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New Empirical Relationships among Magnitude, Rupture Length, 

Rupture Width, Rupture Area, and Surface Displacement 

by Donald L. Wells and Kevin J. Coppersmith 

Abstract Source parameters for historical earthquakes worldwide are com
piled to develop a series of empirical relationships among moment magnitude 
(M), surface rupture length, subsurface rupture length, downdip rupture width, 
rupture area, and maximum and average displacement per event. The resulting 
data base is a significant update of previous compilations and includes the ad
ditional source parameters of seismic moment, moment magnitude, subsurface 
rupture length, downdip rupture width, and average surface displacement. Each 
source parameter is classified as reliable or unreliable, based on our evaluation 
of the accuracy of individual values. Only the reliable source parameters are 
used in the final analyses. In comparing source parameters, we note the fol
lowing trends: (1) Generally, the length of rupture at the surface is equal to 75% 
of the subsurface rupture length; however, the ratio of surface rupture length to 
subsurface rupture length increases with magnitude; (2) the average surface dis
placement per event is about one-half the maximum surface displacement per 
event; and (3) the average subsurface displacement on the fault plane is less 
than the maximum surface displacement but more than the average surf ace dis
placement. Thus, for most earthquakes in this data base, slip on the fault plane 
at seismogenic depths is manifested by similar displacements at the surface. 
Log-linear regressions between earthquake magnitude and surface rupture length, 
subsurface rupture length, and rupture area are especially well correlated, show
ing standard deviations of 0.25 to 0.35 magnitude units. Most relationships are 
not statistically different (at a 95% significance level) as a function of the style 
of faulting: thus, we consider the regressions for all slip types to be appropriate 
for most applications. Regressions between magnitude and displacement, mag
nitude and rupture width, and between displacement and rupture length are less 
well correlated and have larger standard deviation than regressions between 
magnitude and length or area. The large number of data points in most of these 
regressions and their statistical stability suggest that they are unlikely to change 
significantly in response to additional data. Separating the data according to 
extensional and compressional tectonic environments neither provides statisti
cally different results nor improves the statistical significance of the regressions. 
Regressions for cases in which earthquake magnitude is either the independent 
or the dependent parameter can be used to estimate maximum earthquake mag
nitudes both for surface faults and for subsurface seismic sources such as blind 
faults, and to estimate the expected surface displacement along a fault for a 
given size earthquake. 

Introduction 

Seismic hazard analyses, both probabilistic and de
terministic, require an assessment of the future earth
quake potential in a region. Specifically, it is often nec
essary to estimate the size of the largest earthquakes that 
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might be generated by a particular fault or earthquake 
source. It is rare, however, that the largest possible 
earthquakes along individual faults have occurred during 
the historical period. Thus, the future earthquake poten-
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tial of a fault commonly is evaluated from estimates of 
fault rupture parameters that are, in tum, related to 
earthquake magnitude. 

It has been known for some time that earthquake 
magnitude may be correlated with rupture parameters such 
as length and displacement (e.g., Tocher, 1958: Iida, 
1959; Chinnery, 1969). Accordingly, paleoseismic and 
geologic studies of active faults focus on estimating these 
source characteristics. For example, data from geo
morphic and geologic investigations of faults may be used 
to assess the timing of past earthquakes, the amount of 
displacement per event, and the segmentation of the fault 
zone (e.g., Schwartz and Coppersmith, 1986; Schwartz, 
1988; Coppersmith, 1991). To translate these source 
characteristics into estimates of earthquake size, rela
tionships between rupture parameters and the measure of 
earthquake size, typically magnitude, are required. 

Numerous published empirical relationships relate 
magnitude to various fault rupture parameters. Typi
cally, magnitude is related to surface rupture length as 
a function of slip type. Additional relationships that have 
been investigated include displacement versus rupture 
length, magnitude versus maximum surface displace
ment, magnitude versus total fault length, and magni
tude versus surface displacement times surface rupture 
length (Tocher, 1958; Iida, 1959; Albee and Smith, 1966; 
Chinnery, 1969; Ohnaka, 1978; Slemmons, 1977, 1982; 
Acharya, 1979; Bonilla and Buchanon, 1970; Bonilla et 
al., 1984; Slemmons et al., 1989). Other studies relate 
magnitude and seismic moment to rupture length, rup
ture width, and rupture area as estimated from the extent 
of surface deformation, dimensions of the aftershock zone, 
or earthquake source time functions (Utsu and Seki, 1954; 
Utsu, 1969; Kanamori and Anderson, 1975; Wyss, 1979; 
Singh et al., 1980; Purcaru and Berckhemer, 1982; 
Scholz, 1982; Wesnousky, 1986; and Darragh and Bolt, 
1987). 

The purpose of this article is to present new and re
vised empirical relationships between various rupture pa
rameters, to describe the empirical data base used to de
velop these relationships, and to draw first-order 
conclusions regarding the trends in the relationships. 
Specifically, this article refines the data sets and extends 
previous studies by including data from recent earth
quakes and from new investigations of older earth
quakes. The new data provide a much larger and more 
comprehensive data base than was available for previous 
studies. Additional fault characteristics, such as subsur
face rupture length, downdip rupture width, and average 
fault displacement, also are included. Because the new 
data set is more comprehensive than those used for pre
vious studies, it is possible to examine relationships among 
various rupture parameters, as well as the relationships 
between rupture parameters and magnitude. An impor
tant goal of this article is to present the observational 
data base in a form that is sufficiently complete to enable 

the reader to reproduce our results, as well as to carry 
out subsequent analyses. 

The following sections describe the observational data 
base, present the statistical relationships developed be
tween magnitude and fault rupture parameters, and then 
evaluate the relationships in terms of their statistical sig
nificance, relative stability, and overall usefulness. 

Data Base 

A worldwide data base of source parameters for 421 
historical earthquakes is compiled for this study. The data 
include shallow-focus (hypocentral depth less than 40 km), 
continental interplate or intraplate earthquakes of mag
nitudes greater than approximately 4.5. Earthquakes as
sociated with subduction zones, both plate interface 
earthquakes and those occurring within oceanic slabs, 
are excluded. For each earthquake in the data base, we 
compiled seismologic source parameters and fault char
acteristics, including seismic moment, magnitude, focal 
mechanism, focal depth, slip type, surface and subsur
face rupture length, maximum and average surface dis
placement, downdip rupture width, and rupture area. 

In general, the data presented in this article are ob
tained from published results of field investigations of 
surface faulting and seismologic investigations. For many 
earthquakes, there are several published measurements 
of various parameters. One objective of this study is to 
identify the most accurate value for each parameter, or 
the average value where the accuracy of individual val
ues could not be determined. Special emphasis is placed 
on identifying the sources and types of measurements 
reported in the literature (e.g., rupture area based on af
tershock distribution, geodetic modeling, or teleseismic 
inversion). All data are then categorized by type of mea
surement, and the most accurate value is selected for fur
ther analysis. The data selection process for each rupture 
parameter is described in detail in the following sections. 

From the larger data base, 244 earthquakes are se
lected to develop empirical relationships among various 
source parameters. For these earthquakes, which are listed 
in Table 1, the source parameters are considered much 
more reliable than the source parameters for the other 
earthquakes. Earthquakes that are evaluated but ex
cluded from further study because of insufficient infor
mation or poor-quality data are provided on microfiche 
(Appendix A). Each earthquake listed in Table 1 is iden
tified by location, name (geographic descriptor or as
sociated fault), and date of origin in Coordinated Uni
versal Time (UTC). Each source parameter given in Table 
1 is discussed below. 

Slip Type 

Past studies have demonstrated that the slip type or 
style of faulting is potentially significant for correlating 
earthquake magnitude and rupture parameters (e.g., 



Table 1 \0 

Earthquake Source Parameters* -..J 

°' 
Rupture Length (km)tt 

Rupture Rupture 
Displacement (m)tt Date Slip Seismic Momem:j: Widthtt Areatt 

EQN Location Earthquake (UTC, m/d/yr) Type** Mst Mtt (1026 dyne-cm) Surface Subsurface (km) (km2
) Maximum Average 

1 USA,CA Fort Tejon 01/09/1857 RL 8.3 [IJ (7.85) 670 [IJ 297 I2H (4296) 9.4 6.4# 
2 USA, CA Hayward 10/21/1868 RL 6.8 [IJ (6.76) 15.6 [lJ 48 l2H (576) 0.9 
3 USA,CA Owens Valley 03/26/1872 RL-N 8.0 [IJ (7.61) 292 [!] 108 15:J::/: (1620) 11.0 6.0 
4 Mexico Pitaycachi 05/03/1887 N 7.4 [IJ (7 .31) 105 [1] 75 4.5 1.9 
5 Japan Nobi 10/27/1891 LL 8.0 [I] (7.49) 190 [ lJ 80 15H (1200) 8.0 5.04# 
6 Japan Rikuu/Senya 08/31/1896 R 7.2 [JJ (7.40) 140 [ lJ 40 (2l)H (840) 4.4 2.59# 
7 USA,CA San Francisco 04/18/1906 RL 7.8 [BJ 7.90 790 [5J 432 12:j::j: 5184 6.1 3.3# 
8 Italy Avezzano 01/13/1915 N 7.0 [OJ (6.62) 9.7 [2J 20 24,r 15,r 3601/ 2.0 
9 USA, Nevada Pleasant Valley 10/03/1915 N 7.6 [LJ (7.18) 66 [l] 62 15:J::j: (930) 5.8 2.0 

IO China Kansu 12/16/1920 LL 8.5 [OJ 8.02 1200 [3J 220 (20):J::j: (4400) 10.0 7.25# 
II Japan Tango 03/07/1927 LL-R 7.7 [LJ (7 .08) 46 [lJ (14) (35) 15 525 (3.0) 
12 Kenya Laikipia 01/06/1928 N 7.0 [LJ 31 3.3 
13 Bulgaria Papazili 04/18/1928 N 6.9 (LJ (7.13) 55 [lJ 50 3.5 
14 Iran Salmas 05/06/1930 N-RL 7.4 [LJ (7 .15) 60 [lJ 30 6.4 1.35 
15 Japan North Izu 11/25/1930 LL-R 7.3 [LJ 6.89 24 [5J 35 (22)1/ (12):J::j: (420) 3.8 2.9 
16 New Zealand Hawkes Bay 02/02/1931 R-RL 7.8 [OJ (7. 73) 440 [2J 15 (110) (4.6) 
17 China Kehetuohai-E 08/10/1931 RL 7.9 [LJ 7.92 850 [3J 180 (20):j::\: (3600) 14.6 7.38# 
18 Japan Saitama 09/21/1931 LL 6.7 [OJ (6.52) 6.8 [lJ 20 10 200 
19 USA, Nevada Cedar Mountain 12/21/1932 RL 7.2 [OJ 6.83 19.7 [3J 61 (80) 2.0 
20 China Changma 12/25/1932 R-LL 7.7 (LJ (7.60) 280 [IJ 148 4.0 2.0 
21 USA,CA Long Beach 03/11/1933 RL 6.3 [OJ 6.38 4.1 [5J 23 13 300 
22 Japan South Izu 03/21/1934 RL 5.5 [JJ (5.29) 0.095 [lJ 7§ 4 28§ 
23 Taiwan Tuntzuchio/Chih. 04/21/1935 RL-R 7.1 [OJ (17) 2.1 
24 Turkey Kirsehir 04/19/1938 RL 6.8 [LJ 14 1.0 
25 Turkey Erzihcan 12/26/1939 RL 7.8 [L] (7.81) 575 [IJ 360 (20):j::j: (7200) 7.5 (1.85) 
26 USA,CA Imperial Valley 05/19/1940 RL 7.2 [LJ 6.92 27 [5J 60 (45)§ 1 I:j::j: (660) 5.9 1.5 
27 Turkey Erbaa 12/20/1942 RL-N 7.2 [LJ (6.90) 25 [ lJ 47 (10):j::j: (500) 2.0 0.66 
28 Japan Sikano 09/10/1943 RL 7.4 [LJ (7 .00) 36 (lJ (4.7) 33 13 429 (l.5) (0.5) 
29 Turkey Kastamonu 11/26/1943 RL 7.5 [L] (7.58) 260 [1] 280 (14):j::j: (3920) (1.9) (0.57) 
30 Turkey Bolu 02/01/1944 RL 7.5 [LJ (7 .59) 270 [lJ 180 (20):j::j: (3600) 3.6 1.8 
31 Turkey Ustukran 05/31/1946 RL 6.0 [OJ 9 0.3 !=' 
32 Peru Ancash 11/10/1946 N 7.2 [G] 7.28 94 [3J 21 28§ 30§ 840§ 3.5 r 
33 Taiwan Tainan 12/04/1946 RL 6.7 [L] 12 2.1 

~ 34 Japan Fukui 06/28/1948 LL-R 7.3 [GJ (6.98) 33 [1] 30 13 390 
35 USA,CA Desert Hot Spring 12/04/1948 RL 6.5 (GJ (5.97) 1 [3] 15 (16) "' 
36 Turkey Elmalidere 08/17/1949 RL 6.9 [AJ 38 1.6 0.9 

;,, 
::, 

37 Japan Imaichi 12/26/1949 R? 6.3 [OJ 11 7 77 
Q. 

38 USA,CA Fort Sage Mtns. 12/14/1950 N 5.6 [OJ 9.2 0.20 ~ 
39 USA,CA Superstition Hills 01/23/1951 RL 5.6 [ML] 3 (0.05) :'-< 

40 China Damxung 11/18/1951 RL 8.0 [O] 7.67 365 [5J 90 200 (10)+:/: (2000) 12.0 8.0 n 
41 Taiwan Yul,i-Juisu 11/24/1951 LL-R 7.4 [LJ (7.08) 46 [ I] 43 (17):j::j: (731) 2.1 

.g 
"O 

42 USA, CA Kem County 07/21/1952 R-LL 7. 7 [LJ 7.38 130 [5J 57 64 19 1216 3.0 0.6 0 ... 
VJ 

43 Turkey Canakkale 03/18/1953 RL 7.2 [LJ 7.22 77 [3J 58 (18):\::\: (1080) 4.35 2.1# §. 
44 USA,CA Arroyo Salada 03/19/1954 RL 6.2 [DJ 6.27 2.89 [5] 15 12 180 Er-



Table I-Continued t'l'l 
-§ 

Rupture Length (km)tt 
Rupture Rupture Displacement (m)tt 

:::;· 
Date Slip Seismic Momentt Widthtt Areatt §' 

EQN Location Earthquake (UTC, m/d/yr) Type** Mst Mtt (1026 dyne-cm) Surface Subsurface (km) (km2) Maximum Average -::ti 
45 USA, Nevada Rainbow Mountain 07/06/1954 N 6.3 [L] 6.22 2.4 [5] 18 (11)§ 14:j::j: (252) 0.31 0.25 

ti) 

lS"' 
46 USA, Nevada Stillwater 08/24/1954 N 6.9 [L] 6.55 7.6 [5] 34 (26)§ 14:j::j: (428) 0.76 0.45 g. 
47 USA, Nevada Fairview Peak 12/16/1954 RL-N 7.2 [L] 7.17 64 [5] 57 (50),r 15 (855) 4.1 2.8 ::: 

"" 
48 USA, Nevada Dixie Valley 12/16/1954 RL-N 6.8 [PS] 6.94 29 [5] 45 (42),r 14:j::j: (630) 3.8 2.1 ~ 

'B' 
49 Mexico San Miguel 02/09/1956 RL-R 6.9 [L] 6.63 10 [5] 22 (22)§ 12:j::j: (264) 0.9 0.5 "" .:, 

50 USA,CA San Francisco 03/22/1957 N 5.3 [Md 5.21 0.074 [3] 7 5 35 ;:l 

51 Turkey Abant 05/26/1957 RL 7.0 [A] 40 (8):j::j: (320) 1.65 0.55 i::, 
::: 

52 Mongolia Gobi-Altai 12/04/1957 LL 7.9 [L] 8.14 1800 (3] 236 300 (20):j::j: (6000) 9.4 6.54# C>t, 

53 USA, Alaska Lituya Bay 07/10/1958 RL 7.9 [UJ 7.77 510 [5] (200) 350 12 4200 (6.6) ~ 
54 USA, MT Hebgen Lake 08/18/1959 N 7.6 [L] 7.29 95 [3] 26.5 45 17 765 6.1 2.14 C>t, 

::: 

55 USA, Utah Cache Valley 08/30/1962 N 5.7 [ML] 5.78 0.52 [5] 7 8 56 ~· 

56 Iran Ipak 09/01/1962 R 7.2 [L] (7.35) 117 [l] 99 0.8 ~ 
57 Japan Wakasa-Bay 03/26/1963 RL 6.5 [DJ 6.28 3 [5] 20 8 160 ::ti 
58 Yugoslavia Skopje 07/26/1963 LL-N 6.1 [A] 5.99 1.1 [3] (6) 17 11 187 (0.1) -§ 
59 USA,CA Watsonville 09/14/1963 RL 5.4 [U] 5.17 0.063 [3] 7 3.5 25 

... 
::::: ..., 

60 Japan Niigata 06/16/1964 R 7.5 [BJ 7.59 273 [5] (40) 60 30 1800 ti) 

61 USA,CA Corralitos 11/16/1964 RL 5.1 [Md 4 4 16 
r, 
ti) 

62 USA,CA Antioch 09/10/1965 RL 4.9 [ML] 3 6 18 
::: 

C>t, 

63 USA,CA Parkfield 06/28/1966 RL 6.4 [WJ 6.25 2.7 [5] 38.5 35 10 350 0.20 _s. 
64 USA, Nevada Caliente-Clover Mtn. 08/16/1966 RL 5.8 [Md 5.58 0.26 [5] 11 6 66 ::ti 

