

RESPONSE TO COMMENT ON THE RESOLUTION COPPER PROJECT DEIS: ACTION ITEM AQ2 – 2017 AIR QUALITY DATA POTENTIAL TO INFLUENCE DEIS METEOROLOGICAL DATA AND BACKGROUND AIR QUALITY DATA

PREPARED FOR:	Mary Rasmussen, Project Manager, USDA Forest Service - Tonto National
	Forest
PREPARED BY:	D. Randall/M. Hampson
PROJECT NO.:	262-37
COPIES:	Resolution Copper
DATE:	May 31, 2020

1.0 Introduction

In the comments to the Resolution Copper Project's (Resolution) Draft Environmental Impact Statement (DEIS), the following comment #278-5 was provided by the Arizona Department of Environmental Quality (ADEQ):

Draft EIS Pg. 281 Background Concentrations

The most recent 3 years of [air quality] monitoring data show that the concentration levels in Year 2017 were higher than previous years. However, the NEPA Air Quality Impacts Analyses does not consider the 2017 monitoring data for the background concentrations determination. Would it be a concern?

The background values used in the DEIS were derived from data collected during 2015-2016 at monitoring stations located at the four functional areas of the Project: East Plant Site (EPS), West Plant Site (WPS), near the base of the proposed Alternative 2 tailings storage facility (Hewitt Station), and the Filter Plant Loadout Facility (FPLF). The monitoring stations were installed and operated by Air Sciences Inc. per criteria and procedures stipulated in a Resolution Copper Mine Monitoring Plan – Revision 3 (Air Sciences, 2016) approved by Pinal County Air Quality Control District (PCAQCD). The background values derived from the monitoring sites were submitted as part of Resolution's Final Air Quality Impacts Analysis Modeling Plan (Air

Sciences, 2018) (Modeling Plan). PCAQCD reviewed and approved the Modeling Plan, including the background values, in 2018. The background values for all pollutants, except CO, were developed from data monitored at the EPS and WPS locations. The two years of sitespecific meteorological data and ambient pollution levels are considered representative of the range of conditions for the site. The lengths of the data periods meet or exceed the recommendations as described in the Environmental Protection Agency's (EPA) Guideline on Air Quality Models. The DEIS background values and their forms are presented in Table 1.

	DEIS		
Pollutant	Background	Unit	Form of the Background Concentration
CO 1-hour	3.1	ppm ³	Highest from 3 years (2014-2016)
CO 8-hour	2.2	ppm ³	Highest from 3 years (2014-2016)
NO ₂ 1-hour	Profile	-	3-year average highest monthly and hour-of-day (2012/4 - 2015/3)
NO ₂ annual	1.6	ppb4	Highest from 3 years (2012/4 - 2015/3)
PM _{2.5} 24-hour	Profile ^{1,2}	-	24-hour averages paired with modeled impacts (2015-2016)
PM _{2.5} annual	Profile ^{1,2}	-	24-hour averages paired with modeled impacts (2015-2016)
PM ₁₀ 24-hour	Profile ^{1,2}	-	24-hour averages paired with modeled impacts (2015-2016)
PM ₁₀ annual	Profile ^{1,2}	-	24-hour averages paired with modeled impacts (2015-2016)
SO ₂ 1-hour	9.3	ppb4	3-year average 99 th percentile of daily maximum 1- hour values (2013, 2015, 2016)
SO ₂ 3-hour	11.7	ppb4	3-year maximum 3-hour average (2013, 2015, 2016)
SO ₂ 24-hour	4.2	ppb4	3-year maximum 24-hour average (2013, 2015, 2016)
SO ₂ annual	0.8	ppb4	3-year maximum annual average (2013, 2015, 2016)

Table 1. Resolution DEIS Background Values

¹ Concentrations monitored at two locations, East Plant and West Plant, and combined with modeled impacts via a pairedsums approach.

² At the direction of Pinal County Air Quality Control Division, and after review of the background concentrations and meteorology, some limited exceptional events were removed from the data period.

³ ppm = parts per million.

⁴ ppb = parts per billion.

