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BODY WAVES IN A LAYERED ANELASTIC SOLID 

BY w. SILVA 

ABSTRACT 

A formulation extending the Haskell-Thompson matrix method to include the 
effects of anelastic attenuatio_n is presented. The formulation is exact in that no 
low-loss approximations are made. Consideration is given to nonparallel 
propagation and attenuation directions with corresponding velocity anisotropy. 
Examples are presented for models representing soils, the crust, and the core­
mantle boundary. 

INTRODUCTION 

With the increase in the number of stations and the higher degree of standardization in 
recent years, more use is being made of seismic amplitude data. This has contributed to an 
increased regionalization of structure down to the core-mantle boundary. In order to 
accurately represent this fine structure in applying corrections or to resolve it in inverting 
data, more use is being made of the higher frequencies where the attenuation effects are 
most significant. It is therefore becoming increasingly important to consider nongecimetri­
cal attenuation exactly. Past approximations in dealing with loss (Knopoff, 1964) must be 
replaced with exact formulations (Lockett, 1962; Cooper, 1967; Borcherdt, 1971; Buchen, 
1971 ). 

In order to consider the effects of a vertical variation in attenuation as well as velocity 
and density on body waves, an extension of the Haskell-Thompson (Haskell, 1953) matrix 
formulation using an exact theory is presented. In particular, the restricted problem of 
anelastic layers on an elastic half-space is considered, but the formulation can easily be 
extended to include an attenuating half-space. Previous consideration. of the problem 
(Kanai, 1950) dealt with normally incident homogeneous waves with viscoelasticity of the 
Voigt type. The present treatment considers incident P or SV waves at arbitrary angles 
and a general constitutive relation. 

FORMULATION 

The most general form of a linear constitutive relation is Boltzman's superposition 
principle (Gurtin and Sternberg, 1962) which, written in terms of the tensorial relaxation 
function r(t) is 

Pij(t)= f-oo rijk1(t-r)dak1(r) 

= rijkl(t) * 1h:k1 (t) 
(1) 

where P;/t) and aii(t) are the time-dependent stress and strain tensors and the symbol * 

denotes the Stieltjes convolution. 
Assuming the medium to be isotropic and homogeneous, equation (1) may be broken 

up into bulk and shear components and written as 

Pij(t) = 2µ(t) * dcii(t) 

pkk(t)= 3K(t) * dt:kk(t) 

ijj 

(2) 

where µ(t) and K(t) are the relaxation functions in shear and bulk. Assuming that the 
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particle displacements u; are infinitesimal,, the strain can be written 

8 .. =-2
1 [u .. + u . . J 

lJ l.J ),l 

and, neglecting body forces, the linear momentum equation is 

pij,j(t) = pii; (3) 

where p is the medium density. Substitutmg equation (2) into equation (3) yields the 
equation of motion. 

[K(t)+j'µ(t)] * IV(V · du)J-[µ(t) *[V x (V x du)] =pii. (4) 

Since the convolutions make the time-domain representation quite intractable, it is 
customary to take the Fourier transform of equation ( 4 ). Restated in terms of transformed 
variables, equation (4) becomes 

where 

[K +1,u]V(V · ii)-[ji]V x (V xii)= - pw2 ii 

K = iwJ".:' .,- K(t) e-iwt dt, 

U = s~ 
00 

ue•wt dt. 

(5) 

At this point it is convenient to introduce the transformed P and S displacement 
potentials in terms of Helmholtz's relation 

(6) 

Substituting equation (6) into equation (5) results in the familiar Helmholtz equations 
for the P and S potentials JJ and ,ti. 

[V2 +K/]JJ =0, [V2 +K/]i]J=O (7) 

where 

2 w
2 

2 p 
Kp =-=w 

&2 K(w)+j'µ(w) 
2 

K z =C!!_=wz_P_ 
s pz µ(w) 

(8) 

Note that the terms &2 and "/]2 are in general frequency-dependent in both real and 
imaginary parts. 

MEDIUM PARAMETERIZATION 

Let us now consider, for demonstration purposes, the case of S waves. A general 
solution for ijJ in equation (7) is 

i/i=i/i(co)exp(-iK5 ·X) (9) 

where Ks is a complex vector with the real and imaginary parts having different directions 
in general. 