65 Turkey Varto 08/19/1966 RL 6.8 [BJ 6.88 23.5 [3] 30 (85) (10):j::j: (300) 0.4 0.15 -§ 

66 USA, CA Truckee 09/12/1966 LL 5.9 [PB] 5.96 0.97 [5] 13 7 91 ~ 
~ 

67 Mongolia Mogod 01/05/1967 RL 7.4[LJ 7.03 39 [5] 40 40 (20):j::j: (800) 1.3 
~ 

68 Turkey Muduma Valley 07/22/1967 RL 7.4 [L] 7.34 113 [5] 80 (70) (20):j::j: (1600) 2.6 1.63# 

~ 69 Albania Dibra 11/30/1967 RL-N 6.6 [A] 6.75 15 [3] 10 (62) 0.5 0.2 

70 Greece Agios-Efstratios 02/19/1968 RL 7.2 [BJ 7.10 50.8 [5] (4.4) 70 (0.5) ::ti 
71 USA,CA Borrego Mountain 04/09/1968 RL 6.8 [L] 6.63 10 [5] 31 40 10 400 0.38 0.18# -§ 

72 New Zealand Glasgow 05/24/1968 R-LL 7.1 [UJ (7.07) 45 [2] (2) 41 18 738 (0.52) ~ ..., 
73 Iran Dasht-e-Bayaz 08/31/1968 LL 7.1 [L] 7.23 78 [5] 80 110 20 2200 5.2 2.3 ti) 

74 Australia Meckering 10/14/1968 R-RL 6.9 [L] 6.61 9.3 [5] 36 20,r 10 200,r 3.5 0.9# 
;:... ..., 
~ 

75 USA, Alaska Rampart 10/29/1968 LL 6.5 [U] 6.69 12 [3] 30 8 240 _l:l 

76 Turkey Alasehir Valley 03/28/1969 N 6.5 [A] 6.71 13 [5] 32 30 (11):j::j: (330) 0.82 0.54 .:, 

77 USA,CA Coyote Mountain 04/28/1969 RL-N 5.8 [ML] 5.69 0.38 [5] 10 3 30 [ 

78 Peru Pariahuanca 07/24/1969 R 5.7 [UJ 6.14 1.81 [3] (5.5) 0.4 V'l 
::::: 

79 China Yangjiang 07/25/1969 RL-N 5.9 [UJ 5.77 0.515 [3] 11 i 
80 Japan Gifu 09/09/1969 RL 6.6 [JJ 6.34 3.6 [5] 18 10 180 (0.72) Cl 

ti) 

81 South Africa Ceres 09/29/1969 RL 6.3 [UJ 6.37 4 [5] 20 9 180 t:::, 

82 Peru Huaytapallana 10/01/1969 R-LL 6.2 [UJ 6.63 9.84 [3] (16) 30 1.2 ~-
83 China Tonghai 01/04/1970 RL 7.5 [L] 7.26 87 [5] 48 75 (15):j::j: (1125) 2.7 2.1 lS"' 

84 Turkey Gediz 03/28/1970 N 7.1 [L] 7.18 67 [5] 41 63 (17):j::j: (1071) 2.8 0.86# 
Cl 
ti) 

;:l 
85 Japan Akita 10/16/1970 R-RL 5.8 [UJ 6.13 1.75 [5] 14 11 154 ti) 

86 USA,CA San Fernando 02/09/1971 R-LL 6.5 [L] 6.64 10.4 [5] 16 17 14 238 2.5 1.5# ~ 

87 Turkey Bingo! 05/22/1971 LL 6.7 [UJ 6.63 10 [3] 38 0.6 (0.25) 

88 USA,CA Bear Valley 02/24/1972 RL 5.1 [ML] 5.23 0.078 [3] 6 3 18 \0 

89 USA,CA Bear Valley 02/27/1972 LL 4.7 [ML] 4.57 0.008 [3] 3.8 2.5 9.5 
-.l 
-.l 
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00 

Rupture Length (km)tt 
Rupture Rupture 

Displacement (m)tt 
Date Slip Seismic Moment:/: Widthtt Areatt 

EQN Location Earthquake (UTC, m/d/yr) Type** Mst Mtt (1026 dyne-cm) Surface Subsurface (km) (km2
) Maximum Average 

90 Iran Qir-Karzin 04/10/1972 R 6.9 [A] 6.75 15 [3] (20) 34 (20):j::j: (680):j::j: (0.1) 
91 USA, Alaska Sitka 07/30/1972 RL 7.6 [U] 7.70 400 [5] 180 10 1800 
92 Pakistan Hamran 09/03/1972 R 6.3 [m.] 6.19 2.2 [3] 13 (14):j::j: (168)§ 
93 USA,CA Stone Canyon 09/04/1972 RL 4.7 [ML] 4.83 0.02 [3] 2.6 2.3 6 
94 USA,CA San Juan Bautista 10/03/1972 RL 4.8 [Md 4.77 0.016 [3] 4.3 2.5 11 
95 Nicaragua Managua 12/23/1972 LL 6.2 [L] (6.31) 3.3 [l] (5.9) 15 8 120 (0.67) 
96 China Luhuo 02/06/1973 LL 7.3 [L] 7.47 180 [5] 89 110 13 1430 3.6 1.3 
97 USA,CA Point Mugu 02/21/1973 R 5.2 [U] 5.72 0.42 [5] 8 3.3§ 25 
98 China Tibet 07/14/1973 N 6.9 [U] 6.95 29.6 [5] (27)§ 600 
99 USA,CA Agua Caliente Spr. 09/13/1973 RL 4.8 [Md 3 

100 Japan Izu-Oki 05/08/1974 RL-R 6.5 [U] 6.54 7.2 [5] (5.7) 18 11 198 (0.48) 
101 Japan Amagi 07/09/1974 LL-N 4.9 [J] (4.97) 0.032 [l] 3.5 3 10.5 (0.09) 
102 USSR Tadzhikestan 08/11/1974 R-RL 7.3 [U] 7.06 43.8 [5] 30 20 600 
103 USA,CA Brawley 01/23/1975 RL 4.6 [U] (10.4) 9 4 36 (0.20) 
104 China Haicheng 02/04/1975 LL 7.4 [U] 6.99 34.5 [5] (5.5) 60 15 900 (0.55) 
105 USA, Idaho Pocatello Valley 03/28/1975 N 6.0 [U] 6.06 1.4 [5] 15 10 150 
106 Japan Oita Prefecture 04/20/1975 LL-R 6.1 [U] 6.32 3.4 [3] 10 10 100 
107 USA,CA Galway Lake 05/31/1975 RL 5.2 [U] 6.8 5 3 15 0_02 
108 USA, WY Yellowstone 06/30/1975 N-RL 5.9 [U] 5.88 0.75 [3] 10 5 50 
109 USA,CA Oroville 08/01/1975 N-RL 5.6 [U] 6.01 1.18 [5] 3.8 8 10 80 0.06 
110 USA, CA Horse Canyon 08/02/1975 RL 4.7 [Mi] 5.00 O.D35 [5] 2 2 4 
111 Turkey Lice 09/06/1975 R 6.7 [U] 6.55 7.4 [5] 26 (13):j::j: (234) 0.63 0.5 
112 Guatemala Motagua 02/04/1976 LL 7.5 [L] 7.63 310 [5] 235 257 13 3341 3.4 2.6# 
113 USSR Uzbekistan 04/08/1976 R 7.0 [U] 6.83 19.5 [5] 30 20 600 
114 Italy Friuli 05/06/1976 R 6.5 [U] 6.49 6 [5] 19 10 190 
115 USSR Uzbekistan 05/17/1976 R 7.0 [U] 6.84 20.7 [5] 48 24 1152 
116 China Tangshan 07/27/1976 RL 7.9 [U] 7.46 176 [5] (10) 70 24 1680 (3.0) 
117 China Songpan, Huya 08/16/1976 LL-R 6.9 [U] 6.71 13 [3] 30 12 360 
118 Japan Kawazu 08/17/1976 RL 5.4 [J] (5.51) 0.21 [1] 9 4 32 
119 China Songpan, Huya 08/21/1976 R 6.4 [U] 6.37 4 [3] 12 8 96 
120 China Songpan, Huya 08/23/1976 LL-R 6.7 [UJ 6.58 8.4 [3] 22 11 242 
121 Turkey Caldiran 11/24/1976 RL 7.3 [L] 7.23 79 [5] 55 (90)§ (18):j::j: (1620)§ 3.5 2.05 

C, 

122 Mexico Mesa de Andrade 12/07/1976 RL 5.7 [UJ 5.61 0.29 [3] 9 5 45 r 
123 Iran Khurgu 03/21/1977 R 6.9 [U] 6.73 14 [4] 32 ~ 
124 New Zealand Matata 05/31/1977 RL-N 5.4 [ML] 5.61 0.29 [3] 8.5 5 42 ~ 
125 USA, Utah Unita Basin 09/30/1977 N 5.1 [Md 2 3 6 "' 
126 USA,CA Willits 11/22/1977 RL 4.8 [Md 5.24 0.082 [4] 5 7.5 20 § 

Q.. 
127 Argentina Caucete 11/23/1977 R 7.4 [U] 7.48 189 [5] 80 30 2400 

~ 128 Iran Bob-Tango! 12/19/1977 RL 5.8 [L] 5.89 0.76 [4] 12 14 12 168 0.30 0.12 
'-< 

129 Japan Izu-Oshima 01/14/1978 RL 6.6 [U] 6.71 13.2 [5] (3.2) 50 10 500 (1.0) 
130 USA, WA South Puget Sound 03/11/1978 RL 4.8 [Md 2.5 4 10 n 

0 
131 Greece Thessa!oniki 06/20/1978 N 6.4 [U] 6.43 5.02 [5] 19.4 28 14 392 0.22 0.08# "O 

"O 

132 USA,CA Santa Barbara 08/13/1978 R-LL 5.6 [U] 5.88 0.75 [5] 10 5 50 ~ 
"' 133 Germany Swabian Jura 03/09/1978 LL 5.3 [U] 5.21 0.074 [5] 4.5 6 27 [. 

134 USA,CA Diamond Valley 09/04/1978 RL 5.2 [Md 1.7 ::r 



Table l-Continued f 
Rupture Length (km)tt 

Rupture Rupture 
Displacement (m)tt 

:::;· 
Date Slip Seismic Moment+ Widthtt Areatt ;::;· 

EQN Location Earthquake (UTC, m/d/yr) Type*' Mst Mtt (1026 dyne-cm) Surface Subsurface (km) (km2) Max:imum Average 
.:i -::i:, 

135 Iran Tabas-e-Golshan 09/16/1978 R 7 .5 [L] 7.39 137 [5] 85 74 22 1628 3.0 1.5 "' is--
136 USA, CA Wheeler Crest 10/04/1978 N 5.1 [U] 5.47 0.18 [4] 7 5.5 38 .:l', 

c:i 

137 USA,CA Malibu 01/01/1979 R 4.7 [U] 5 5 25 ;: 
"' 

138 USA,CA Homestead Valley 03/15/1979 RL 5.6 [U] 5.55 0.241 [4] 3.9 6 4 24 0.10 0.05 ~ 
,s· 

139 Yugoslavia Montenegro 04/15/1979 R 6.9 [U] 6.98 32.9 [5] 50 29 1450 "' 
140 Australia Cadoux 06/02/1979 R 6.1 [U] 6.12 1.67 [SJ 15 16 6 96 1.5 0.5 .:i 

~ 

141 USA,CA Coyote Lake 08/06/1979 RL 5.7 [UJ 5.77 0.51 [5] 14.4 14 10 140 0.15 c:i 

142 Canada Charlevoix, Quebec 08/19/1979 R-RL 4.5 [U] 4.75 0.015 [SJ 2 2 4 ~ 

143 Italy Umbria, Norca 09/19/1979 RL-N 5.9 [UJ 5.83 0.63 [SJ 10 11 110 ~ 
144 USA, CA El Centro 10/15/1979 RL 6.7 [L] 6.53 7.12 [5] 30.5 51 12 612 0.80 0.18# l>Q 

;: 

145 Iran Kurizan 11/14/1979 RL-R 6.7 [L] 6.61 9.1 [5] 17 28 (6)H (168) 1.1 §" 

146 Iran Koli l l/27 /1979 LL-R 7.1 [LJ 7.17 63 [5] 65 75 (22):\:t (1650) 3.9 1.2 ~ 
147 England Carlisle 12/26/1979 N-RL 4.8 [Mc] 4 3 12 ::i:, 

148 USA,CA Greenville 01/24/1980 RL 5.9 [U] 5.82 0.6 [SJ 6.2 11.5 12 138 0.03 { 
149 USA, CA Anza 02/25/1980 RL 4.7 [U] 5.04 0.041 [5] 2.5 2.5 6 

.... 
:::: 

150 France Arudy 02/29/1980 N 5.17 0.064 [4] 3.8 5 19 
.... 

4.9 [mb] "' 
151 USA, CA Mammoth Lakes 05/27/1980 LL 6.1 [UJ 5.99 1.09 [5] 9 11 99 t°"' 

"' 
152 Mexico Mexicali Valley 06/09/1980 RL 6.4 [U) 6.40 4.5 [5] 28 8 224 ~ 
153 Japan Izu-Hanto-Toho 06/29/1980 LL 6.2 [UJ 6.39 4.3 [SJ 14 10 140 ?' 
154 Greece Almyros 07/09/1980 N 6.4 [UJ 6.59 8.71 [4] (5.3) 36 0.2 ::i:, 

155 USA, KY Sharpsburg 07/27/1980 RL 4.7 [UJ 5.06 0.043 [5] 4 5 20 'B .... 
156 Algeria El Asnam 10/10/1980 R 7.3 [L] 7.10 50.8 [5] 31.2 55 15 825 6.5 1.54# :::: 

157 Italy South Apennines 11/23/1980 N 6.9 [U] 6.91 26 [SJ 38 60 15 900 1.15 0.64 
~ 

158 China Daofu 01/23/1981 LL 6.8 [UJ 6.64 10.1 [5] 44 46 15 690 1.5 ~ 

159 USA, WA Elk Lake 02/14/1981 RL 4.8 [U] 5.30 0.1 [4] 6 7 42 ~ 
160 Greece Corinth 02/24/1981 N 6.7 [UJ 6.63 10 [5] (15) 30 16 480 ::i:, 

161 Greece Corinth 02/25 /198 l N 6.4 [U] 6.31 3.28 [5] 19 16 400§ 1.5 0.6 'B 
162 Greece Corinth 03/04/1981 N 6.4 [UJ 6.25 2.65 [SJ (13) 26 18 468 J.l 0.6 i2" 

163 Iran Golbaf 06/11/1981 R-RL 8.07 15 16 (580) 0.11 0.06 
.... 

6.7 [U) 6.57 [5] "' 
164 Iran Sirch 07/28/1981 R-RL 7.1 [U] 7.12 53.5 [5] 65 75 (1002) 0.50 0.16 ;:i:... .... 
165 Canada Miramichi 01/09/1982 R 5.2 [U] 5.55 0.24 [5] 5.5 4 22 "' ? 
166 USA, CA Anza 06/15/1982 RL 4.8 [MJ 4.79 0.017 [SJ 2.5 3 7.5 .:i 

167 USA,CA New Idria 10/25/1982 R-LL 5.2 [UJ 5.46 0.172 [5] 9 
;: 
I:),. 

168 North Yemen Dhamer 12/13/1982 N 6.0 [UJ 6.34 3.64 [5] 15 20 7 140 (0.03) c,,, 
:::: 

169 Columbia Popayan 03/31/1983 SS/N 4.9 [U] 5.66 0.35 [4] 1.3 (0.01) j 
170 USA, CA Coalinga 05/02/1983 R-LL 6.5 [UJ 6.38 4.1 [5] 27 15 405 "' (1, 

171 Taiwan Taipingshan 05/10/1983 N 5.4 [UJ 5.72 0.427 [4] 9 (20) (180) t, 

172 USA,CA Coalinga, Nunez 06/ll /1983 R 5.4 [UJ 5.42 0.15 [5] 3.3 8 6.5 52 0.64 .@' 
173 USA,NY Goodnow 10/07/1983 R 5.1 [ML] 4.89 0.024 [5] 1.5 2 4 S' 

174 USA, Idaho Borah Peak 10/28/1983 N-LL 7.3 [U] 6.93 28 [5] 34 33 20 660 2.70 0.8 "' "' 
175 Turkey Pasinier 10/30/1983 LL-R 6.9 [UJ 6.73 14 [SJ 12 50 16 800 1.2 ~ 

(1, 

176 Belgium Liege 11/08/1983 RL-R 4.3 [Al 4.77 0.016 [3] 5 3 15 
;: ..... 

177 West Africa Guinea 12/22/1983 RL-N 6.2 [U] 6.32 3.40 [SJ 9.4 27 14 378 0.45 

178 USA,CA Morgan Hill 04/24/1984 RL 6.1 [U] 6.28 3.0 [5] 26 8 208 \0 

179 Italy Perugia 04/29/1984 N 5.3 [U] 5.65 0.35 [5] 17 5 85 
-..J 
\0 



Table I-Continued \0 
00 
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Rupture Length (km)H 
Rupture Rupture 

Displacement (m)tt 
Date Slip Se1sm1c Momentt Widthtt Areatt 

EQN Location Earthquake (UTC, m/d/yr) Type** Mst Mtt (1026 dyne-cm) Surface Subsurface (km) (km2
) Maximum Average 

