.       324       1,396         1. Industs deposition from the GPD production schedule segmends. If for a detailed comparison of the production schedules.       1.       1.       1.         1. Industs deposition from the GPD production schedule segmends. If for a detailed comparison of the production schedules.       1.       1.       1.         1. Industs deposition from the GPD production schedule segmends. If for a detailed comparison of the production schedule.       1.       1.       1.         1. Industs deposition from the GPD production schedule segmends.       1.       1.       1.       1.         1. Industs deposition from the GPD production schedule segmends.       1.       1.       1.       1.       1.         1. Industs deposition from the GPD production schedule.       1.       1.       1.       1.       1.       1.       1.         Interview and prints tailings tormages are based on the GPD production schedule.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.	Tailings Placed ^{1, 2}	Myd ³	9.3	8.8	3.9	22.0		
Low contractions of the experiment of the production schedule beginning of Year 41 is the databated comparison of the production schedules.       1.336         1. Distribution of scaveger and prite tailings tomages are based on the 600 production schedule beginning of Year 41 is the databated comparison of the production schedules.       1.346         1. Distribution of scaveger and prite tailings tomages are based on the 600 production schedule beginning of Year 41 is the databated comparison of the production schedules.       1.366         1. Distribution of scaveger and prite tailings tomages are based on the 600 production schedule beginning of Year 41 is the end of Year 45.       1.966         1. Distribution of scaveger and prite tailings tomages are based on the 600 production schedule beginning of Year 41 is the end of Year 45.       1.966         1. Distribution of scaveger and prite tailings tomages are based on the 600 production schedule beginning of Year 41 is the end of Year 45.       1.966         Indicate departition from the G00 production schedule beginning of Year 41 is the end of Year 45.         FIGURE 1 MINIMUM POND DEPTH SCHEMATIC         Top OF PYRITE TAILINGS         NOT FOR CONSTRUCTION         Not FOR CONSTRUCTION         Not FOR CONSTRUCTION         Not FOR CONSTRUCTION         A structure and	Tailings Placed ^{1, 2}	Mtons	14	10	4	28		
1 Description of scaveger and prife tallings tomages are based on the GPO production schedule, see Agendix II for's detailed comparison of the production schedule beginning of Year 41 to the and Year 43. <u>Indings Placed^{1,2}         Myd³         1.6                <u>Indings Placed^{1,2}         Myd³         1.6                <u>Indings Placed^{1,2}         Myd³         1.6                <u>Indings Placed^{1,2}         Mtons         1.9                <u>Indings Placed^{1,2}         Mtons         1.96                <u>Indings Placed^{1,2}</u>         Mtons         1.96                <u>Indings Placed^{1,2}</u>         Mtons         1.96                 <u>Indings Placed^{1,2}</u>         Mtons         1.96                 <u>Indings Placed^{1,2}</u>         Mtons   </u></u></u></u></u></u></u></u></u></u></u></u>	Cumulative Tailings	Mtons	356	716	324	1,396		
Image: Proceed - 2       Myd3       1.6         1.1       1.6       1.6         1.1       1.6       1.6         1.1       1.6       1.6         1.1       1.6       1.6         1.1       1.6       1.6         1.1       1.6       1.6         1.1       1.6       1.6         1.1       1.6       1.6         1.1       1.6       1.6         1.1       1.6       1.6         1.1       1.6       1.6         1.1       1.6       1.6         1.1       1.6       1.6         1.1       1.6       1.6         1.1       1.6       1.6         1.1       1.6       1.6         1.1       1.6       1.6         1.1       1.6       1.6         1.1       1.6       1.6         1.1       1.6       1.6       1.6         1.1       1.6       1.6       1.6         1.1       1.6       1.6       1.6       1.6         1.1       1.6       1.6       1.6       1.6         1.1       1.6       1.6       1.6<	1. Distribution of scavenger and pyrite tailings ton 2. Includes deposition from the GPO production sc	nages are based on the GPO production hedule beginning of Year 41 to the end	n schedule, see Appendix II for a	a detailed comparison of the pro	oduction schedules.			