Ks=Ps-iAs 

K/ =Ks· Ks=IPsl 2 -1Asl2 _.:i2Ps · As 

P s ·As= IP sl IAsl cos (ys). 

(10) 

(11) 

(12) 
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Psis the propagation vector such that w/lP sl is the phase velocity and As the attenuation 
vector such that exp (-As· X) represents the spatial decay of the potential. The nonzero Ys 
gives rise to the inhomogeneous waves (Borcherdt 1971, Buchen 1971, Cooper 1967, 
Lockett 1962) whose amplitude varies (monotonically) along a ~ave front. It becomes 
n,ecessary now to specify the three parameters !Psi, IAsl, and Ys in terms of material 
properties and medium geometry. 

Writing the transformed shear modulus µ(cu) in equation (8) in terms of a real part, 
µR (cu), and an imaginary part, µ1(w ), the quality factor Qs for shear waves is defined as 

-1 µ!(CV) 1 /1£ 
Qs =~-=-~ 

µR(w) 2n E 
(13) 

where E is the peak energy density stored and /1£ is the energy lost, both per cycle 
(Borcherdt. 1971, 1973). Ks 2 may be written in the following form 

(14) 

where vs is the homogeneous wave velocity of the medium. Using (14) to invert (11) and 
(12) we arrive at convenient expressions for I Psi and IAsl 

I 1

2 (V2 1 J . -2 - 2 
Ps = 2 _,(1+ l+Qs cos. (ys)) 

vs I +Jl + Q5 -

(15) 

I I
? (V2 1 J -2 - 2 A5 -=-----, (-1+ l+Qs COS (}'s)) 

vs- I+JI+Q5 -
2 

(16) 

with similar expressions for P waves using the P parameters. In the low-loss 
approximation for homogeneous waves (ys=O, Qs~ 1) equation (16) reduces to the well­
known expression 

CV JAi=-·-. 
2vsQs 

Wlien dealing with highly dissipative materials the vectorial nature of A must be 
considered. The problem is that for a given incident wave (direction of both P and A 
specified) onto a plane boundary between two viscoelastic media, the direction of both P 
and A must be determined for the P and SV reflected and transmitted waves. These 
directions can be uniquely determined by applying the usual boundary conditions at a 
welded interface (or free surface for half-space problems). This results in an extended form 
of Snell's law in that Ax as well as P x must be continuous (Borcherdt 1973, Lockett 1962). 
In the restricted case considered in this paper where the incident medium is elastic, Ax is 
zero everywhere. This enables elastic layers to be interbedded with absorbing media. 

EXTENSION OF THE HASKELL-THOMPSON FORMULATION FOR LAYERED MEDIA 

The following development follows closely that of Haskell (1953, 1962). However, 
displacement potentials are used here. Referring to Figure 1 for coordinate reference; we 
can write the solutions to equation (7) in the usual form 

<p = [AP exp (iKpzZ) + BP exp ( - iKp2 Z)] exp ( - iKp;){) 

tft=t/t,.= [As exp UKszZ)+ Bsexp (-iK 8 zZ)] exp (-iK8,X) (17) 
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where A, Bare complex and in general frequency-dependent amplitudes. From equation 
(10) 

In the simple case we are considering (incident elastic wave) we have Ax= 0, and from the 
boundary conditions Ax must be zero everywhere. Thus K x remains a real quantity. If the 
incident medium were anelastic, the incident attenuation direction would have to be 
specified along with the propagation direction, and then Az in each layer would adjust 
itself to be consistent with a continuous Ax and a specifiedKi.s for that layer (see equation 
14). Choosing Ap and A8 as upgoing potentials (negative z direction) we can write for each 
layer 

Kz =principal value (K2 -K/ )112
. (18) 

X 
z 

2 

----------------------·2 

----------------------,n-2 

r 
Zn- 1 

~l=------------lfl'.'-------------n~ 

n-1 

FIG. 1. The problem is uniquely specified given VP, V,, Qp, Q5, p, and Z for each layer and given nAP s (incident 
P- or S-wave potential amplitude) in the elastic lialf-space. For an anelastic half-space, the direction of the 
incident-wave attenuation vector must also be specified. 