180 Italy Lazio-Abruzzo 05/07/1984 N 5.8 [U] 6.00 1.12 [5] 4.5 10 40 
181 Great Britan North Wales 07/10/1984 SS-N 4.7 [U] (4.63) 0.01 [3] 3 3.2 9.6 
182 USA, Alaska Sutton, Talkeetn 08/14/1984 RL 5.2 [U] 5.84 0.64 [4] 8 6 48 
183 Japan Naganoken-Seibu 09/14/1984 RL 6.1 [UJ 6.24 2.6 [4) 12 8 104 
184 USA, WY Laramie 10/18/1984 RL-N 5.1 [UJ 5.31 0.102 [5) 3 3 9 
185 USA,CA Round Valley 11/23/1984 LL 5.7 [U] 5.83 0.62 [5] 7 7 49 
186 Argentina Mendoza 01/26/1985 R 5.9 [U] 5.87 0.72 [5] 16 16 256 
187 New Guinea New Britan 05/10/1985 LL 7.1 [U] 7.19 69.3 [4] 50 15 750 
188 New Guinea New Ireland 07/03/1985 R 7.2 [U] 7.23 79 [5] 48 23 1104 
189 USA,CA Kettleman Hills 08/04/1985 R 5.9 [U] 6.09 1.53 [5] 20 8.3 166 
190 China Wuqai 08/23/1985 R 7.3 [U] 6.89 24.6 [5] 15 (12)§ 1.55 
191 Canada Nahanni 10/05/1985 R 6.6 [U] 6.64 10.2 [5] 32 16 512 
192 Algeria Constantine 10/27/1985 LL 5.9 [U] 6.00 1.11 [5] 3.8 21 13 273 0.12 0.10 
193 Canada Nahanni 12/23/1985 R 6.9 [U] 6.75 15 [5] 40 17 680 
194 USA, CA Tres Pinos 01/26/1986 RL 5.3 [U] 5.42 0.15 [3J II 5 55 
195 USA, Ohio Painesville 01/31/1986 RL 5.0 [mb] 4.87 0.023 [5] 1.5 2 3 
196 Canada Prince George, BC 03/21/1986 R-RL 5.2 [UJ 5.54 0.23 [5] 6 8 48 
197 Australia Marryat Creek 03/30/1986 R-LL 5.8 [U] 5.79 0.54 [5] 13 13§ 3§ 39§ 1.3 0.5 
198 USA, CA Mt Lewis 03/31/1986 RL 5.5 [U] 5.64 0.32 [5] 5.5 4 22 
199 Peru Cuzco 04/05/1986 N 4.6 [U] 5.22 0.077 [4] 2.5 O. l 
200 Taiwan Hualien 05/20/1986 R 6.4 [U] 6.37 4 [5] 20 24 480 
201 USA,CA No. Palm Springs 07/08/1986 RL-R 6.0 [U] 6.13 1.73 [5] (9) 16 9 144 
202 USA,CA Oceanside 07/13/1986 R 5.8 [U] 5.87 0.73 [5] 8 7 56 
203 USA,CA Chalfant Valley 07/21/1986 RL 6.2 [U] 6.31 3.2 [5] (15.8) 20 11 220 (0.11) 
204 Greece Kalamata 09/13/1986 N 5.8 [UJ 5.93 0.89 [5] 15 15 14 210 0.18 0.15 
205 El Salvador San Salvador 10/10/1986 LL 5.4 [U] 5.74 0.45 [4] 6 7.5 45 
206 Taiwan Hualien 11/14/1986 R 7.8 [U] 7.33 110 [5] 48 26 1248 
207 Japan Omachi 12/30/1986 LL-R 5.3 [UJ 5.51 0.21 [5] 7 4 28 
208 Mexico Cerro Prieto 02/07/1987 LL 5.5 [U] 5.63 0.31 [5] 5 
209 New Zealand Edgecumbe 03/02/1987 N 6.6 [U] 6.50 6.3 [5] 18 32 14 448 2.90 1.7 
210 Japan Kameoka 05/28/1987 N 4.9 [ML] 1.4 1.8 2.5 
211 USA, Illinois Wabash Valley 06/10/1987 RL 4.4 [UJ 4.96 0.031 [3] 1.7 3 5 

t:;j 

212 China Xunwu 08/02/1987 LL-N 4.8 [I] 5.01 0.036 [3] 4 4 16 t'"" 
213 USA, Utah Lakeside 09/25/1987 RL 4.6 [U] 5.02 0.038 [3] 5.5 6 30 ~ 
214 USA,CA Whittier Narrows 10/01/1987 R 5.7 [U] 6.01 1.04 [5] 5 6 30 ~ 
215 USA,CA Elmore Ranch 11/24/1987 LL 6.2 [U] 6.20 2.6 [5] 10 30 12 360 0.20 (0.23) 00 

216 USA,CA Superstition Hills 11/24/1987 RL 6.6 [U] 6.61 9.2 [5] 27 30 11 330 0.92 0.54 § 
217 Australia Tennant Creek 01/22/1988 R 6.3 [U] 6.26 2.8 [5] 10.2 13 9 117 1.3 0.63 

0, 

218 Australia Tennant Creek 01/22/1988 R-LL 6.4 [U] 6.38 4.1 [5] 6.7 13 9 117 1.17 0.60 
~ 

219 Australia Tennant Creek 01/22/1988 R 6.7 [U] 6.58 8.2 [5] 16 19 12 228 1.9 0.93 :--' 

220 USA, Utah Colorado Plateau 08/14/1088 LL-N 5.3 [ML] 5 7 35 n 
0 

221 China Lancang-Gengma 11/06/1988 RL 7.3 [U] 7.13 54.7 [5] 35 80 20 1600 1.5 0.7 :g 
222 China Gengma, Yunnan 11/06/1988 RL 7.2 [CJ 6.83 20 [3] 15.6 46 1.1 0.6 0 .., 

00 

223 Canada Saguenay 11/25/1988 R 5.8 [U] 5.84 0.64 [5] 23 10 230 3 
224 USA,CA Pasadena 12/03/1988 LL 4.2 [U] 4.96 0.031 [3] 4.5 2.5 10 ~ 



Table I-Continued 

Rupture Length (km)tt 
Rupture Rupture 

Date Slip Seismic Moment:{: Widthtt Areatt 

EQN Location Earthquake (UTC, m/d/yr) Type** M5 t Mtt (I 026 dyne-cm) Surface Subsurface (km) (km2) 

225 USSR Armenia 12/07/1988 R-RL 6.8 (U] 6.76 15.3 [S] 25 38 11 418 

226 USA, Utah South Wasatch 01/30/1989 LL 4.8 [U] 5.33 0.11 [4J s 4 20 

227 USA.CA Loma Prieta 10/18/1989 RL-R 7.l [UJ 6.92 267 [SJ 40 16 640 

228 Algeria Chenoua 10/29/1989 R 5.7 [UJ 5.98 1.04 [4J 4.0 15 IO ISO 

229 Canada Ungava 12/25/1989 R 6.3 (U] 5.98 1.04 (41 IO 10 s so 
230 Japan Izu-Oshima 02/20/1990 LL 6.4 [UJ 6.37 4.05 [SJ 19 12 228 

231 USA,CA Upland 02/28/1990 LL 5.5 [U] 5.59 0.27 [SJ 4 7 28 

232 Iran Rudbar-Tarom 06/20/1990 R-LL 7.7 [UJ 7.41 147 [5J 80 (90) 

233 Philippines Luzon 07/16/1990 LL 7.8 [UJ 7.74 460 [5J 120 120 20 2400 

234 USA,CA Lee Vining 10/24/1990 RL 5.2 [UJ 5.33 0.11 [4J 4 4 16 

235 Japan Southern Niigata 12/07/1990 R 5.1 [UJ 5.28 0.092 [4J 6.5 5 33 

236 USA,CA Sierra Madre 06/28/1991 R-LL 5.1 [UJ 5.62 0.30 [SJ 4 5 20 

237 USA,CA Ragged Point 09/17/1991 R-RL 4.5 [UJ 5.10 0.05 [4J I.I 2 2.2 

238 Turkey Erzincan 03/13/1992 RL 6.8 [UJ 6.87 22.8 [5J (30) 38 

239 USA,CA Joshua Tree 04/23/1992 RL 6.3 [UJ 6.27 2.9 [SJ IS 13 195 

240 USA, CA Landers 06/28/1992 RL 7.6 [UJ 7.34 114 [5J 71 62 12 744 

241 USA,CA Big Bear 06/28/1992 LL 6.7 [UJ 6.68 I 1.6 [SJ 20 10 200 

242 USA, Nevada Little Skull Mtn. 06/29/1992 N 5.4 [UJ 5.69 0.38 [SJ 8 4.5 36 

243 USA, Oregon Scotts Mills 03/25/1993 R 5.4 [UJ 4.77 0.016 (3) 5.5 9 50 

244 USA,CA Eureka Valley 05/17/1993 N 5.8 [U] 6.08 1.5 [SJ 4.4 16.7 7 117 

*References for each earthquake are listed in Appendix B. 
**RL-right lateral; LL-left lateral; R-reverse; N-normal. For oblique-slip earthquakes, the subordinate sense of slip is listed after the primary slip type. 

Displacement (m)tt 

Maximum Average 

2.0 

0.13 
2.0 0.8 

0.95 
6.2 

(0.20) 

6.0 

0.02 

2.95 

tMagnitude source listed in brackets: A-Ambraseys, 1975, 1988; B-Abe, 1981; Abe and Noguchi, 1983a, 1983b; C-Lee et al., 1978; D-Duda, 1965, Rothe, 1969; G-Gutenberg 
and Richter, 1954; I-intensity magnitude; }-Japanese Meteorologic::il Agency; L-Lienkaemper, 1984; mb-body-wave magnitude; ML-local or Richter magnitude; PS-Ms Pasadena; PB
Purcaru and Berkhemer, 1982; U-NEIS, USCGS; W-Wu, 1968. 

ttSource parameters listed in parenthesis are considered unreliable and are not included in any regression analysis. 
tMoment source listed in brackets: I-estimated from surface length and rupture width using formula M0 = µ, AD (Kanamori and Anderson, 1975), whereµ, = 3 X IO'' dyn/cm', A = 

rupture length x rupture width (cm2), Jj = average displacement on fault (cm); 2-estimated from geodetic modeling of rupture area and displacement using formula Mo = µ, AD; 3-measured 
from surface waves or body waves; 4-averaged from body- and surface-wave measurements; 5-measured from moment tensor solutions. 

HEstimated from depths of seismicity on faults. 
§Estimated from body- and surface-wave studies. 
~Estimated from geodetic modeling of surface deformation. 
#Slemmons, D. B., personal comm., 1989. 
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Slemmons, 1977; Bonilla et al., 1984). To categorize 
the dominant slip type for each earthquake in our data 
base, we use a simple classification scheme based on the 
ratio of the horizontal component of slip to the vertical 
component of slip. The horizontal-to-vertical slip ratio 
is calculated from all estimates of the components of slip, 
including, in order of priority, surface displacement, 
geodetic modeling of surface deformation, and the rake 
from earthquake focal mechanisms. 

Published earthquake focal mechanisms were re
viewed to compare the nature of surface deformation, 
such as surface fault displacements and regional subsi
dence, uplift, or lateral deformation, with the seismo
logic data for each earthquake. For some earthquakes, 
there are several published focal mechanisms, including 
those derived from waveform inversions, P-wave first 
motions, and moment tensor inversions. Because focal 
mechanisms derived from waveform inversion of long
period P and SH waves usually are considered more rep
resentative of the primary style of co-seismic slip than 
are short-period P-wave first-motion solutions, the for
mer generally are preferred (Aki and Richards, 1980). 
Theoretically, because the nature and amount of slip at 
the surface is at least partly controlled by the depth of 
the focus and the nature of surface geologic conditions, 
categorizing slip based solely on the slip components 
measured at the surface may not correspond to the slip 
type indicated by seismologic data. In practice, how
ever, we find that the dominant sense of slip at the sur
face is representative of the overall sense of slip mea
sured from the rake of earthquake focal mechanisms. 

Slip types for the earthquakes in Table 1 reflect the 
following scheme, which is based on the ratio of hori
zontal (HZ; strike slip, S) to vertical (VT; reverse, R, 
or normal, N) slip: 

HZ: VT Slip > 2: 1 2: 1 to 1 : 1 1 : 1 to 1 : 2 < 1: 2 

Slip Type S S-R, S-N R-S, N-S R, N 

In Table 1, the strike-slip component is characterized as 
right lateral (RL) or left lateral (LL), depending on the 
sense of horizontal displacement. For 60 oblique-slip 
earthquakes, the subordinate sense of slip is listed after 
the primary slip type. For the regressions, each earth
quake is assigned to one of three slip types: strike slip, 
normal, or reverse. Earthquakes having a horizontal-to
vertical slip ratio greater than 1 to 1 are considered strike 
slip; those having a horizontal-to-vertical slip ratio of 1 
to 1 or less are considered normal or reverse, depending 
on the sense of vertical displacement. 

The earthquakes in Table 1 also are categorized by 
other characteristics to evaluate potential differences in 
rupture parameter correlations. Earthquakes are charac
terized with respect to whether they occurred within a 
compressional environment ( one that is characterized by 

D. L. Wells and K. J. Coppersmith 

compressional or transpressional tectonics), or within an 
extensional environment (one that is characterized by ex
tensional or transtensional tectonics). Slemmons et al. 
(1989) proposed a similar classification for their data base 
and found no significant differences between regressions 
developed for the two environments. The earthquakes 
also are separated according to whether they occurred 
within an active plate margin or within a stable conti
nental region. Stable continental regions are regions of 
continental crust that have no significant Cenozoic tec
tonism or volcanism (Electric Power Research Institute, 
1987; Johnston and Kanter, 1990); active plate margins 
include all other regions in our data base. 

Magnitude and Seismic Moment 

Estimates of moment magnitude (M) and surface
wave magnitude (Ms) are listed in Table 1. Most pre
vious studies of earthquake source parameters compiled 
Ms estimates, because these are the most commonly cited 
magnitudes for older instrumental earthquakes. There are, 
however, several problems associated with using Ms to 
analyze source parameter relationships. Because Ms is a 
measure of seismic-wave amplitude at a specific period 
(approximately 18 to 22 sec), it measures only the en
ergy released at this period. Although Ms values gen
erally are very stable between nearby stations, signifi
cant variations in Ms may occur between distant stations. 
These variations are related to azimuth, station distance, 
instrument sensitivity, and crustal structure (Panza et al., 
1989). Furthermore, for very large earthquakes (Ms > 
8.0), the periods at which Ms is measured become sat
urated and no longer record large-scale faulting char
acteristics (Hanks and Kanamori, 1979). A similar prob
lem with saturation of measured seismic waves also occurs 
for scales such as local or Richter magnitude (ML) and 
body-wave magnitude (mb). For small earthquakes (Ms 
< 5.5), 20-sec surface-wave amplitudes are too small to 
be recorded by many seismographs (Kanamori, 1983). 
Thus, traditional magnitude scales are limited by both 
the frequency response of the Earth and the response of 
the recording seismograph. 

A physically meaningful link between earthquake size 
and fault rupture parameters is seismic moment, Mo = 
µ, J5 A, where µ, is the shear modulus [usually taken as 
3 x 1011 dyne/cm2 for crustal faults (Hanks and Kan
amori, 1979)]; J5 is the average displacement across the 
fault surface; and A is the area of the fault surface that 
ruptured. In turn, M0 is directly related to magnitude [e.g., 
M = 2/3 * log M0 - 10.7 (Hanks and Kanamori, 1979)]. 

Seismic moment (M0) also is considered a more ac
curate measure of the size of an earthquake than are tra
ditional magnitude scales such as Ms and mb because it 
is a direct measure of the amount of radiated energy, 
rather than a measure of the response of a seismograph 
to an earthquake (Hanks and Wyss, 1972). It is com
puted from the source spectra of body and surface waves 
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(Hanks et al., 1975; Kanamori and Anderson, 1975) or 
is derived from a moment tensor solution (Dziewonski 
et al., 1981). Furthermore, there is a larger variability 
in the value of Ms than of M0 measured at different sta
tions. For any earthquake, Ms values from stations at 
different azimuths may differ by as much as 1.5 mag
nitude units, whereas M 0 values rarely differ by more 
than a factor of 10, which is equivalent to a variability 
of 0. 7 in M values. Thus, M is considered a more re
liable measure of the energy released during an earth
quake (Hanks and Kanamori, 1979). 

For earthquakes that lack published Ms estimates, 
other measures such as Richter magnitude (ML) or body
wave magnitude (mb) are listed in Table I. Because there 
are several methods for calculating Ms, values calculated 
by comparable methods are listed where possible. Ac
cording to Lienkaemper (1984), Ms calculated by the 
Prague formula, which is used for Preliminary Deter
mination of Epicenters (PDE-U.S. Geological Survey 
monthly bulletin), is directly comparable to MGR calcu
lated by Gutenberg and Richter (1954). On the average, 
Ms computed by Abe (1981), Gutenberg (1945), and 
Richter (1958) differ systematically from Ms (PDE) and 
MGR (Lienkaemper, 1984). Comparable Ms values listed 
in this report are taken from the following sources, listed 
in order of preference: Ms (PDE), Ms (Lienkaemper, 
1984), and MGR (Gutenberg and Richter, 1954). Addi
tional sources for magnitudes are listed in the footnotes 
to Table 1. 

To arrive at a single estimate of seismic moment for 
each earthquake in the data base, we calculate an av
erage seismic moment from all published instrumental 
seismic moments, including those measured from body 
waves, surface waves, and centroid moment tensor so
lutions. Noninstrumental estimates of seismic moment, 
such as those based on estimates of rupture dimensions 
or those estimated from magnitude-moment relation
ships, are not used to calculate average seismic moment. 
Moment magnitudes are calculated from the averaged 
seismic moment by the formula of Hanks and Kanamori 
(1979): M = 2/3 * log M0 - 10.7. The values of M 
calculated from M0 are shown to two decimal places in 
Table 1 to signify that they are calculated values; these 
values are used for the regression analyses. When con
sidering individual estimates of moment magnitude, 
however, these values are considered significant only to 
one decimal place, and should be rounded to the nearest 
tenth of a magnitude unit. 

Previous studies of the relationship between Ms and 
M indicate that these magnitudes are approximately equal 
within the range of Ms 5.0 to 7.5 (Kanamori, 1983). Our 
data set shows no systematic difference between Ms and 
M in the range of magnitude 5. 7 to 8.0 (Fig. 1). In the 
range of magnitude 4. 7 to 5. 7, Ms is systematically smaller 
than M, in agreement with the results of Boore and Joy
ner (1982). The standard deviation of the difference be-

tween each pair of Ms and M values in Figure 1 is ap
proximately 0.19. This standard deviation is less than 
the standard deviation of 0.28 calculated by Lienkaem
per (1984) for residuals of all single-station Ms estimates 
for individual earthquakes. Based on these standard de
viations, the difference between the magnitude scales (Ms 
and M) is insignificant for the earthquakes of magnitude 
greater than 5. 7 listed in Table 1. 

