USDA Forest Service Tonto National Forest Arizona

August 6, 2018

Process Memorandum to File

Noise and Vibration Resource Analysis: Assumptions; Methodology Used; Relevant Regulations, Laws, and Guidance; and Key Documents

This document is deliberative and is prepared by the third-party contractor in compliance with the National Environmental Policy Act and other laws, regulations, and policies to document ongoing process and analysis steps. This document does not take the place of any Line Officer's decision space related to this project.

Prepared by: Emily Newell SWCA Environmental Consultants

Revision History

Date	Personnel	Revisions Made
08/06/18	Emily Newell	Process memorandum created
10/29/18	Emily Newell	Revisions to memorandum title, revision history table added, edits to purpose of process memorandum section, references and key documents section added
11/15/18	Emily Newell	Edits to applicability table
12/26/18	Chris Garrett	Added placeholders based on review of draft environmental impact statement (EIS) section
01/14/18	Emily Newell	Ready for project manager review
8/06/2019	Donna Morey	Updated process memorandum to draft EIS section
12/30/20	Chris Garrett	Final update for consistency prior to final EIS release

Purpose of Process Memorandum

In order to provide a concise and accessible summary of resource impacts, certain detailed information has not been included directly in the environmental impact statement (EIS). The purpose of this process memorandum is to describe additional supporting resource information in detail. The noise and vibration section of chapter 3 of the EIS includes brief summaries of the information contained in this process memorandum. This process memorandum covers the following topics:

- Resource analysis area
 - Analysis methodology

•

- Noise modeling
- Non-blasting noise modeling
- Blasting noise modeling
- Blasting vibration modeling
- Non-blasting vibration modeling
- Noise and vibration metrics
- Regulations, laws, and guidance
- Key documents and references cited

Detailed Information Supporting Environmental Impact Statement Analysis

Resource Analysis Area

Noise and vibration (i.e., blasting and non-blasting vibration) associated with mining activities would vary spatially and temporarily, as the location and duration of the noise- and vibration-generating project activities would change throughout the life of the project. The spatial analysis area for noise and vibration impacts consists of the extent to which future levels (i.e., noise and vibration levels generated by project activities during each mine phase plus other primary background sources) would attenuate to background levels at sensitive areas. The spatial extent of the project-level noise contours has been determined to be 2 miles. The terms "project noise study area" and "project vibration study area" are used to refer to a snapshot in time at which future levels exceed the selected thresholds or substantially increase over background levels. Mining activities that would produce the most noise and vibration extending the farthest from the project site can be divided into four distinct phases: (1) construction, (2) overlapping construction and operations, (3) operations, and (4) closure and reclamation.

- The construction phase would occur from mine years 1 through 9. The primary noise and vibration sources during this phase would result from trucking in mining equipment to each of the primary facilities (i.e., haul trucks, shovels, graders, pavers, drills, water trucks, etc.); blasting; pile driving; rock excavation; underground and at-grade conveyors construction; and material hauling associated with assembly of the processing plants such as the concentrator complex at the West Plant Site and the filter plant and loadout facility. Increased traffic noise from U.S. Route 60 and mine site access roads from personnel commuting to and from the mine sites would also occur during this phase.
- The overlapping construction and operations phase would occur from mine years 6 through 9. The primary noise and vibration sources during this phase would include some or all of noise and vibration sources associated with the construction phase in addition to normal operationsrelated noise (i.e., stationary equipment, mobile equipment, transport movement equipment, railroad activities, conveyors operation, processing operations, operations at the filter plant and loadout facility, delivery of supplies, commuter traffic, etc.).
- The operations phase would occur from mine years 10 through 46. The primary noise and vibration sources during this phase would result from stationary equipment, mobile equipment, transport movement equipment, railroad activities, conveyors operation, processing operations, operations at the filter plant and loadout facility, delivery of supplies, and commuter traffic.
- The closure and reclamation phase would occur from mine years 46 through 51 to 56 (depending on the final reclamation plan). The primary noise and vibration sources during this phase would include commuter traffic, deliveries, and decommissioning of mine facilities.

Note that although noise and vibration impacts would occur throughout all four phases of the mine life, this noise and vibration study only evaluates the operational phase and considers it a worst-case

scenario. This study also evaluates noise associated with the construction of the operational facilities, estimated to require less than 2 years. The worst-case scenario for each project component is the year that has the maximum equipment use. East Plant Site noise model input uses year 1, whereas West Plant Site, Magma Arizona Railroad Company (MARRCO) corridor, and the Filter Plant and Loadout Facility use the years of operations with all equipment and mobile equipment in use.

Analysis Methodology

Noise and vibration quantitative contours depicting background and future predicted levels at incremental distances from the project sites were developed in a supplemental noise study prepared by Tetra Tech (2018) and Amec Foster Wheeler (2017). The prediction results of these two studies set the framework for discussion of the affected environment for noise and vibration in the project noise and vibration study areas and the analysis of environmental consequences.

Noise Modeling

The noise analysis included determining noise impacts at existing and future planned noise-sensitive land uses. A noise-sensitive area is defined as a geographic location chosen to represent a worst-case for any land use activity category. Each noise-sensitive area is then defined by a discrete location known as "receptor." When background noise levels are established by field noise measurements, receptors are grouped into a common noise environment (CNE) and at least one measurement site is selected for each CNE. A CNE includes receptors within the same land use activity category and expected to experience similar noise sources and topographical features. Additional background noise sampling sites at incremental distances from the project site are included to allow for determination of how far the project-related noise would reach. Because background noise levels vary during times of the day, field noise measurements included continuous long-term measurements at representative noise measurement locations for each CNE. Alternatively, field noise measurements can include a limited number of CNEs; in this case, a baseline noise model representing existing conditions is used to extrapolate background noise levels at other noise-sensitive areas.