Units       Pyrite Tailings         Image Placed ^{1,2} Myd ³ 1.6         Image Placed ^{1,2} Mtons       2         Cumulative failings       Mtons       2         Image Placed ^{1,2} Mtons       2         Cumulative failings       Mtons       2         Instruction for the 0PO potaction schedule segments are based on the 60P production schedule, see Appendix 11 for a detailed comparison of the production schedules.         Instruction for the 0PO potaction schedule segments of Year 1 to the end of Year 3.         FGURE 1       MININUM POND DEPTH SCHEMATIC         Of the OPO potaction schedule segments of the end of Year 3.         FOUT TO SCALE       Top OF PYRITE TAILINGS         NOT TO SCALE       Top Construction         Data Read WITH KLOHN CRIPPEN BERGER REPORT DATED: JUNE 2018       RESOLUTION COPPER PROJECT         Det READ WITH KLOHN CRIPPEN BERGER REPORT DATED: JUNE 2018       Mater         Resolution Copper PROJECT       DEI DESIGN FOR ALTERNATIVE 3A - NEAR WEST MODIFIED PROPOSED ACTION (MODIFIED CENTERLINE EMBANKMENT)         Nummer Scheder Stratege With the off stratege Wi								
Tailings Placed ^{1,2} Myd ³ 1.6         Tailings Placed ^{1,2} Mtons       2         Curnative Tailings       Mtons       196         1       Use water and prite tailings tomages are based on the GPD production schedule, see Appendix II for a detailed comparison of the production schedule.         1       Distribution for the GPD production schedule beginning of Yar 41 to the end of Yor 45.         FORTE 1 MINIMUM POND DEPTH SCHEMATIC         Or of production schedule beginning of Yar 41 to the end of Yor 45.         FORTE 1 MINIMUM POND DEPTH SCHEMATIC         Or of production schedule beginning of Yar 41 to the end of Yor 45.         FORTE 1 MINIMUM POND DEPTH SCHEMATIC         Or of production schedule beginning of Yar 41 to the end of Yor 45.         Motion 5 ft         Or of production schedule beginning of Yar 41 to the end of Yor 45.         FORTE 1 MINIMUM POND DEPTH SCHEMATIC         Or of production schedule beginning of Yar 41 to the end of Yar 45.         Motion 5 ft         Or of production schedule beginning of Yar 41 to the end of Yar 45.         Depression 1000 of production schedule beginning of Yar 41 to the end of Yar 45.         Not of production schedule beginning of Yar 41 to the end Yar 45.         Depretention		Units	Pyrite 1	ailings				
Initialings Placed ^{1,2} Mtons       2         Cumulative Tailings       196         1       1976         1       1976         1       1976         1       1976         1       1976         1       1976         1       1976         1       1976         1       1976         1       1976         1       1976         1       1976         1       1976         1       1976         1       1976         1       1976         1       1976         1       1976         1       1976         1       1976         1       1976         1       1976         1       1976         1       1976         1       1976         1       1976         1       1976         1       1976         1       1976         1       1976         1       1976         1       1977         1       1976 <t< td=""><td>Tailings Placed^{1, 2}</td><td>Myd³</td><td></td><td>1.6</td><td></td><td></td></t<>	Tailings Placed ^{1, 2}	Myd ³		1.6				
Image: Comparison of the GPD production schedule beginning of treat at a to the end of treat at:         I debutter of schedule and printe tallings tormages are based on the GPD production schedule, see Appendix II for a detailed comparison of the production schedule.         I debutter of the GPD production schedule beginning of treat at a to the end of treat at:         I GURE 1 MINIMUM POND DEPTH SCHEMATIC         I debutter of the GPD production schedule beginning of treat at a to the end of treat at:         I debutter of the GPD production schedule beginning of treat at a to the end of treat at:         I debutter of the GPD production schedule beginning of treat at a to the end of treat at:         I debutter of the GPD production schedule beginning of treat at a to the end of treat at:         I debutter of the GPD production schedule beginning of treat at a to the end of treat at:         I debutter of the GPD production schedule beginning of treat at at the end of treat at:         I debutter of the GPD production schedule beginning of treat at at the end of treat at:         I debutter of the GPD production schedule beginning of treat at the end of treat at:         I debutter of the GPD production schedule beginning of treat at the end at the end of treat at:         I debutter of the GPD production schedule beginning of treat at the end at the e	Tailings Placed ^{1, 2}	Mtons		2				
1. Usedual down and provide training is are based on the Grup production schedule, see Appendix in or a detailed comparison of the production schedule. 2. Reduced teaming of Varier 42. Bit of the and	Cumulative Tailings	Mtons		196	and a track of the			
FIGURE 1 MINIMUM POND DEPTH SCHEMATIC	2. Includes deposition from the GPO production sc	hedule beginning of Year 41 to the end	l of Year 45.	a detailed comparison of the pro	oduction schedules.			
<image/> Structure       Structure         NOT TO SCALE         DOE ROAD STATE OF TAILINGS	FIGURE 1 MINIMUM PON	D DEPTH SCHEMATIC	2					