Using equations (2), (3 ), ( 6), ( 17), the displacements and stresses for layer m can be put in 
the following matrix form 

where 

l 
-iKPxCP 

-KpzSP 

i2fiKpxKpzSP 
µ0.Cp 

[

Ap+Bp: 
As+Bs 
Ap-Bp 

As-Bs 
m 

-iKsxCs 
-µQCs 

i2fiKs,K PxS S 

Sp= Sin (KpzZm) 

X 
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This result (which is equivalent to equation (3-20) of Grant and West, 1965) can be 
conveniently written as 

(19) 

Thus we see that Zm (layer thickness) is the phase factor which propagates the potentials 
across the mth layer and that Dm may be thought of as a form of propagator matrix with 
Cm the coefficient matrix. With this in mind and with the idea of eliminating Cm we can 
write (Haskell, 1953) 

(20) 

Then applying the usual boundary conditions 

X m = (Dm(Zm)Dm - 1 (O))(Dm-1 (Zm-1 )D;;;~ 1 (O))Xm-2 

(21) 

and for n -1 layers where layer n is an elastic half-space and interface O is a free surface 

C n = D n - 1 ( 0 )an - 1 an - 2 ... a 1 X o 

=JX0 

with the following matrix elements. 

-2iKPx 0 0 

-1/ji 

The elements of 

are given by 

0 

0 

iO./Ksz 

-Kpxf(fiKpz) 

0 

al 2 = - iKpx[2KszSs + (0./Kpz )Sp] 

a 13 = -ji- 1[K5=S8 +(Kt/KpJSP] 

a14 = - iKpji.- 1[Cp-C5] 

a2 1 =iKpx[2KpzSp+ (O./Ksz)S5 ] 

a22 =0.Cp-2K~xCs 

a24 = -ji- 1[KpzSp+(Kt/K8;,)S5 ] 

a31 =ji[4K~$pzSp+ (0.2/Ksz)Ss] 

a32 = -i2fiKPxQ[Cp- Cs] 

1/ ji 
0 

0 

-Kpxf(µKsz) _/m 

(22) 

(23) 

(24) 



1544 W. SILVA 

Cn therefore becomes the input matrix and choosing AP.sin the upgoing ( - z) directio~ 
and considering incident P, we can invert equation (22) to give the surface displacements 
u

0 
and w0 in terms of the incident potential (nAp),Kx, and the layering. 

Uo = - 2[122 + 142JnAj,/ R 

Wo=2[121 +l41JnAp/R 

R=[J21 +l41J[J12+l32J-[l22+l42J[J11 +l31J. (26) 

APPLICATIONS 

In order to illustrate the effects of attenuation, three models which represent soils, the 
crust, and the core-mantle boundary are considered. The structures are listed in Table 1. 
With the exception of the low-velocity layer of the upper mantle, these appear to be the 
three regions where nongeometrical attenuation is most pronounced and therefore may 
have some effect o'n observational interpretation. Also, knowledge of the Q structure of 
lhese regions will be valuable in interpreting materials and structure mechanisms when an 
acceptable theory is found relating state variables, material properties, and energy 
absorption. 

In applying this formulation in calculating reflection and transmission coefficients, 
transfer ratios, synthetic seismograms, etc., some estimation must be made of the medium 
parameters. This usually means a frequency-independent loss and velocity which can be 
shown to violate causality (Futterman, 1962). However, since the frequency-dependence 
can be made weak over a finite frequency band, assuming a frequency-independent loss 
and phase velocity over the space-time dimensions considered here should not be critical. 

(a) Soils. The effects of attenuation can be rather drastic in a highly dissipative material 
such as loosely compacted soils. The structure chosen (Table 1) is for the Richmond Field 
Station of the University of California, Berkeley and consists of mud deposited in San 
Francisco Bay. Borehole measurements of velocity and sample measurements of both 
_velocity and density were available for this site. The Q structure represents a best guess for 
illustrative purposes (structure data from T; V. McEvilly, oral comm.). Figure 2 shows the 
vertical and horizontal ,displacement spectra for normally incident P and S waves, 
respectively. All input potentials were normalized to unity total displacement for incident 
P\nAP = nkP - l) or SV (nAs = nks - l ). The solid line is for an elastic stack while the broken 
line includes the effect of loss. The vertical motion is somewhat unstructured because the 
compressional wavelengths are greater than any of the layer thicknesses. The loss behaves 
as we might expect 'for purely homogeneous waves, mirroring the elastic behavior at a 
lower amplitude and becoming asymptotic to it toward low frequencies. Considering the 
shear spectra (Figure 2B) we begin to note·· some interesting effects. First, the elastic 
spectrum shows the characteristic peaks (shear wavelengths< layer thickness) which are 
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TABLE 1 