Future non-noise levels predictions consist of creating a noise model, including background environmental conditions and all project-related activities during each of the mine phases, to calculate sound levels at incremental distances from sources of known emission. Alternatively, future noise levels predictions would consider a single point in time when noise and vibration-generating activities would most represent the highest levels (i.e., most or all construction equipment/activity operates concurrently with normal operations activities). Background model inputs includes all primary noise sources (i.e., adjacent major transportation network, community, rail, etc.). While project model inputs can vary, including structures, fixed equipment, mobile equipment, transport movements equipment, etc. Each noise source is assigned an appropriate sound power level, quantity, and utilization factor and entered into the noise model.

Non-Blasting Noise Modeling

Operations phase noise predictions included predicting impacts by modeling from all mine components, including the alternative tailings locations. Modeling assumed all mine activities are operating concurrently under favorable sound propagation weather conditions. Modeling input

included structures, fixed equipment, mobile equipment, and transportation. Each noise source input included a representative sound source level, quantity, and utilization factor. Noise modeling also considered the following:

- Sound attenuation factors such as reflection from surfaces; screening by topography and obstacles; and effect of terrain features, including relative elevations of noise sources.
- The combined effect of multiple noise sources and source type (point, area, and/or line).

Noise modeling outputs included a cumulative hourly equivalent sound levels (measured as Leq(h), energy average hourly noise level) and 24-hour day-night average sound levels (Ldn) at the identified receptor locations. For each metric, modeling outputs included predicted project levels (i.e., noise solely from mine activities), anticipated future ranges (i.e., background ranges plus mine noise), and the incremental increase over background noise levels. Modeling outputs also included noise contours displaying sound propagation over the surrounding area of the mine site. Noise contours graphically display how the combined operations noise would be distributed over the surrounding area; they are similar to topography elevation maps (i.e., equal noise levels are represented by continuous lines around a source).

Various regulatory agencies provide published equivalent levels from documented construction sites, including the U.S. Environmental Protection Agency (EPA) (Bolt Beranek and Newman 1971) and Federal Highway Administration (FHWA) (Knauer et al. 2006). Noise modeling for the construction phase of the operational facilities, including the West Plant Site, East Plant Site, and filter plant and loadout facility, used these published energy equivalent levels as input and calculated noise levels at incremental distances up to 1,000 feet. Modeling assumed a similar type and quantity of construction equipment at each mine facility. Modeling also assumed a point source at the center of the facility site (i.e., spherical spreading of sound waves from the source). Under spherical divergence, generally, noise levels are assumed to drop by about 6 A-weighted decibels (dBA) per doubling distance. This divergence should reasonably address non-blasting noise from typical construction power tools or mechanical equipment where noise-level propagation is not expected to exceed 1 mile. As a conservative approach, for the duration of any construction activity, modeling excluded possible sound attenuation by shielding effects from intervening structures along the propagation path. The following describes the expected construction activities and duration:

- West Plant Site facility: construction activities assumed to occur over an 18-month period and would include improving the main site entrance at Lone Tree Road; improving Silver King Mine Road; and constructing the administration building, warehouse, contractor laydown yard, concentrator site, and a new Salt River Project substation.
- East Plant Site facility: construction activities assumed to occur near Shafts 9 and 10 over a 12month period and would include the expansion of the shaft pad and constructing surface infrastructure to support the underground development and operations. Note that shaft construction can be considered part of the blasting noise and vibration analysis.

• Filter plant and loadout facility: construction activities are assumed to occur at the facility location, along Skyline Road, and the MARRCO corridor. Construction activities are also assumed to occur over an 18-month period; include constructing the filter plant facility, and implementing improvement on the MARRCO corridor, Skyline Road, pipeline, well fields, booster station sites, and access points.

Blasting Noise Modeling

Construction activities will include the construction of an additional underground tunnel that would contain a conveyor system to transport ore from the underground production mine shafts to the concentrator at the West Plant Site. The tunnel would originate at surface level at the West Plant Site portal and continue underground to approximately 3,400 feet belowgrade at the underground mine. The tunnel construction would use underground drilling and explosives, generating ground-borne vibrations (discussed in a later section) and airblast (peak overpressure).

Airblast noise predictions used information presented in U.S. Bureau of Mines (USBM) Report of Investigations (RI) 8485 (Siskind, Stachura, et al. 1980) and in surface mining regulations (30 Code of Federal Regulations (CFR) 816.67). The predictive model input included distance between source and sensitive receptor, explosives loading per delay, and other site-specific factors. This analysis establishes an upper limit for explosive loading per delay, given airblast limit and slant distance; establishes a minimum slant distance required, given explosive per delay and airblast limit; and calculates a resulting airblast, given explosive per delay and slant distance.