<section-header>STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE S</section-header>								
<section-header>         Stress       Stress         Not oscale       Cop of pyrite tailings         Dot for construction       Stress         Stress       Stress         Market Stress       Stress         Stress       <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<></section-header>								
STORE SOLUTION COPPER PROJECT DISTRICT RESOLUTION (MODIFIED CENTERLINE EMBANKMENT) THE END OF STAGE V (1.59 Bt OF TAILINGS)								
NOT DO SCALE         NOT FOR CONSTRUCTION         TO BE READ WITH KLOHN CRIPPEN BERGER REPORT DATED: JUNE 2018         VIENT         VIENT <td></td> <td></td> <td></td> <td>5 ft</td> <td>▼</td> <td></td>				5 ft	▼			
NOT OS SCALE   NOT OS CONSTRUCTION   Do de rado with Klohn Crippen berger report dated: June 2018     Mutur Nettorion Torrigonia data data data data data data data da				+				
DO DE PURITE TAILINGS NOT OS SCALE DE READ WITH KLOHN CRIPPEN BERGER REPORT DATED: JUNE 2018 TOR ERAD WITH KLOHN CRIPPEN BERGER REPORT DATED: JUNE 2018 UNIT RESOLUTION COPPER PROFET RESOLUTION COPPER PROJECT DI DE SIGN FOR ALTERNATIVE 3A - NEAR WEST MODIFIED PROPOSED ACTION (MODIFIED CENTERLINE EMBANKMENT) TILE END OF STAGE V (1.59 Bt OF TAILINGS)								
DOP OF PYRITE TAILINGS  NOT OSCALE  NOT FOR CONSTRUCTION  TO BE READ WITH KLOHN CRIPPEN BERGER REPORT DATED: JUNE 2018  LENT								
NOT TO SCALE NOT FOR CONSTRUCTION TO BE READ WITH KLOHN CRIPPEN BERGER REPORT DATED: JUNE 2018 A MUTUAL PROTECTION TO OWNER AND ADMINISAR AND ADMINI					TOP OF PYRITE TA	ILINGS		
NOT FOR CONSTRUCTION         TO BE READ WITH KLOHN CRIPPEN BERGER REPORT DATED: JUNE 2018         Image: Construction of the state	NOT TO SCALE							
TO BE READ WITH KLOHN CRIPPEN BERGER REPORT DATED: JUNE 2018           AS A MULUL PROTECTION TO OUR         CLIENT         RESOLUTION         PROJECT         RESOLUTION COPPER PROJECT           AS A MULUL PROTECTION TO OUR         COPPPER         PROJECT         DEIS DESIGN FOR ALTERNATIVE 3A - NEAR WEST MODIFIED PROPOSED           ALI REPORTS AND DRAWINGS AND FRANKINGS IN SERVERY         COPPPER         TITLE         END OF STAGE V           BOING GUM WITH STRUFTS CONCLUCTIONS, OR DATA STRUMENTS, CONCLUSIONS, OR DATA STRUMENTS, SAND DATA STRUMENTS, SAND DATA STRUMENTS, SAND DAT								
AS A MUTUAL PROTECTION TO OUR CLEARLY THE FUNITIC, AND OWNINGS, OR ASTRATIST FINDIO OR CLEAR TO A DURANNESS, OR ASTRATIST FINDIO REGARDING OUR FERRIS TO DA DURANNESS, OR ANTIGET RESOLUTION COMPARING ARE FOR AND DURANNESS ARE SERVED FERRIS TO TAILLINGS, OR ANTIGET AND DURANNESS ARE SERVED FERRIS TO TAILLINGS, OR CLEAR TO A FERRIS TO TAIL OF TAILLINGS (COMPARING ARE AND DURANNESS ARE SERVED FERRIS TO TAILLINGS)								
AS A MUTUAL PROTECTION TO OUR CLIERT, THE PUBLIC, MO OURSELVISS, ALLEPROTEX MO DEVENTIAL REPORTS AND DAVINOUS ARE SUBMITTED FOR THE CONFIDENTIAL REPORTS AND OUR LEWIT FOR A STRATES TRADIC AND AUTHORIZATION FOR USE ANAJOR PUBLICATION OF BORG SAND WANKES SERVICE REPORTS AND REPORTS AND REP	TO BE READ WITH KLOHN CRI	PPEN BERGER REPORT DATEL	D: JUNE 2018	PROJECT				
AS A MUTULE PROTECTION TO OUR CLEWT, THE PUBLIC, AND OURSEVES, ALL REPORTS AND DRAWINGS, OR SPECIFIC PROJECT, AND AUTHORIZATION FOR LEAST FROM OR RECARDING OUR REPORTS AND DRAWINGS, SERVICE REPORTS AND DRAWINGS, SERV				DEIS DESIGN	RESOLUTION COPPER FOR ALTERNATIVE 3A - NEAR	PROJECT WEST MODIFIED PROPOSED		
AS A MUTUAL PROTECTION TO QUE CLIENT, THE PUBLIC, AND QUESTIVES, ALL REPORTS AND DAVINISSA SUBMITTED FOR THE CONFIDENTIAL INFORMATION OF OUR CLIENT FOR A SPECIFIC POILLATION OF DATA, STATEMENTS, CONCLUSIONS, OR ASSTRACTS FROM OR REARADING QUE REPORTS AND DRAWINGS IS RESERVED PEDIDIO GUE REARDING QUE	RESOLUTION			AC	ACTION (MODIFIED CENTERLINE EMBANKMENT)			
ALL REPORTS AND DRAVINGS ARE OF SWITCH FOR HE CONFERENTIAL INFORMATION OF DUR CLEAT TOR A SPECIFIC PROJECT, AND AUTHORIZATION FOR USE AND/OR PUBLICATION OF DATA STATEMENTS, SOULISIONS, OR ASSTRACTS FRANC OR REGARDING OUR REPORTS AND DRAVINGS IN SERVED PENDING OUR WRITTEN APPROVAL.	AS A MUTUAL PROTECTION TO OUR	C O P	PER	TITLE				
Secure PRINCET, AND AUTHORIZATION CENTRAL CONCENTION CENTRAL CONCENTRAL CON	ALL REPORTS AND DRAWINGS ARE SUBMITTED FOR THE CONFIDENTIAL INFORMATION OF OUR CLIENT FOR A					E )/		
ASTRACT SPON OR REGADING OUR REPORTS AND RAWINGS IS RESERVED PENDING OUR WRITTEN APPROVAL.	SPECIFIC PROJECT, AND AUTHORIZATION FOR USE AND/OR PUBLICATION OF DATA. STATEMENTS. CONCLUSIONS. OR							
	ABSTRACTS FROM OR REGARDING OUR REPORTS AND DRAWINGS IS RESERVED PENDING OUR WRITTEN APPROVAL.				(1.39 DL UF TAIL	j		
<b>Service States and Service Stat</b>		Klohn Cri	ppen Berge	50415	DDOIS/CT.N	ric N-		
				SCALE	FRUELI NO.	1 IG NO.		
AS SHOWN M09441A20 IV-A.15				AS SHOWN	M09441A20	IV-A.15		