In order to investigate if increased levels of ambient pollution in 2017 would be a concern, monitored concentrations from 2017 for applicable Ambient Air Quality Standards (AAQS) have been compared to the monitored concentrations from 2015-2016 and evaluated to determine if and how the 2017 concentrations could potentially affect model results presented in the DEIS and whether the potential changes to model results would have changed the conclusions in the DEIS. Table 2 summarizes the evaluation methods and findings for all the pollutants and averaging periods disclosed in the DEIS.

The details and results of these analyses are provided in the following sections. While the evaluation indicated occurrences of increased pollutant concentrations in 2017 (including elevated concentrations that could have been influenced by exceptional events), the analyses indicate that accounting for the increased concentrations in 2017 would not result in modeled plus background concentrations greater than the AAQS for any pollutant. The background values and meteorological periods used in the DEIS sufficiently represent the range of representative conditions for the Project area, including the conditions in 2017 that were evaluated to respond to this comment.

	Polllutant	Averaging Period	Section in Memo	Evaluaton Method	Summary of Results	Notes
	Ozone	8-hour	1.0	No additional evaluation.	N/A	Not utilized in MERP analysis.
T	СО	1-hour	2.1	Compared 2017 value to DEIS background.	2017 value < DEIS Background	
ls LESS ground	со	8-hour	2.1	Compared 2017 value to DEIS background.	2017 value < DEIS Background	
' Value EIS Bacl	NO2	Annual	2.1	Compared 2017 value to DEIS background.	2017 value < DEIS Background	
2017 than Df	SO2	3-hour	2.1	Compared 2017 value to DEIS background.	2017 value < DEIS Background	
	SO2	24-hour	2.1	Compared 2017 value to DEIS background.	2017 value < DEIS Background	
	Ozone	1-hour	3.1	Statistical comparision of quarterly 1-hr ozone data for 2015-2017.	Range of 1-hr ozone in 2015-16 representative of range of 1-hr ozone in 2017 data	1-hr ozone paired in time with met data for NO2 1-hr and annual AERMOD modeling (OLM).
	NO2	1-hour	3.1	Comparison of NO $_2$ Profiles and added 2017 increase to DEIS results.	Increase does not result in concentrations >= AAQS. No change in findings presented in DEIS.	Time varying profiles were used for background.
entrations d	PM2.5	Annual	2.2.2	Modeled impact + background + increase with inclusion of 2017 data.	Increase does not result in concentrations >= AAQS. No change in findings presented in DEIS.	
creased Conc IS Backgroun	PM10	Annual	2.2.2	Modeled impact + background + increase with inclusion of 2017 data.	Increase does not result in concentrations >= AAQS. No change in findings presented in DEIS.	
a Indicatee In elative to DE	SO2	Annual	2.2.1	Modeled impact + background + increase with inclusion of 2017 data.	Increase does not result in concentrations >= AAQS. No change in findings presented in DEIS.	
2017 Data R	SO2	1-hour	2.2.1	Modeled impact + background + increase with inclusion of 2017 data.	Increase does not result in concentrations >= AAQS. No change in findings presented in DEIS.	
	PM2.5	24-hour	3.2	Compared the range of 2015-16 data to the range of 2017 data.	Increase does not result in concentrations >= AAQS. No change in findings presented in DEIS.	Paired sums approach was used.
	PM10	24-hour	3.2	compared the range of 2015-16 data to the range of 2017 data	Increase does not result in concentrations >= AAQS. No change in findings presented in DEIS.	Paired sums approach was used.

Table 2 - Summary of Methods to Evaluate 2017 Data Affecting 2015-2016 Meteorological and Background Data Period

2.0 Pollutants/Averaging Periods for Which Basic Analysis Reveals 2017 Monitoring Data Present No Concern to DEIS Background

2.1 – 2017 Value is Less than DEIS Background

For CO 1-hour and 8-hour, NO₂ annual, and SO₂ 3-hour and 24-hour, the 2017 data indicated reduced levels relative to the DEIS background. Therefore, inclusion of the 2017 data would not alter the conclusions of the DEIS for these pollutants. No further evaluations were performed and the data comparisons for these pollutants and averaging periods are shown in Table 3.

