

Memorandum

DATE: August 30, 2018

TO: Vicky Peacey, Resolution Copper

FROM: Ted Lehman, PE, Hydrologist, JE Fuller

RE: USGS Regression Equation Computation Updates for Queen Creek, Devil's Canyon,

Dripping Springs Wash (Skunk Camp), and Donnelly Wash area (Peg Leg)

Dear Ms. Peacey,

At your request, JE Fuller has updated its previous analysis of flood flow frequency and volume-duration-frequency values for points of interest on Queen Creek and Devil's Canyon. The updates for Queen Creek include the addition of the Silver King tailings storage facility (TSF) location alternative. The update also added computations for Dripping Springs Wash for the Skunk Camp TSF and an area of Donnelly Wash for the Peg Leg TSF. The intent is to quantify surface water hydrology in these watersheds to assist Resolution Copper with assessment of potential impacts to surface water flows associated with the proposed mining and tailings storage activities near Superior, Arizona.

To accomplish these goals, flood flow frequency and volume-duration-frequency were computed using two sets of regression equations recently published by the United States Geological Survey (USGS) – Scientific Investigations Reports (SIR) 2014-5211 (peak flow frequency) and 2014-5109 (volume-duration-frequency). These reports provide regression equations to estimate the magnitude and frequency of surface water hydrology for unregulated watersheds in Arizona. The statistical analyses presented in these reports were performed for streamflow data collected through 2010 for dozens of stream gaging stations with hundreds of years of cumulative streamflow records to develop regression equations to compute peak flow and volume frequency estimates. As such, they represent an excellent method to quantify surface water hydrology in central Arizona including the watersheds of Queen Creek, Devil's Canyon, Dripping Springs Wash, and Donnelly Wash.

Significant variables used in the USGS regression equations include watershed drainage area, mean annual precipitation, and mean elevation. Equations are presented to compute annual exceedance probability (AEP) for the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent levels for un-gaged basins in Arizona. These reports also present standard error of prediction percentages for each set of equations for each AEP. Copies of these two USGS reports are provided with this memo for convenience.

Peak Discharge Flow Frequency (SIR 2014-5211)

Regression equations for unregulated watersheds in Arizona were developed by the USGS to estimate magnitude and frequency of floods using peak-flow data through Water Year 2010. Figure 1 shows a map from SIR 2014-5211 of the regions and stream gage locations used in the development of the peak-flow regression equations. The subject watersheds

lie within Region 5 – Southeastern Basin and Range. Table 1 shows the regression equations developed for flood region 5. For each annual exceedance probability (AEP), the predicted peak discharge is computed solely as a function of drainage area (DRNAREA).

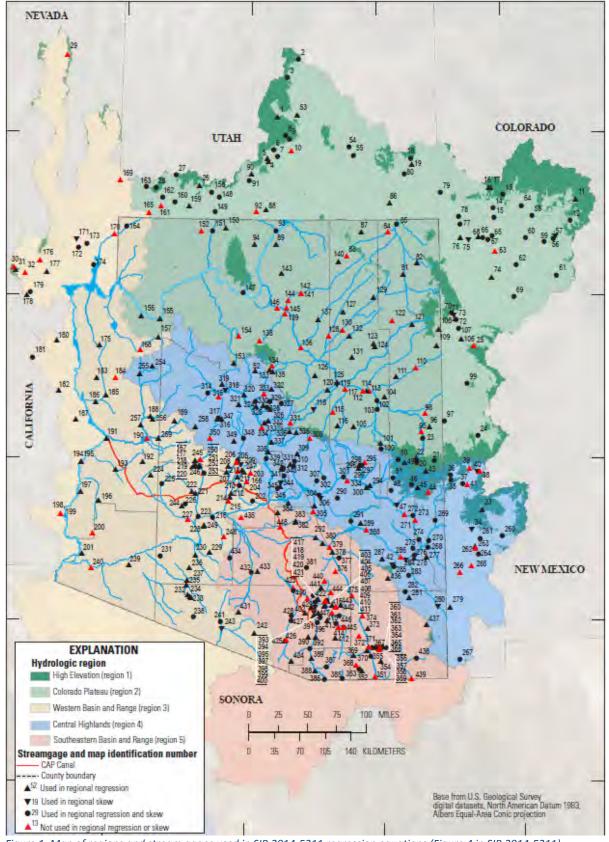


Figure 1. Map of regions and stream gages used in SIR 2014-5211 regression equations (Figure 4 in SIR 2014-5211)

Table 1. Flood region 5 regression equations from SIR 2014-5211, DRNAREA in square miles

AEP (percent)	Regression Equation (peak discharge, cubic feet per second)	Standard Error of Prediction (SEP) in percent
50	10^(6.363-4.386* <i>DRNAREA</i> ^{-0.06})	86.6
20	10^(5.868-3.506* <i>DRNAREA</i> ^{-0.08})	61.5
10	10^(5.778-3.218*DRNAREA ^{-0.09})	52.4
4	10^(5.757-2.988* <i>DRNAREA</i> ^{-0.10})	45.8
2	10^(5.696-2.795*DRNAREA ^{-0.11})	43.5
1	10^(5.651-2.634* <i>DRNAREA</i> ^{-0.12})	42.6
0.5	10^(5.761-2.638*DRNAREA ^{-0.12})	42.4
0.2	10^(5.750-2.502*DRNAREA ^{-0.13})	43.2

Watersheds to seven (7) key locations on Queen Creek and Devil's Canyon were identified upstream and downstream of the proposed mining impact areas. An additional five (5) key locations were added as part of this update on Dripping Springs and Donnelly Wash. Drainage basins were delineated to each from USGS 7.5-minute topographic quadrangles. The drainage area for each location was then computed using GIS.

Impacts from the proposed mining operations were assessed by subtracting the impacted areas from the drainage areas for each watershed. This approach reflects the assumption that surface water drainage will not be allowed to exit the proposed mining impact areas or will be diverted around any impacted areas as shown in the alternatives reports provided to JE Fuller by Resolution Copper. The impacted areas for Queen Creek were updated to remove the roadway areas since drainage off these narrow corridors will continue to contribute to downstream drainages. The twelve key locations, watershed boundaries, and proposed mining impact areas area shown in Figure 2.

The results of the peak-flow magnitude and frequency calculations from the SIR 2014-5211 regression equations are shown in Table 2. In general, the results show that the peak discharge for each frequency (AEP) is reduced by about half the percentage difference in the reduction in drainage area. The reduction in peak discharges is less than the reduction in drainage area because smaller drainage areas tend to have higher unit peak discharges (cfs/sq.mi.) for a given AEP than watersheds with more drainage area (FCDMC, 2013). One cause for this pattern is that storm intensities tend to be less over larger areas. In other words, spatially large intense storms are less likely (probable) than smaller storms. Or, intense smaller storms occur more frequently than spatially larger, similarly intense storms.