Blasting Vibration Modeling

Future blasting vibration levels prediction is based on information presented in USBM RI 8507 and Office of Surface Mining Reclamation and Enforcement 30 CFR 816.67 and methodology provided in USBM Bulletin 656. The predictive equation data inputs include "slant" distance between source and sensitive receptor, explosives loading per delay, and site constants. This predictive model can be used to do the following:

- Establish upper limit for explosive loading per delay, given vibration limit and slant distance
- Establish minimum slant distance required, given explosive per delay and vibration limit
- Calculate resulting vibration, given explosive per delay and slant distance

Airblast generates low frequency (sub-audible) and/or high frequency (audible) energies, and the resulting frequencies can be controlled by the design of the blast. There are four airblast contributors: (1) air pressure pulse (APP), (2) rock pressure pulse (RPP), (3) gas release pulse or gas vent pulse (GRP), and (4) stemming release pulse (SRP). In a properly designed blast, APP usually dominates the total airblast, and associated frequency range can be controlled by the delay interval. As blasting progresses underground, blasting will generate a lower APP, and will become fully absent in underground blasting environment "total confinement." RPP is generated by the vertical component of the vibration over an area, usually associated with high-frequency energy, and has the least amplitude of the four airblast contributors. SRP is generated from the blowout when gaseous products vent through stemming. GRP is generated from the blowout when gaseous products vent through fractures in the rock. SRP and

GRP are most undesirable (cause most disturbance to people), but they can be controlled by the blast design (i.e., stemming, spacing, burden, delay) and other conditions.

Airblast can sometimes be felt when it occurs at acoustic frequencies or below the range of human hearing. At a high enough level, airblast can rattle loose objects or windows. At even higher energies, the potential exists for cosmetic damage, such as cracks in stucco, paint, or plaster. Airblast of 122 decibels (dB) is equivalent to a physical pressure of 0.037 pound per square inch (psi) or an approximately 13 miles per hours (mph) wind gust, which can rattle loose objects or windows. Cosmetic damage in the form of cracks in stucco, paint, or plaster can occur at peak overpressures above 134 dB, equivalent to a physical pressure of 0.0145 psi or an approximately 27 mph wind gust. Airblast above 152 dB is equivalent to a physical pressure of 0.115 psi or an approximately 75 mph wind gust, which can break poorly mounted windows.

Blasting vibrations travel away from a blast in all directions and induce vibration in buildings and other structures. Ground-borne vibrations travel much faster than airblast (first to arrive at a receiver), but also dissipate much more rapidly than airblast. Although geological conditions have a strong influence on the distance at which ground vibrations can be felt, it is very rare for blasting operations to produce detectable ground vibrations at distances of more than 1 to 2 miles.

This analysis establishes an upper limit for explosive loading per delay, given vibration limit and slant distance; establishes a minimum slant distance required, given explosive per delay and vibration limit; and calculates the resulting vibration, given explosive per delay and slant distance. This analysis also includes comparison between predicted ground-borne vibrations and measured background levels, in order to evaluate the significance of a possible increase in levels.

Non-Blasting Vibration Modeling

Non-blasting vibration describes vibration from railroad, construction activities, pile driving, stationary and mobile equipment, etc. With the exception of pile driving, non-blasting vibrations do not typically cause damage to structures. Human response and annoyance to vibration cannot always be explained by the magnitude of vibration level alone, such as individual perception sensitivity to wall and hanging objects rattling, or other resulting noises.

Blasting from mine construction and other mine activities generates airblast overpressure and/or ground-borne vibration. Human response and annoyance are usually related to wall rattling and other resulting noises, fear of property damage or injury, and the presence of airblast.

Noise and Vibration Metrics

The characteristics of sound include magnitude (loudness), frequency (pitch), and time (duration). Sound-pressure levels are used to measure the intensity (magnitude) of sound and are described in terms of dB. Sound is composed of various frequencies. When measuring noise levels, frequencies to which the human ear does not respond are filtered out. Almost all environmental sound is measured in dBA. A-weighting gives greater weight to the frequency sensitivity of the human hearing range. Noise levels developed for this analysis will be expressed in dB using an "A"-scale weighting. This scale most closely approximates the response characteristic of the human hearing to typical noise levels.

In addition to noise varying in frequency, noise intensity fluctuates with time. Total accumulation metrics are called equivalent levels and represent the sound levels for either a 1-hour, symbolized as Leq(h), or a 24-hour period. The Leq(h) is defined as the equivalent steady-state sound level that, in an hourly period, contains the same acoustic energy as the time-varying sound level for the same hourly period. The hourly equivalent sound level, Leq(h), is commonly used as a descriptor of highway traffic noise. The 24-hour equivalent sound level can be expressed as Leq(24), but even more useful than Leq(24) is the Ldn. The Ldn sound level is basically 24-hours' worth of Leq(h), except that nighttime hours noise levels (10 p.m. to 7 a.m.) are increased by 10 dB before averaging to include additional weighting factors for potential annoyance due to time of day (i.e., to account for people's sensitivity to nighttime noises).

Statistical descriptions (expressed as Lx, where x represents the percentage of time during which noise levels exceed the specified dB level) are also used to characterize noise conditions over specified periods. L1, L5, and L10 descriptors can be used to characterize peak noise levels, whereas L90, L95, and L99 descriptors can be used to characterize background (ambient) noise levels. Note that the L50 value (the sound level is exceeded 50 percent of the time) will seldom be the same as the equivalent noise level value for the period being analyzed because the equivalent noise level value is biased toward the high-dB contributions.

For relatively continuous noise conditions, the equivalent noise level value is often between the L30 and L40 values for the measurement period. If brief loud noises are common, the equivalent noise level value may be close to the L10 value for the measurement period.

Typical noise levels experienced by humans range from 40 dBA (equivalent to a quiet suburban area at night) to 85 dBA (the approximate noise level occurring 5 feet from a gas engine lawnmower). A change in noise level of 3 dBA may be perceptible to most listeners, whereas a change of 10 dBA may be perceived as a doubling of the noise level. Table 1 describes human loudness perception to a change in sound level. Table 2 provides a summary of the range of dBA levels typically encountered in the environment and examples of various noise sources for each range listed.