For regressions of magnitude versus surface rupture 
length and magnitude versus maximum displacement, 
previous studies excluded earthquakes with magnitudes 
less than approximately Ms 6.0 (Slemmons, 1982; Bon
illa et al. , 1984; Slemmons et al. , 1989). These authors 
noted that earthquakes of Ms less than 6.0 often have 
surface ruptures that are much shorter than the source 
length defined by aftershocks, and that possible surface 
ruptures for these earthquakes may be less well studied 
than those for earthquakes of larger magnitude. Fur
thermore, surface faulting associated with earthquakes 
of magnitude less than 6.0 may be poorly expressed as 
discontinuous traces or fractures, showing inconsistent 
or no net displacement (Darragh and Bolt, 1987; Bon
illa, 1988). We evaluate regression statistics for mag
nitude versus surface rupture length and magnitude ver
sus surface displacement for earthquakes of magnitude 
less than 6.0 (Ms or M), and conclude that elimination 
of the magnitude cutoff expands the data sets without 
significantly compromising the regression statistics. Thus, 
several well-studied surface-rupturing earthquakes of 
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Figure 1. Surface-wave magnitude (Ms) ver
sus moment magnitude (M) for historical conti
nental earthquakes. Segmented linear regression 
shown as solid line, with segment boundaries at 
M 4.7, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, and 8.2. Short 
dashed lines indicate 95% confidence interval of 
regression line. Long dashed line indicates equal 
magnitudes (1 to 1 slope). 
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magnitude less than 6.0 (e.g., 1979 Homestead Valley 
and 1983 Nunez-Coalinga, California) are included in 
the data base. 

For the regressions on subsurface rupture length and 
on rupture area, the lower bound of magnitude is set at 
M 4. 7 because aftershock sequences for earthquakes of 
lower magnitude rarely are the subject of detailed in
vestigations. Aftershocks and source parameters of nu
merous recent earthquakes of moderate magnitude (M 
4. 7 to 6.0) have been studied in detail (e.g., 1984 North 
Wales, England; 1986 Kalamata, Greece; and 1988 Pas
adena and 1990 Upland, California). It is appropriate to 
use these moderate-magnitude earthquakes to evaluate 
subsurface rupture length, rupture width, and rupture area 
relationships, because the use of subsurface character
istics eliminates the problems associated with the incom
plete expression of rupture at the surface usually asso
ciated with moderate-magnitude earthquakes (Darragh 
and Bolt, 1987). 

Instrumentally measured magnitudes (Ms or M) do 
not exist for all the earthquakes listed in Table 1. For 
these earthquakes, magnitudes are estimated from re
ports of felt intensity (M1), or are estimated from the rup
ture area and displacement using the definition of seis
mic moment [M0 = µ,DA (Hanks and Kanamori, 1979)]. 
The earthquakes that lack instrumental magnitudes are 
included for use in displacement-to-length relationships, 
which do not require magnitude. 

Surface Rupture Length 

The length of rupture at the surface is known to be 
correlatable with earthquake magnitude. This study re
views and reevaluates previously published surface rup
ture lengths for historical earthquakes and expands the 
data set to include recent earthquakes and new studies 
of older events. Published and unpublished descriptions 
of surface rupture are reviewed to evaluate the nature 
and extent of surface faulting for 207 earthquakes. Rather 
than relying on values reported in secondary data com
pilations, we reviewed original field reports, maps, and 
articles for each earthquake. 

Rupture lengths measured from maps and figures are 
compared to the lengths reported in descriptions of sur
face faulting. Descriptions of surface faulting also are 
reviewed to evaluate whether the ruptures are primary or 
secondary. Primary surface rupture is defined as being 
related to tectonic rupture, during which the fault rupture 
plane intersects the ground surface. Secondary faulting 
includes fractures formed by ground shaking, fractures 
and faults related to landslides, and triggered slip on sur
face faults not related to a primary fault plane (e.g., slip 
on bedding plane faults or near-surface slip on adjacent 
or distantly located faults). Because identifying primary 
tectonic rupture is particularly difficult for smaller-mag
nitude earthquakes (less than approximately Ms or M 6.0), 
these events are included in regression analyses only when 
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the tectonic nature of the surface rupture is clearly es
tablished (e.g., the 1966 Parkfield, California, earth
quake, but not the 1986 Chalfant Valley, California, 
earthquake). Discontinuous surface fractures mapped be
yond the ends of the continuous surface trace are con
sidered part of the tectonic surface rupture and are in
cluded in the calculation of surface rupture length. 

Major sources of uncertainty in reported measure
ments of surface rupture length are as follows. (1) In
complete studies of the rupture zone. Less than the entire 
surface rupture was investigated and mapped for any of 
various reasons, such as inaccessibility, discontinuity of 
the surface trace along strike so the entire rupture was 
not identified, or the fault trace was obscured before 
postearthquake investigations were undertaken. Consid
erable uncertainty in the extent of rupture is assessed for 
investigations completed years to decades after an earth
quake. (2) Different interpretations of the nature and ex
tent of surface deformation. Interpretations may differ 
on the extent of primary surface rupture, the differentia
tion of primary and secondary surface rupture, and the 
correlation of surface rupture on different faults to in
dividual earthquakes for multiple event sequences. (3) 
Unresolvable discrepancies between lengths reported by 
different workers. These discrepancies are related to level 
of effort in field investigations, method of measuring fault 
traces, or lengths reported in text versus the lengths drawn 
on maps. 

Earthquakes are selected for regression analyses in
volving surface rupture length if the data met all of the 
following criteria: (1) uncertainty in the rupture length 
does not exceed approximately 20% of the total length 
of the rupture; (2) at least one estimate of the amount of 
surface displacement is reported; and (3) the lengths of 
ruptures resulting from individual events in multiple 
earthquake sequences are known. 

Subsurface Rupture Length, Downdip Width, 
and Rupture Area 

Subsurface source dimensions, both rupture length 
and rupture area (length times downdip width), are eval
uated for more than 250 earthquakes. Wyss (1979) com
piled a smaller data base of rupture areas for continental 
and subduction zone earthquakes, and Darragh and Bolt 
(1987) compiled subsurface rupture lengths for moder
ate-magnitude strike-slip earthquakes. We expand the data 
base and relate these rupture parameters to moment mag
nitude. 

The primary method used to estimate subsurface 
rupture length and rupture area is the spatial pattern of 
early aftershocks. Aftershocks that occur within a few 
hours to a few days of the mainshock generally define 
the maximum extent of co-seismic rupture (Kanamori and 
Anderson, 1975; Dietz and Ellsworth, 1990). Because 
the distribution of aftershocks may expand laterally and 
vertically following the mainshock, the initial size of the 
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aftershock zone is considered more representative of the 
extent of co-seismic rupture than is the distribution of 
aftershocks occurring within days to months of the 
mainshock. Furthermore, detailed studies of aftershocks 
of several recent earthquakes (such as the 1989 Loma 
Prieta, California) suggest that early aftershocks occur 
at the perimeter of the co-seismic rupture zone, and that 
the central part of this zone is characterized by a lack of 
seismicity for the first few hours to days after the 
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bution of early aftershocks of historical continen
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Figure 3. Ratio of surface to subsurface rup
ture length versus magnitude. 
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mainshock (Mendoza and Hartzell, 1988; Dietz and Ells
worth, 1990). This observation suggests that even the 
rupture area defined by early aftershocks may be slightly 
larger than the actual co-seismic rupture zone (Mendoza 
and Hartzell, 1988). 

We estimate subsurface rupture length using the length 
of the best-defined aftershock zone. The accuracy of the 
size of the aftershock zone depends on the accuracy of 
the locations of individual aftershocks, which depends, 
in tum, on the azimuths and proximity of the recording 
stations and the accuracy of the subsurface structure ve
locity model. The largest uncertainty typically is in
curred in calculating the depths of the hypocenters rather 
than the areal distribution of epicenters (Gubbins, 1990). 
Earthquakes are excluded from regression analysis if only 
a few aftershocks were recorded, or if the aftershock lo
cations were very uncertain. 

Alternative but less satisfactory methods to assess 
the extent of subsurface co-seismic rupture include con
sidering the surface rupture length, geodetic modeling of 
surface displacement, and modeling of the earthquake 
source time function. Comparisons for this study suggest 
that the surface rupture length provides a minimum es
timate of the subsurface rupture length. For example, for 
53 earthquakes for which data on both surface and sub
surface rupture length are available, surface rupture length 
averaged about 75% of subsurface rupture length (Fig. 
2). However, the ratio of surface rupture length to sub
surface rupture length appears to increase with magni
tude (Fig. 3). Thus, we conclude that surface rupture 
length is a more reliable estimator of subsurface rupture 
length as magnitude increases. 

Estimates of rupture length calculated from geodetic 
modeling of vertical and horizontal changes at the ground 
surface, or from comer frequencies of seismograms 
(source time functions for circular, unilateral, or bilat
eral ruptures) also are compiled from the literature. For 
some earthquakes, rupture lengths estimated from these 
methods are much shorter than rupture lengths measured 
from the distribution of aftershocks (Mendoza and Hart
zell, 1988). Thus, these measures of rupture length may 
not represent the extent of co-seismic rupture in the same 
way that aftershocks do. In this study, estimates of sub
surface rupture length based on geodetic modeling or 
source time functions are accepted for regression anal
ysis only when independent estimates of rupture length 
are available for corroboration. 

Downdip rupture widths are estimated from the depth 
distribution of the best-defined zone of aftershocks. Where 
the downdip width of rupture is unknown from the dis
tribution of aftershocks, it is estimated from the depth 
(thickness) of the seismogenic zone or the depth of the 
hypocenter and the assumed dip of the fault plane. For 
most earthquakes of magnitude 5 1 /2 or larger, the 
mainshock typically occurs at or near the base of the 
seismogenic zone (Sibson, 1987). Estimates of rupture 
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width based on hypocentral depth of the mainshock or 
width of the seismogenic zone are used to calculate rup
ture area only for earthquakes for which detailed infor
mation on regional seismicity is available, or for which 
detailed studies of the hypocentral depth and focal mech
anism have been performed. 

Major sources of uncertainty for measuring subsur
face rupture parameters are as follows: (1) accuracy of 
aftershock locations in three dimensions; (2) interpreta
tion of the initial extent (length and downdip width) of 
the aftershock sequence; (3) temporal expansion of the 
aftershock zone; (4) interpretation of the length of mul
tiple earthquake rupture sequences; (5) identification of 
the strike and dip of the rupture plane from aftershocks; 
and (6) reliability of geodetic and seismologic modeling. 

Earthquakes are selected for regression analyses in
volving subsurface rupture length, rupture width, and 
rupture area if the data met the following criteria: (1) 
subsurface rupture length and width are measured from 
an aftershock sequence of known duration; and (2) af
tershocks were recorded by a local seismograph net
work, or many aftershocks were recorded at teleseismic 
stations. In cases where information on aftershock dis
tribution is lacking, the earthquake is included in the 
analysis if (1) consistent subsurface rupture lengths are 
calculated from at least two sources such as geodetic 
modeling, source time functions, or surface rupture length, 
and (2) rupture width can be estimated confidently from 
the thickness of the seismogenic zone or the depth of the 
mainshock hypocenter. 

Maximum and Average Surface Displacement 

Observational data from field studies of faults as well 
as theoretical studies of seismic moment suggest that 
earthquake magnitude should correlate with the amount 
of displacement along the causative fault. In contrast to 
the published information on surface rupture length, dis
placement measurements for many earthquakes often are 
poorly documented. In this study, we attempted system
atically to compile information on the amount of co-seis
mic surface displacement and to identify the maximum 
and the average displacement along the rupture. 

The most commonly reported displacement mea
surement is the maximum observed horizontal and/or 
vertical surface displacement. We reviewed published 
measurements of displacement, including components of 
horizontal and vertical slip to calculate a net maximum 
displacement for each earthquake. Because the majority 
of displacement measurements reported in the literature 
were measured weeks to years after the earthquake, these 
displacement estimates may include post-co-seismic slip 
or fault creep. For events where displacements were 
measured at several time periods, we generally select the 
first measurements recorded after the earthquake to min
imize possible effects of fault creep. For several recent 
events in our data base (such as 1992 Landers, Califor-
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nia), we note that little or no postearthquake creep was 
observed. Thus, displacement measurements recorded 
several weeks or longer after the earthquake may rep
resent the actual co-seismic slip, except for a few regions 
where post-co-seismic slip has been documented (e.g., 
Parkfield and Imperial Valley regions of California). 

The net displacement is calculated from the vector 
sum of the slip components (horizontal and vertical) 
measured at a single location. Commonly, the maxi
mum horizontal displacement and the maximum vertical 
displacement occur at different locations along a rupture. 
In those cases, unless the subordinate component is re
corded at the sites of the maxima, a net slip vector can
not be calculated. Furthermore, it is difficult to recog
nize and measure compression and extension across a 
fault, even for the more recent, well-studied earth
quakes. 

Average displacement per event is calculated from 
multiple measurements of displacement along the rup
ture zone. For most earthquakes, the largest displace
ments typically occur along a limited reach of the rupture 
zone. Thus, simple averaging of a limited number of dis
placement measurements is unlikely to provide an ac
curate estimate of the true average surface displacement. 
The most reliable average displacement values are cal
culated from net displacement measurements recorded 
along the entire surface rupture. Figure 4 shows a sur
face displacement distribution for the 1968 Borrego 
Mountain, California, earthquake, a relatively well-stud
ied event. The average displacement may be calculated 
by several graphical methods, including a linear point
to-point function, a running three-point average, or an 
enveloping function that minimizes the effects of anom
alously low or high displacement measurements (D. B. 
Slemmons, 1989, personal comm.). The average-dis
placement data base reported in this study includes events 
examined by Slemmons using graphical techniques, and 
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events for which data were obtained from the published 
literature or calculated from individual measurements of 
displacement for these earthquakes. Specifically, we in
clude estimates of average displacement that we calcu
late from a minimum of 10 displacement measurements 
distributed along the surface rupture, or were reported 
from extensive studies of the entire surface rupture. 

For the average-displacement data set, the maximum 
s.urface displacement is about twice the average surface 
displacement, although the ratio of average to maximum 
surface displacement ranges from about 0.2 to 0.8 (Fig. 
5). In addition, for a subset of earthquakes with pub
lished instrumental estimates of seismic moment, the ra
tio of average to maximum displacement does not vary 
systematically as a function of magnitude (Fig. 5). 

A matter of interest is the relationship of co-seismic 
surface displacement to "subsurface" displacement that 
occurs on the fault plane within the seismogenic crust 
(as given in the definition of seismic moment). To eval
uate the relationship of surface displacement to average 
subsurface displacement, we calculate an average dis
placement from the seismic moment and the rupture area 
for all earthquakes having acceptable estimates of max
imum and average surface displacement, seismic mo
ment, and rupture area. The calculated values of sub
surface displacement are compared with the observed 
maximum and average surface displacements in Figures 
6 and 7. The ratio of average subsurface displacement 
to maximum surface displacement ranges from 0.14 to 
7.5; the ratio of average subsurface displacement to av
erage surface displacement ranges from 0.25 to 6.0. These 
ratios do not appear to vary as a function of magnitude 
(Figs. 6a and 6b). 

To evaluate the distribution of data, we calculate re-
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Figure 5. Ratio of average surface to maxi-
mum surface displacement versus magnitude. 

siduals for the ratios and find that the distribution is con
sistent with a normal distribution of data. Because of this 
and because of the large range of data, we believe that 
the mode provides an appropriate measure of the distri
bution of ratios. For 44 earthquakes for which we have 
estimates of both maximum displacement and subsurface 
displacement, the mode of the distribution of the ratios 
of average subsurface displacement to maximum surface 
displacement is 0. 76 (Fig. 7a). This indicates that for 
most earthquakes, the average subsurface displacement 
is less than the maximum surface displacement. For 32 
earthquakes for which we have estimates of both average 
displacement and subsurface displacement, the mode of 
the distribution of the ratios of average subsurface dis
placement to average surface displacement is 1.32 (Fig. 
7b). Thus, for the earthquakes in our data set, average 
subsurface displacement is more than average surface 
displacement and less than maximum surface displace
ment. Furthermore, for these earthquakes, most slip on 
the fault plane at seismogenic depths is manifested at the 
surface. 

The major sources of uncertainty in the displace
ment data set reflect the following: (1) documentation of 
less than the entire fault rupture trace; (2) lack of suitable 
features (e.g., stratigraphy, streams, or cultural features) 
for measuring displacement; (3) distribution of displace
ment along multiple fault strands, or distributed shearing 
over a broad fault zone; (4) modification of the fault scarp 
by landsliding or erosion; (5) increase in displacement 
due to afterslip; (6) inadequately documented locations 
of slip measurements; and (8) measurements of slip on 
geomorphic features displaced by repeated earthquakes 
or postearthquake creep. 

Earthquakes are selected for regression analyses in
volving displacement if the data met all of the following 
criteria: (1) type of displacement (strike slip, reverse, 
normal) and nature of measurement (maximum or av
erage surface slip) are known; (2) slip occurred primarily 
on a single fault, or the total slip across a zone of faults 
is known; (3) net maximum displacement is calculated 
from horizontal and vertical components of slip mea
sured at a single locality; and ( 4) the measured displace
ment can be attributed uniquely to the most recent earth
quake. In addition, for average displacement, the estimate 
is calculated from the sum of numerous contempora
neous displacement measurements, or was reported in 
literature by researchers who investigated the entire length 
of the surface rupture. 

Regression Models 

Numerous regression models exist for evaluating the 
relationship between any pair of variables, including 
models for linear or nonlinear relationships and normal 
(Gaussian) or nonparametric distributions of data. Most 
previous studies of fault rupture parameters used a sim-
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pie linear regression model such as ordinary least squares. 
Other models considered for this study included least
normal squares and reduced major axis (Troutman and 
Williams, 1987). These models have the advantage of 
providing a unique solution regardless of which variable 
is chosen to be the dependent variable. Although this 
unique solution provides the best fit to all the data, and 
thus the most accurate interpretation of the relationship 
between variables, it does not minimize the error in pre
dicting any individual variable. An ordinary least-squares 
model, however, calculates a nonunique solution that 
minimizes the error in predicting the dependent variable 
from the independent variable (Troutman and Williams, 
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1987). Thus, because we are interested in predicting pa
rameters to evaluate seismic hazard, and to make our 
new empirical relationships comparable to previously 
determined relationships, we use an ordinary least-squares 
regression model for all analyses. 