PHYSICAL PARAMETERS FOR REPRESENTATIVE MODELS 

CONSIDERED IN NUMERICAL CALCULATIONS 

V,(km;sec) Vikm/sec) p(cgs) Q, Q, Z(km) 

Soil (Richmond) 

0.421 .0.214 1.95 5 1 J.52 X 10- 3 

0.641 0.299 1.95 10 2 1.53 
1.007 0.299 1.95 10 3 1.52 
1.296 0.305 2.00 20 4 1.43 
1.464 0.305 2.00 20 5 2.14 
1.525 0.317 2.05 20 5 1.83 

0.488 0.305 1.97 20 5 2.13 
1.739 0.427 2.08 50 10 3.05 
1.647 0.397 2.00 50 10 3.75 
1.739 0.427 2.05 50 10 1.52 
1.678 0.323 1.92 20 5 3.05 
1.952 0.372 1.97 50 10 2.44 
1.793 0.329 1.92 20 5 4.27 
2.034 0.488 2.19 100 20 3.66 
1.983 0.900 2.30 oc oc oc 

Crust (Berkeley) 
4.2 2.4 2.1 67 30 l.4x 10° 
6.1 3.5 2.6 100 45 8.2 
7.3 4.2 3.0 180 80 12.9 
7.8 4.5 3.3 oc oc ex 

Core-mantle Boundary 
13.63 7.30 5.60 '.f. ex '.f. 

13.33 6.99 5.58 300 115 150 
8.08 O· 9.90 2500 oc 

resonances associated with the total S-wave travel time (Bahm, 1971, Haskell, 1960). The 
total S-wave travel time of the stack is T = 0.098 sec and maxima and minima are expected 
at 

n 
fmax = 

4 
T, n = 1, 3, 5, ... , 

m 
fmin = 

2
T, m= 1,2, 3, ... 

= 2.6, 7.9, 12.7 .... = 5.1, 10.2, 20.3 .... 

The peaks and troughs are not exact because th.e'total stack travel-time effect is modulateq 
by the layering. In the loss spectra we see that there is little information content at 
frequencies greater than about 14 Hz. The effect of attenuation is more drastic for shear 
waves due to the lower Q5 and the longer travel times. Also, it is importantto note_ the 
slight shifting of the peaks in the case of loss. The velocities are the same in the elastic and 
attenuating layers and the shifting is due to the change in modulation as the loss affects the 
acoustic impedance. 

In Figure 3 are shown the crustal transfer function ratio (w0 /u0 ), the vertical spectra, 
and the horizontal spectra for an incident compressional wave at i = 10° for the same soil 
structure. It is interesting. to note the considerable change in the ratjo for the lo~s. Any 
inversion scheme not accounting for the loss would yield a differe11t structure. Again ,the 
shear spectrum is the controlling mechanism but in this case the largedis.crepancy between 
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the elastic and loss is largely due to the velocity anisotropy induced by the inhomogeneous 
waves (see equation 15). 

(b) The crust. The crustal model (Table 1 ), excepting the Q structure, was taken from 
Bakun's best-fitting Berkeley crustal model (Bakun, 1970). The Q structure represents a 

4 

A 

2'-----

.8 
8 

0 12 24 HZ 

FIG. 2. Spectra of normalized surface displacements for a high-loss soil structure (Table 1 ). Solid lines are 
elastic layers, broken lines include loss. (A) Vertical displacement for incident P wave, (B) Horizontal 
displacement for incident S wave; both at normal incidence. 

best guess for Q5 by the author based on some near-Berkeley crustal studies (Kurita, 1975, 
O'Neil!'and Healy, 1973) and the relation 

QP=-iQs(Vp/V,,)2. (27) 

The transfer ratio for the crustal model for an incident compressional wave at i = 25° is 
shown in Figure 4 along with the vertical and horizontal spectra. The transfer ratio for the 
elastic and loss agree well out to about 3 Hz which is high enough to resolve the structure. 