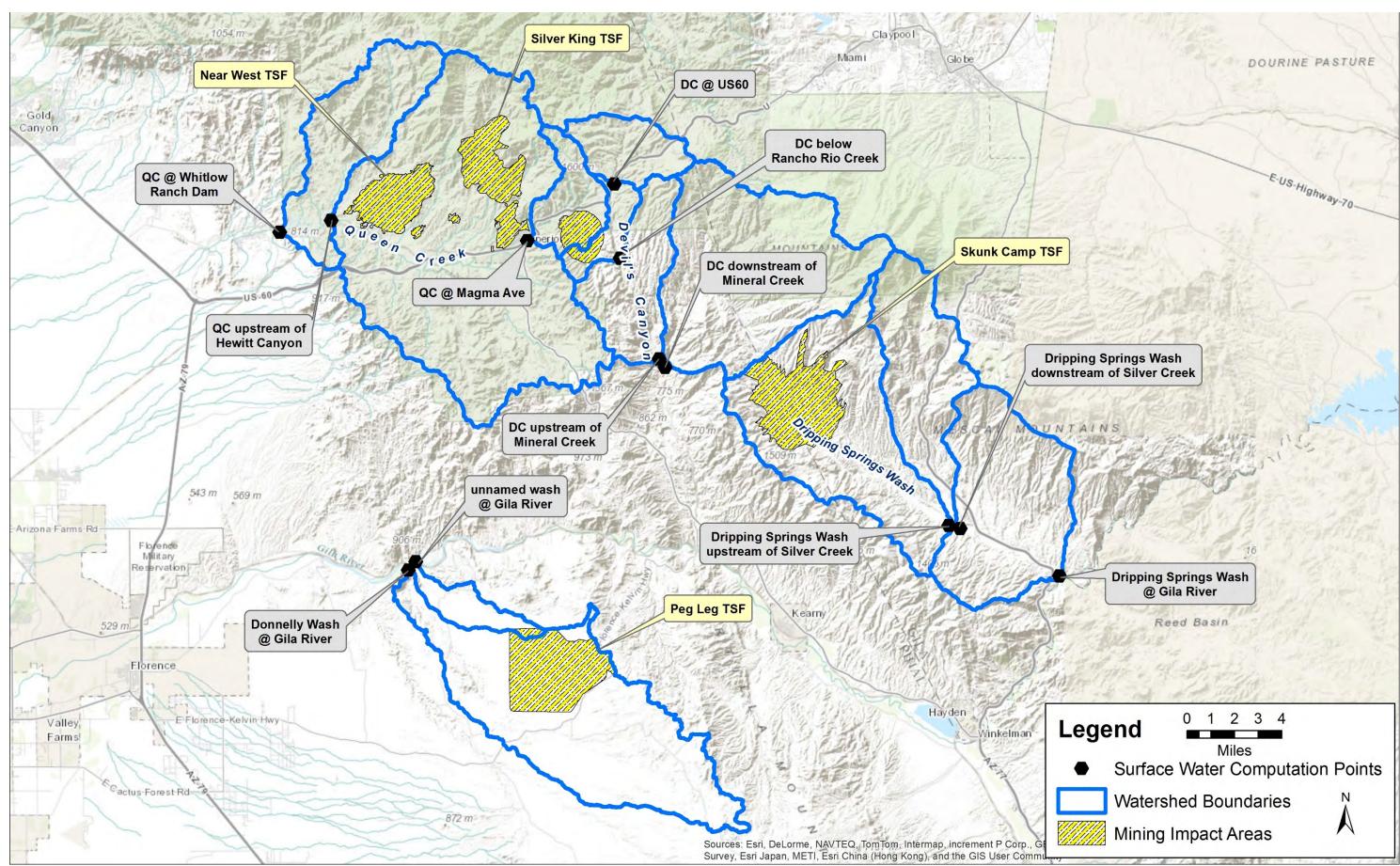


Figure 2. Watershed boundaries and regression equation computation locations

Table 2. Peak-flow frequency computations for selected key locations

Existing Condition

		F	lood Peak	Flows, in c	fs for Ann	ual Exceed	lance Prob	ability (%)
	D.A.								
Location	(sq.mi.)	50	20	10	4	2	1	0.5	0.2
QC at WRD	143.401	1,280	3,246	5,245	8,679	11,949	15,829	20,289	27,415
QC u/s Hewitt Canyon	117.49	1,169	2,975	4,814	7,977	11,001	14,599	18,710	25,326
QC at Magma Ave	10.4	356	914	1,484	2,471	3,433	4,595	5,879	8,029
DC @ US60	10.95	366	940	1,526	2,541	3,531	4,727	6,047	8,260
DC blw Rancho Rio	16.55	454	1,167	1,898	3,163	4,399	5,890	7,538	10,300
DC u/s Mineral Creek	35.63	666	1,713	2,786	4,642	6,447	8,619	11,037	15,054
DC d/s Mineral Creek	90.4	1,037	2,647	4,290	7,122	9,841	13,086	16,768	22,745
DSW u/s Silver Creek	51.16	793	2,036	3,309	5,508	7,638	10,194	13,057	17,778
DSW d/s Silver Creek	78.21	969	2,479	4,021	6,680	9,240	12,301	15,760	21,400
DSW at Gila River	117.3	1,168	2,973	4,811	7,972	10,994	14,589	18,697	25,309
Gila River at DSW	15,473	Not estin	nated due	to influenc	es of San C	Carlos Rese	ervoir upst	ream. See	Note 5.
Donnelly Wash at Gila	61.54	866 2,220 3,605 5,997 8,307 11,076 14,188 19,3							19,296
unnamed wash at Gila	6.08	267 681 1,103 1,830 2,537 3,388 4,333 5,906							
Gila River at Donnelly	22,152	Not estin	nated due	to influenc	es of San C	Carlos Rese	ervoir upst	ream. See	Note 5.

Proposed Condition

	Near West TSF Alternative											
QC at WRD	133.243	1,238	3,144	5,083	8,415	11,593	15,368	19,696	26,632			
QC u/s Hewitt Canyon	107.33	1,122	2,858	4,628	7,673	10,590	14,064	18,023	24,414			
QC at Magma Ave	8.27	316	808	1,310	2,178	3,024	4,044	5,173	7,061			
DC @ US60	10.95	366	940	1,526	2,541	3,531	4,727	6,047	8,260			
DC blw Rancho Rio	15.59	440	1,131	1,840	3,066	4,264	5,709	7,307	9,983			
DC u/s Mineral Creek	34.67	657	1,690	2,749	4,582	6,364	8,508	10,895	14,861			
DC d/s Mineral Creek	89.45	1,032	2,635	4,270	7,089	9,796	13,028	16,693	22,645			
Silver King TSF Alternative												
QC at WRD	133.602	1,239	3,148	5,089	8,424	11,606	15,384	19,718	26,660			
QC u/s Hewitt Canyon	107.69	1,124	2,863	4,635	7,684	10,605	14,083	18,048	24,447			
QC at Magma Ave	8.27	316	808	1,310	2,178	3,024	4,044	5,173	7,061			
DC @ US60	10.95	366	940	1,526	2,541	3,531	4,727	6,047	8,260			
DC blw Rancho Rio	15.59	440	1,131	1,840	3,066	4,264	5,709	7,307	9,983			
DC u/s Mineral Creek	34.67	657	1,690	2,749	4,582	6,364	8,508	10,895	14,861			
DC d/s Mineral Creek	89.45	1,032	2,635	4,270	7,089	9,796	13,028	16,693	22,645			
		Sk	unk Camp	TSF Altern	ative							
DSW u/s Silver Creek	39.47	700	1,800	2,927	4,876	6,769	9,045	11,584	15,792			
DSW d/s Silver Creek	66.52	898	2,302	3,736	6,212	8,602	11,463	14,685	19,963			
DSW at Gila River	105.62	1,114	1,114 2,838 4,595 7,620 10,518 13,970 17,903 24,254									
Gila River at DSW	15,461	Not estin	nated due	to influenc	es of San (Carlos Rese	ervoir upst	ream. See	e Note 5.			

Peg Leg TSF Alternative										
Donnelly Wash at Gila	49.914	784	2,013	3,271	5,446	7,552	10,081	12,912	17,582	
unnamed wash at Gila	5.67	257	655	1,060	1,758	2,436	3,252	4,158	5,666	
Gia River at Donnelly	22,140	Not estir	nated due	to influenc	es of San (Carlos Rese	ervoir upst	ream. See	Note 5.	