A further consideration in selecting a regression model 
is how it treats uncertainties in the data. Based on their 
detailed analysis of the "measurement" uncertainties as
sociated with magnitudes (Ms), surface rupture lengths, 
and maximum displacements, Bonilla et al. (1984) noted 
that for any given earthquake, the stochastic variance 
(earthquake-to-earthquake differences) in these rupture 
parameters dominates errors in measurement. Specifi-
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cally, they observed that a weighted least-squares model, 
which incorporates estimated measurement errors as a 
weighing factor, provides no better correlations than does 
an ordinary least-squares regression model. Similarly, 
Singh et al. (1980) analyzed the effects of data errors on 
solutions from linear and quadratic regressions. They 
concluded that there are significant difficulties in esti
mating the errors in source parameters, and that includ
ing estimated errors did not significantly improve the 
statistical correlations. 

Although earthquake-specific uncertainties in the 
measured data are not listed in Table I , the uncertainty 
in each listed parameter falls within the limits of ac
ceptability defined by the selection criteria, except for 
those parameters shown in parentheses. The parameters 
shown in parenthesis are excluded from the regression 
analyses because the uncertainties in the values are too 
large; however, these values are included in the data set 
for the sake of completeness. Thus, we consider the 
measurement uncertainties during the data selection pro
cess, but not for the regression analyses. For the 244 
earthquakes included in the analyses, the uncertainties 
in measurements for any given earthquake are consid
ered much smaller than the stochastic variation in the 
data set as a whole. 

One assumption of ordinary least-squares models is 
that the residuals have a normal distribution. Because 
many geologic and seismologic variables do not have a 
normal distribution, it is necessary to transform the data 
to a logarithmic form; this transformed data typically has 
a normal distribution (Davis, 1986). To test the as
sumption that the data sets have a (log) normal distri
bution, we calculate residuals between the empirical data 
and the predicted independent variable from each regres
sion equation. We complete X2 tests for binned and un-
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binned data sets for each set of residuals. We compute 
the optimum number of bins for each data set using the 
method of Benjamin and Cornell (1970). The X2 tests 
indicate that the distribution of residuals for all data sets 
is consistent with a normal distribution of data at a 95% 
significance level. We also examine the distribution of 
residuals for each data set to evaluate the fit of the data 
to the regression model. Because the distribution of re
siduals shows no obvious trends, a linear regression model 
provides a satisfactory fit to the data (Fig. 8). 

One significant change from the methods and results 
of most previous studies is that our analyses present 
regressions based on moment magnitude (M) rather than 
surface-wave magnitude (Ms). During preliminary anal
ysis of the regression relationships, we observed that the 
standard deviation of magnitude is consistently smaller 
for relationships based on M than for relationships based 
on Ms. In addition, the correlation coefficient generally 
is slightly higher for M relationships than for Ms rela
tionships. One advantage, however, to using Ms-based 
relationships is that the number of events in each rela
tionship is increased. We consider the smaller standard 
deviations and generally improved correlations for M
based relationships more important than increasing the 
size of the data set. We present only regressions based 
on M; for different applications, however, Ms-based re
lationships may be calculated from the data set. 

Regression Results and Statistical Significance 

Ordinary least-squares regression analyses (Tables 
2A and 2B) include regression of Mand log10 of surface 
rupture length, subsurface rupture length, downdip rup
ture width, rupture area, maximum surface displace
ment, and average surface displacement as a function of 
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Figure 8. (a) Residuals for surface rupture length regression versus observed 
surface rupture length. (b) Residuals for rupture area regression versus observed 
rupture area. 
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slip type. Regressions of surface rupture length and max
imum and average displacement also are presented (Ta
ble 2C). Regression descriptors include number of events, 
regression coefficients (a and b), standard error of the 
coefficients, standard deviation of the dependent vari
able (s), correlation coefficient (r), and data range. The 
empirical relationships have the form y = a + b * log 
(x) or log (y) = a + b * log (x), where y is the dependent 
variable and xis the independent variable. Two plots are 
presented for each pair of parameters. The first shows 
the data, the "all-slip-type" regression line (i.e., the 
regression fit to all of the data), and the 95% confidence 
interval (Figs. 9a through 16a). The second shows the 
regression lines for individual slip types (Figures 9b 
through 16b). The length of the regression line shows 
the range of data for each empirical relationship. 

We calculate t statistics for the correlation coeffi
cient to evaluate the significance of each relationship. A 
t distribution estimates a probability distribution based 

on the size of the data set. We use a t test to calculate 
critical values of t, then compare these values to critical 
values of t for a selected significance level. We evaluate 
significance levels for a two-tailed distribution, because 
the correlation may be positive or negative. All rela
tionships are significant at a 95% probability level, ex
cept for the reverse-slip relationships for maximum and 
average displacement. These relationships are not sig
nificant because the position of the regression line is poorly 
constrained by the data; they are shown in brackets in 
Table 2 because they are not considered useful for pre
dicting dependent variables. Furthermore, we exclude 
them from comparisons to regression lines for other re
lationships. The results of our analyses indicate a poor 
correlation between surface displacement and other rup
ture parameters for reverse-slip earthquakes. The re
verse-slip relationships excluded from further analysis 
include maximum displacement versus magnitude, av
erage displacement versus magnitude, surface rupture 

Table 2A 
Regressions of Rupture Length, Rupture Width, Rupture Area, and Moment Magnitude (M) 

Coefficients and 
Standard Correlation 

Standard Errors 
Slip Number of Deviation Coefficient Magnitude Length/Width 

Equation* Typet Events a(sa) b(sbJ Range Range (km) 

M = a + b * log (SRL) ss 43 5.16(0.13) 1.12(0.08) 0.28 0.91 5.6to8.l 1.3 to 432 
R 19 5.00(0.22) 1.22(0.16) 0.28 0.88 5.4 to 7.4 3.3 to 85 
N 15 4.86(0.34) 1.32(0.26) 0.34 0.81 5.2to7.3 2.5 to 41 
All 77 5.08(0.10) 1.16(0.07) 0.28 0.89 5.2to8.1 1.3 to 432 

log (SRL) = a + b * M ss 43 -3.55(0.37) 0.74(0.05) 0.23 0.91 5.6 to 8.1 1.3 to 432 
R 19 -2.86(0.55) 0.63(0.08) 0.20 0.88 5.4to7.4 3.3 to 85 
N 15 -2.01(0.65) 0.50(0.10) 0.21 0.81 5.2 to 7.3 2.5 to 41 
All 77 -3.22(0.27) 0.69(0.04) 0.22 0.89 5.2to8.l 1.3 to 432 

M = a + b * log (RLD) ss 93 4.33(0.06) 1.49(0.05) 0.24 0.96 4.8to8.l 1.5 to 350 
R 50 4.49(0.11) 1.49(0.09) 0.26 0.93 4.8 to 7.6 1.1 to 80 
N 24 4.34(0.23) 1.54(0.18) 0.31 0.88 5.2 to 7.3 3.8 to 63 
All 167 4.38(0.06) 1.49(0.04) 0.26 0.94 4.8 to 8.1 1.1 to 350 

log (RLD) = a + b * M ss 93 -2.57(0.12) 0.62(0.02) 0.15 0.96 4.8to8.1 1.5 to 350 
R 50 -2.42(0.21) 0.58(0.03) 0.16 0.93 4.8 to 7.6 1.1 to 80 
N 24 -1.88(0.37) 0.50(0.06) 0.17 0.88 5.2to7.3 3.8 to 63 
All 167 -2.44(0.11) 0.59(0.02) 0.16 0.94 4.8 to 8.1 1.1 to 350 

M = a + b * log (RW) ss 87 3.80(0.17) 2.59(0.18) 0.45 0.84 4.8to8.l 1.5 to 350 
R 43 4.37(0.16) 1.95(0.15) 0.32 0.90 4.8 to 7.6 1.1 to 80 
N 23 4.04(0.29) 2.11(0.28) 0.31 0.86 5.2to7.3 3.8 to 63 

All 153 4.06(0.11) 2.25(0.12) 0.41 0.84 4.8to8.1 1.1 to 350 

Jog (RW) = a + b * M ss 87 -0. 76(0.12) 0.27(0.02) 0.14 0.84 4.8 to 8.1 1.5 to 350 
R 43 -1.61(0.20) 0.41(0.03) 0.15 0.90 4.8to7.6 1.1 to 80 
N 23 -1.14(0.28) 0.35(0.05) 0.12 0.86 5.2to7.3 3.8 to 63 
All 153 -1.01(0.10) 0.32(0.02) 0.15 0.84 4.8 to 8.1 1.1 to 350 

M = a + b * log (RA) ss 83 3.98(0.07) 1.02(0.03) 0.23 0.96 4.8 to 7.9 3 to 5,184 

R 43 4.33(0.12) 0.90(0.05) 0.25 0.94 4.8 to 7.6 2.2 to 2,400 

N 22 3.93(0.23) 1.02(0.10) 0.25 0.92 5.2 to 7.3 19 to 900 

All 148 4.07(0.06) 0.98(0.03) 0.24 0.95 4.8 to 7.9 2.2 to 5,184 

log (RA) = a + b * M ss 83 -3.42(0.18) 0.90(0.03) 0.22 0.96 4.8 to 7.9 3 to 5,184 

R 43 -3.99(0.36) 0.98(0.06) 0.26 0.94 4.8to7.6 2.2 to 2,400 

N 22 -2.87(0.50) 0.82(0.08) 0.22 0.92 5.2to7.3 19 to 900 

All 148 -3.49(0.16) 0.91(0.03) 0.24 0.95 4.8to7.9 2.2 to 5,184 

*SRL-surface rupture length (km); RLD-subsurface rupture length (km); RW-downdip rupture width (km), RA-rupture area (km
2
). 

tSS-strike slip; R-reverse; N-normal. 
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length versus maximum displacement, and surface rup
ture length versus average displacement. We also eval
uate regressions between Ms and displacement; we ob
serve similar trends in correlation coefficients and standard 
deviations for each slip type. 

Analysis of Parameter Correlations 

The empirical regressions for all-slip-type relation
ships (Table 2) as well as the data plots (Figs. 9a through 
16a) enable us to evaluate the correlations among var
ious rupture parameters. The strongest correlations (r = 
0.89 to 0.95) exist between magnitude (M) and surface 
rupture length, subsurface rupture length, and rupture area. 
These regressions also have the lowest standard devia
tions (s = 0.24 to 0.28 magnitude units). Magnitude ver
sus displacement relationships have lower correlations 
(r = 0. 75 to 0. 78) and higher standard deviations (s = 
0.39 to 0.40 magnitude units). Displacement versus length 
relationships have the weakest correlation (r = 0. 71 to 
0.75), with standard deviations of 0.36 to 0.41 magni
tude units. These results indicate that displacement and 
rupture length generally correlate better with magnitude 
than with each other. The weaker correlations may re
flect the wide range of displacement values ( variations 
as great as 1 1 / 4 orders of magnitude) observed for rup
tures of the same length (Figs. 12a and 13a). 

Ms, a quantitative comparison with most regressions cal
culated for previous studies cannot be made. For the sur
face rupture length and maximum displacement regres
sions based on Ms that we calculated during our 
preliminary analyses, we observed that the correlation 
coefficients generally were slightly higher, and the stan
dard deviations were lower, than for the regressions cal
culated by Bonilla et al. (1984), Slemmons (1982), 
Slemmons et al. (1989), and Wesnousky (1986). We also 
observed that our regressions typically provided similar 
magnitude estimates to the relationships of Slemmons, 
and slightly lower magnitude estimates than the rela
tionships of Bonilla et al. (1984). The coefficients for 
our all-slip-type rupture area regression are similar to the 
coefficients estimated by Wyss (1979) for an M versus 
rupture area relationship. Further, because the data sets 
we use to calculate regressions typically are much larger 
than the data sets used for previous studies, even qual
itative comparisons among results of different studies are 
difficult to evaluate. 

Effects of Slip Type on Regressions 

In general, the relatively high correlations (r > 0. 7) 
and low standard deviations for all the regressions in
dicate there is a strong correlation among the various 
rupture parameters, and that these regressions may be 
used confidently to estimate dependent variables. 

By comparing the regressions for various slip types 
(Figs. 9b through 16b), we may evaluate the differences 
in magnitude or displacement that will result from a given 
fault parameter as a function of the sense of slip. The 
sensitivity of the regressions to the sense of slip greatly 
affects their application, because estimating the sense of 
slip of a fault may be difficult. If the regressions are 
insensitive to slip type, such a determination would be 
unnecessary, and using the all-slip-type regression would 
be appropriate. A further advantage to using all-slip-type Because our relationships are based on M rather than 

Table 2B 
Regressions of Displacement and Moment Magnitude (M) 

Coefficients and 
Standard Correlation 

Slip Number of 
Standard Errors 

Deviation Coefficient Magnitude Displacement 
Equation* Typet Events a(sa) b(sb) Range Range (km) 

M = a + b * log (MD) ss 43 6.81(0.05) 0.78(0.06) 0.29 0.90 5.6 to 8.1 0.01 to 14.6 
{Rt 21 6.52(0.11) 0.44(0.26) 0.52 0.36 5.4 to 7.4 0.11 to 6.5} 
N 16 6.61(0.09) 0. 71(0.15) 0.34 0.80 5.2 to 7.3 0.06 to 6.1 
All 80 6.69(0.04) 0.74(0.07) 0.40 0.78 5.2to8.l 0.01 to 14.6 

log (MD) = a + b * M ss 43 - 7 .03(0.55) l.03(0.08) 0.34 0.90 5.6to8.l 0.01 to 14.6 
{R 21 -1.84(1.14) 0.29(0.17) 0.42 0.36 5.4 to 7.4 0.11 to 6.5} 
N 16 -5.90(l.l8) 0.89(0.18) 0.38 0.80 5.2 to 7.3 0.06 to 6.1 
All 80 -5.46(0.51) 0.82(0.08) 0.42 0.78 5.2 to 8.1 0.01 to 14.6 

M = a + b * log (AD) ss 29 7.04(0.05) 0.89(0.09) 0.28 0.89 5.6to8.l 0.05 to 8.0 
{R 15 6.64(0.16) 0.13(0.36) 0.50 0.10 5.8 to 7.4 0.06 to 1.5} 
N 12 6. 78(0.12) 0.65(0.25) 0.33 0.64 6.0 to 7.3 0.08 to 2.1 
All 56 6.93(0.05) 0.82(0.10) 0.39 0.75 5.6to8.l 0.05 to 8.0 

log (AD) = a + b * M ss 29 -6.32(0.61) 0.90(0.09) 0.28 0.89 5.6 to 8.1 0.05 to 8.0 
{R 15 -0.74(1.40) 0.08(0.21) 0.38 0.10 5.8 to 7.4 0.06 to 1.5} 
N 12 -4.45(1.59) 0.63(0.24) 0.33 0.64 6.0 to 7.3 0.08 to 2.1 
All 56 -4.80(0.57) 0.69(0.08) 0.36 0.75 5.6to8.l 0.05 to 8.0 

*MD-maximum displacement (m); AD-average displacement (M). 
tSS-strike slip; R-reverse; N-normal. 
tRegressions for reverse-slip relationships shown in italics and brackets are not significant at a 95% probability level. 
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Table 2C 
Regressions of Surface Rupture Length and Displacement 

Coefficients and 
Standard Correlation 

Slip Number of 
Standard Errors 

Deviation Coefficient Displacement 
Equation* Typet Events a(sa) b(sb) Range (m) 

log (MD) = a + b * log (SRL) ss 55 -1.69(0.16) 1.16(0.09) 0.36 0.86 0.01 to 14.6 
{R:j: 21 -0.44(0.34) 0.42(0.23) 0.43 0.38 0.11 to 6.5 
N 19 -1.98(0.50) 1.51(0.35) 0.41 0.73 0.06 to 6.4 
All 95 -1.38(0.15) 1.02(0.09) 0.41 0.75 0.01 to 14.6 

log (SRL) = a + b * log (MD) ss 55 1.49(0.04) 0.64(0.05) 0.27 0.86 0.01 to 14.6 
{R 21 1.36(0.09) 0.35(0.19) 0.39 0.38 0.11 to 6.5 
N 19 1.36(0.05) 0.35(0.08) 0.20 0.73 0.06 to 6.4 
All 95 1.43(0.03) 0.56(0.05) 0.31 0.75 0.01 to 14.6 

log (AD) = a + b * log (SRL) ss 35 -1.70(0.23) 1.04(0.13) 0.32 0.82 0.10to8.0 
{R 17 -0.60(0.39) 0.31(0.27) 0.40 0.28 0.06 to 2.6 
N 14 -1.99(0.72) 1.24(0.49) 0.37 0.59 0.08 to 2.1 
All 66 -1.43(0.18) 0.88(0.11) 0.36 0.71 0.06 to 8.0 

log (SRL) = a + b * log (AD) ss 35 1.68(0.04) 0.65(0.08) 0.26 0.82 0.10 to 8.0 
{R 17 1.45(0.10) 0.26(0.23) 0.36 0.28 0.06 to 2.6 
N 14 1.52(0.05) 0.28(0.11) 0.17 0.59 0.08 to 2.1 
All 66 1.61(0.04) 0.57(0.07) 0.29 0.71 0.06 to 8.0 

*SRL-surface rupture length (km); MD-maximum displacement (m); AD-average displacement (m). 
§SS-strike slip; R-reverse; N-normal. 
+Regressions for reverse-slip relationships shown in italics and brackets are not significant at a 95% probability level. 
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regressions is that the range of application for the regres
sions is larger than for single-slip type regressions. 