Ground-borne vibrations are measured in term of particle-velocity in inches per second (in/sec), with peak-particle-velocity (PPV) being the most critical for setting blasting vibration thresholds. Federal Transit Administration (FTA) (Quagliata et al. 2018) guidance expresses vibration levels in vibration dB (VdB), by converting vibration levels from PPV to VdB (the dB notation compresses the range of numbers required to describe vibration).

Characterization	Acoustic Energy Loss	Relative Loudness Change
0 dB	0	Reference
-3 dB	50%	Barely perceptible change
-5 dB	70%	Readily perceptible change
-10 dB	90%	Half as loud as original

Table 1	Human	Perception	of Sound		Change
Table I.	пишап	rerception	I OI SOUNU	Level	Change

Characterization	Acoustic Energy Loss	Relative Loudness Change
-20 dB	99%	¼ as loud as original
-30 dB	99.9%	¼ as loud as original
+10 dB	900% gain	Twice as loud as original

Table 2. Typical A-Weighted Decibel Levels

Characterization	dBA	Example Noise Conditions
Threshold of pain	130	Surface detonation, 30 pounds of TNT at 1,000 feet Peak noise 50 feet behind firing position, M-16 and M-24 rifles
Possible building damage	125	Mach 1.9 sonic boom under aircraft at 11,000 feet
Threshold of immediate noise-induced	120	Air raid siren at 50 feet
permanent threshold shift (permanent hearing damage)	115	Commercial fireworks (5-pound charge) at 1,500 feet F/A-18 aircraft takeoff with afterburners at 1,600 feet
	110	Peak noise 50 feet behind firing position, .22 caliber rifle Peak crowd noise, professional football game, inside open stadium
	105	Emergency vehicle siren at 50 feet Pile driver peak noise at 50 feet Chainsaw (two-stroke gasoline engine) at 3 feet
	100	Jackhammer at 10 feet 1-mile-range foghorn at 30 feet
Extremely noisy	95	Locomotive horn at 100 feet 2-mile-range foghorn at 100 feet Large woodchipper processing tree branches at 30 feet
8-hour Occupational Safety and Health Administration Standards (OSHA) limit	90	Leaf blower at 5 feet Jackhammer at 50 feet Dog barking at 5 feet
Very noisy	85	Gas engine lawnmower at 5 feet Bulldozer, excavator, or paver at 50 feet Personal watercraft at 20 feet Pneumatic wrench at 50 feet
	80	Forklift or front-end loader at 50 feet Motorboat at 50 feet Table saw at 25 feet Vacuum cleaner at 5 feet
Noisy	75	Idling locomotive at 50 feet Street sweeper at 30 feet Ocean beach with medium wind and surf
	70	Leaf blower at 50 feet 1-mile-range foghorn at 1,000 feet 300 feet from busy six-lane freeway
Moderately noisy	65	Typical daytime busy downtown background conditions

Characterization	dBA	Example Noise Conditions
		Typical gas engine lawnmower at 50 feet Ocean beach with light wind and surf
	60	Typical daytime urban mixed-use area conditions Normal human speech at 5 feet Typical electric lawnmower at 50 feet
	55	Typical urban residential area away from major streets Low-noise electric lawnmower at 65 feet
	50	Typical suburban daytime background conditions Open field, summer night with numerous crickets
Quiet	45	Typical rural area daytime background conditions Suburban backyard, summer night with several crickets
	40	Typical suburban area at night Typical whispering at 1 to 2 feet
	35	Quiet suburban area at night Quiet whispering at 1 to 2 feet, low background noise conditions
Very quiet	30	Quiet rural area, winter night, no wind Quiet bedroom at night, no air conditioner
	25	Computer fan running
Barely audible	20	Empty recording studio Remote area, no audible wind, water, insects, or animal sounds
	10	Audiometric testing booth
Threshold of hearing, no hearing loss	0	

Note: Indicated noise levels are average dBA levels for stationary noise sources or peak noise levels for brief noises and noise sources moving past a fixed reference point. Average and peak dBA levels are not 24-hour Ldn values. dB scales are not linear. Apparent loudness doubles with every 10-dBA increase, regardless of the initial dBA level. Most adults have accumulated some hearing loss and have a threshold of hearing above 15 dBA. In occupational hearing conservation programs, a threshold of hearing between 20 and 30 dBA is considered normal.

Regulations, Laws, and Guidance

No single regulatory agency or threshold is applicable to non-blasting noise generated by activities at the mine sites. The following guidelines are presented to establish an approximate framework within which appropriate thresholds can be selected. Land use compatibility thresholds of significance for mine construction and operations are most appropriately established with Ldn metric because the duration and schedule for these activities may vary during a day. In addition, many government agencies recognize and recommend the use of Ldn metric to establish impacts, including the Federal Interagency Committee on Urban Noise, the EPA for community noise exposure, Federal Aviation Administration for aircraft noise assessment, and U.S. Department of Housing and Urban Development (HUD).

Land use compatibility standards for transportation improvements that bring increased commuter and supply truck traffic are commonly expressed in A-weighted equivalent sound level Leq(h) or Leq(24). The FHWA and Arizona Department of Transportation (ADOT) use this metric, whereas the HUD applies the Ldn sound level metric to assess traffic noise impacts. Further, in transportation project with multiple noise sources (i.e., community, railroad, aircraft, and traffic), FHWA's Analysis and Abatement Guidance methodology recommends using the noise thresholds given in Leq(h) in the noise abatement criteria as Ldn. Again, this highlights the popularity of the Ldn metric.