Difference (Existing - Proposed)/Existing

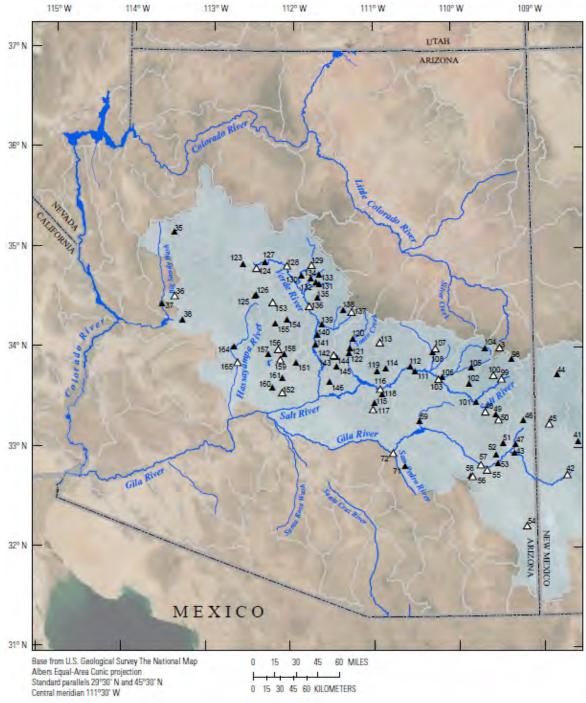
Difference (Existing – Proposed)/Existing												
Near West TSF Alternative												
QC at WRD	-7.1%	-3.3%	-3.1%	-3.1%	-3.0%	-3.0%	-2.9%	-2.9%	-2.9%			
QC u/s Hewitt Canyon	-8.6%	-4.0%	-3.9%	-3.9%	-3.8%	-3.7%	-3.7%	-3.7%	-3.6%			
QC at Magma Ave	-20.5%	-11.4%	-11.6%	-11.8%	-11.9%	-11.9%	-12.0%	-12.0%	-12.1%			
DC @ US60	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%			
DC blw Rancho Rio	-5.8%	-3.0%	-3.0%	-3.1%	-3.1%	-3.1%	-3.1%	-3.1%	-3.1%			
DC u/s Mineral Creek	-2.7%	-1.3%	-1.3%	-1.3%	-1.3%	-1.3%	-1.3%	-1.3%	-1.3%			
DC d/s Mineral Creek	-1.1%	-0.5%	-0.5%	-0.5%	-0.5%	-0.5%	-0.4%	-0.4%	-0.4%			
		S	ilver King 1	ΓSF Alterna	itive							
QC at WRD	-6.8%	-3.1%	-3.0%	-3.0%	-2.9%	-2.9%	-2.8%	-2.8%	-2.8%			
QC u/s Hewitt Canyon	-8.3%	-3.9%	-3.8%	-3.7%	-3.7%	-3.6%	-3.5%	-3.5%	-3.5%			
QC at Magma Ave	-20.5%	-11.4%	-11.6%	-11.8%	-11.9%	-11.9%	-12.0%	-12.0%	-12.1%			
DC @ US60	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%			
DC blw Rancho Rio	-5.8%	-3.0%	-3.0%	-3.1%	-3.1%	-3.1%	-3.1%	-3.1%	-3.1%			
DC u/s Mineral Creek	-2.7%	-1.3%	-1.3%	-1.3%	-1.3%	-1.3%	-1.3%	-1.3%	-1.3%			
DC d/s Mineral Creek	-1.1%	-0.5%	-0.5%	-0.5%	-0.5%	-0.5%	-0.4%	-0.4%	-0.4%			
		Sk	unk Camp	TSF Altern	ative							
DSW u/s Silver Creek	-22.8%	-11.8%	-11.6%	-11.6%	-11.5%	-11.4%	-11.3%	-11.3%	-11.2%			
DSW d/s Silver Creek	-14.9%	-7.3%	-7.2%	-7.1%	-7.0%	-6.9%	-6.8%	-6.8%	-6.7%			
DSW at Gila River	-10.0%	-4.7%	-4.5%	-4.5%	-4.4%	-4.3%	-4.2%	-4.3%	-4.2%			
Gila River at DSW	-0.075%	Not estin	nated due	to influenc	es of San C	Carlos Rese	ervoir upst	ream. See	Note 5.			
			Peg Leg TS	F Alternat	ive							
Donnelly Wash at Gila	-18.9%	-9.5%	-9.3%	-9.3%	-9.2%	-9.1%	-9.0%	-9.0%	-8.9%			
unnamed wash at Gila	-6.7%	-3.7%	-3.8%	-3.9%	-3.9%	-4.0%	-4.0%	-4.0%	-4.1%			
Gila River at Donnelly	-0.054%	Not estin	nated due	to influenc	es of San C	Carlos Rese	ervoir upst	ream. See	Note 5.			

Notes:

- 1) Impacts to Devil's Canyon (DC) from subsidence area. Same for all alternatives.
- 2) Impacts to Queen Creek (QC) include West Plant area for all alternatives.
- 3) Impacts for Peg Leg alternative to Donnelly Wash at Gila River reflect about 1 square mile of Donnelly Wash watershed which is diverted to the unnamed tributary.
- 4) DSW = Dripping Springs Wash
- 5) Peak flow rates for the Gila River were not computed due to influence of Coolidge Dam/San Carlos Reservoir upstream which regulate flows. However, the total drainage area reductions are very small (< 0.1%) for both the Skunk Camp and Peg Leg alternatives.

Volume-Duration-Frequency (SIR 2014-5109, v1.1)

The USGS also developed regression equations from streamflow gaging stations to compute magnitude and frequency of flow volumes for five (5) durations – the 1-, 3-, 7-, 15-, and 30-day durations for the same eight (8) annual exceedance probabilities (AEP) as for the peak-flow frequency equations (50, 20, 10, 4, 2, 1, 0.5, and 0.2 percent) yielding 40 separate regression equations. Only one region of the state was found to have statistically significant relationships for the volume-duration estimates – the Central Highland region, which includes the Queen Creek, Devil's Canyon, and Dripping Springs watersheds. The Donnelly Wash area watersheds lie immediately south of the Gila River which forms the southern boundary of the Central Highlands region west of the San Pedro River. Figure 3 shows the location of the Central Highland region and the stream gaging station locations used in the development of the volume-duration-frequency regression equations.


Three variables were found to explain the volume-duration-frequency relationships – drainage area (DRNAREA), mean annual precipitation (PRECIP), and mean basin elevation (ELEV). The resulting equations are shown in Figure 3 (Table 9 from SIR 2014-5109, v1.1). The standard error of prediction for these equations ranges from a little more than 50 percent for the 50-percent AEP equations to a little less than 30 percent for the 15- and 30-day 0.2-percent AEP equations. Drainage areas were computed using GIS from watersheds delineated using USGS 7.5-minute topographic quadrangles. Mean annual precipitation was computed for each watershed area in GIS from the NOAA US PRISM climate data for the 1990-2010 period. Mean basin elevation was computed in GIS from the USGS 10-meter digital elevation models (DEM).

Tables 3, 4, and 5 present the volume-duration-frequency results for the existing and proposed conditions and the differences between the two. The results show that the differences are nearly directly proportional to the reduction in drainage area at each location.

Volume-duration-frequency statistics were computed for the USGS Gila River at Kelvin gaging station (0947400) using the US Army Corps of Engineers HEC-SSP software. Gage data for the period of record following completion of Coolidge Dam (Nov. 1928) were analyzed. Those results are presented at the end of Table 3. No direct comparison of the proposed conditions is presented. However, due to very small ratio of drainage area impacts (about 12 square miles) from Skunk Camp (0.075%) or Peg Leg (0.054%) alternatives, changes to the Gila River are considered negligible. The drainage area at the Kelvin gage is 18,011 square miles of which 12,866 square miles lie upstream of Coolidge Dam and 5,125 square miles below Coolidge Dam, most of which flow from the San Pedro River. The Skunk Camp TSF site is upstream of the San Pedro River.

EXPLANATION

- Streamgaging stations used in the regional regression analysis
- △ Streamgaging stations with regression-weighted flood-duration flow estimates
- Region over which volume regression equations apply
 - Eight-digit Hydrologic Unit Code (HUC) boundaries

Figure 3. Map showing central highland region and stream gage locations used in SIR 2014-5109

[Pct. AEP, percent annual exceedance probability; DRNAREA, drainage areain square miles; PRECIP, mean annual precipitation in inches. ELEV, mean basin elevation in feet]