	DEIS	2017	
Pollutant	Background	Value	Unit
CO 1-hour	3.1	2.4	ppm
CO 8-hour	2.2	1.8	ppm
NO ₂ annual	1.6	0.8	ppb
SO ₂ 3-hour	11.7	10.5	ppb
SO ₂ 24-hour	4.2	3.31	ppb

Table 3. Comparison of DEIS Background Values with 2017 Concentrations

2.2 Adding Potential Increase due to 2017 Data to DEIS Modeled Impact + Background is Less than Ambient Air Quality Standard

2.2.1 SO2 1-hour and Annual

For the SO₂ 1-hour and annual AAQS, the 2017 values are 5.4 ppb and 0.1 ppb higher than the DEIS backgrounds, respectively. By adding these increases to the appropriate total concentrations (modeled project impacts + background) for the worst-case alterative as from the DEIS, 2017-included total concentrations (modeled project impacts + background + increase) are compared to the AAQS. The DEIS total concentrations, increases, and 2017-included total concentrations are presented in Table 4.

Table 4. 2017-Included SO ₂ 1-Hour and Annual Concentration
--

	DEIS 2017 Total Increase		2017-Included Total	AAQS	Unit
SO ₂ 1-hour	44.7	5.4	50.1	74.8	ppb
SO ₂ annual	1.1	0.1	1.2	30.5	ppb

The 2017-included total concentrations are less than the AAQS. Therefore, consideration of the 2017 data would not change the conclusions of the DEIS for the SO₂ 1-hour and SO₂ annual standards.

2.2.2 PM2.5 Annual and PM10 Annual

The modeled PM_{2.5} and PM₁₀ annual impacts in the DEIS were combined in a paired-sums approach with daily background concentrations from the 2015-2016 monitoring period. Even though the 2015-2016 data excluded some limited exceptional events (as determined by PCAQCD), the 2017 period did not exclude any exceptional events and all 2017 data and total concentrations were included. PM_{2.5} and PM₁₀ were monitored at two locations: East Plant and West Plant. The 2017 increases were calculated for changes from both locations and combined with the worst-case total concentrations from the DEIS. For the estimate of the PM₁₀ annual 2017-included concentration, the maximum annual concentration from 2015 and 2016 was compared to the maximum annual concentration of 2015, 2016, and 2017. For the estimate of the PM_{2.5} annual 2017-included concentration, the average annual concentration from 2015 and 2015 and 2016 was compared to the average annual concentration of 2015, 2016, and 2017. The comparisons of the annual backgrounds are presented in Table 5.

Pollutant	Monitor Site	2015	2016	2017	Background (2015-2016)	Background (2015-2017)	Unit
PM _{2.5} annual	East Plant	3.3	4.0	4.2	3.65	3.83	µg∕m³
PM _{2.5} annual	West Plant	4.2	4.7	4.5	4.45	4.47	µg∕m³
PM ₁₀ annual	East Plant	12.5	15.7	18.0	15.7	18.0	µg∕m³
PM_{10} annual	West Plant	12.6	18.7	18.1	18.7	18.7	µg/m³

Table 5. PM_{2.5} and PM₁₀ Annual Concentrations for the 2015-2016 and 2015-2017 Periods

The DEIS total concentrations, 2017-included total concentrations, and comparisons to the AAQS are presented in Table 6.

Table 6. 2017 Included PM_{2.5} and PM₁₀ Annual Concentrations

Pollutant	Monitor Site	DEIS Total Concentration	2017 Increase	Included Total Concentration	AAQS	Unit
PM _{2.5} annual	East Plant	6.0	0.18	6.18	12	µg∕m³
$\mathrm{PM}_{2.5}$ annual	West Plant	6.0	0.02	6.0	12	µg∕m³
PM ₁₀ annual	East Plant	24.5	2.3	26.8	50	µg∕m³
PM ₁₀ annual	West Plant	24.5	0.0	24.5	50	µg∕m³

The 2017-included total concentrations are less than the applicable AAQS. Therefore, inclusion of the 2017 data would not change the conclusions of the DEIS regarding the $PM_{2.5}$ and PM_{10} annual standards.