Table 3 provides a summary of noise and vibration laws, regulations, policies, and plans at the Federal, State, and local level.

Laws, Ordinances, Regulations and Standards	Description	Applicability
"Procedures for Abatement of Highway Traffic Noise and Construction Noise" (23 CFR 772), FHWA (July 2010)	The main objectives of 23 CFR 772 are "to provide procedures for noise studies and noise abatement measures, to help protect public health and welfare, to supply noise abatement criteria, and to establish requirements for information to be given to public officials for use in the planning and design of highways approved pursuant to Title 23, United States Code."	According to FHWA regulations, a traffic noise impact occurs when the predicted future noise levels (i.e., generated by project activities plus other background sources) approaches or exceeds the noise abatement criteria for the specified land use activity category. In addition, an impact occurs when predicted future noise levels substantially increase (i.e., 5 to 15 dBA) over background noise levels. The FHWA/ADOT noise abatement criteria are shown in table 5 below.
"Highway Traffic Noise: Analysis and Abatement Guidance," FHWA (December 2011)	Provides guidance to the FHWA for applying 23 CFR 772 in the analysis and abatement of traffic noise.	If monitoring indicates noncompliance or suggests a potential noncompliance with local noise regulations at a facility, Resolution Copper will identify key contributors to the external noise and implement adequate engineering or institutional controls to ensure compliance.

Table 2 Federal	State and Lecal Polovant Law	s, Regulations, Policies, and Plans
Table 5. Feueral,	State, and Local Relevant Law	5, Regulations, Folicies, and Fians

the safest approach would limit a blast design to low frequency thresholds (at least until blast commences, at which time site-specific data can be collected and used to refine the blast	"Use of Explosives: Control of Adverse Effects" 30 CFR 816.67, U.S. Department of the Interior, Office of Surface Mining Reclamation and Enforcement (Effective January 19, 2017)	"Blasting shall be conducted to prevent injury to persons, damage to public or private property outside the blasting area, adverse impacts on any underground mine, and change in the course, channel, or availability of surface water outside the permit area."	to low frequency thresholds (at least until blast commences, at which time site-specific data
---	--	---	---

		Human response to ground-borne vibrations can also occur at levels considerably lower than those related to the effects on residential structures. Human response to vibration is dependent not only on the level of vibration, but also the event duration. USBM RI 8507 concludes that PPV at or below 0.5 in/sec occurring in 1-second event duration should be tolerable by 95% of people, but complaints resulting from house rattling, fright, being startled, and activity interference can be as high as 80%.
"ADOT Noise Abatement Requirements" (May 2017)	These requirements were developed in compliance to the CFR noise regulation at 23 CFR 772.	Resolution Copper must abide by the FHWA/ADOT noise abatement requirement outlined in table 5 below. Current baseline studies have demonstrated that Resolution Copper currently complies with all regulations. During construction and operations, the noise level is expected to increase from current baseline levels as activities requiring the use of heavy equipment increase.
"The Pinal County Excessive Noise Ordinance" Pinal County, No. 05306-ENO as amended by 031611-ENO-01 (2011)	Provides noise threshold limits for excessive noise levels at specified identified land use areas. Noise from properties may not exceed prescribed noise limits at the property boundary.	This noise ordinance is applicable to unincorporated Pinal County lands and would not apply to incorporated municipal lands such as the town of Superior. Applicable noise limits can be derived from table 6 below.

HUD Standards	HUD established noise	HUD's Ldn average limits can appropriately
	guidelines from a series of	assess impacts of mining activities because the
	surveys compiled in 1974 by	duration and schedule for these activities may
	the EPA ("Information on	vary during a day. The standards could also
	Levels of Environmental Noise	apply to assessing impacts from commuter and
	Requisite to Protect Public	supply truck traffic, although other Federal and
	Health and Welfare with an	State standards assess impacts using the
	Adequate Margin of Safety").	equivalent noise level metric.
	Most of the surveys indicated	
	two breakpoints in reported	
	interference and annoyance.	
	Below 55 Ldn sound level,	
	there was very little	
	interference (for example,	
	speech intelligibility was more	
	than 99 percent) and very little	
	resulting annoyance. Over 65	
	Ldn sound level, interference	
	and annoyance increase	
	rapidly. The EPA set 55 Ldn	
	sound level as the basic goal.	
	But other Federal agencies,	
	including HUD, in consideration	
	of their own program	
	requirements and goals as well	
	as the difficulty in achieving a	
	goal of 55 Ldn sound level,	
	have settled on 65 Ldn sound	
	level as their standard. At 65	
	Ldn sound level, activity	
	interference is kept to a	
	minimum, and annoyance	
	levels are still low. Table 7	
	below summarizes the HUD	
	acceptability standards.	