Pct. AEP	Regression equation
	1 day
50	0.00759 (DRNAREA) ^{0.882} (PRECIP) ^{2.454} 10(-0.095*ELEV/1,000)
20	0.0692 (DRNAREA)0.836(PRECIP)2.31010(~0.128*FLEV1,000)
10	0.189 (DRNAREA) 0.808 (PRECIP) 2.233 10 (-0.131*ELEV/1,000)
4	0.240 (DRNAREA) 0.781 (PRECIP) 2.422 10 (-0.136*ELEV/1,000)
2	0.619 (DRNAREA) 0.765 (PRECIP) 2.278 10 (-0.138*ELEV/1,000)
1	1.50 (DRNAREA) ^{0.751} (PRECIP) ^{2.132} 10(-0.139*ELEVI,000)
0.5	3.44 (DRNAREA) 0.739 (PRECIP) 1.988 10 (-0.140*ELEV1,000)
0.2	30.1 (DRNAREA) 0.700 (PRECIP) 1.503 10 (-0.144*ELEV1.000)
	3 day
50	0.00597 (DRNAREA) ^{0.875} (PRECIP) ^{1.978}
20	0.0127 (DRNAREA) 0.868 (PRECIP) 2.516 10 (-0.1014 ELEVIL,000)
10	0.0524 (DRNAREA) ^{0.847} (PRECIP) ^{2.380} 10 ^{(-0.1214} HEVI,000)
4	0.173 (DRNAREA)0.826(PRECIP)2.28510(-0.144*FLEV11.000)
2	0.568 (DRNAREA) ^{0.812} (PRECIP) ^{2.081} 10 ^(-0.152*ELEV1,000)
1	1.68 (DRNAREA) 0.500 (PRECIP) 1.582 10 (-0.158*ELEV/1,000)
0.5	4.61 (DRNAREA)0.790(PRECIP)1.68810(-0.163*ellev/1.000)
0.2	23.6 (DRNAREA)0.753(PRECIP)1.36510(-0.165*6LEV1,000)
	7 day
50	0.000538 (DRNAREA)0916(PRECIP)2-527
20	0.00314 (DRNAREA) ^{0.877} (PRECIP) ^{2.669} 10 ^(-0.074*ELEV/1.000)
10	0.00820 (DRNAREA) ^{0.871} (PRECIP) ^{2.719} 10 ^(-0.118*klev/1.000)
4	0.0267 (DRNAREA) 0.847 (PRECIP) 2.672 10(-0.147*ELEVI.,000)
2	0.180 (DRNAREA) ^{0.816} (PRECIP)2 ^{.288} 10 ^(-0.161*HENL,000)
1	0.298 (DRNAREA) 0.816(PRECIP) 2.2461 0(~0.168*ELEV1,000)
0.5	0.877 (DRNAREA)0.803(PRECIP)2.04110(-0.175*#LEV1.000)
0.2	3.24 (DRNAREA) 0.788 (PRECIP) 1.787 10(-0.1834 ELEV/1,000)
74.12	15 day
50	0.0000440 (DRNAREA) ^{0.958} (PRECIP) ^{3.121}
20	0.000508 (DRNAREA) 0.906 (PRECIP) 3.006 10 (-0.065*ELEV/1,000)
10	0.00209 (DRNAREA) 0.884(PRECIP) 2.88010(-0.094*ELEV/1.000)
4	0.00652 (DRNAREA) 0.860(PRECIP) 2.86510(-0.129*ELEV/1,000)
2	0.0217 (DRNAREA)0.844(PRECIP)2.67810(-0.144*ELEV/1,000)
1	0.0668 (DRNAREA) 0.529 (PRECIP) 2.490 10(-0.157*ELEV/1,000)
0.5	0.192 (DRNAREA) ^{0.816} (PRECIP) ^{2.305} 10(~0.168*ELEV/L.000)
0.2	1.20 (DRNAREA) 0.808 (PRECIP) 1.85710 (-0.172*ELEV/1,000)
	30 day
50	0.00000789 (DRNAREA) ^{0.978} (PRECIP) ^{3.519}
20	0.000512 (DRNAREA) ^{0.889} (PRECIP) ^{2.637}
10	0.000361 (DRNAREA) 0.003 (PRECIP) 3.00810 (-0.078*ELEV/1.000)
4	0.000897 (DRNAREA) 0.882 (PRECIP) 3.255 10 (-0.113+EEV/1,000)
2	0.00261 (DRNAREA) (TRECTP) 3.103 10(-0.128*ELEV/1,000)
1	0.00716 (DRNAREA) ^{0.855} (PRECIP) ^{2.942} 10 ^(-0.141*ELEV1,000)
0.5	0.0187 (DRNAREA) 0.843 (PRECIP) 2.778 10 (-0.152*ELEV/1,000)
0.0	0.111 (DRNAREA) ^{0.837} (PRECIP) ^{2.327} 10 ^(-0.154*ELEV/1,000)

Figure 4. Volume-duration-frequency regression equations for Arizona central highland region (SIR 2014-5109, v1.1)

Table 3. Volume-duration-frequency results for select locations - Existing conditions

Oueen Cre	ek at Whitlow Ra	nch Dam						
	DRNAREA	PRECIP	ELEV]				
	143.401	19.44	3435					
		lood Duration	l	fs, for Annu	ual Exceedan	ce Probabil	lity (%)	
Duration	50	20	10	4	2	1	0.5	0.2
1 day	415	1,514	2,797	5,230	8,000	11,633	16,266	26,942
3 day	163	743	1,485	2,947	4,625	6,810	9,612	15,456
7 day	91.8	375	778	1,554	2,573	3,559	5,056	7,660
15 day	53.9	206	412	828	1,297	1,915	2,732	4,207
30 day	34.8	105.9	235	459	699	1,013	1,405	2,090
Queen Cre	ek upstream of H	ewitt Canyon		L	l	<u> </u>	· · ·	<u> </u>
	DRNAREA	PRECIP	ELEV					
Ī	117.49	19.54	3484					
	F	lood Duration	Flows, in c	fs, for Annu	ual Exceedan	ice Probabil	lity (%)	
Duration	50	20	10	4	2	1	0.5	0.2
1 day	349	1,279	2,373	4,464	6,842	9,969	13,960	23,234
3 day	138.3	626	1,252	2,488	3,909	5,759	8,132	13,148
7 day	77.5	316	654	1,309	2,173	3,002	4,269	6,472
15 day	45.2	173.6	347	697	1,094	1,615	2,305	3,546
30 day	29.1	89.9	197.8	386	588	854	1,184	1,759
Queen Cre	ek at Magma Ave	1		l	•	l		
	DRNAREA	PRECIP	ELEV					
	10.4	23.09	4289					
	F	lood Duration	Flows, in c	fs, for Annu	ual Exceedan	ce Probabil	lity (%)	
Duration	50	20	10	4	2	1	0.5	0.2
1 day	52	195	381	782	1,213	1,780	2,501	4,189
3 day	23	96	190	377	583	846	1,174	1,959
7 day	12.8	51	100	200	327	442	619	919
15 day	7.5	28	55	110	169	245	343	496
30 day	4.9	16	33	64	95	135	184	256
Devil's Can	yon at US60							
	DRNAREA	PRECIP	ELEV					
	10.95	24.37	4773					
	F	lood Duration	Flows, in c	fs, for Annu	ual Exceedan	ice Probabil	lity (%)	
Duration	50	20	10	4	2	1	0.5	0.2
1 day	56	200	387	798	1,223	1,778	2,475	4,011
3 day	27	103	197	379	574	818	1,116	1,824
7 day	15.4	57	106	205	322	432	593	860
15 day	9.3	32	61	116	174	246	336	471
30 day	6.2	19.5	37	70	102	141	188	256

Table 3. Volume-duration-frequency results for select locations-Existing conditions-continued

Devil's Car	nyon below Ranch	o Rio Creek						
	DRNAREA	PRECIP	ELEV					
	16.55	24.07	4587					
	F	lood Duration	Flows, in c	fs, for Annu	ıal Exceedan	ce Probabil	ity (%)	
Duration	50	20	10	4	2	1	0.5	0.2
1 day	81	290	556	1,133	1,730	2,507	3,479	5,592
3 day	38	149	286	551	835	1,190	1,625	2,627
7 day	22	82	155	299	470	632	868	1,260
15 day	13.3	46	88	169	254	359	492	692
30 day	8.9	27	54	101	148	206	275	375
Devil's Car	nyon upstream of	Mineral Creek	(
	DRNAREA	PRECIP	ELEV)					
	35.63	22.07	4190					
	F	lood Duration	Flows, in c	fs, for Annu	ıal Exceedan	ce Probabil	ity (%)	
Duration	50	20	10	4	2	1	0.5	0.2
1 day	141	507	960	1,892	2,896	4,208	5,864	9,577
3 day	62	256	499	971	1,493	2,157	2,985	4,835
7 day	35.3	136	266	520	835	1,134	1,580	2,333
15 day	21.1	76.2	147	287	438	630	877	1,282
30 day	13.9	42.9	87.7	167	247	350	474	670
Devil's Car	nyon downstream	of Mineral Cr	eek	_				
	DRNAREA	PRECIP	ELEV					
	90.4	22.84	4171					
	F	lood Duration	Flows, in c	fs, for Annu	ıal Exceedan	ice Probabil	ity (%)	
Duration	50	20	10	4	2	1	0.5	0.2
1 day	350	1,203	2,211	4,280	6,422	9,165	12,569	19,471
3 day	149.7	629	1,197	2,279	3,437	4,879	6,648	10,288
7 day	90.4	339	660	1,261	1,944	2,638	3,606	5,208
15 day	57.3	197.3	372	710	1,060	1,495	2,045	2,920
30 day	39.0	107.4	227.7	426	620	864	1,152	1,592
Dripping S	prings Wash upstr	eam of Silver	Creek	_				
	DRNAREA	PRECIP	ELEV					
	51.2	19.84	3731					
	F	lood Duration	Flows, in c	fs, for Annu	ıal Exceedan	ce Probabil	ity (%)	
Duration	50	20	10	4	2	1	0.5	0.2
1 day	165	615	1,165	2,241	3,469	5,099	7,193	12,246
3 day	68.9	299	600	1,195	1,885	2,787	3,946	6,539
7 day	37.6	152	309	621	1,043	1,434	2,046	3,114
15 day	21.4	82.4	165	331	521	771	1,102	1,691
30 day	13.6	44.7	93.9	183	279	405	563	833