3.0 Pollutants/Averaging Periods for Which Detailed Analysis Reveals 2017 Data Present No Concern to DEIS Background

3.1 NO₂ 1-hour Profiles and Hourly Ozone Data (Used for OLM)

For the NO₂ 1-hour modeling, a three-year average background profile of the maximum hourly concentrations by month and hour-of-day (MHOD) was included in the near-field AERMOD modeling. The period of the data included was April 2012 through March 2015. The profile from the AQIA used for the DEIS modeling is presented in Table 7.

Month	Hours	Hourly NO2 Concentration (ppb)							
	1 - 8	4.4	2.5	2.9	3.6	3.0	3.0	4.4	8.1
January	9 - 16	8.6	5.4	4.5	5.1	5.0	3.7	3.5	4.2
	17 - 24	3.9	5.3	10.5	8.0	4.0	4.0	3.6	4.8
	1 - 8	3.4	3.0	4.2	4.4	4.2	3.9	4.0	7.7
February	9 - 16	7.1	8.4	4.7	4.0	4.4	3.9	2.4	2.3
5	17 - 24	2.5	3.0	4.7	4.4	4.7	3.7	3.7	4.3
	1 - 8	2.4	3.2	2.3	2.2	2.1	3.2	2.6	3.3
March	9 - 16	5.8	2.5	5.6	1.7	1.5	1.2	1.1	2.0
	17 - 24	1.2	1.0	1.3	1.5	1.6	2.5	3.7	3.2
	1 - 8	7.8	6.3	9.1	7.1	5.9	9.1	6.6	9.3
April	9 - 16	4.5	3.3	2.4	1.3	2.1	1.6	2.2	1.5
	17 - 24	2.1	2.0	1.7	3.0	5.2	5.8	10.5	7.9
	1 - 8	6.8	6.3	9.9	10.6	5.5	6.2	8.8	12.2
May	9 - 16	4.5	4.3	3.6	2.0	1.2	1.3	1.1	0.8
	17 - 24	0.8	1.7	2.4	1.3	1.8	2.7	3.5	5.9
	1 - 8	4.1	4.8	5.7	5.3	6.6	8.7	6.9	5.0
June	9 - 16	3.0	2.7	2.5	2.0	1.0	1.3	0.9	1.0
	17 - 24	0.5	0.4	0.3	0.4	1.4	3.3	7.6	5.1
	1 - 8	4.1	4.0	4.4	3.7	7.2	5.8	4.4	3.7
July	9 - 16	2.3	3.8	0.8	1.2	0.9	0.8	0.9	0.6
	17 - 24	0.6	1.9	3.3	2.5	2.6	3.7	3.0	4.9
	1 - 8	6.9	6.2	7.0	5.2	4.6	5.8	11.8	6.0
August	9 - 16	4.4	6.4	2.8	2.5	1.6	2.6	1.6	3.3
	17 - 24	0.5	0.4	1.3	3.7	2.7	2.5	6.6	9.0
	1 - 8	6.0	6.6	7.9	8.0	6.3	12.6	7.0	5.2
September	9 - 16	6.1	1.5	1.8	0.6	0.8	1.3	1.7	1.0
	17 - 24	0.6	1.3	9.5	2.3	3.9	5.3	6.6	9.3
	1 - 8	7.4	8.7	12.0	7.7	7.8	10.7	6.6	7.6
October	9 - 16	10.1	4.0	4.0	3.6	3.7	3.3	2.8	2.8
	17 - 24	3.0	2.2	3.8	4.9	5.6	7.9	6.7	8.0
	1 - 8	8.4	8.8	7.1	8.6	7.4	8.4	10.3	11.4
November	9 - 16	8.5	6.1	8.4	5.8	4.4	4.1	4.9	4.7
	17 - 24	4.5	6.8	6.2	5.8	6.7	6.6	7.0	9.1
	1 - 8	10.3	9.3	12.0	12.3	7.1	8.5	7.9	8.2
December	9 - 16	8.4	5.7	5.1	4.6	3.4	3.3	3.0	3.9
	17 - 24	3.7	5.3	6.2	5.0	6.0	8.5	7.2	13.1

Table 7. DEIS NO₂ 1-Hour Background Profile

A similar profile was constructed that incorporated the 2017 hourly NO2 data. This profile is four-year average background profile constructed by taking the weighted average of the three-year profile with the 2017 profile. The four-year background profile is presented in Table 8.