	Unite	Scovono	or Stago V	Dur	ito	
Maximum Embankment Height	ft	Scaveli	557	13	8	
Embankment Rate of Rise	ft/vr		0	0	0	
	feel	~	800	25	17	
Embankment Maximum El.	fasi	2	806	25.	22	
Minimum Operating Rond Fl	facl	2	.800	270	55	
Maximum Storage El	fasl	to be c	onfirmed	to be cor	ofirmed	
	fasl		Johnmed	2791	mmeu	
Unrouted PMF EL. ²	fasl			2796		
Minimum Operating Storage ¹	acre-ft			1896		
Minimum Operating Pond Depth	ft		5 (in Nor	rth Pond only)		
Beach Length from PMF El.	ft			1030		
1. Distribution of scavenger and pyrite tailings tonnages are based on	the GPO production	n schedule, see Appendix II for a	detailed comparison of the pro	oduction schedules.		
<ol><li>The PMF will be routed through a spillway at the end of Yr 45.</li></ol>			Scaver	nger Tailings		
	Units	Underflow	Overflow	Total	Sum	
Tailings Placed ^{1, 2}	Myd ³	9.3	8.8	3.9	22.0	
Tailings Placed ^{1, 2}	Mtons	14	10	4	28	
Cumulative Tailings	Mtons	356	716	324	1,396	
1. Distribution of scavenger and pyrite tailings tonnages are based on 2. Includes deposition from the GPO production schedule beginning o	the GPO production f Year 41 to the end	n schedule, see Appendix II for a I of Year 45.	detailed comparison of the pro	oduction schedules.		
1.2	Units	Pyrite T	ailings			
Tailings Placed ^{1, 2}	Myd⁵		1.6			
Tailings Placed ^{1, 2}	Mtons		2			
Cumulative Tailings	Mtons		196			
FIGURE 1 MINIMUM POND DEPTH S	CHEMATIC	:	5 ft	V		
NOT TO SCALE				TOP OF PYRITE TAI	ILINGS	
NOT FOR CONSTRUCTION	]					
TO BE READ WITH KLOHN CRIPPEN BERGER	REPORT DATEI	D: JUNE 2018	PROJECT			
AS A MUTUAL PROTECTION TO OUR CLEMT, THE PUBLIC, MID OURSELVES,	SOL c o p		DEIS DESIGN F AC	RESOLUTION COPPER P FOR ALTERNATIVE 3A - NEAR TION (MODIFIED CENTERLINE	ROJECT WEST MODIFIED PROPOSED EEMBANKMENT)	
ALL REPORTS AND DRAWINGS ARE SUBMITTED FOR THE CONFIDENTIAL INFORMATION OF OUR CLEWT FOR A SPECIFIC PROJECT, AND AUTOROBATION FOR USE ANA/OR PUBLICATION OF DATA, STATEMENTS, CONCLUSIONS, ON ARESORTS AND DRAWINGS IS RESERVED PENDING OUR WRITTEN APPROVAL.				END OF STAGE V (1.59 Bt OF TAILINGS)		
		ppen berge	SCALE AS SHOWN	PROJECT No. M09441A20	FIG NO. IV-A.15	