 $Table\ 3.\ \ Volume-duration-frequency\ results\ for\ select\ locations\ -\ Existing\ conditions\ -\ continued$

	stream of Silv	ver Creek	Ī				
DRNAREA	PRECIP	ELEV					
78.2	21.93	4062					
Fl	lood Duration	Flows, in c	fs, for Annu	ıal Exceedan	ce Probabil	lity (%)	
50	20	10	4	2	1	0.5	0.2
285	1,002	1,856	3,584	5,424	7,805	10,788	17,158
121.6	514	991	1,911	2,917	4,187	5,766	9,095
71.4	273	537	1,038	1,638	2,232	3,086	4,524
43.9	155.6	298	576	872	1,247	1,725	2,515
29.4	84.8	178.8	338	498	702	946	1,333
prings Wash at its	confluence w	ith the Gila	River				
DRNAREA	PRECIP	ELEV					
117.3	20.8	4090					
Fl	lood Duration	Flows, in c	fs, for Annu	ıal Exceedan	ce Probabil	lity (%)	
50	20	10	4	2	1	0.5	0.2
356	1,234	2,269	4,290	6,499	9,370	12,986	20,853
156.2	635	1,224	2,345	3,596	5,189	7,189	11,361
90.6	336	657	1,258	2,000	2,729	3,794	5,598
54.9	191.0	364	696	1,056	1,514	2,103	3,129
36.2	105.8	216.5	404	596	842	1,138	1,639
Nash at its conflue	nce with the	Gila River					
DRNAREA	PRECIP	ELEV					
61.5	17.67	2867					
Fl	lood Duration	Flows, in c	fs, for Annu	ıal Exceedan	ce Probabil	lity (%)	
50	20	10	4	2	1	0.5	0.2
176	708	1,353	2,560	4,034	6,027	8,643	15,579
64.3	320	678	1,421	2,326	3,554	5,187	8,899
33.2	152	335	713	1,280	1,793	2,651	4,210
17.8	78.2	168	360	594	919	1,369	2,226
10.9	38.8	89.2	185	295	446	644	1,008
wash at its conflue	ence with the	Gila River					
DRNAREA	PRECIP	ELEV					
6.08	14.5	2115					
Fl	lood Duration	Flows, in c	fs, for Annu	ıal Exceedan	ce Probabil	lity (%)	
50	20	10	4	2	1	0.5	0.2
17	81	168	329	556	885	1,345	2,940
5.7	31	74	172	306	506	792	1,583
2.4	13	32	76	163	233	374	656
1.0	5.9	14	35	64	108	176	320
0.6	2.9	6.7	15	27	44	69	120
	DRNAREA 78.2 F 50 285 121.6 71.4 43.9 29.4 prings Wash at its DRNAREA 117.3 F 50 356 156.2 90.6 54.9 36.2 Wash at its conflue DRNAREA 61.5 F 50 176 64.3 33.2 17.8 10.9 wash at its conflue DRNAREA 6.08 F 50 17 5.7 2.4 1.0	DRNAREA PRECIP 78.2 21.93 Flood Duration 50 20 285 1,002 121.6 514 71.4 273 43.9 155.6 29.4 84.8 prings Wash at its confluence w DRNAREA PRECIP 117.3 20.8 Flood Duration 50 20 356 1,234 156.2 635 90.6 336 54.9 191.0 36.2 105.8 Wash at its confluence with the DRNAREA PRECIP 61.5 17.67 Flood Duration 50 20 176 708 64.3 33.2 152 17.8 78.2 10.9 38.8 wash at its confluence with the DRNAREA PRECIP 6.08 14.5 Flood Duration 50	T8.2	DRNAREA PRECIP ELEV 78.2 21.93 4062 Flood Duration Flows, in cfs, for Annu. 50 20 10 4 285 1,002 1,856 3,584 121.6 514 991 1,911 71.4 273 537 1,038 43.9 155.6 298 576 29.4 84.8 178.8 338 prings Wash at its confluence with the Gila River DRNAREA PRECIP ELEV 117.3 20.8 4090 Flood Duration Flows, in cfs, for Annu. 50 20 10 4 356 1,234 2,269 4,290 156.2 635 1,224 2,345 90.6 336 657 1,258 54.9 191.0 364 696 36.2 105.8 216.5 404 Wash at its confluence with the Gila River DRNAREA PRECIP	DRNAREA	DRNAREA PRECIP ELEV 78.2 21.93 4062	DRNAREA PRECIP ELEV 78.2 21.93 4062

Table 3. Volume-duration-frequency results for select locations - Existing conditions - continued

Gila River	at Kelvin, USGS Ga	ging Station (9474000					
	DRNAREA	PRECIP	ELEV					
	18,011*							
	Fl	ood Duration	Flows, in c	fs, for Annu	ıal Exceedar	ice Probabil	ity (%)	
Duration	50	20	10	4	2	1	0.5	0.2
1 day	2,620	6,373	10,730	19,539	29,496	43,445	62,807	99,982
3 day	1,756	3,975	6,539	11,763	17,740	26,235	38,223	61,754
7 day	1,171	2,491	3,990	7,006	10,432	15,281	22,104	35,479
15 day	873	1,766	2,765	4,754	6,997	10,154	14,580	23,228
30 day	757	1,423	2,119	3,422	4,812	6,677	9,175	13,803

Volume-duration-frequency statistics computed using HEC-SSP software for period of record Water Year 1930 to 2017. Coolidge Dam was completed in Nov. 1928.

Drainage area includes 12,866 sq.mi. above Coolidge Dam and 5,125 sq.mi. below Coolidge Dam.

Table 4. Volume-duration-frequency results for select locations - Proposed conditions

Queen Creek	c at Whitlow Ranch	Dam – Near We	est TSF Alterna	ative				
	DRNAREA	PRECIP	ELEV					
	133.243	19.44	3435	1				
	F	lood Duration Fl	ows, in cfs, fo	r Annual Exce	eedance Pro	bability (%	6)	
Duration	50	20	10	4	2	1	0.5	0.2
1 day	389	1,424	2,635	4,939	7,562	11,009	15,406	25,591
3 day	153	697	1,395	2,774	4,357	6,421	9,070	14,624
7 day	85.8	351	729	1,461	2,424	3,352	4,766	7,229
15 day	50.2	193	386	777	1,219	1,802	2,573	3,964
30 day	32.4	99.2	220	430	655	952	1,321	1,965
Queen Creek	upstream of Hew	itt Canyon – Nea	r West TSF Al	ternative				
	DRNAREA	PRECIP	ELEV					
	107.33	19.54	3484					
	F	lood Duration Fl	ows, in cfs, fo	r Annual Exce	eedance Pro	bability (%	6)	
Duration	50	20	10	4	2	1	0.5	0.2
1 day	322	1,185	2,206	4,159	6,384	9,314	13,057	21,809
3 day	128	579	1,160	2,309	3,632	5,357	7,571	12,283
7 day	71.3	292	605	1,213	2,019	2,789	3,970	6,026
15 day	41.5	160	320	645	1,013	1,499	2,141	3,296
30 day	26.7	82.9	182	357	544	790	1,097	1,631
Queen Creel	k at Whitlow Ranch	Dam – Silver Ki	ng TSF Alterna	ative				
	DRNAREA	PRECIP	ELEV					
	133.602	19.44	3435					
	F	lood Duration Fl	ows, in cfs, fo	r Annual Exce	eedance Pro	bability (%	6)	
Duration	50	20	10	4	2	1	0.5	0.2
1 day	390	1,427	2,641	4,949	7,578	11,031	15,437	25,639
3 day	153	699	1,398	2,780	4,367	6,435	9,089	14,654
7 day	86.0	352	731	1,464	2,429	3,359	4,777	7,244
15 day	50.4	193	387	779	1,222	1,806	2,578	3,973
30 day	32.4	99.4	220	431	657	954	1,324	1,970
Queen Creel	upstream of Hew	itt Canyon – Silv	er King TSF Al	ternative				
	DRNAREA	PRECIP	ELEV					
	107.69	19.54	3484					
	F	lood Duration Fl	ows, in cfs, fo	r Annual Exce	eedance Pro	bability (%	6)	
Duration	50	20	10	4	2	1	0.5	0.2
1 day	323	1,189	2,212	4,170	6,401	9,337	13,090	21,860
3 day	128	581	1,163	2,316	3,642	5,372	7,591	12,314
7 day	71.5	293	606	1,216	2,024	2,796	3,980	6,042
15 day	41.6	160	321	647	1,016	1,503	2,147	3,305
30 day	26.7	83.2	183	358	546	793	1,100	1,636