Visually, there is little difference in the position of 
the regression lines as a function of the sense of slip for 
surface rupture length, subsurface rupture length, or rup
ture area (Figs. 9b, 15b, and 16b). Other relationships 
show larger differences between the position of the 
regression lines (Figs. 10b through 14b). To evaluate the 
statistical significance of the differences in the results, 
we use t statistics to compare the regression coefficients 
for individual slip-type data sets to the coefficients for 
the rest of the data (i.e., SS to N + R, N to R + SS, 
and R to SS + N). We also evaluate individual slip re
lationships to each other (SS to R, SS to N, R to N). 
We use the statistical analysis to evaluate whether 
regression coefficients differ at high levels of signifi
cance (generally 95%). In some cases, as discussed be
low, we examine the coefficients at higher levels of sig
nificance (e.g., 99%). In the following discussion, the 
difference between regression coefficients is considered 
negligible if they are not different at a 95% significance 
level. The difference between regression coefficients be
comes appreciable if they are different at higher levels 
of significance. 

We observe no difference as a function of slip type 
at a 95% significance level (i.e., the regression coeffi
cients do not differ at a 95% significance level) for re-

, , 
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lationships between surface rupture length and magni
tude and subsurface rupture length and magnitude. For 
these relationships, using the all-slip-type relationship is 
appropriate because it eliminates the need to assess the 
type of fault slip. Furthermore, the uncertainty in the 
mean is smaller for the all-slip-type relationship than for 
any individual slip-type regression, because the data set 
is much larger. 

For rupture area versus magnitude, we observe no 
difference in the coefficients of strike slip and normal 
regressions at a 95% significance level. The reverse 
regression coefficients differ from normal and strike-slip 
coefficients at all levels of significance. For downdip 
rupture width versus magnitude, the coefficients of re
verse and strike-slip regressions differ at all levels of sig
nificance. Normal and strike-slip coefficients, and re
verse and normal coefficients do not differ at 95 to 98% 
significance. These results indicate that the reverse-slip 
regression may be most appropriate for estimating mag
nitude, rupture width, or rupture area for reverse-slip 
faults, whereas the all-slip-type regression may be ap
propriate for other fault types. 

We note, however, that even though the regression 
coefficients may differ at various levels of significance, 
the actual difference between the expected magnitudes 
that the regressions provide typically is very small. For 
example, for an expected rupture area of 100 km2

, strike-
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slip regressions indicate an expected magnitude of M 6.0, 
whereas reverse and normal regressions indicate M 6.1 
and M 6.0, respectively. For an expected rupture area 
of 5000 km2

, all regressions indicate an expected mag
nitude of M 7.7 to 7.8. Differences of more than 0.2 
magnitude units occur only at magnitudes less than M 
5.0. Because the difference in these magnitude estimates 
is small, the all-slip-type relationship for rupture area 
versus magnitude is appropriate for most applications. 
The difference between magnitude estimates for rupture 
width versus magnitude relationships also is small, thus, 
the all-slip-type relationship again is preferred for most 
applications. 

In contrast, regressions for displacement relation
ships show larger differences as a function of slip type. 
Visually, the positions of regression lines for normal and 
strike-slip data sets vary somewhat for magnitude versus 
maximum displacement and magnitude versus average 
displacement relationships (Figs. 10b and I lb). Apply
ing t statistics to these relationships shows that strike
slip and dip-slip (normal plus reverse) coefficients differ 
at all significance levels. Normal-slip coefficients do not 
differ from strike-slip plus reverse coefficients at a 95% 
significance level. Because strike-slip relationships are 
well correlated and have low standard deviations (r ~ 
0.89 ands ~ 0.29), using these regressions (magnitude 
versus maximum or average displacement) may be ap
propriate when the expected slip type is assessed with a 
high degree of confidence. For situations in which the 
slip type is uncertain, or for normal and reverse-slip faults, 
the all-slip-type regression may provide the most reliable 
results. 

Small differences occur in the position of normal and 
strike-slip regression lines for relationships between dis
placement and surface rupture length (Figs. 12b and 13b). 
Evaluation of t statistics for displacement versus surface 
rupture length relationships shows that normal and strike
slip coefficients do not differ at a 95% significance level. 
Because the strike-slip regression has the highest cor
relation (0.86 and 0.82) and the lowest standard devia
tion (0.36 and 0.32) of the three slip types, for maxi
mum and average displacement regressions, respectively, 
it may provide the most reliable results when the ex
pected slip type is assessed with a high degree of con
fidence. The all-slip-type relationship may be appropri
ate for other situations. 

Effects of Data Selection 

We evaluated the relative stability of individual re
lationships with respect to changes in the data set (i.e., 
addition or deletion of events or changes in the source 
parameters). We tested the sensitivity of the correlations 
by removing two data points at random from each data 
set and recalculating the regression coefficients. Rela
tionships that include more than approximately 14 data 
points are considered stable because there is no differ-

ence at a 95% significance level between the regression 
coefficients for both data sets. We consider relationships 
that are based on fewer than 10 data points to be unsta
ble, because changes in these smaller data sets may pro
duce significant changes in the regression coefficients. 
We also observe that larger data sets typically have higher 
correlations and lower standard deviations. 

It is interesting to note that although there are far 
more data points for subsurface rupture length and rup
ture area relationships (for all-slip-type regressions) than 
for surface rupture relationships, they have only- slightly 
higher correlation coefficients and slightly lower stan
dard deviations (Table 2). This suggests that these three 
regressions are very stable and are unlikely to change 
significantly with additional data. Because the surface 
and subsurface rupture parameters are measured by dif
ferent techniques, the similar statistical correlation also 
implies that the variability in the data sets is stochastic 
in nature, and does not result from errors in measure
ment techniques. It is expected that variable expression 
of subsurface ruptures at the surface might result in a 
weaker correlation between surface rupture length and 
magnitude than between subsurface rupture length and 
magnitude. However, both relationships are well cor
related and have similar statistical variability. 

Effects of Tectonic Setting 

Recent studies relate magnitude to rupture length and 
to displacement and relate seismic moment to rupture 
length for regions of different geographic setting, tec
tonic setting, or regional crustal attenuation character
istics (e.g., Acharya, 1979; Wesnousky et al., 1983; 
Bonilla et al., 1984; Nowroozi, 1985; Khromovskikh, 
1989; Slemmons et al., 1989; dePolo et al., 1991; John
ston, 1991). One goal of this study is to evaluate whether 
the tectonic setting of a region might have a greater ef
fect on regressions than does the type of fault slip. The 
results of Slemmons et al. (1989) suggest that separating 
data by compressional and extensional settings is insig
nificant for rupture length relationships, but may be sig
nificant for displacement relationships. The data in Ta
ble 1 are separated into compressional and extensional 
settings, and regression coefficients are calculated for each 
all-slip-type relationship (excluding average displace
ment). We use t statistics to compare the coefficients (a 
and b) of extensional and compressional regressions, and 
we observe no difference between the coefficients at a 
95% significance level for any of the relationships. Thus, 
the difference between the extensional and compres
sional coefficients is insignificant. 

Johnston (1991) calculated regressions of magnitude 
versus surface rupture length and magnitude versus max
imum displacement for data from stable continental re
gions (SCR's). His results were not significantly differ
ent from regressions for non-SCR data sets. We also 
calculate all-slip-type regressions for the SCR earth-
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quakes in our data base and compare these results to data 
from the rest of the world. Because the SCR data sets 
for surface rupture length and displacement relationships 
contain only six to seven earthquakes and the correla
tions are low (r < 0.75), these relationships are not sig
nificant at a 95% probability level and are not considered 
further. Relationships for magnitude versus subsurface 
rupture length, magnitude versus rupture width, and 
magnitude versus rupture area comprise 18, 17, and 17 
earthquakes, respectively, are well correlated (r > 0.9), 
and are significant at a 95% probability level. Compar
ing SCR regression coefficients to non-SCR coefficients 
shows that the rupture area regressions differ at a 95% 
significance level, whereas the subsurface rupture length 
and rupture width regression coefficients do not differ at 
a 95% significance level. We note, however, that the 
difference in expected magnitudes generally is small (less 
than O. 2 M) for these regressions (Fig. 17). These results 
indicate that subdividing our data set according to var
ious tectonic settings or geographic regions does not 
greatly improve the statistical significance of the regres
sions. 

Discussion 

The primary purpose of developing regression re
lationships among various earthquake source parameters 
is to predict an expected value for a dependent parameter 
from an observed independent parameter. Because we 
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calculate the regressions by the method of ordinary least 
squares, the coefficients presented in Table 2 are for es
timating the dependent variable. The independent and 
dependent variables will depend on the application-either 
the expected magnitude for a given fault parameter, or 
the expected fault parameter for a given magnitude. Ta
ble 2 gives the normal and inverted regression coeffi
cients as a function of the sense of slip. 

Note that the values of dependent variables derived 
from these regression formulas are expected values. Thus, 
the calculated values are expected to be exceeded in 50% 
of the earthquakes associated with the given value of the 
independent variable. Bonilla et al. (1984) discuss tech
niques for evaluating dependent variables at lower ex
ceedance probabilities. In addition, the formulas in Ta
ble 2 are not applicable to values of the independent 
variable that lie outside the data range listed for each 
regression. 

The empirical relationships presented here can be used 
to assess maximum earthquake magnitudes for a partic
ular fault zone or an earthquake source. The assumption 
that a given magnitude is a maximum value is valid only 
if the input parameter, for instance the rupture length, 
also is considered a maximum value. For example, sup
pose we are interested in assessing the maximum mag
nitude that a fault is capable of generating, and that we 
have sufficient data to estimate the possible length and 
downdip width of future ruptures. Evaluating the seg
mentation of a fault zone (e.g., Schwartz and Copper-
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-tt SCR 
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0~ • o• 
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Figure 17. Regression lines for stable continental region (SCR) earthquakes 
and non-SCR continental earthquakes. (a) Regression of surface rupture length 
on magnitude (M). (b) Regression of rupture area on magnitude (M). 
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smith, 1986) provides a basis for assessing the maximum 
length of future ruptures. The depths of earthquake hy
pocenters, together with the dip of the fault, limit the 
maximum downdip width of future ruptures. Given that 
the length and width are assessed to be maximum values, 
empirical relations between magnitude and rupture length 
and rupture area will provide the expected maximum 
magnitudes. These are expected maximum magnitudes 
for the given maximum fault parameters. However, be
cause there is dispersion associated with the statistical 
relations, both higher and lower magnitudes are possible 
for any single event having the given rupture parameters. 
The standard deviation for each regression provides a 
measure of that dispersion. 

Regarding regressions between magnitude and sub
surface rupture length and rupture area, previous studies 
indicate that the size and depth of the earthquake, as well 
as the nature of near-surface materials, have a significant 
effect on whether the subsurface rupture is partly or fully 
expressed by faulting at the surface (e.g., Amaike, 1987; 
Berberian and Papastamatiou, 1978; Bernard and Zollo, 
1989; Bonilla, 1988). In addition, the absence of surface 
rupture during some large-magnitude earthquakes (greater 
than M 7), and the occurrence of surface rupture for some 
smaller-magnitude earthquakes (less than M 5.5), show 
that there are large variations in rupture at the surface. 
Thus, variation in the geologic conditions and the hy
pocentral depths of future earthquakes will have uncer
tain effects on the extent of future surface ruptures. In 
contrast, subsurface rupture length and rupture area, which 
are estimated from the spacial distribution of after
shocks, are not subject to these uncertainties. For ex
ample, in the subsurface, earthquakes typically appear 
to rupture individual fault segments, and the segment 
boundaries are defined at the surface by various geo
metric, structural, or geologic features (Knuepfer, 1989). 
During some earthquakes, however, even though an en
tire segment ruptures in the subsurface, the rupture may 
not propagate over the full length of the segment at the 
ground surface. Thus, we believe that subsurface rupture 
length regressions are appropriate for estimating mag
nitudes for expected ruptures along single or multiple 
fault segments. Where the extent of previous ruptures at 
the surface can be evaluated, however, surface rupture 
length regressions are appropriate for estimating ex
pected magnitudes. Applying subsurface rupture length 
and rupture area relations to estimating magnitudes may 
help to overcome uncertainties associated with estimat
ing the surface rupture length for some seismic sources. 

The regressions for subsurface rupture length and 
rupture area also provide a basis for estimating the mag
nitudes of earthquakes that may occur on subsurface 
seismic sources such as blind thrust faults, which cannot 
be evaluated from surface observations. Furthermore, 
regressions on subsurface parameters include data for 
moderate-magnitude earthquakes (in the range of mag-

nitude 5 to 6), allowing the characterization of relatively 
small seismic sources that may not rupture the surface. 

The use of empirical regressions to assess maximum 
magnitudes typically involves developing several mag
nitude estimates from which a maximum magnitude value 
is selected or an uncertainty distribution is constructed. 
Various segmentation models have been proposed to de
fine the reaches of a fault zone that are relatively con
tinuous and behave similarly (Schwartz and Copper
smith, 1986; Schwartz, 1988). Estimates of the possible 
lengths of future ruptures involve considering the pos
sibilities that one or more of these segments might rup
ture. Alternative rupture scenarios and associated rupture 
lengths result in multiple estimates of earthquake mag
nitude using a single regression relationship, such as sur
face rupture length versus magnitude or subsurface rup
ture length versus magnitude. Further, if the downdip 
geometry of a fault zone is known, the rupture width and 
rupture area relationships provide additional magnitude 
estimates. Detailed geologic studies along a fault zone 
can result in estimates of the maximum and average dis
placement associated with individual paleoseismic events 
along the fault zone. These displacement estimates also 
may be used with the appropriate regressions to assess 
expected magnitudes. Ultimately, developing a maxi
mum magnitude estimate involves judging which rupture 
scenarios are most credible, which rupture parameters 
(e.g., rupture length, area, and displacement) represent 
maximum parameters, and the relative preference for the 
various regressions (perhaps based on the dispersion as
sociated with each regression). For probabilistic seismic 
hazard analyses, these considerations and estimates may 
be combined into a probabilistic distribution of the max
imum magnitude (Coppersmith, 1991). 

In addition to assessing maximum magnitudes, the 
regressions presented in this study have other potential 
engineering applications. For example, seismic design 
criteria for facilities such as pipelines and tunnels require 
estimates of the amount of displacement that might occur 
where the facility crosses a fault. The regressions of dis
placement on magnitude provide the expected values for 
a given earthquake magnitude. In particular, the average 
displacement regression provides the mean displacement 
along the length of a rupture, and the maximum displace
ment regression provides the expected largest slip at a 
point along a rupture. In most applications, the average 
displacement is desired because it is unknown, prior to 
a rupture event, whether the facility lies at the point where 
the maximum displacement will occur. The maximum 
displacement regression might be used to provide a con
servative upper bound for engineering design. 

Conclusions 

The data base reveals that surface rupture length typ
ically is equal to 75% of the subsurface rupture length, 
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and the average surface displacement typically is equal 
to one-half of the maximum surface displacement. The 
ratio of surface rupture length to subsurface rupture length 
increases slightly as magnitude (M) increases. There is 
no apparent relationship between the ratio of average 
displacement to maximum displacement and magnitude 
(M). We calculate the average subsurface displacement 
on the fault plane from the rupture area and the seismic 
moment; this is more than the average displacement and 
less than the maximum displacement measured at the 
surface. Thus, for many earthquakes in our data base, 
most slip on the fault plane at seismogenic depths prop
agates to the surface. We also note that there is no sys
tematic difference between Ms and M for the events in 
the data base over the range of magnitude 5.7 to 8.0. 
However, Ms is systematically smaller than M for mag
nitudes less than 5. 7. 

The empirical regressions show a strong correlation 
between magnitude and various rupture parameters, which 
enables us confidently to use these relationships to es
timate magnitudes or rupture parameters. The regres
sions between magnitude and surface rupture length, 
subsurface rupture length, downdip rupture width, and 
rupture area are well determined in most cases, having 
correlation coefficients of about 0.84 to 0.95 and stan
dard deviations of about 0.24 to 0.41 magnitude units. 
Relationships between displacement and rupture length 
or magnitude are less well correlated (correlation coef
ficient about 0.71 to 0.78). 

In most cases, the empirical regressions do not vary 
significantly as a function of the sense of slip. The t 
statistics show that the regression coefficients are not 
different at high significance levels for regressions be
tween magnitude and surface rupture length, and mag
nitude and subsurface rupture length. Relationships be
tween magnitude and rupture area, and magnitude and 
rupture width, are different at a 95% significance level. 
The regression coefficients are similar, however, and 
differences in parameters estimated from these regres
sions typically are small. This conclusion suggests that 
the all-slip-type regression may be used for most situa
tions, and is especially significant for evaluating ex
pected magnitudes for poorly known faults or blind faults 
that lack clear surface expression. The regressions of 
displacement versus magnitude show a mild dependency 
on the sense of slip in some cases; however, these re
lationships have the weakest statistical correlations. 

Analysis of data sets of various sizes shows that 
regressions containing approximately 14 or more data 
points are insensitive to changes in the data. Smaller data 
sets (less than 10 to 14 data points) generally are sen
sitive to changes in the data, and correlations may not 
be significant. The regressions for subsurface rupture 
length and rupture area are based on the largest data sets, 
yet show statistical correlations similar to those of the 
smaller data set for surface rupture length regressions. 

D. L. Wells and K. J. Coppersmith 

This suggests that the relationships based on large data 
sets (more than 50 earthquakes) are unlikely to change 
significantly with the addition of new data. 

In evaluating dependency of the relationships on tec
tonic setting we compare the coefficients (a and b) of 
extensional and compressional regressions for each re
lationship using t statistics. We observed no difference 
between the coefficients at a 95% significance level for 
any of the relationships; thus, the difference between the 
extensional and compressional coefficients is small. We 
calculate all-slip-type regressions for the SCR earth
quakes in our data base and compare these results to data 
from the rest of the world. Comparing SCR regression 
coefficients to non-SCR coefficients shows that the rup
ture area regressions differ at a 95% significance level, 
whereas the subsurface rupture length regressions do not 
differ at this significance level. These results indicate 
that subdividing the data set according to various tec
tonic settings or geographic regions occasionally may 
provide slightly different results, but typically does not 
improve the statistical significance of the regressions. 