# **APPENDIX IV-B**

# **Catchment Areas and Flood Volumes**



Mine	Catchment Area (acre)		re)	Probable Maximum Flood Volume (acre-ft)			
Year	(Stages I t	hrough III)	Combined	(Stages I t	hrough III)	Combined	
	Scavenger	Pyrite	(Stage IV & V)	Scavenger	Pyrite	(Stage IV & V)	
1	346	2,572	-	586	4,359	-	
2	346	2,572	-	586	4,359	-	
3	746	2,572	-	1,264	4,359	-	
4	746	2,572	-	1,264	4,359	-	
5	1,202	2,572	-	2,037	4,359	-	
6	1,212	2,572	-	2,055	4,359	-	
7	1,216	2,572	-	2,060	4,359	-	
8	1,282	2,572	-	2,173	4,359	-	
9	1,282	2,572	-	2,173	4,359	-	
10	-	-	3,947	-	-	6,688	
11	-	-	3,909	-	-	6,625	
12	-	-	3,909	-	-	6,625	
13	-	-	3,909	-	-	6,625	
14	-	-	3,909	-	-	6,625	
15	-	-	3,909	-	-	6,625	
16	-	-	3,480	-	-	5,898	
17	-	-	3,480	-	-	5,898	
18	-	-	3,480	-	-	5,898	
19	-	-	3,480	-	-	5,898	
20	-	-	3,437	-	-	5,825	
21	-	-	3,437	-	-	5,825	
22	-	-	3,437	-	-	5,825	
23	-	-	3,437	-	-	5,825	
24	-	-	3,437	-	-	5,825	
25	-	-	3,437	-	-	5,825	
26	-	-	3,414	-	-	5,786	
27	-	-	3,414	-	-	5,786	
28	-	-	3,414	-	-	5,786	
29	-	-	3,414	-	-	5,786	
30	-	-	3,214	-	-	5,446	
31	-	-	3,214	-	-	5,446	
32.4	-	-	3,123	-	-	5,292	
33.5	-	-	3,123	-	-	5,292	
41 ²	-	-	3,123	-	-	5,292	
	-	-	3,123	-	-	5,292	
	-	-	3,123	-	-	5,292	
	-	-	3,068	-	-	5,200	
	-	-	3,068	-	-	5,200	
	-	-	3,068	-		5,200	
	-	-	3,068	-		5,200	
	-	-	3,068	-		5,200	
	-	-	3,068	-	-	5,200	
	-	-	3,068	-	-	5,200	
	-	-	3,068	-		5,200	
	-	-	3,068	-	-	5,200	

#### Table IV-B.1 Catchment Areas and Flood Volumes

# **APPENDIX V**

# Water Balance

180608R-Alt_3A_ModCent-Rev0.docx M09441A20.734



# **Resolution Copper Project**

# DEIS Design for Alternative 3A – Near West Modified Proposed Action (Modified Centerline Embankment)

**Technical Memorandum** 

**Appendix V – Water Balance** 



# DISCLAIMER

This document is an instrument of service of Klohn Crippen Berger Ltd. The document has been prepared for the exclusive use of Resolution Copper Mining LLC (Client) for the specific application to the Resolution Copper Project. The document's contents may not be relied upon by any other party without the express written permission of Klohn Crippen Berger. In this document, Klohn Crippen Berger has endeavored to comply with generally-accepted professional practice common to the local area. Klohn Crippen Berger makes no warranty, express or implied.