Table 4. Volume-duration-frequency results for select locations - Proposed conditions - continued

Queen Creek	k at Magma Ave – A	1		٦				
	DRNAREA	PRECIP	ELEV					
	8.27	23.09	4289					
	F	lood Duration Fl	ows, in cfs, fo	r Annual Exc	eedance Pro	bability (%	<u>6)</u>	T
Duration	50	20	10	4	2	1	0.5	0.2
1 day	42	161	317	654	1,018	1,499	2,112	3,568
3 day	19	79	157	312	484	704	979	1,649
7 day	10.4	42	82	165	271	367	515	768
15 day	6.0	23	45	90	139	203	285	412
30 day	3.9	13	27	52	78	111	152	212
Devil's Canyo	on at US60							
	DRNAREA	PRECIP	ELEV					
	10.95	24.37	4773					
	F	lood Duration Fl	ows, in cfs, fo	r Annual Exc	eedance Pro	bability (%	<u>б)</u>	
Duration	50	20	10	4	2	1	0.5	0.2
1 day	56	200	387	798	1,223	1,778	2,475	4,011
3 day	27	103	197	379	574	818	1,116	1,824
7 day	15.4	57	106	205	322	432	593	860
15 day	9.3	32	61	116	174	246	336	471
30 day	6.2	19.5	37	70	102	141	188	256
Devil's Canyo	on below Rancho R	io Creek		•	•	•	•	
•	DRNAREA	PRECIP	ELEV					
	15.59	24.07	4587					
	F	lood Duration Fl	ows, in cfs, fo	r Annual Exc	eedance Pro	bability (%	6)	
Duration	50	20	10	4	2	1	0.5	0.2
1 day	77	276	530	1,081	1,653	2,397	3,329	5,363
3 day	36	142	272	524	795	1,134	1,550	2,512
7 day	21	78	147	284	448	602	827	1,202
15 day	12.5	44	84	161	241	341	468	660
30 day	8.4	26	51	96	140	196	262	356
Devil's Canyo	on upstream of Mir	neral Creek	I	1	l		l .	I.
,	DRNAREA	PRECIP	ELEV					
	34.67	22.07	4190					
	F	lood Duration Fl	ows, in cfs, fo	r Annual Exc	eedance Pro	bability (%	6)	
Duration	50	20	10	4	2	1	0.5	0.2
1 day	137	496	939	1,853	2,836	4,123	5,747	9,395
3 day	60	250	488	949	1,460	2,110	2,922	4,736
7 day	34.4	133	260	508	816	1,109	1,545	2,284
15 day	20.5	74.3	144	281	428	616	858	1,254
30 day	13.6	41.9	85.5	163	241	342	464	655

Table 4. Volume-duration-frequency results for select locations - Proposed conditions - continued

Í	on downstream of DRNAREA	PRECIP	ELEV	7				
	89.45	22.84	4171	-				
		lood Duration Fl	l .	r Annual Eve	anca Dro	hahility (9	<u> </u>	
Duration	50	20	10	4	2		0.5	0.2
	346	1,192	2,192		6,370	9,093	12,472	19,327
1 day	148.3	624	1	4,245		+	1	
3 day	89.5	336	1,186	2,260	3,408	4,838	6,593	10,206
7 day			654	1,250	1,927	2,616	3,575	5,165
15 day	56.7	195.4	368	703	1,051	1,482	2,027	2,896
30 day	38.6	106.4	225.5	422	615	856	1,142	1,578
Dripping Spri	ings Wash upstrea			ip ISF Alterna T	ative			
	DRNAREA	PRECIP	ELEV	_				
	39.47	19.84	3731					
		lood Duration Fl	1		1	bability (9		Т
Duration	50	20	10	4	2	1	0.5	0.2
1 day	131	495	944	1,829	2,843	4,194	5,934	10,207
3 day	54.9	238	481	964	1,526	2,264	3,213	5,376
7 day	29.6	121	247	498	843	1,159	1,660	2,537
15 day	16.7	65.0	131	265	418	621	891	1,370
30 day	10.6	35.5	74.2	145	222	324	452	670
Dripping Spri	ings Wash downst	ream of Silver Cr	eek – Skunk C	Camp TSF Alte	ernative			
	DRNAREA	PRECIP	ELEV					
	66.52	21.93	4062					
	F	lood Duration Fl	lows, in cfs, fo	or Annual Exc	eedance Pro	bability (%	6)	
Duration	50	20	10	4	2	1	0.5	0.2
1 day	247	875	1,629	3,159	4,793	6,912	9,572	15,321
3 day	106	447	864	1,672	2,558	3,679	5,075	8,052
7 day	61.6	237	466	905	1,436	1,956	2,710	3,982
15 day	37.6	134	258	501	761	1,090	1,512	2,207
30 day	25.1	73.5	154	293	433	611	825	1,165
-	ings Wash at its co	nfluence with th	e Gila River –	Skunk Camp	TSF Alterna	tive	l	<u> </u>
	DRNAREA	PRECIP	ELEV] '				
	105.62	20.8	4090	1				
		lood Duration Fl		or Annual Exc	eedance Pro	bability (9	6)	
Duration	50	20	10	4	2	1	0.5	0.2
1 day	324	1,130	2,085	3,952	5,998	8,660	12,018	19,377
	143	580	1,120	2,150	3,302	4,772	6,617	10,498
3 day			,	,	-,	, =	-,	-,
3 day 7 day		307	599	1.151	1.836	2.505	3.487	5.154
3 day 7 day 15 day	82.3 49.6	307 174	599 332	1,151 636	1,836 967	2,505 1,388	3,487 1,931	5,154 2,874

Table 4. Volume-duration-frequency results for select locations - Proposed conditions - continued

Donnelly Wa	ash at its confluence	e with the Gila R	liver – Peg Leg	TSF Alternat	ive			
•	DRNAREA	PRECIP	ELEV					
	49.92	17.67	2867					
	F	lood Duration Fl	ows, in cfs, fo	r Annual Exce	edance Pro	bability (%	6)	
Duration	50	20	10	4	2	1	0.5	0.2
1 day	147	594	1,143	2,175	3,439	5,153	7,408	13,462
3 day	53.6	267	568	1,196	1,964	3,008	4,399	7,606
7 day	27.4	127	279	597	1,079	1,512	2,242	3,572
15 day	14.6	64.7	139	301	498	773	1,154	1,881
30 day	8.9	32.2	73.9	154	246	373	540	846
unnamed wa	ash at its confluenc	e with the Gila F	River – Peg Leg	TSF Alternat	ive			
	DRNAREA	PRECIP	ELEV					
	5.67	14.5	2115					
	F	lood Duration Fl	ows, in cfs, fo	r Annual Exce	edance Pro	bability (%	6)	
Duration	50	20	10	4	2	1	0.5	0.2
1 day	16	76	159	312	527	840	1,277	2,799
3 day	5.4	29	70	162	289	478	749	1,502
7 day	2.3	13	30	72	154	220	353	620
15 day	1.0	5.5	14	33	60	102	166	303
30 day	0.5	2.8	6.3	14	25	41	65	113

Notes:

- 1) Impacts to Devil's Canyon from subsidence area. Same for all alternatives.
- 2) Impacts to Queen Creek include West Plant area for all alternatives.
- 3) Impacts for Peg Leg alternative to Donnelly Wash at Gila River reflect about 1 square mile of Donnelly Wash watershed which is diverted to the unnamed tributary.
- 4) No proposed condition is presented for Gila River at Kelvin. However, due to very small ratio of drainage area impacts from Skunk Camp (0.075%) or Peg Leg (0.054%) alternatives, changes to the Gila River are considered negligible.