Month	Hours		Hourly NO2 Concentration (ppb)						
	1 - 8	4.2	2.6	3.0	3.4	2.7	3.8	4.8	8.1
January	9 - 16	7.4	5.0	3.8	4.3	4.7	3.2	3.0	3.4
	17 - 24	3.7	4.3	8.7	6.7	3.3	4.1	3.6	4.0
	1 - 8	3.5	3.2	4.3	5.6	4.2	3.8	4.1	8.0
February	9 - 16	8.2	7.1	4.3	3.6	4.2	3.5	2.3	2.4
, i i i i i i i i i i i i i i i i i i i	17 - 24	2.4	2.8	4.3	4.2	4.5	3.9	4.0	4.5
	1 - 8	2.7	3.5	3.0	2.1	2.3	3.7	2.7	4.5
March	9 - 16	5.7	3.1	5.5	2.3	2.6	1.7	1.3	1.9
	17 - 24	1.4	1.2	1.6	2.0	1.9	2.5	3.9	3.5
	1 - 8	11.7	8.5	8.5	7.0	6.3	9.3	9.8	12.5
April	9 - 16	6.4	4.1	2.8	1.9	2.8	2.4	2.6	1.9
	17 - 24	2.6	2.6	2.1	5.6	6.6	5.5	9.7	8.4
	1 - 8	5.8	5.9	8.1	8.5	4.8	5.6	7.6	11.0
May	9 - 16	4.6	4.0	3.0	1.8	1.3	1.3	1.2	1.0
	17 - 24	1.0	1.7	2.4	1.6	2.5	3.2	3.8	5.3
	1 - 8	6.4	5.0	4.8	4.7	6.2	7.1	8.3	4.9
June	9 - 16	3.6	3.3	2.2	2.1	1.2	1.3	1.1	1.0
	17 - 24	0.7	0.6	0.6	1.9	2.6	3.5	6.5	5.0
	1 - 8	4.4	4.5	4.7	4.1	7.8	5.5	4.7	4.5
July	9 - 16	2.6	4.3	1.4	1.2	1.0	0.9	1.0	0.7
	17 - 24	0.7	1.5	3.2	3.6	3.1	4.1	3.4	5.1
	1 - 8	7.8	7.1	8.2	6.9	6.4	8.5	13.7	7.7
August	9 - 16	4.5	6.5	3.9	2.8	1.6	3.1	2.2	3.2
	17 - 24	0.8	1.0	1.2	3.6	6.6	4.7	11.0	10.9
	1 - 8	7.8	8.0	11.4	8.8	9.2	13.0	8.4	7.2
September	9 - 16	6.2	2.8	2.4	0.9	1.1	1.3	1.5	0.9
	17 - 24	0.6	1.7	7.6	2.9	4.5	6.7	10.1	9.8
	1 - 8	10.2	20.1	17.9	10.6	11.2	15.5	10.8	10.2
October	9 - 16	9.5	4.0	3.9	3.2	3.3	3.1	2.8	3.2
	17 - 24	2.8	2.2	3.6	4.3	5.2	8.9	9.1	11.3
	1 - 8	8.2	9.8	8.1	8.9	6.7	8.2	9.3	10.3
November	9 - 16	9.2	5.5	7.3	5.6	4.6	3.7	4.2	4.0
	17 - 24	4.6	7.1	6.4	6.2	6.8	7.2	7.8	8.4
	1 - 8	11.3	10.3	10.3	10.8	6.7	9.0	7.6	7.3
December	9 - 16	8.1	5.6	5.6	4.3	4.2	3.3	3.4	4.2
	17 - 24	4.6	5.2	6.1	6.1	6.0	10.7	9.1	12.0

Table 8. 2017-Included NO₂ 1-Hour Background Profile

The 2017-included profile is generally higher than the DEIS profile, especially during the morning hours of October. An estimate of total concentrations including the 2017 data in the profile was calculated by adding the maximum profile increase, 11.4 ppb for the MHOD of October at 2 a.m., to the worst-case total concentration in the EIS. The estimate of 2017-included total impacts is presented in Table 9.