## Appendix V Alternative 3A - Water Balance

## Table of Contents

V-1	INTRODUCTION	.1
V-2	TAILINGS INFILTRATION	.1
V-3	TSF WATER BALANCE	.2

#### **List of Tables**

Table V-2.1	Modeling Assumptions	1
Table V-2.1	Modeling Assumptions	•

#### **List of Figures**

Figure V-1	Tailings Infiltration	3
Figure V-2	Water Balance Schematic and Results	4
Figure V-3	Water Balance Assumptions	5
Figure V-4	TSF System Losses during Operation	6



### V-1 INTRODUCTION

This appendix summarizes the preliminary water balance results for DEIS Alternative 3A – Near West Modified Proposed Action (Modified Centerline Embankment – "wet") Tailings Storage Facility (TSF).

The purpose of the water balance assessment is to provide inputs into the following assessments completed by others for comparative analysis between TSF alternatives:

- site-wide water balance to estimate make-up water requirements; and
- downstream solute transport.

The scope of this work is separated into two parts:

- estimate infiltration through a typical scavenger tailings column (to be included in a threedimensional seepage analysis completed by others); and
- estimate the water flows associated with the TSF for three periods of the mine life. These
  periods are: production ramp-up, full-production and production ramp-down.

### V-2 TAILINGS INFILTRATION

Infiltration through the tailings was estimated by simplified one-dimensional (1D) seepage modeling using VADOSE/W to simulate of the variably saturated and unsaturated system and the climatic interactions. Figure V-1 illustrates the conceptual model, model parameters and assumptions, and results.

Assumptions to this simplified modeling approach are outlined in Table V-2.1.

Consideration	Explanation							
Climate	Climate variability and precipitation distribution can have a significant impact on infiltration. The modeling applied a single-year climate pattern considered to be reflective of a "typical" year, both in terms of precipitation amount and frequency distribution. Results may be considered "indicative of natural variations in the site's climate.							
Tailings lift thickness and frequency	The model assumes monthly lift thickness calculated from the mine-life average annual rates of rise.							
Tailings properties variability	Simplification of the tailings column does not account for horizontal and vertical variability in material types/properties. A single "tailings type" (with one vertical hydraulic conductivity and one soil-water-characteristic curve, SWCC) was used for the modeling.							
Consolidation	The modeling does not account for long-term consolidation processes.							
Foundation properties	Foundation properties have been assumed to be weathered Gila conglomerate and modeled as equivalent porous medium. For the intent of this modeling the adoption of weathered Gila properties (which has higher vertical hydraulic conductivity than the tailings) is considered appropriate because it represents the majority of the TSF footprint.							

#### Table V-2.1Modeling Assumptions

Consideration	Explanation
Bleed Water	To account for the initial stages of slurry settling and bleed water after placement, assumptions were made on the water volume remaining available for infiltration at the surface. This was calculated as the difference between the water discharged with the slurry and the water entrained in the tailings at the initial settled density. This was applied as a constant surface flux at the top of the tailings column.
Groundwater Mounding	The groundwater table elevation applied as a starting condition is representative of regional levels and is not considered to be limiting with respect to infiltration.

### V-3 TSF WATER BALANCE

A simplified water balance of the TSF was completed to estimate the water flows for three periods of the mine life; these periods are: production ramp-up, full-production and production ramp-down.

The simplified water balance concept is shown in Figure V-2; input parameters and assumptions are summarized in Figure V-3, these are based on the design basis memorandum (DBM) in Appendix I and the tailings staging plan in Appendix IV. Seepage from the TSF that is lost to the system was estimated by others (M&A 2018).

The simplified water balance results are given on Figure V-2 and the estimated losses from the TSF system over the mine life are shown on Figure V-4.