Because of the larger number of data and good sta
tistical correlations, we believe that the all-slip-type 
regressions are appropriate for most applications of these 
regressions. The use of the regressions for subsurface 
rupture length and rupture area may be appropriate where 
it is difficult to estimate the near-surface behavior of faults, 
such as for buried or blind faults. Reliable estimates of 
the maximum expected magnitude for faults should in
clude consideration of multiple estimates of the expected 
magnitude derived from various rupture parameters. 
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APPENDIX A: EARTHQUAKES EXCLUDED FROM REGRESSION ANALYSES 1 

Slip 
EON Location Earthquake Date Type2 M 3 s M4 

1 Japan Zenkoji 05/08/1847 R 7.4 [I] 

2 New Zealand Awatere 10/16/1848 RL 7.1 [I] 

3 New Zealand West Wairarapa 01/24/1855 RL-R 8.0 r ll 
4 USA, Nevada Olinghouse 12/28/1869 LL 6.7 Ill 
5 Nc•.'J Zealand Hope 09/01/1888 RL 7.0 Ill 
6 Mexico Laguna Salada 02/24/1892 N-S? 6.8 [IJ (7.8) 

7 Greece Atalanti 04/27/1894 N 6.9 Ill 
8 Japan Shonai 10/22/1894 7.0 Ill 
9 China Tashikuergan 07/05/1895 RL-? 7.5 Ill 

10 Turkey Aytin-NcJzili 09/20/1899 N 6.9 IA] 

11 USA, Nevada Wonder 09/03/1903 N? 6.0 Ill 
12 Bulgaria Krupnik 04/04/1904 N? 7.1 181 
13 India Kangra 04/04/1905 R 7.5 181 7.8 

14 Albania Shkodra 06/01/1905 N? 6.6 

15 Mongolia Tsetserleg 07/09/1905 RL?R 7.6 [Bl 8.3 

16 Mongolia Khangai, Bolnai 07/23/1905 LL-R 7.7 IBI 8.3 

17 Taiwan Meishan 03/17/1906 RL-R 6.8 18] 
18 China Manas, Tien Shan 12/23/1906 R 7.3 [BJ 

19 Italy Messina 12/28/1908 N 7.0 181 (6.4) 

20 Iran Selakhor 01/23/1909 R-RL 7.0 18] 
21 Turkey Enderes 02/09/1909 N-S 6.3 IAI 
22 Tanzania Rukwa 12/13/1910 7.3 IGI (7.4) 

23 Russia Kirgizia 01/03/1911 R 7.8 181 7.9 

24 Iran Raver 04/18/1911 R-RL 6.2 IAI 
25 Iceland South Iceland 05/06/1912 RL 7.0 IGI 
26 Turkey Saras-Marmara 08/09/1912 RL-N 7.6 181 
27 Turkey Burdur 10/03/1914 N 7.1 IGI 
28 New Zealand Kaiapo 06/10/1922 N 6.0 IML] 
29 China Luhou/Qiajiao 03/24/1923 LL 7.3 IGI (7.4) 

30 Canada Charlevoix 03/01/1925 R 7.0 IGI 5.6 

31 USA, Montana Clarkston 06/28/1925 LL-N 6.8 IGI 6.6 

32 China Kansu 05/22/1927 R-LL 7.9 IBI 7.7 

33 Jordan North Jerico 07/11/1927 LL 7.0 IAI (6.4) 

34 USA, California Lompoc 11/04/1927 R 7.3 IGI 6 .. 6 

35 Bulgaria Chiripan 04/14/1928 N 6.6 ILi 
36 Mexico Parral, Chihuahua 10/31/1928 N-LL 6.5 6.3 

37 Iran Quchan-Bakharden 05/01/1929 R? 7.3 ILi 
38 New Zealand Murchison 06/17/1929 R-LL 7.7 ILi (7.6) 

39 New Zealand Hawkes Bay 02/02/1931 R-RL 7.7 IGI (7.7) 

40 USA, Texas Valentine 08/16/1931 s 6.4 IGI 6.3 

41 Greece lerissos 09/26/1932 N 6.9 IGI 
42 Iran Buhabad 11/28/1933 R? 6.2 IAI 
43 Nepal Bihar 01/15/1934 R 8.3 IGI 8.2 

44 USA, Nevada Excelsior Mountains 01/30/1934 N-LL 6.3 IGI 6.1 

45 USA, Utah Hansel Valley 03/12/1934 LL 6.6 IGI 6.6 

46 USA, California Park field 06/07/1934 RL 6.0 IGI (6.0) 

47 China Gyaring 12/15/1934 RL-N 7.1 IGI 
48 Mexico Chupamiertos 12/31/1934 RL? 7.0 IGl 7.0 
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Slip 
EON Location Earthquake Date Type2 M 3 s M4 

49 Japan Shizuoka 07/11/1935 LL 6.3 [JI (6.2) 
50 USA, Montana Helena 10/19/1935 RL 6.3 [GJ 6.2 
51 Canada Temiskaming 11/01/1935 R 6.3 [GJ 6.3 
52 Japan Kawachi-Yamato 02/21/1936 s 6.4 [JI 
53 China Tuosuohu, Qinghai 01/07/1937 LL 7.6 [GJ (8.1 l 
54 Japan Kussharo 05/29/1938 LL-? 6.5 [GJ 
55 Ghana Accra 06/22/1939 LL 6.5 [GI 6.5 
56 Iran Muhammadabad 02/16/1941 RL 6.1 [Al 
57 Australia Meeberrie 04/29/1941 6.7 [G] 
58 Indonesia Padang Highlands 06/09/1943 RL 7.6 [G] (7.5) 
59 Turkey Adapazari 06/20/1943 RL 6.4 [Al (6.5) 
60 Argentina San Juan 01/15/1944 R 7.4 [Gl 
61 Turkey Saphane 06/25/1944 N 6.0 [Al 
62 Japan Mikawa 01/13/1945 R-S 6.8 [LI (6.6) 
63 Canada Vancouver 06/23/1946 s 7.3 [GI (7.6) 
64 New Zealand Lake Coleridge 06/26/1946 6.5 [Gl 
65 China Dari, Qinghai 03/17/1947 R-LL 7.7 !GI (7.7) 
66 USA, California Manix, Mojave Desert 04/10/1947 LL 6.4 !GI 6.6 
67 Iran Dustabad 09/23/1947 RL-R 6.8 IA] 
68 USA, Montana Virginia City 11/23/1947 AL 6.3 !GI 6.1 
69 China Litang, Sichuan 05/25/1948 LL 7.2 !GI (7.2) 
70 Russia Ashkhabad 10/05/1948 RL-R 7.2 !Al 
71 Russia Tajikistan 07/10/1949 R 7.6 !DJ (7.6) 
72 Canada Queen Charlotte 08/22/1949 RL 8.1 !GI 8.1 
73 Japan lmaichi 12/26/1949 R? 6.4 IJJ 
74 India Assam-Tibet 08/15/1950 R 8.6 [Gl 8.7 
75 USA, California Superstition Hills 01/23/1951 RL 5.6 IMLI 
76 Turkey Gerede 08/13/1951 RL 6.9 !Al 
77 Taiwan Hualian 10/22/1951 LL-R 7.1 !DI 
78 Japan Daishoji-Oki 03/07/1952 s 6.5 IJI 
79 China Naqu 08/18/1952 RL-N 7.5 !GI 
80 Iran Torud 02/12/1953 R-RL 6.5 !DI 
81 China Shandon 02/11/1954 RL-N 7.3 !DI 
82 Greece So fades 04/30/1954 N 6.7 [Al 
83 Algeria Orleans ville 09/09/1954 R 6.7 [DI 
84 Brazil Sera do Tornbador 01/31/1955 R 6.6 !DI 
85 China Kangding 04/14/1955 LL 7.4 !DI (6.8) 
86 Russia Muya, Siberia 06/27/1957 N-LL 7.9 IDI 7.4 
87 Iran Farsinaj-Zr1qros 12/13/1957 R 6.7 !Al 
88 USA, Alaska Huslia 04/07/1958 N 7.3 !DI (7.3) 
89 Iran Nehavand-Zagros 08/16/1958 RL 6.6. [Al 
90 Japan Tesikaga 01/30/1959 6.4 !DI 
91 Japan Hyogo Prefecture 05/07/1961 R 5.9 IJI 
92 Ethiopia Kara Kore 06/02/1961 N 6.4 ID] 
93 Japan Kita-Mino 08/19/1961 R 7.0 IJI (6.8) 
94 Japan Miyagi Prefecture 04/30/1962 R 6.5 IJI 
95 USA, Hawaii Kaoiki 06/28/1962 LL? 6.1 [ML] 
96 Italy Campania 08/21/1962 N 6.1 [DJ 5.9 
97 China Tuosuohu, Qinghai 04/19/1963 LL 6.8 !Bl 
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Slip 
EQN Location Earthquake Date Type2 Ms3 M4 

98 USA, Utah Juab Valley 07/07/1963 N? 4.9 [ML] 
99 Canada Baffin Island 09/04/1963 N 6.2 6.2 

100 Taiwan Southwest 01/18/1964 R 6.9 [DJ 6.4 
101 Spain Gulf of Cadiz 03/15/1964 s 6.8 [DJ 6.7 
102 Turkey Manyas 10/06/1964 N 6.8 [DJ 6.8 
103 USA, Alaska Norton Sound 04/16/1965 N 5.9 6.0 
104 China Urumchi 11 /1 3/1 965 R 6.9 [DJ 6.5 
105 China Hsingtai 03/07/1966 RL 6.8 [CJ 6.6 
106 Zaire Congo 03/20/1966 N 6.6 [BJ 6.7 
107 China Hsingtai 03/22/1966 RL 6.7 [Cl 6.3 
108 China Hsingtai 03/22/1966 RL 7.1 [Bl 6.8 
109 China Hsingtai 03/26/1966 RL 6.2 [Cl 6.1 
110 Japan Matsushiro 08/03/1966 s 6.2 
·111 Sudan Jebel Dumbeir 10/09/1966 LL 5.6 ILi 
112 Greece Amfilohia 10/29/1966 N 5.8 [Al 5.9 
113 USA, Alaska Fairbanks 06/22/1967 RL? 5.6 [MLI 
114 Turkey Pulumur 07/26/1967 RL 6.0 [Al 6.2 
115 Venezuela Caracas 07/29/1967 LL 6.5 [UI 7.0 
116 China Zhuwo 08/30/1967 N 6.1 IUI (6.4) 
117 India Koyna 12/10/1967 LL-N 6.5 IUl (6.5) 
118 Japan Ebino Prefecture 02/21/1968 s 6.1 IJI 
119 Turkey Amasra-Bartin 09/03/1968 LL 6.5 [Al 6.4 
120 Turkey Kigi 09/24/1968 5.1 [Al 
121 USA, Illinois Southern Illinois 11/09/1968 R 5.2 [Ul 5.3 
122 Ethiopia Serdo 03/29/1969 s 6.3 IUI 6.2 
123 Ethiopia Serdo 04/05/1969 N-LL 6.1 IUI 6.1 
124 India Godavari Valley 04/13/1969 LL 5.7 IUI 5.7 
125 China Bohai 07/18/1969 LL 7.3 !Ul 7 .1 
126 USA, California Santa Rosa 10/02/1969 RL 5.6 [MLI 5.4 
127 USA, California Santa Lucia Banks 10/22/1969 R 5.4 IMLI 5.8 
128 USA, California Santa Lucia Banks 11/05/1969 R 5.8 IMLI 6.0 
129 Australia Calingiri 03/10/1970 RL-R 5.0 ILi 
130 Australia Lake Mackay 03/24/1970 R 5.9 IUI 6.0 
131 Turkey Burdur 05/12/1971 N 6.2 IAI (6.3) 
132 Taiwan Coastal Range 04/24/1972 R-LL 6.9 IUI 7.0 
133 Iran Mishan 07/02/1972 N 5.4 lm1il 
134 Australia Simpson Desert 08/28/1972 R 6.2 IMLI 6.0 
135 Philippines Philippine 03/17/1973 LL 7.0 IUI 
136 Canada Quebec-Maine 06/15/1973 5.2 IMLI 
137 China Yunnan? 05/10/1974 RL-R 6.8 IUI 6.8 
138 Panama 07/13/1974 S-R? 7.3 IUI 7.2 
139 Russia Tadzhikestan 08/11/1974 R 5.7 IUI (5.7) 
140 Russia Tadzhikestan 08/11/1974 R 6.1 IUI (5.8) 
141 India Kinnaur 01/19/1975 N 6.8 [UI 6.8 
142 Iran Sarkhun 03/07/1975 R 6.1 IUI 
143 Pakistan Spinatizha 10/03/1975 6.4 
144 China Yunnan 05/29/1976 LL 6.9 [U] 6.3 
145 China Yunnan 05/29/1976 s 7.0 IUI 6.5 
146 China Tangshan 07/28/1976 N 7.2 IUI 7.2 
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EON Location Earthquake Date Type2 M 3 s M4 

147 China Mangya 01/01/1977 R 6.3 [UJ 6.1 
148 Iran Khurgu 04/01/1977 R 6.0 [UJ 6.0 
149 Iran Naghan 04/06/1977 R 5.9 [UJ 6.0 
150 Iran Dezful 06/05/1977 R-LL 5.8 [UJ 5.4 
151 Canada McNaughton Lake, BC 05/14/1978 RL 4.4 [UJ 5.0 
152 Djibouti Asal 11/07/1978 N 5.4 [UJ 5.9 
153 China Gyaring 02/22/1980 RL 6.2 [UJ 6.4 
154 USA, California Mammoth Lakes 05/25/1980 LL-N 6.1 [UJ 6.2 
155 USA, California Mammoth Lakes 05/25/1980 LL 6.0 [UJ 6.0 
156 USA, California Westmorland 04/26/1981 LL? 6.0 [Ul 5.9 
157 USA, Calitornia Santa Barbara 09/04/1981 RL 5.9 [U] 5.8 
158 Guatemala Chanmagua 09/29/1982 N 5.1 [UJ 5.6 
159 USA, California Indian Wells 10/01 /19b2 RL 5.9 [ML) 
160 Afghanistan Tadjik 12/16/1982 R 6.6 [UJ 6.5 
161 Greece Northern A:gean 08/06/1983 RL 7.0 [UJ 6.7 
162 Australia Tasman Sea 11/25/1983 R 5.8 [UJ 6.1 
163 Russia Gazli 03/19/1984 R 7.0 IUI 7.0 
164 China Diebu, Gansu 01/07/1987 s 5.5 [UJ 5.4 
165 Ecuador Northern 03/06/1987 R 6.9 IUJ 
166 Australia Nhill, Victoria 12/22/1987 s 4.9 [ML] 
167 Canada Nahanni 03/25/1988 R 6.0 [U] 6.3 
168 USA, Utah Bear Lake 11/19/1988 N 4.8 [ML] 
169 New Zealand Bay of Plenty 07/07/1989 N? 4.7 [ML] 
170 Ethiopia Djibouti 08/20/1989 N 6.3 [UJ 6.5 
171 Ethiopia Djibouti 08/21/1989 N 6.2 IUI 6.4 
172 Australia Newcastle 12/28/1989 R 5.6 [ML! 5.3 
173 England Bishops Castle 04/02/1990 s 5.1 IMLI 
174 Sudan Juba 05/20/1990 LL 7.1 IUI 7.3 
175 Italy Eastern Sicily 12/13/1990 s 5.3 IUI 5.7 
176 Taiwan Hualien 12/13/1990 R-S? 6.3 IUI 6.6 
177 Russia Georgian-Ossentian 04/29/1991 R 7.0 IUI 7.1 

1 Additional source parameters and references for these earthquakes are available from the 
authors upon request. 

2 S, strike slip; R, reverse, N, Norma.I. For strike-slip earthquakes, the sense of offset is 
indicated where known (RL, right lateral; LL, left lateral). Slip types for earthquakes in 
Table 2 have not been examined in detail. Because less is known about these 
earthquakes than those used in the regression analyses, the slip types are not 
categorized with respect to the ratio of horizontal to vertical slip. 

3 Magnitude source listed in brackets. See notes in Table 1 for explanation of magnitude 
source. 

4 Moment magnitudes listed in parenthesis are not based on instrumental seismic 
moments. 
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APPENDIX B: REFERENCES FOR EARTHQUAKES LISTED IN TABLE 1 

EQN refers to number of individual earthquakes listed in Table 1. Complete citations for 
references are listed in Appendix C. 