FTA 2018 Guidelines	The FTA 2018 guidelines	Converting PPV to VdB usually includes a "crest
	describe ground-borne PPV in vibration velocity levels in VdB. The dB notation is used to compress the range of numbers required to describe vibration. FTA guidelines state "PPV is generally accepted as the most appropriate descriptor for evaluating the potential for building damage. For human response, however, an average vibration amplitude is more appropriate because it takes time for the human body to respond to the excitation (the human body responds to an average vibration amplitude, not peak amplitude). Because the average particle velocity over time is zero, the root-mean- square (RMS) amplitude is typical used to assess human	factor" between 4 and 5, which is equivalent to 12 to 14 VdB. A crest factor is defined as the ratio peak amplitude (PPV) to RMS value, implying that RMS is always less than PPV. Table 10 shows that background vibration levels within residential areas are at or below 0.0013 PPV (50 VdB). Human perceptibility usually begins at 0.007 PPV (65 VdB) and strong annoyance response begins at 0.04 PPV (80 VdB). Non-blasting construction activities are another source of ground-borne vibrations that usually do not reach the levels that can damage structures. Table 11 provides reasonable estimates for source levels measured under a wide variety of construction activities and soil conditions. Though a single source level (representing the average of measured data points) is reported in the table below, considerable variation may be present at each site. FTA guidelines also define maximum ground vibration thresholds based on the type of construction (table 12).
	response."	
Occupational Safety and Health Administration Standards (OSHA) guidelines	State that worker protection against the effects of noise exposure shall be provided when the sound levels exceed standards when measured on the A scale of a standard sound level meter at slow response (ranging from 90 dBA for 8 hours to 115 dBA for 15 minutes). When employees are subjected to noise levels that exceed the prescribed levels, personal protective equipment shall be provided and used to reduce sound levels to within the levels of the table.	OSHA standards are most appropriately applied in assessing the impacts of mining operation and construction on mine personnel.

Mine Safety and Health	Delineate permissible exposure	Mine Safety and Health Administration
, Administration Occupational	limits for A-weighted noise	standards, as described in 30 CFR 62, are
Noise Exposure Standards	levels measured at slow	applicable specifically to miners for the
	response, between 80 dBA for	duration of their workday. The standards
	a 32-hour duration and 115	impose reporting requirements and
	dBA at a 15-minute duration.	maintenance of records on mine operators.
	The mine operator must	They are most appropriately applied in
	establish a system of	assessing the impacts of mining operations and
	monitoring that evaluates each	construction on mine personnel.
	miner's noise exposure	
	sufficiently to determine	
	continuing compliance 30 CFR	
	62 using a noise dosimeter. The	
	noise determination must be	
	made without adjustment for	
	the use of a hearing protector,	
	use a 90-dB criterion level with	
	a 5-dB exchange rate, and use	
	the A-weighting and slow	
	response setting.	
	The exchange rate is a measure	
	of how much noise level would	
	have to change to preserve a	
	selected measure of the risk of	
	hearing loss (90 dB for mining	
	activities) when the exposure	
	duration is doubled (or halved).	
	At no time can the noise level	
	exceed 115 dBA; therefore, a	
	maximum noise level metric is	
	appropriate in such cases.	

Table 4. Peak Overpressure (Airblast) Levels

Lower Frequency Limit of Measuring System, in Hertz (Hz), ±3 dB	Maximum Level, in dB
0.1 Hz or lower – flat response*	134 peak
2 Hz or lower – flat response	133 peak
6 Hz or lower – flat response	129 peak
C-weighted – slow response*	105 peak C-weighted dB

* Only when approved by the regulatory (permitting) authority.

 Table 5. Federal Highway Administration and Arizona Department of Transportation Noise

 Abatement Criteria

Activity				
Category	Leq(h)	L10(h)		Applicability
A	57 (56)	60	Exterior	Lands on which serenity and quiet are of extraordinary significance and serve an important public need and where the preservation of those qualities is essential if the area is to continue to serve its intended purpose
B [†]	67 (66)	70	Exterior	Residential
C ⁺	67 (66)	70	Exterior	Active sport areas, amphitheaters, auditoriums, campgrounds, cemeteries, daycare centers, hospitals, libraries, medical facilities, parks, picnic areas, places of worship, playgrounds, public meeting rooms, public or nonprofit institutional structures, radio studios, recording studios, recreation areas, Section 4(f) sites, schools, television studios, trails, and trail crossings
D	52 (51)	55	Interior	Auditoriums, daycare centers, hospitals, libraries, medical facilities, places of worship, public meeting rooms, public or nonprofit institutional structures, radio studios, recording studios, schools, and television studios
E [†]	72 (71)	75	Exterior	Hotels, motels, offices, restaurants/bars, and other developed lands, properties, or activities not included in A through D or F
F	_	_	_	Agriculture, airports, bus yards, emergency services, industrial, logging, maintenance facilities, manufacturing, mining, rail yards, retail facilities, shipyards, utilities (water resources, water treatment, electrical), and warehousing
G	-	-	-	Undeveloped lands that are not permitted

Sources: Table 1 from 23 CFR 772, Procedures for Abatement of Highway Traffic Noise and Construction Noise, FHWA (2010), and ADOT Noise Policy.

Note: Either Leq(h) or L10(h) (but not both) may be used on a project.

* The Leq(h) and L10(h) activity criteria values are for impact determination only and are not design standards for noise abatement measures.

+ Includes undeveloped lands permitted for this activity category.

Table 6. Noise Limits for Pinal County Land Use Zoning Classifications

Zoning District Classifications*	Leq Limits, dBA ⁺
Residential (CR-1A, CR-1, CR-2, CR-3, CR-4, CR-5, OS, MH, RV, MHP, PM/RVP, TR)	60 dBA (7 a.m.–8 p.m.) 55 dBA (8 p.m.–7 a.m.)
Commercial or business (CB-1, CB-2)	65 dBA (7 a.m.–10 p.m.) 60 dBA (10 p.m.–7 a.m.)
Industrial (CI-B, CI-1, CI-2)	70 dBA (7 a.m.–10 p.m.) 65 dBA (10 p.m.–7 a.m.)
Rural (CAR, SR, SR-1, SH, GR, GR-5, GR-10)	65 dBA (7 a.m.–9 p.m.) 60 dBA (9 p.m.–7 a.m.)