## **Model Inputs**

Runoff

Parameter		Value	
Climate			·
Precipitation (ir	n/year)	20	1987 daily cl assessment.
Potential Evapo	pration (in/year)	75	Calculated in Superior clim
Tailings Propert	ties (Scavenger Tailings		-
Specific Gravity	,	2.78	Assumed to on laborator
Vertical Hydrau	lic Conductivity (kv) (in cm/s)	1E-06	Assumed to on laborator
Rate of Rise (ft/year)		10	Average ove
Slurry	Deposited solids content by weight (%)	55%	Weighted av DBM, Appen
	Initial Void ratio (e)	2.25	Calculated
Placed (settled	Porosity (n)	0.45	Assumed to on laborator
density)	Final Void ratio (e)	0.82	Calculated
Blood water	Water released per unit lift	0.79	Calculated
Dieeu water	Rate of water released per unit lift (per day)	0.026	Calculated b

## **Model Results**

Tailings downward drainage	0.52	
(infiltration) (gpm/acre)	0.52	



#### Assumption

limate data from Superior climate station used in . Assumed to be a "typical" year.

n Vadose/W using the 1987 daily climate data from nate station

be mid-range for expected scavenger tailings based ry testing (see DBM, Appendix I)

be mid-range for expected scavenger tailings based ry testing (see Tailings Characterization, KCB 2018)

er the mine-life (see tailings staging plan, Appendix II)

verage of scavenger tailings deposited on beach (see ndix I)

be mid-range for expected scavenger tailings based ry testing (see Tailings Characterization, KCB 2018)

pased on a monthly timestep for modeling

3		
N	PROJECT RESOLUTION COPPER PROJECT DEIS DESIGN FOR ALTERNATIVE 3A - NEAR WES PROPOSED ACTION (MODIFIED CENTERLINE EM	ST MODIFIED BANKMENT)
erger		
•	PROJECT No. M09441A20	FIG No. V-1



Process Flo	w 1 - Pyrite Slur	ry Water		_										
Years	Pyrite Product (million ton/	tion ³ Pyrite yr)	e Solids Content ³ (%)	Pyrit Co	te Water ontent	Pyrit Wate	e Slurry r (PFN 1)	SI		Slurr	y water is calculated	based on the tailings production schedules and slurr		
1 to 7	2.7		50%		1.00	(aci)	.908	-			(1000/			
8 to 31	7.6		50%		1.00	5	,563	-			slur	$rry water (tons) = tailings mass (tons) x \frac{(100\% - st}{strument}$		
32 to 41	2.0		50%		1.00	1	,497	1				sturry		
Process Flo	w 2 - Scavenger	Slurry Water												
	Thickened	Sca	venger Solids			Scaven	ger Slurry							
Years	Scavenger	3	Content ³	Scaven	nger Water	Wate	r (PFN 2)							
	(million ton/	ˈyr)	(%)		ontent	(acr	e-ft/yr)							
1 to 7	17.2		65%		0.54	6	,674	]		Preci	nitation on ponds is	calculated using Equation 2 below		
8 to 31	38.5		65%		0.54	15	5,247					recipitation on ponds is calculated using Equation 2 Delow.		
32 to 41	10.6		65%		0.54	4	,323					_		
Process Flo	w 3 - Precipitati	on and Runo	ff						_			Pre	cipitation on Ponds = pond area x precipitation	
	Pond Area ⁴	Total TSE A	rea ⁴ Precipitati	ion ³		Precip	itation and R	Runoff (PFI	J					
Years	(acre)	(acre)	(ft/yr)	Ru	noff Coeff. ¹		3)				Runc	off from beach, emba	inkment and natural ground areas is calculated using	
1 + 2 7	259	2417	1.52		0.15		(acre-ft/y	r)	_					
1 to 7	Z58 738	3417	1.52		0.15		1,110		-			Runc	off = (TSF area – pond area) x runoff coeff. x pre	
32 to 41	555	3999	1.52		0.15		1,605		-					
Process Flo	ow 4 - Evaporatio	on and Dust N	Management	<b>I</b>			,							
	· 3	<b>D</b> 1 <b>A</b> 4	Wetted Deep	h A	Duct Manual		Evaporation	n and Dust	Mgmt (PFI	Ν	Evap	oration and Dust Ma	inagement is calculated using Equation 4 below.	
Years	Years Evaporation ³ Pond Area [*] Wetted Beach Area I (ft/yr) (acre) (acre)		wetted Beac	in Area	Dust Nigmi	Area		4)						
			(acre)	(acre) (acr			(acre-ft/yr) Evo			poration and Dust M	anagement = (pond area + wetted beach area + dus			
1 to 7	6.0	258	340		32			3,779						
8 to 31	6.0	738	797		82			9,705						
32 10 41	0.0	222	234		20			4,855						
Process Flo	w 5 - TSF Entraii	nment	n Datas (million	ton ()				Call	- to d			-		
Voars	Cyclone	Cyclor	n Rates (million	ton/yr)			otal Water	Colle		TSF	F Entrainment (PFN 5)	Entrainm	pent is calculated as the water stored in the pores of the ta	
Tears	Underflow	³ Overfl		nger ³	Pyrite ³	(a	cre-ft/vr)	(acre	ft /vr)		(acre-ft/yr)			
1 to 7	5.7	6.7	7 <u>3cave</u> 7 4.	8	2.7	(	4914	1	91		4.723	_		
8 to 31	12.0	14.	2 12	.3	7.6		11561	18	869		9,692	— wate	er entrained in tailings (tons) = tailings mass (tons)	
32 to 41	1.2	1.4	۱ 8.	0	2.0		3717	32	.00		617			
	Tailings Propert	ies										In situ ta	ilings water content is calculated using Equation 6 below.	
		Property		Cyclone Underflo	e C	yclone verflow	Total Sc	avenger	Pyrit	ite			saturation x ( $\frac{specific\ gravity\ of\ t}{dry\ dens}$	
	Spe	cific Gravity ³		2.78		2.78	2.	.78	3.54	ļ	_	in situ	water content =specific gravit	
	Placed I	Placed Dry Density (pcf		113		76	7	76 106		;				
	In-Si	tu Saturation	3	0.5		1		1	1	<u>,                                     </u>		Total Wa	Iter Entrained is the sum of water entrained in cyclone und	
	In-Situ	Water Conte	ent	0.10		0.46	0.	.46	0.31	0.31				
													ISF Entrainment = I otal Water En	
												TO BE READ WITH KLC	HN CRIPPEN BERGER REPORT DATED: JUNE 2018	
Notes: 1. Runoff coeffi 2. Water releas 3. Values taken 4. Values taken	cient applies to bea ed from tailings rep from DBM (Appen from Tailings Stagi	ach, embankme oorting to down dix I). Ing (Appendix IV	ent and natural grou astream seepage cc /).	und areas. S Illection.	See DBM (App	endix I) fo	r details.					AS A MUTUAL PROTECTION TO OUR CLEHT, THE PUBLIC, AND OURSELVES, ALL REPORTS AND DRAWINGS ARE SUBMITTED FOR THE CONFIDENTIAL INFORMATION OF OUR CLENT FOR A SPECIFIC PROJECT, AND AUTHORIZATION FOR USE AND/OR PUBLICATION OF DATA,	RESOLUTION c o p p e r	
												STATEMENTS, CONCLUSIONS, OR ABSTRACTS FROM OR REGARDING OUR REPORTS AND DRAWINGS IS RESERVED PENDING OUR WRITTEN APPROVAL.	Klohn Crippen Berger	