Table 5. Volume-duration-frequency results for select locations – Difference (Existing – Proposed)/Existing

Queen Cre	eek at Whitlow Ran	ıch Dam – Ne	ar West TSI	F Alternati	ve			
	DRNAREA	PRECIP	ELEV]	-			
	-7.1%	0.0%	0.0%					
		od Duration		s, for Annu	ual Exceeda	nce Probab	ility (%)	
Duration	50	20	10	4	2	1	0.5	0.2
1 day	-6.3%	-6.0%	-5.8%	-5.6%	-5.5%	-5.4%	-5.3%	-5.0%
3 day	-6.2%	-6.2%	-6.0%	-5.9%	-5.8%	-5.7%	-5.6%	-5.4%
7 day	-6.5%	-6.2%	-6.2%	-6.0%	-5.8%	-5.8%	-5.7%	-5.6%
15 day	-6.8%	-6.5%	-6.3%	-6.1%	-6.0%	-5.9%	-5.8%	-5.8%
30 day	-6.9%	-6.3%	-6.4%	-6.3%	-6.2%	-6.1%	-6.0%	-6.0%
Queen Cre	eek upstream of He	witt Canyon	– Near Wes	t TSF Alte	rnative			
	DRNAREA	PRECIP	ELEV					
	-8.6%	0.0%	0.0%					
	Flo	od Duration	Flows, in cf	s, for Annu	ıal Exceeda	nce Probab	ility (%)	
Duration	50	20	10	4	2	1	0.5	0.2
1 day	-7.7%	-7.3%	-7.0%	-6.8%	-6.7%	-6.6%	-6.5%	-6.1%
3 day	-7.6%	-7.6%	-7.4%	-7.2%	-7.1%	-7.0%	-6.9%	-6.6%
7 day	-8.0%	-7.6%	-7.6%	-7.4%	-7.1%	-7.1%	-7.0%	-6.9%
15 day	-8.3%	-7.9%	-7.7%	-7.5%	-7.3%	-7.2%	-7.1%	-7.0%
30 day	-8.5%	-7.7%	-7.8%	-7.7%	-7.6%	-7.4%	-7.3%	-7.3%
Queen Cre	eek at Whitlow Ran	ıch Dam – Silv	er King TSF	Alternativ	ve			
	DRNAREA	PRECIP	ELEV					
	-6.8%	0.0%	0.0%					
	Flo	od Duration	Flows, in cf	s, for Annu	ual Exceeda	nce Probab	ility (%)	
Duration	50	20	10	4	2	1	0.5	0.2
1 day	-6.1%	-5.7%	-5.6%	-5.4%	-5.3%	-5.2%	-5.1%	-4.8%
3 day	-6.0%	-6.0%	-5.8%	-5.7%	-5.6%	-5.5%	-5.4%	-5.2%
7 day	-6.3%	-6.0%	-6.0%	-5.8%	-5.6%	-5.6%	-5.5%	-5.4%
15 day	-6.6%	-6.2%	-6.1%	-5.9%	-5.8%	-5.7%	-5.6%	-5.6%
30 day	-6.7%	-6.1%	-6.2%	-6.1%	-6.0%	-5.9%	-5.8%	-5.8%
Queen Cre	eek upstream of He	witt Canyon	– Silver Kin	g TSF Alter	rnative			
	DRNAREA	PRECIP	ELEV					
	-8.3%	0.0%	0.0%					
	Flo	od Duration	Flows, in cf	s, for Annu	ual Exceeda	nce Probab	ility (%)	
Duration	50	20	10	4	2	1	0.5	0.2
1 day	-7.4%	-7.0%	-6.8%	-6.6%	-6.4%	-6.3%	-6.2%	-5.9%
3 day	-7.3%	-7.3%	-7.1%	-6.9%	-6.8%	-6.7%	-6.6%	-6.3%
7 day	-7.7%	-7.4%	-7.3%	-7.1%	-6.9%	-6.9%	-6.8%	-6.6%
15 day	-8.0%	-7.6%	-7.4%	-7.2%	-7.1%	-7.0%	-6.9%	-6.8%
30 day	-8.2%	-7.5%	-7.6%	-7.4%	-7.3%	-7.2%	-7.1%	-7.0%

Table 5. Volume-duration-frequency results for select locations - Difference - continued

Queen Cre	eek at Magma Ave	– All Alternat	ives					
	DRNAREA	PRECIP	ELEV					
	-20.5%	0.0%	0.0%					
	Flo	od Duration	Flows, in cfs	s, for Annu	ıal Exceeda	nce Probab	ility (%)	
Duration	50	20	10	4	2	1	0.5	0.2
1 day	-18.3%	-17.4%	-16.9%	-16.4%	-16.1%	-15.8%	-15.6%	-14.8%
3 day	-18.2%	-18.0%	-17.6%	-17.2%	-17.0%	-16.8%	-16.6%	-15.8%
7 day	-18.9%	-18.2%	-18.1%	-17.6%	-17.1%	-17.1%	-16.8%	-16.5%
15 day	-19.7%	-18.8%	-18.3%	-17.9%	-17.6%	-17.3%	-17.1%	-16.9%
30 day	-20.1%	-18.4%	-18.7%	-18.3%	-18.0%	-17.8%	-17.6%	-17.5%
Devil's Car	nyon at US60		•	•	•			•
	DRNAREA	PRECIP	ELEV					
	0.0%	0.0%	0.0%					
	Flo	od Duration	Flows, in cfs	s, for Annu	ıal Exceeda	nce Probab	ility (%)	
Duration	50	20	10	4	2	1	0.5	0.2
1 day	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
3 day	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
7 day	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
15 day	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
30 day	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Devil's Car	nyon below Rancho	Rio Creek						
	DRNAREA	PRECIP	ELEV					
	-5.8%	0.0%	0.0%					
	Flo	od Duration	Flows, in cfs	s, for Annu	ıal Exceeda	nce Probab	ility (%)	
Duration	50	20	10	4	2	1	0.5	0.2
1 day	-5.1%	-4.9%	-4.7%	-4.6%	-4.5%	-4.4%	-4.3%	-4.1%
3 day	-5.1%	-5.1%	-4.9%	-4.8%	-4.7%	-4.7%	-4.6%	-4.4%
7 day	-5.3%	-5.1%	-5.1%	-4.9%	-4.8%	-4.8%	-4.7%	-4.6%
15 day	-5.6%	-5.3%	-5.1%	-5.0%	-4.9%	-4.8%	-4.8%	-4.7%
30 day	-5.7%	-5.2%	-5.3%	-5.1%	-5.1%	-5.0%	-4.9%	-4.9%
Devil's Car	nyon upstream of N	∕lineral Creek	(•	•			•
	DRNAREA	PRECIP	ELEV					
	-2.7%	0.0%	0.0%					
	Flo	od Duration	Flows, in cfs	s, for Annu	ıal Exceeda	nce Probab	ility (%)	
Duration	50	20	10	4	2	1	0.5	0.2
1 day	-2.4%	-2.3%	-2.2%	-2.1%	-2.1%	-2.0%	-2.0%	-1.9%
3 day	-2.4%	-2.3%	-2.3%	-2.2%	-2.2%	-2.2%	-2.1%	-2.0%
	2.50/	-2.4%	-2.4%	-2.3%	-2.2%	-2.2%	-2.2%	-2.1%
7 day	-2.5%	-2.4/0		,				
7 day 15 day	-2.5% -2.6%	-2.4%	-2.4%	-2.3%	-2.3%	-2.2%	-2.2%	-2.2%

Table 5. Volume-duration-frequency results for select locations - Difference - continued