* Sound projected from property within one zoning district into property within another zoning district of a lesser sound level limit shall not exceed such lesser sound level limit.

Construction noise limits are not addressed in this noise ordinance; instead, it limits construction operation times to the following:

- Concrete work can occur from 5:00 a.m. to 7:00 p.m. from April 15 to October 15, and 6:00 a.m. to 7:00 p.m. from October 16 to April 14.
- Other types of construction can occur from 6:00 a.m. to 7:00 p.m. from April 15 to October 15, and 7:00 a.m. to 7:00 p.m. from October 16 to April 14.
- Construction and repair work in non-residential areas (i.e., 500 feet or more from a residential property) shall not be limited to 5:00 a.m. to 7:00 p.m.
- Weekends and holidays excluded construction or repair work shall be limited to 7:00 a.m. to 7:00 p.m. and concrete pouring shall be limited to 6:00 a.m. to 7:00 p.m.

⁺ The Leq limits specified are for a 2-minute time interval. Partial Leq levels may be obtained as necessary to assure an accurate indication of the representative sound environment for the site.

	Table 7.	Site	Accep	otability	Standards
--	----------	------	-------	-----------	-----------

Sound Level Considered As	Ldn, dB	Special Approvals and Requirements
Acceptable	Not exceeding 65*	None
Normally acceptable	Above 65, but not exceeding 75	Special approvals, [†] environmental review, [†] attenuation [‡]
Unacceptable	Above 75	Special approvals, [†] environmental review, [†] attenuation [‡]

* Acceptable threshold may be shifted to 70 dB in special circumstances pursuant to 24 CFR 51.105(a), HUD.

† See 24 CFR 51.104(b), HUD, for requirements.

‡ 5 dB additional attenuation required for sites above 65 dB but not exceeding 70 dB; 10 dB additional attenuation for sites above 70 dB but not exceeding 75 dB (24 CFR 51.105(a)).

Table 8. Maximum Ground-Borne Vibrations Based on Distance from Blast Site

Distance between Blast Site and Structure (feet)	Maximum Allowable PPV, in/sec*
0 to 300	1.25
301 to 5,000	1.00
5,001 and beyond	0.75

* Ground-borne vibration shall be measured as the particle velocity. Particle velocity shall be recorded in the three mutually perpendicular directions. The maximum allowable PPV shall apply to each of the three measurements.

Table 9. Maximum Ground-Borne Vibrations Based on Type of Structure and Frequency

Tune of Desidential Structure	Maximum Allowable PPV, in/sec		
Type of Residential Structure	At Low Frequency* (≤ 40 Hertz [Hz])	At High Frequency (> 40 Hz)	
Modern home, drywall interiors	0.75	2.0	
Older homes, plaster on wood lath construction for interior walls	0.50	2.0	

* All spectral peaks with 6 dB (50%) amplitude of the predominant frequency must be analyzed. Further, USBM RI 8507 provides an alternate ground-borne criterion to provide a smoother set of criteria to eliminate the sharp discontinuity in the frequency range and associated PPVs thresholds (i.e., 40 Hz in table 6). Interpreting data provided in appendix B of USBM RI 8507 suggests a maximum "safe" vibration level of 0.1884 PPV in/sec at 1 Hz, increasing to 0.5 PPV in/sec at 2.7 to 10 Hz for a plaster type construction or 0.75 PPV in/sec at 4 to 15 Hz for a drywall type construction, then increasing to 2.0 PPV in/sec at 40 to 100 Hz.

Table 10. Typical Levels of Ground-Borne Vibrations

Human/Structural Response	PPV, in/sec	Typical Sources 50 feet from Source
Threshold, minor cosmetic damage,	0.4	Blasting from construction projects,
fragile buildings	0.15	heavy tracked construction equipment
	0.2	
Difficulty with tasks such as reading a	0.13	Commuter rail, upper range
video display terminal screen	0.07	
Residential annoyance, infrequent	0.04	Rapid transit, upper range
events*	0.022	commuter rail, typical
Residential annoyance, typical events [†]	0.016	Bus or truck bump over
	0.013	rapid transit, typical
Approximate threshold of human	0.007	
perception	0.005	Bus or truck, typical
	0.0013	typical background vibration levels

Sources: FTA 2018 Guidelines (Quagliata et al. 2018) and Tetra Tech 2018.

Note: RMS vibration velocity in VdB reference to 10⁶ in/sec and includes a crest factor of 4 (i.e., representing a difference of 12 VdB).

* Frequent events are defined as more than 70 events per day from the same source.

† Infrequent events are defined as fewer than 30 events per day from the same source.

Table 11. Vibration Source Levels for Construction Equipment

Equipment		PPV, in/sec at 25 feet from source	VdB* at 25 feet from source
Pile driver (impact)	Upper range	1.518	112
	Typical	0.644	104
Pile driver (sonic)	Upper range	0.734	105
	Typical	0.170	93
Clam shovel drop (slur	ry wall)	0.202	94
Hydromill (slurry wall)	In soil	0.008	66
	In rock	0.017	75

Equipment	PPV, in/sec at 25 feet from source	VdB* at 25 feet from source
Vibratory roller	0.210	94
Hoe ram	0.089	87
Large bulldozer	0.089	87
Caisson drilling	0.089	87
Loaded trucks	0.076	86
Jackhammer	0.035	79
Small bulldozer	0.003	58

Source: FTA 2018 Guidelines (Quagliata et al. 2018).