urry percent solids using Equation 1 below.								
slurr	y % solids)	(Equation 1)						
rry % .	solids							
			(Equation 2)					
			(Equation 2)					
ing Equ	uation 3 below.							
recipi	tation		(Equation 3)					
lust m	gmt area) x eve	aporation	(Equation 4)					
			,					
tailing	s at the placed sa	turation using Equation 5	below.					
ns) x iı	n situ tailings v	vater content	(Equation 5)					
V.	n an w Jour-Stree	function						
nsity of	$\frac{t \text{ tailings } x \text{ density of water}}{nsity \text{ of tailings}} - 1) $ (Equation 6)							
vity of tailings								
nder now, cyclone overnow, total scavenger and pyrite tailings.								
Entrai	ned – Collecte	(Equation 7)						
	RESOLUTION COPPER PROJECT DEIS DESIGN FOR ALTERNATIVE 3A - NEAR WEST MODIFIED PROPOSED ACTION (MODIFIED CENTERLINE EMBANKMENT)							
	OPERATIONAL WATER BALANCE ASSUMPTIONS							
	SCALE	PROJECT No. ΜΟ9441Δ20	FIG No.					
	A3 3110 WIN	11103441720	• 5					



#### Figure V-4 TSF System Losses during Operation

Notes:

- 1. Dust management losses include water applied to the unreclaimed area of the embankment.
- 2. Total evaporation includes both pond evaporation and evaporation of bleed water on the tailings beach.



### REFERENCES

- Klohn Crippen Berger (KCB). 2018. Resolution Copper Project Tailings Storage Facility DEIS Designs Tailings Geotechnical Characterization, Rev. 1. Prepared for Resolution Copper Mining LLC on April 25.
- Montgomery and Associates (M&A). 2018. Resolution Copper Project Alternative 2A and 3B Steady-State Seepage Modeling. June.