The spectra of the vertical and horizontal surface displacements for the Berkeley crust 
have been synthesized and are shown in Figure 5, where (A) and (B) are the vertical elastic 
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FIG. 3. Spectrum of normalized (A) crustal transfer function (w 0 /u 0 ) (BJ vertical surface displacement, (C) 
horizontal surface displacement for incident P wave at 10° for the Richmond structure (Table 1). Solid lines are 
elastic layers, broken lines include loss. 
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,f1G. 4. Spectra of normalized (A) crustal transfer function (w0 /u0 ), (B) vertical surface displacement, (C) 
horizontal surface displacement for incident P wave at 25 9 for the Berkeley crust (Table 1 ). Solid lines are elastic 
layers, broken lines include loss. · 
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and loss while (C) and (D) represent the horizontal. The effect of the loss shows a general 
smoothing of the record, a decrease of the higher-order reflections, and a reduction in 
amplitude (vertical peak to peak by 0.7, horizontal by 0.8). 

(c) Core-mantle boundary. To demonstrate the effects of loss near the core-mantle 
boundary on PcP and PcS, the reflection spectrum for the core-mantle boundary structure 
of Table 1 was synthesized. The velocities are from Bolt (1972) and the boundary layer 
density was derived assuming the region to be a thermal boundary layer and to consist 
entirely of mantle material (Glyn Jones, personal comm.). The Qp is from Kuster (1972) 
while Q5 is derived from equation (27) (zero loss in bulk). An incident P wave is considered 
with i = 25° and the synthesis is performed for a point 70 km from the boundary layer. 
Figures 6 and 7 show the synthesized potential coefficients ("BP/PAP' nBs/nAp) for the same 
explosion source as the crustal seismograms. The first small pulse in Figures 6 and 7 
represents reflected P and SV waves, respectively, from the abrupt transition between the 
lower mantle and the boundary layer. A more realistic gradient would largely eliminate 
this reflection. The figures then represent PcP and PcS sources to be convolved with 
suitable transfer functions and show the effect of attenuation on the reflected amplitudes 
(PcP zero-to-peak reduction 0.8, PcS 0.6). The effect -on the wave forms seems to be small 
at this angle of incidence for such low Q values and indicates that a considerable amount of 
attenuation is possible in the boundary layer and still be unobservable. 

APPENDIX 

To consider a fluid layer(µ= 0) the matrix Din(Zm) (equation 19) must be modified due 
to the overspecified boundary conditions at a solid-fluid interface. Using a development 
similar to Teng (1967) Dm(Z,") for a fluid layer becomes 

0 0 0 1 

- kpzSP 0 ikpzCP 0 

0 1 0 0 

pw2 Cp 0 -ipw2 Sp 01 
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FIG. 5, A AND B. 

FIG. 5. Synthetic seismograms for the Berkeley crust. (A) and (B) are vertical motion (positive down) for the 
elastic and loss cases, respectively, which were synthesized from the spectra in Figure 4B. (C) and (D) are 
horizontal motion for the elastic and loss cases, respectively, which were synthesized from the spectra in Figure 
4C. All were convolved with an explosion source function appropriate for BOXCAR (Helmberger and 
Harkrider, 1972), a Benioff short-period instrument, and a low-pass filter with a corner frequency at 5 Hz. 
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FIG. 5, C AND D. 
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FIG. 6. Synthesized reflected P potential coefficient for incident P wave on core-mantle boundary structure of 
Table 1. The frequency interval was 0.01 Hz with 512 sample points. All spectra were filtered with a low-pass 
causal filter with corner frequency at 2.0 Hz. (A) elastic, (B) loss. 
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FIG_ 7. Synthesized reflected S potential coefficient for incident P wave on core-mantle boundary structure of 
Table 1. The frequency interval was 0.01 Hz with 512 sample points. All spectra were filtered with a low-pass 
causal filter with corner frequenc) at 2.0 Hz. (A) elastic, (B) loss_ 
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