Pollutant	DEIS Total Concentration	2017 Increase	2017-Included Concentration	AAQS	Unit
NO ₂ 1-hour	79.7	11.4	91.1	100.0	ppb

Table 9. Estimate of 2017-Included Total NO₂ 1-Hour Concentrations

The estimated NO₂ 1-hour total concentration, with the maximum increase between the profiles, is less than the AAQS. Therefore, the inclusion of the 2017 monitoring data is unlikely to influence the conclusions presented in the DEIS.

Another aspect of the NO₂ modeling with AERMOD is the use of the Ozone Limiting Method (OLM). The OLM option in AERMOD requires an ozone concentration or concentration profile in order to provide estimates of NO_x conversion to NO₂. For the DEIS analysis, hourly ozone values paired in time with meteorological data (2015-2016) were used. The highest hourly concentration occurred in the second quarter of 2015, and average values are similar across the three years. The ranges and average hourly ozone concentrations from 2015, 2016, and 2017, summarized by quarter for the three years, are presented in Figure 1. An analysis of the hourly values for 2015, 2016, and 2017 indicate that the range of hourly ozone values in 2015 and 2016 sufficiently represents the range of values in the 2017 data. Incorporating the 2017 hourly ozone values in the modeling analysis using the OLM option would have had no measurable effect on NO₂ modeling and, therefore would not change the conclusions of the DEIS regarding the NO₂ standards.

Figure 1. Summary by Quarter of Hourly Ozone Data for 2015-2017

3.2 PM₁₀ and PM_{2.5} 24-Hour Concentrations 3.2.1 Comparison of Monitored Concentrations

PCAQCD reviewed and approved the Modeling Plan which included the paired-sums approach for incorporating background concentrations of PM_{10} 24-hour and $PM_{2.5}$ 24-hour. The paired-sums approach involves pairing calendar day-specific 24-hour monitored concentrations with modeled 24-hour impacts for the same calendar day. The paired-sums approach necessitates that the ambient monitoring data and meteorological data periods align.

As part of PCAQCD's review process for the paired-sums approach, a detailed analysis was performed to identify and remove a few limited PM concentrations determined to be influenced by exceptional events (e.g., regional dust storms) from the PM_{10} and/or $PM_{2.5}$ monitoring data sets. Elevated PM concentrations for three 24-hour periods in the 2015-2016 data sets were determined to be influenced by exceptional events and were flagged and removed from the PM_{10} and $PM_{2.5}$ background datasets used for the modeling analysis. The flagged and removed 24-hour concentrations were replaced with gap-filled data according to monthly PM_{10} and $PM_{2.5}$ profiles developed from the monitoring data and in consultation with PCAQCD.

For this evaluation of whether the 2017 $PM_{2.5}$ and PM_{10} 24-hour concentrations would cause concern about using the 2015-2016 data, it is important to note that the 2017 data have not been vetted through the exceptional events process so elevated 24-hour concentrations of PM_{10} and $PM_{2.5}$ that may been influenced by exceptional events have not been flagged and removed from the 2017 data.

Summary statistics from the 2015, 2016, and 2017 data sets are provided in Table 10. Concentrations for each station and pollutant are summarized according to the statistical form of the AAQS for each year. Additionally, the multi-year form of the standard is calculated for the two-year DEIS data period (2015-2016) as well as for the three-year period including 2015-2017.

Pollutant	Site	Single Year Rank	2015	2016	2017	Multi- Year Form	2015-16	2015-17	Units
PM_{10} 24-hour ¹	East Plant	2 nd High	44.0	54.1	110.0	N+1 ²	54.1	91.2	µg∕m³
PM_{10} 24-hour ¹	West Plant	2 nd High	67.1	71.2	117.0	N+1 ²	71.2	81.2	µg∕m³
PM _{2.5} 24-hour	East Plant	8 th High	8.2	9.6	11.8	Average 8 th High	8.9	9.9	µg∕m³
PM _{2.5} 24-hour	West Plant	8 th High	12.6	9.8	14.0	Average 8 th High	11.2	12.1	µg∕m³

Table 10. Summary of PM_{2.5} and PM₁₀ Single- and Multi-year Concentrations (2015-2017)

¹ The PM₁₀ 24-hour standard is based on PM₁₀ concentrations converted to Standard Temperature and Pressure (STP).