Note: **Bolded** cells indicate the selected worst-case vibrating source for the non-blasting vibration analysis (see section 3.4 in the final EIS and Tetra Tech (2018)). * RMS vibration velocity in VdB reference to 10⁻⁶ in/sec and includes a crest factor of 4 (i.e., representing a difference of 12 VdB).

Table 12. Maximum Levels of Ground-Borne Vibrations

Building Category	PPV, in/sec	VdB [*]
I. Reinforced-concrete, steel or timber (no plaster)	0.5	102
II. Engineered concrete and masonry (no plaster)	0.3	98
III. Non-engineered timber and masonry buildings	0.2	94
IV. Buildings extremely susceptible to vibration damage	0.12	90

Source: FTA 2018 Guidelines.

* RMS vibration velocity in VdB reference to 10⁻⁶ in/sec and includes a crest factor of 4 (i.e., representing a difference of 12 VdB).

Key Documents and References Cited for Noise and Vibration

The following list is meant to highlight key process or analysis documents available in the project record. It should not be considered a full list of all available documentation considered within this process memorandum or the EIS analysis.

- AMEC Foster Wheeler Environment and Infrastructure. 2017. Noise and Vibration Assessment -Resolution Copper Underground to Surface Conveyor System - Apache Leap Special Management Area. TC160807. Prepared for Resolution Copper. Mississauga, Ontario: AMEC Foster Wheeler Environment and Infrastructure. February 10.
- ARCADIS U.S. Inc. 2015a. Lower Smelter Pond Noise Monitoring Report: Resolution Copper Mining, Superior, Arizona. Phoenix, Arizona: ARCADIS Design and Consultancy. December 15.
- ———. 2015b. West Plant Noise Monitoring Study, Superior, Arizona. Prepared for Resolution Copper Mining LLC. Ref: AZ001210.0033. Phoenix, Arizona: ARCADIS U.S. Inc. September 29.

Arizona Department of Transportation (ADOT). 2005. Noise Abatement Policy. Available at: https://azdot.gov/docs/default-

source/planning/noise_final_noise_abatement_policy_and_addendum_superceded.pdf?sfvr sn=2. Accessed August 7, 2019.

- Bolt Beranek and Newman. 1971. *Noise From Construction Equipment and Operations, Building Equipment, and Home Appliances*. Contract 68-04-0047. Washington, D.C.: U.S. Environmental Protection Agency, Office of Noise Abatement and Control. December 31.
- Canadian Transportation Agency. 2011. Railway Noise Measurement and Reporting Methodology. Ottawa, Canada: Canadian Transportation Agency. August.
- Ituarte-Villarreal, C. 2020. Resolution Mine Blasting data review. Personal communication from Carlos Ituarte-Villarreal, Air Quality and Modeling Specialist, SWCA, to Chris Garrett, Project Manager, SWCA. Email dated July 17, 2020.
- Knauer, H., S. Pederson, C.N. Reherman, J.L. Rochat, E.S. Thalheimer, M.C. Lau, G.G. Fleming, M.
 Ferroni, and C. Corbisier. 2006. *FHWA Highway Construction Noise Handbook*. Washington,
 D.C.: U.S. Department of Transportation, Federal Highway Administration; Boston,
 Massachusetts: Parsons Brinckerhoff Quade and Douglas; Harrisburg, Pennsylvania:
 Environmental Acoustics Inc.; Etobicoke, Canada: Catseye Services. August.
- Nicholls, H.R., C.F. Johnson, and W.I. Duvall. 1971. Blasting Vibrations and Their Effects on Structures. Bulletin 656. U.S. Department of the Interior, Bureau of Mines.
- Quagliata, A., M. Ahearn, E. Boeker, C. Roof, L. Meister, and H. Singleton. 2018. Transit Noise and Vibration Impact Analysis Manual. FTA Report No. 0123. Washington D.C.: Federal Transit Administration; East Longmeadow, Massachusetts, Cross Spectrum Acoustics. September.
- Resolution Copper. 2016. *General Plan of Operations Resolution Copper Mining*. Superior, Arizona. May 9.
- Rodrigues, A. 2018. Blasting Monitoring Review Memorandum. Resolution Copper Underground to Surface Conveyor System. Mississauga, Canada: Wood Environment and Infrastructure Solutions. September 7.
- Siskind, D.E., V.J. Stachura, M.S. Stagg, and J.W. Kopp. 1980. *Structure Response and Damage Produced by Airblast From Surface Mining*. Report of Investigations 8485. U.S. Department of the Interior, Bureau of Mines.
- Siskind, D.E., M.S. Stagg, J.W. Kopp, and C.H. Dowding. 1980. *Structure Response and Damage Produced by Ground Vibration From Surface Mine Blasting*. Report of Investigations 8507. U.S. Department of the Interior, Bureau of Mines.
- Tetra Tech. 2018. Sound and Vibration Analysis Report: Resolution Copper Mine Project Pinal County, Arizona. 114-571066A. Prepared for Resolution Copper. Boston, Massachusetts: Tetra Tech, Inc. August.
- ———. 2019. Sound and Vibration Analysis Report: Resolution Copper Mine Project, Pinal County, Arizona. Boston, Massachusetts: Tetra Tech Inc. April 12.
- Wood Environment and Infrastructure Solutions. 2018. Vibration Impact Assessment, Resolution Copper Underground to Surface Conveyor System, Superior, Arizona, USA. Project #: TC180802. Mississauga, Canada: Wood Environment and Infrastructure Solutions. July 13.