QE 515 M3 1982

1982 PRINCIPLES OF GEOCHEMISTRY

FOURTH EDITION

BRIAN MASON

Curator, Department of Mineral Sciences Smithsonian Institution

CARLETON B. MOORE

Department of Chemistry Department of Geology Arizona State University

JOHN WILEY & SONS Chichester Brisbane

Toronto

Singapore

New York

TIT

)or

au

Aa:

Smi

Smi

Vyl

Copyright © 1966, 1982, by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond that permitted by Sections 107 and 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permissions Department, John Wiley & Sons.

Library of Congress Cataloging in Publication Data:

Mason, Brian Harold, 1917-Principles of geochemistry.

(Smith-Wyllie intermediate geology series, ISSN 0196-427X)
Includes index.
I. Geochemistry. I. Moore, Carleton B. II. Title.
III. Series.

QE515.M3 1982 551.9 82-8649 ISBN 0-471-57522-4 AACR2

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

TITI	Table 3.5 The Average Amounts of the Elements in Crustal Rocks in Grams per Ton or Parts per Million*					
Dor	Atomic Number	Element	Crustal Average	Granite (G-1)	Diabase (W-1)	
Fau	1	Н	1,400	400	600	
Mas	3 4	Li Be	20 2.8	22	15 0.8	
Smi	5 6 7	B C	200	200	100	
Smi	8	O F	466,000	485,000 700	449,000 250	
	11 12 13	Na Mg Al	28,300 20,900 81,300	24,600 2,400 74,300	16,000 39,900 79,400	
Wyl	14 15	Si	277,200 1,050 260	339,600 390 58	246,100 610 123	
	16 17 19	Cl K	130 25,900	70 45,100	200 5,300	
	20 21	Ca Sc	36,300 22	9,900 2.9	78,300 35	
	22 23 24	Ti V Cr	4,400 135 100	1,500	6,400 264 114	
	24 25 26	Mn Fe	950 50,000	195 13,700	1,280 77,600	
	27 28	Co Ni	25 75	2.4 1	47 76	
	29 30	Cu Zn	55 70	13 45	110 86	
Astron	31 32 33	Ga Ge	15	20 1.1 0.5	16 1.4 1.9	
	33 34 35	Se Br	0.05	0.007 0.4	0.3	
	37 38	Rb Sr	90 375	220 250	21 190	
	39 40	Y Zr	33 165	13 210	25 105	
	41 42 44	ND Mo Ru	1.5 0.01	24 6.5	9.5 0.57	
	45 46	Rh Pd	• 0.005 0.01	0.002	<0.001 0.025	
	47 48 49	Ag Cd	0.07 0.2	0.05 0.03	0.08 0.15 0.07	
	50 51	Sn Sb	0.1 2 0.2	3.5 0.31	3.2 1.0	
	52 53 55	Te I	0.01 0.5	<1 <0.03	<1 <0.03	
	56 57	Ba La	425 30	1,220	0.9 160 9.8	
	58	Ce	60	170	23	

Atomic Number	Element	Crustal Average	Granite (G-1)	Diabase (W-1)
59	Pr	8.2	19	3.4
60	Nd	28	55	15
62	Sm	6.0	8.3	3.6
63	Eu	1.2	1.3	1.1
64	Gd	5.4	5	4
65	Tb	0.9	0.54	0.65
66	Dy	3.0	2.4	4
67	Ho	1.2	0.35	0.69
68	Er	2.8	1.2	2.4
69	Tm	0.5	0.15	0.30
70	Yb	3.4	1.1	2.1
71	Lu	0.5	0.19	0.35
72	Hf	3	5.2	2.7
73	Та	2	1.5	0.50
74	W	1.5	0.4	0.5
75	Re	0.001	< 0.002	< 0.002
76	Os	0.005	0.00007	0.0003
77 .	Ir	0.001	0.00001	0.003
78	Pt	0.01	0.0019	0.0012
79	Au	0.004	0.004	0.004
80	Hg	0.08	0.1	0.2
81	TĨ	0.5	1.2	0.11
82	· Pb	13	48	7.8
83	Bi	0.2	0.07	0.05
90	Th	7.2	50	2.4
92	U	1.8	3.4	0.58

Table 3.5	(continued)
-----------	-------------

*Omitting the rare gases and the short-lived radioactive elements.

enrichment or depletion of an element in any rock. The figures for G-1 and W-1 also show that some elements (such as Be, Rb, Ba) are markedly enriched in the granite, others (such as B, Sc, Ni) are enriched in the diabase, whereas some (such as Zn, Ga, Ge) show a rather uniform abundance in these contrasted rock types.

Some interesting features of Table 3.5 may be noted. Eight elements—O, Si, Al, Fe, Ca, Na, K, Mg—make up nearly 99% of the total. Of these oxygen is absolutely predominant. As Goldschmidt first pointed out, this predominance is even more marked when the figures are recalculated to atom percent and volume percent (Table 3.6). The earth's crust consists almost entirely of oxygen compounds, especially silicates of aluminum, calcium, magnesium, sodium, potassium, and iron. In terms of numbers of atoms oxygen exceeds 60%. If the volume of the different atoms, or rather ions, is calculated, oxygen makes up more than 90% of the total volume occupied by the elements. Thus the crust of the earth is essentially a packing of oxygen anions, bonded by silicon and the ions of the common metals. As Goldschmidt remarked, the lithosphere may well be called the oxygphere.

Table 3.5 shows that some of the elements that play a most important part in our