² The form of the PM₁₀ 24-hour concentrations is the rank N+1 concentration, where N is the number of years of data.

It is evident from the summary values in Table 10 that the potential influence of exceptional events on the most elevated concentrations collected during the 2017 data period could have a substantial effect on 2nd high 24-hour concentrations. Time-series plots of the 24-hour values from 2015-2017 for the East Plant and West Plant monitoring stations are provided in Figure 2 and Figure 3, respectively. Several outlying high concentrations, that could, with additional investigation, prove to be influenced by exceptional events, are present in the 2017 data set. Flagging and removing one or more elevated 24-hour 2017 concentrations determined to be influenced by an exceptional event(s) would reduce the conservative 2015-17 values of the multi-year estimated background values presented in Table 10.

Figure 3. Time-series of West Plant PM_{2.5} and PM₁₀ 24-hour Concentrations

After consideration of the 2017 data, the increase of pollutant concentrations from the 2015-2016 background values to the estimated 2015-2017 background was determined to be a conservative estimate of the effect of elevated 2017 concentrations on the DEIS background PM_{10} and $PM_{2.5}$ data Estimates of $PM_{2.5}$ and PM_{10} 24-hour concentrations adjusted by the potential increases indicated by the 2017 data are provided in Table 11.

Pollutant	Monitor Site	DEIS Total Concentration	2017 Increase	2017-Included Concentration	AAQS	Unit
PM ₁₀ 24-hour	East Plant	99.5	37.1	136.6	150	µg∕m³
PM_{10} 24-hour	West Plant	99.5	10.0	109.5	150	µg∕m³
PM _{2.5} 24-hour	West Plant	17.8	0.92	18.72	35	µg∕m³
$PM_{2.5}$ 24-hour	West Plant	17.8	0.92	18.72	35	µg∕m³

Table 11. Estimates of 2017-Included Total Concentrations for PM2.5 and PM10 24-Hour

The 2017-included total concentrations are less than the applicable AAQS. Therefore, inclusion of the 2017 data would not change the conclusions of the DEIS regarding the $PM_{2.5}$ and PM_{10} 24-hour standards.

3.2.2 Comparison of Distribution of PM Concentrations Across Wind Directions

For a paired-sums approach, the relationships between the wind data and the particulate values were evaluated to verify that the high particulate concentrations in the 2017 data set were associated with similar winds in the 2015 and 2016 data sets. Hourly particulate concentration frequencies were aggregated by wind direction for each monitoring site and pollutant. East Plant particulate concentrations were paired with East Plant winds, and West Plant particulate concentrations were paired with West Plant winds. The resultant concentration frequency diagrams of PM_{2.5} and PM₁₀ are provided in Figure 4 and Figure 5, respectively. These graphical representations of the distribution of PM concentrations and wind data are very similar across the three years for PM₁₀ and PM_{2.5}. The similarity suggests that the 2015-2016 distributions of PM and wind data sufficiently capture the distributions of the 2017 data.

Figure 4. Hourly PM_{2.5} Frequency Diagrams, 2015-2017

Figure 5. Hourly PM₁₀ Frequency Diagrams, 2015-2017

3.3 Comparisons of 2015, 2016, and 2017 Meteorological Data

Comparisons are provided for the East Plant, West Plant, and Hewitt Station sites. Summary data ranges and averages by quarter for temperature and pressure are provided in Figure 6 and Figure 7, respectively. Wind frequency diagrams are provided in Figure 8. The average values are similar across the three years, and the range of 2017 conditions is reasonably represented by the 2015 and 2016 data period. The wind frequency diagrams indicate that hourly winds during 2017 were similar to winds during 2015 and 2016. These similarities across all meteorological parameters indicate that the 2015-2016 meteorological period used for the DEIS modeling analysis sufficiently captures the range of meteorological parameters measured in 2017.

Figure 6. Summary by Quarter of 2015, 2016, and 2017 Temperatures

Figure 8. Wind Frequency Diagrams for 2015, 2016, and 2017