Devil's Car	nyon downstream (of Mineral Cr	eek					
	DRNAREA	PRECIP	ELEV					
	-1.1%	0.0%	0.0%					
	Flo	od Duration	Flows, in cf	s, for Annu	ıal Exceeda	nce Probab	ility (%)	
Duration	50	20	10	4	2	1	0.5	0.2
1 day	-0.9%	-0.9%	-0.8%	-0.8%	-0.8%	-0.8%	-0.8%	-0.7%
3 day	-0.9%	-0.9%	-0.9%	-0.9%	-0.9%	-0.8%	-0.8%	-0.8%
7 day	-1.0%	-0.9%	-0.9%	-0.9%	-0.9%	-0.9%	-0.8%	-0.8%
15 day	-1.0%	-1.0%	-0.9%	-0.9%	-0.9%	-0.9%	-0.9%	-0.8%
30 day	-1.0%	-0.9%	-0.9%	-0.9%	-0.9%	-0.9%	-0.9%	-0.9%
Dripping S	prings Wash upstre	eam of Silver	Creek – Sku	ınk Camp	TSF Alterna	tive		
	DRNAREA	PRECIP	ELEV					
	-22.9%	0.0%	0.0%					
	Flo	od Duration	Flows, in cf	s, for Annu	ıal Exceeda	nce Probab	ility (%)	
Duration	50	20	10	4	2	1	0.5	0.2
1 day	-20.5%	-19.5%	-19.0%	-18.4%	-18.0%	-17.8%	-17.5%	-16.7%
3 day	-20.4%	-20.2%	-19.8%	-19.3%	-19.0%	-18.8%	-18.6%	-17.8%
7 day	-21.2%	-20.4%	-20.3%	-19.8%	-19.1%	-19.1%	-18.9%	-18.5%
15 day	-22.1%	-21.0%	-20.5%	-20.1%	-19.7%	-19.4%	-19.1%	-19.0%
30 day	-22.5%	-20.7%	-20.9%	-20.5%	-20.2%	-19.9%	-19.7%	-19.6%
Dripping S	prings Wash down	stream of Silv	ver Creek –	Skunk Can	np TSF Alte	rnative		
	DRNAREA	PRECIP	ELEV					
	-14.9%	0.0%	0.0%					
	Flo	od Duration	Flows, in cf	s, for Annu	ıal Exceeda	nce Probab	ility (%)	
Duration	50	20	10	4	2	1	0.5	0.2
1 day	-13.3%	-12.6%	-12.3%	-11.9%	-11.6%	-11.4%	-11.3%	-10.7%
3 day	-13.2%	-13.1%	-12.8%	-12.5%	-12.3%	-12.1%	-12.0%	-11.5%
7 day	-13.8%	-13.2%	-13.1%	-12.8%	-12.4%	-12.4%	-12.2%	-12.0%
15 day	-14.4%	-13.7%	-13.3%	-13.0%	-12.8%	-12.6%	-12.4%	-12.3%
30 day	-14.6%	-13.4%	-13.6%	-13.3%	-13.1%	-12.9%	-12.7%	-12.7%
Dripping S	prings Wash at its	confluence w	ith the Gila	River – Sk	unk Camp	TSF Alterna	tive	
	DRNAREA	PRECIP	ELEV					
	-10.0%	0.0%	0.0%					
	Flo	od Duration	Flows, in cf	s, for Annu	ıal Exceeda	nce Probab	ility (%)	
Duration	50	20	10	4	2	1	0.5	0.2
1 day	-8.8%	-8.4%	-8.1%	-7.9%	-7.7%	-7.6%	-7.5%	-7.1%
3 day	-8.8%	-8.7%	-8.5%	-8.3%	-8.2%	-8.0%	-8.0%	-7.6%
7 day	-9.2%	-8.8%	-8.7%	-8.5%	-8.2%	-8.2%	-8.1%	-7.9%
15 day	-9.6%	-9.1%	-8.9%	-8.6%	-8.5%	-8.3%	-8.2%	-8.1%
30 day	-9.7%	-8.9%	-9.0%	-8.8%	-8.7%	-8.6%	-8.5%	-8.4%

Table 5. Volume-duration-frequency results for select locations - Difference - continued

Donnelly \	Wash at its conflue	nce with the	Gila River –	Peg Leg T	SF Alternat	ive		
	DRNAREA	PRECIP	ELEV					
	-18.8%	0.0%	0.0%					
	Flo	od Duration	Flows, in cf	s, for Annı	ıal Exceeda	nce Probab	ility (%)	
Duration	50	20	10	4	2	1	0.5	0.2
1 day	-16.8%	-16.0%	-15.5%	-15.0%	-14.8%	-14.5%	-14.3%	-13.6%
3 day	-16.7%	-16.6%	-16.2%	-15.8%	-15.6%	-15.4%	-15.2%	-14.5%
7 day	-17.4%	-16.7%	-16.6%	-16.2%	-15.7%	-15.7%	-15.4%	-15.2%
15 day	-18.1%	-17.3%	-16.8%	-16.4%	-16.1%	-15.9%	-15.7%	-15.5%
30 day	-18.5%	-16.9%	-17.2%	-16.8%	-16.6%	-16.3%	-16.1%	-16.0%
unnamed	wash at its conflue	nce with the	Gila River –	- Peg Leg T	SF Alternat	ive		
	DRNAREA	PRECIP	ELEV					
	-6.7%	0.0%	0.0%					
	Flo	od Duration	Flows, in cf	s, for Annı	ıal Exceeda	nce Probab	ility (%)	
Duration	50	20	10	4	2	1	0.5	0.2
1 day	-6.0%	-5.7%	-5.5%	-5.3%	-5.2%	-5.1%	-5.0%	-4.8%
3 day	-5.9%	-5.9%	-5.7%	-5.6%	-5.5%	-5.4%	-5.4%	-5.1%
7 day	-6.2%	-5.9%	-5.9%	-5.7%	-5.5%	-5.5%	-5.5%	-5.4%
15 day	-6.5%	-6.1%	-6.0%	-5.8%	-5.7%	-5.6%	-5.5%	-5.5%
30 day	-6.6%	-6.0%	-6.1%	-6.0%	-5.9%	-5.8%	-5.7%	-5.7%

Notes:

- 1) Impacts to Devil's Canyon from subsidence area. Same for all alternatives.
- 2) Impacts to Queen Creek include West Plant area for all alternatives.
- 3) Impacts for Peg Leg alternative to Donnelly Wash at Gila River reflect about 1 square mile of Donnelly Wash watershed which is diverted to the unnamed tributary.
- 4) No volume-duration-frequency difference is presented for Gila River at Kelvin. However, due to very small ratio of drainage area impacts from Skunk Camp (0.075%) or Peg Leg (0.054%) alternatives, changes to the Gila River are considered negligible.

References

- FCDMC, 2013, Drainage Design Manual for Maricopa County, Arizona, Hydrology, 4th Edition, August 15, 2013.
- Kennedy, J. R., Paretti, N.V., and Veilleux, A.G., 2015, Methods for Estimating Magnitude and Frequency of 1-, 3-, 7-, 15-, and 30-day flood-duration flows in Arizona, USGS Scientific Investigations Report (SIR) 2014-5109, Version 1.1, 35 pp.
- Paretti, N. V., Kennedy, J. R., Turney, L. A., and Veilleux, A. G., 2014, Methods for Estimating Magnitude and Frequency of Floods in Arizona, Developed with Unregulated and Rural Peak-Flow Data through Water Year 2010. USGS Scientific Investigations Report (SIR) 2014-5211, 61 pp.

Superior, AZ 85173 Tel.: 520.689.9374 Fax: 520.689.9304

September 4, 2018

Ms. Mary Rasmussen US Forest Service Supervisor's Office 2324 East McDowell Road Phoenix, AZ 85006-2496

Subject: Follow-up to July 17, 2018 Request: USGS Regression Analysis for Tailings Alternatives and Water Year 2017 Baseline Streamflow Data and Precipitation/Runoff Analysis.

Dear Ms. Rasmussen,

For your review and consideration and in response to the July 17, 2018 request for USGS regression analysis for all tailings alternatives please see the attached technical memorandum from JE Fuller titled "USGS Regression Equation Computation Updates for Queen Creek, Devil's Canyon, Dripping Springs Wash (Skunk Camp), and Donnelly Wash area (Peg Leg)." The report updates the previous analysis of flood flow frequency and volume-duration-frequency with the addition of values for the Tailings Storage Facility (TSF) Alternatives 4, 5 and 6 for Queen Creek, Devil's Canyon, Drilling Springs Wash and Donnelley Wash.

Additionally, a second technical memorandum by JE Fuller titled "Water Year 2017 Streamflow data and Precipitation vs. Runoff Analyses" has also been included with this submittal which presents compiled streamflow data for several gaging sites in the Queen Creek, Devil's Canyon and Mineral Creek watersheds for water year 2017 (October 1, 2016 through September 30, 2017). This work extends previously compiled streamflow records performed by JE Fuller for data collected prior to Water Year 2017.

Sincerely,

Vicky Peacey,

Vicky Hacy

Senior Manager, Environment, Permitting and Approvals; Resolution Copper Company, as Manager of Resolution Copper Mining, LLC

Cc: Ms. Mary Morissette; Senior Environmental Specialist; Resolution Copper Company

Enclosure(s):

JE Fuller Technical Memorandum, August 2018. USGS Regression Equation Computation Updates for Queen Creek, Devil's Canyon, Dripping Springs Wash (Skunk Camp), and Donnelly Wash area (Peg Leg)

JE Fuller Technical Memorandum, August, 2018. Water Year 2017 Streamflow data and Precipitation vs. Runoff Analyses