EON References 

1. Hanks and others, 1975; Knuepfer, 1989; Sieh, 1978 
2. Bonilla, 1970; Lawson, 1908; Toppozada and Parke, 1982 
3. Beanland and Clark, 1987; Clark, 1992; dePolo and others, 1991; Hobbs, 1910; Knuepfer, 

1989; Lubetkin and Clark, 1988 
4. Bull and Pearthree, 1988; Herd and McMasters, 1982; Knuepfer, 1989; Natali and Sbar, 

1982; Sumner, 1977 
5. Bolt, 1967; Koto, 1990; Matsuda, 1974; Mikumo and Ando, 1976 
6. Knuepfer, 1989; Matsuda and others, 1980 
7. Ben-Menahem, 1978; Bolt, 1968; Knuepfer, 1989; Lawson, 1908; Okal, 1992; Thatcher 

and Lisowski, 1987; Thatcher, 1975; Wald and others, 1993 
8. Spadea and others, 1985; Ward and Valensise, 1989; Westaway and others, 1989 
9. dePolo and others, 1991; Doser, 1988; Machette, 1993; Wallace, 1984 

10. Chen and Molnar, 1977; Deng and others, 1986; Huan and others, 1991; Molnar and 
Deng, 1984; Zhang and others, 1987; Zhang and others, 1988 

11. Bolt, 1967; Kanarnori, 1973; Richter, 1958; Yamasaki and Tada, 1928 
12. Knuepfer, 1989; McCall, 1967; Richter, 1958 
13. Ambraseys, 1975; Richter, 1958 
14. Ambraseys, 1975, 1988; Ambraseys and Melville, 1982; Berberian, 1976; Tchalenko and 

Berberian, 197 4 
15. Abe, 1978; Matsuda, 1972; Otuka, 1933; Yoshida and Hamada, 1991 
16. Gibowicz, 1973; Hull, 1990; Richter, 1958; Sykes, 1989 
17. Chen and Molnar, 1977; Deng and Zhang, 1984; Molnar and Deng, 1984; Shi and others, 

1984; Zhang and Ge, 1980 
18. Abe, 1974a; Utsu, 1969 
19. dePolo and others, 1987, 1991; Doser, 1987, 1988; Gianella and Callaghan, 1934; 

Molinari, 1984; Wilson, 1936 
20. Meyer and others, 1989; Molnar and Deng, 1984; Peltzer and others, 1988; Shih and 

others, 1978 
21. Hanks and others, 1975; Hauksson, 1990; Hauksson and Gross, 1991; Woodward-Clyde 

Consultants, 1979 
22. Abe, 1978 
23. Bonilla, 1977; Hsu and Chang, 1979; Richter, 1958 
24. Ambraseys, 1975, 1988; Dewey, 1976 
25. Ambraseys, 1970, 1975, 1988; Barka and Kadinsky-Cade, 1988; Dewey, 1976; 

Kadinsky-Cade and Barka, 1989; Knuepfer, 1989; Kocyigit, 1989 
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26. Doser, 1990; Hanks and others, 1975; Reilinger, 1984; Sharp, 1982; Trifunac and Brune, 
1970; Trifunac, 1972 

27. Ambraseys, 1970, 1975, 1988 Barka and Kadinsky-Cade, 1988; Dewey, 1976 
28. Kanamori, 1973; Kanamori, 1972 
29. Ambraseys, 1970, 1975, 1988; Barka and Kadinsky-Cade, 1988; Dewey, 1976; 

Kadinsky-Cade and Ba,ka, 1989 
30. Ambraseys, 1975, 1988; Dewey, 1976 
31. Ambraseys, 1970, 1975, 1988; Dewey, 1976 
32. Bellier and others, 1991; Doser, 1985; Jimenez and others, 1989; Richter, 1958; Sebrier 

and others, 1988; Silgado, 1951 
33. Bonilla, 1977; Chang and others, 1947; Hsu and Chang, 1979 
34. Amaike, 1987; Kanamori, 1973; Kaninuma/and Goto, 1970; Omote, 1950a; Tsuya, 1950 
35. Hanks and others, 1975; Richter and others, 1958; Thatcher and Hanks, 1973 
36. Ambraseys, 1988; Barka and Kadinsky-Cade, 1988; Barka and others (preprint-1987); 

Kadinsky-Cade and Barka, 1989 
37. Earthquake Research Institute, 1950; Kaminuma and Goto, 1970; Kawasumi, 1950; 

Omote, 1950b; Utsu, 1969; Wesnousky, and others, 982 
38. dePolo and others, 1991; Gianella, 1957 
39. Allen and others, 1965 
40. Armijo and others, 1989; Chen and Molnar, 1977; Molnar and Deng, 1984; Oka!, 1992; 

Wu and Deng, 1989 
41. Bonilla, 1977; Hsu, 1962; Hsu and Chang, 1979 
42. Benioff, 1955; Buwalda and St. Amand, 1955; Dunbar and others, 1980; Hanks and 

others, 1975; Kupfer and others, 1955; Richter, 1955; Stein and Thatcher, 1981; Wallace, 
1988 

43. Ambraseys, 1970, 1988; Barka and Kadinsky-Cade, 1988; Dewey, 1976; Eyidogan, 1988; 
Kadinsky-Cade and Barka, 1989; Westaway, 1990 

44. Bent and Helmberger, 1991a; Doser, 1990; Sanders and others, 1986; Thatcher and 
Hanks, 1973 

45. Bell, 1984; dePolo and others, 1991; Doser, 1986;, 1987; Doser and Smith, 1989; 
Slemmons, 1956; Snay and others, 1985; Tocher, 1956 

46. Bell, 1984; dePolo and others, 1991; Doser, 1986, 1987; Slemmons, 1956; Snay and 
others, 1985; Tocher, 1956 

47. Bell, 1984; dePolo and others, 1991; Doser and Kamamori, 1987; Doser, 1986, 1987; 
Doser and Smith, 1989; Romney, 1957; Savage and Hastie, 1969; Slemmons, 1957, 1984, 
pers. comm. 1993; Slemmons and others, 1989; Snay and others, 1985; Westphal and 
Lange, 1967 

48. Bell, 1984; Caskey and1 others, 1993; dePolo and others, 1991; Doser, 1986; Doser and 
Kanamori, 1987; Doser and Smith, 1989; Romney, 1957; Savage and Hastie, 1969; 
Slemmons, 1957, 1984, pers. comm. 1993; Snay and others, 1985; Westphal and Lange, 
1967; Zhang and others, 1989 

B-2 



49. Doser, 1991, 1992; Gonzalez-Ruiz and others, 1987; Johnson and others, 1976; Shor and 
Roberts, 1958 

50. Bolt and Herraiz, 1983; Bonilla, 1959; Tocher, 1959; Utsu, 1969; M.L. Zoback, pers. 
comm. 1993 

51. Ambraseys, 1970, 1975, 1988; Ambraseys and Zatopek, 1969; Barka and Kadinsky-Cade, 
1988; Eyidogan, 1988 

52. Chen and Molnar, 1977; Florensov and Solonenko, 1965; Knuepfer, 1989; Molnar and 
Deng, 1984; Okal, 1992; Okal, 1976; Tapponier and Molnar, 1979 

53. Ando, 1977; Ben-Menahem, 1977, 1978; Ben-Menachem and Toksoz, 1963; Kanamori, 
1977; Kelleher and Savino, 1975; Nishenko and Jacob, 1990; Okal, 1992; Plafker and 
others, 1978; Stauder, 1960; Tocher, 1960; Utsu, 1962 

54. Barrientos and others, 1987; Doser, 1985; Doser and Smith, 1989; Hall and Sablock, 
1985; Knuepfer, 1989; Meyers and Hamilton, 1964; Savage and Hastie, 1966; Stewart and 
others, 1964 

55. Doser and Smith, 1989; Wallace and others, 1981; Westaway and Smith, 1989; Westaway 
and others, 1989 

56. Ambraseys, 1963, 1975; Ambraseys and Melville, 1982; Mohajer and Pierce, 1963; 
Nowroozi, 1985; Petrescu and Purcaru, 1964 

57. Abe, 1974b; Utsu, 1969 
58. Ambraseys, 1975; Balakina and others, 1968; North, 1977; Shirokova, 1968 
59. Bolt and Herraiz, 1983; Evans and McEvilly, 1982; Udias, 1965; Utsu, 1969 
60. Abe, 1975; Aki, 1966; Boyd and others, 1984;·-Mogi and others, 1964; Mori and Boyd, 

1985; Nakamura and others, 1964; Satake and Abe, 1983; Tsubokawa and others, 1964 
61. McEvilly, 1966; Utsu, 1969 
62. McEvilly and Casaday, 1967; Utsu, 1969 
63. Archuleta and Day, 1980; Brown and others, 1967; Brown and Vedder, 1967; Eaton and 

others, 1970; Lindh and Boore, 1981; Trifunac and Udwadia, 1974; Tsai and Aki, 1969; 
Wallace and Roth, 1967; Wu, 1968 

64. Arabasz 1991; Boucher and others, 1967; Liebermann and Pomeroy, 1970; Page, 1968 
65. Ambraseys, 1975, 1988; Ambraseys and Zatopek, 1968; Barka and Kadinsky-Cade, 1988; 

Kudo, 1983; North, 1977; Wallace, 1968 
66. Doser and Smith, 1989; Greensfelder, 1968; Helmberger and Engen, 1980; Kachadoorian 

and others, 1967; Ryall and others, 1968; Tsai and Aki, 1970; Wallace and others, 1981 
67. Chen and Molnar, 1977; Huang and Chen, 1986; Molnar and Deng, 1984; Moskvina, 

1978; Okal, 1976 
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1983; North, 1977; Utsu, 1969 

69. Ambraseys, 1975; North, 1977; Sulstarova and Kociaj, 1980 
70. North, 1977; Pavlides and Tranos, 1991; Taymaz and others, 1991 

B-3 



71. Allen and Nordquist, 1972; Burdick and Mellman, 1976; Burford, 1972; Butler, 1983; 
Clark, 1972; Ebel and Helmberger, 1982; Hamilton, 1972; Hanks and Wyss, 1972; 
Heaton and Helmberger, 1977; Kikuchi and Kanamori, 1986; Peterson and others, 1991; 
Wyss and Hanks, 1972a 

72. Adams and others, 1971; Adams and Lowry, 1971; Berryman, 1984; Bevin and others, 
1984; Dowrick, 1991; Lensen and Otway, 1971; Robinson and others, 1975; Shepherd and 
others, 1970 

73. Ambraseys and Melville, 1982; Ambraseys and Tchalenko, 1969; Bayer and others, 1969; 
Crampin, 1969; Hanks and Wyss, 1972; Jackson and Fitch, 1979; McEvilly and Niazi, 
1975; Niazi, 1968; North, 1977; Nowroozi, 1985; Tchalenko and Berberian, 1975; 
Tchalenko and Ambraseys, 1970 

74. Denham and others, 1980; Fredrich and others, 1988; Gordon, 1971; Gordon and Lewis, 
1980; Langston, 1987; Vogfjord and Langston, 1987 

75. Gedney and others, 1969; Huang and Biswas, 1983 
76. Ambraseys, 1975, 1988; Ambraseys and Tchalenko, 1972; Arpat and Bingo], 1969; 

Eyidogan and Jackson, 1985; Jackson and Fitch, 1979; Kudo, 1983; North, 1977; 
Westaway, 1990 

77. Peterson and others, 1991; Sanders and Kanamori, 1984; Thatcher and Hamilton, 1973 
78. Deza, 1971; Lander, 1969; Philip and Megard, 1977; Sebrier and others, 1988; Suarez 

and others, 1983 
79. Brantley and Chung, 1991 
80. Imagawa and others, 1984; Mikumo, 1973a 
81. Green and Bloch, 1971; Green and McGarr, 1972; Maasha and Molnar, 1972; Shudofsky, 

1985; Somerville, 1986; Wagner and Langston, 1988, 1989 
82. Deza, 1971; Lander, 1969a, 1969b; Philip and Megard, 1977; Schrier and others, 1988; 

Suarez and others, 1983 
83. Gan and others, 1978; Geodetic Survey Brigade, 1975; Molnar and Deng, 1984; Wang 

and others, 1978; Zhang and Lui, 1978; Zhou and others, 1983a 
84. Ambraseys, 1975, 1988; Ambraseys and Tchalenko, 1972; Eyidogan and Jackson, 1985; 

Jackson and Fitch, 1979; Kudo, 1983; North, 1977; Tasdemiroglu, 1971; Westaway, 1990 
85. Hasegawa and others, 1975; Mikumo, 1974 
86. Allen and others, 1973, 1975; Canitez and Toksoz, 1972; Hanks, 1974; Heaton and 

Helmberger, 1979; Heaton, 1982; Kamb and others, 1971; Langston, 1978; Mikumo, 
HJ73b; Savage and others, 1975; Sharp, 1975, 1981; Trifunac, 1974; U.S. Geological 
Survey Staff, 1971; Wyss and Hanks, 1972b 

87. Ambraseys, 1975, 1988; Keightley, 1975; Kudo, 1983; Seymen and Aydin, 1972 
88. Ellsworth, 1975; Johnson and McEvilly, 1974; Kurita, 1976 
89. Ellsworth, 1975; Johnson and McEvilly, 1974 
90. Ambraseys, 1975; Ambraseys and others, 1972; Ambraseys and Melville, 1982; Dewey 

and Grantz, 1973; Jackson and Fitch, 1979, 1981; North, 1977; Savage and others, 1977; 
Sobouti and others, 1972 

B-4 



91. Kelleher and Savino, 1975; Lander, 1973; Nishenko and Jacob, 1990; Page, 1973; Perez 
and Jacob, 1980; Schell and Ruff, 1986, 1989 

92. Jackson and Yielding, 1983 
93. Johnson and McEvilly, 1974; Kurita, 1976; Wesson and Ellsworth, 1972 
94. Bakun, 1984; Johnson and McEvilly, 1974; Kurita, 1976; Wesson, 1987 
95. Brown and others, 1973; Dewey and others, 1973; Langer and others, 1974; Matumoto 

and Latham, 1973; Plafker and Brown, 1973; Ward and others, 1974 
96. Allen and others, 1991; Beck, 1989; Molnar and Deng, 1984; Qian, 1986; Tang and 

others, 1976; Tang and others, 1984; Zhou and others, 1983a, 1983b 
97. Bent and Helmberger, 1991b; Boore and Stierman, 1975, 1976; Castle and others, 1977; 

Ellsworth and others, 1973; Stierman and Ellsworth, 1976 
98. Molnar and Deng, 1984; Molnar and Chen, 1983; Singh and Gupta, 1979; Singh and 

others, 1978 
99. Allison and others, 1978 

100. Abe, 1978; Matsuda and Yamashina, 1974; Ohnaka, 1978; Takeo, 1989; Zakharova and 
others, 1978 

101. Abe, 1978 
102. Jackson and others, 1979; Langston and Dermengian, 1981; Nelson and others, 1986; Ni 

and Guangwei, 1989; Zakharova and others, 1978 
103. Johnson and Hadley, 1976; Sharp, 1976 
104. Chung and Brantley, 1989; Cipar, 1979; Geod_etic Survey Brigade, 1978; Gu and others, 

1976; Jones and others, 1982; Lin and others, 1979; Molnar and Deng, 1984; Qiang and 
Zhang, 1984; Raleigh, 1977; Stewart and others, 1976; Wu and others, 1976; Zakharova 
and others, 1978 

105. Arabasz and others, 1981; Bache and others, 1980; Doser and Smith, 1989; Wallace and 
others, 1981; Williams, 1979 

106. Hatanaka and Takeo, 1989; Hatanaka and Shimazaki, 1988; Murai and Matsuda, 1975 
107. Fuis, 1976; Hill and Beeby, 1977; Knuepfer, 1989 
108. Bache and others, 1980; Doser and Smith, 1989; Pitt 'and others, 1979 
109. Bufe and others, 1976; Clark and others, 1976; Hart and Harpster, 1978; Hart and Rapp, 

1975; Hart and others, 1977; Lahr and others, 1976; Langston and Butler, 1976; Lester 
and others, 1975; Ryall and Yan Wormer, 1975; Savage and others, 1977 

110. Frankel, 1984; Hartzell and Brune, 1979 
111. Ambraseys, 1988; Arpat, 1977; Eyidogan, 1980; Jackson and 'McKenzie, 1984; Kudo, 

1983; Nabelek and Toksoz, 1978a; Toksoz.and Arpat, 1977 
112. Bucknam and others, 1978; Dewey and Julian, 1976; Kanamori and Stewart, 1978; 

Kikuchi and Kanamori, 1982; Langer and Bollinger, 1979; Lisowski and Thatcher, 1981; 
Plafker, 1976; Plafker and others, 1976; Young and others, 1989 

113. Eyidogan and others, 1985; Hartzell, 1980; Krestnikov and others, 1980; Kristy and 
others, 1980; Shteynberg and others, 1980 

114. Amato and others, 1976; Briole and others, 1986; Cagnetti and Pasquale, 1'979; Cipar, 
1980, 1981; Finetti and others, 1979; Martinis, 1976; Tokuyama, 1976 

B-5 



115. Eyidogan and others, 1985; Hartzell, 1980; Krestnikov and others, 1980; Kristy and 
others, 1980; Shteynberg and others, 1980 

116. Butler and others, 1979; Chang, 1979; Chen and others, 1979; Chen and others, 1988; 
Jennings, 1980; Kikuchi and Kanamori, 1986; Molnar and Deng, 1984; Nabelek and 
others, 1987; Qiang and Zhang, 1984; Shedlock and others, 1987; Wu and others, 1981; 
Xie and Yao, 1991; Yong and others, 1988; Zhang and others, 1980; Zhou, 1987 

117. Jones and others, 1984; Molnar and Deng, 1984 
118. Abe, 1978 
119. Jones and others, 1984; Molnar and Deng, 1984 
120. Jones and others, 1984; Keightley, 1975; Molnar and Deng, 1984 
121. Ambraseys, 1988; Barka and Kadinsky-Cade, 1988; Gulkan and others, 1978; Kikuchi and 

Kanamori, 1986; Kudo, 1983; Nabelek and Toksoz, 1978b; Toksoz and others, 1977, 
1978 

122. Gonzalez and others, 1984; Nava and Brune, 1983 
123. Berberian and Papastamatiou, 1978; Berberian and others, 1977; Jackson and Fitch, 1981; 

Nowroozi and Mohajer Ashjai, 1985 
124. Richardson, 1989 
125. Carver and others, 1978; Carver and others, 1981; Carver and others, 1983 
126. Warren and others, 1978, 1985 
127. Barker, 1993; Castano, 1982; Kadinsky-Cade, 1985; Kadinsky-Cade and others, 1985; 

Langer and Bollinger, 1988 
128. Ambraseys and others, 1979; Ambraseys and Melville, 1982; Berberian and others, 1979; 

Nowroozi and Mohajer-Ashjai, 1985; Zohoorian Izadpanah and others, 1981 
129. Kikuchi and Sudo, 1984; Sacks and others, 1981; Shimazaki and Somerville, 1979 
130. Yelin and Crosson, 1982 
131. Barker and Langston, 1981; Brustle and Muller, 1983; Karakaisis and Mikuma, 1993; 

Kulhanek and Meyer, I 979; Mercier and others, I 979; Mercier and others, 1983; 
Papazachos and others, 1979; Souneris and Stewart, I 981; Souneris and others, 1982 

132. Bent and Helmberger, 1991b; Corbett and Johnson, 1982; Lee and others, 1978; Wallace 
and others, 1981; Whitcomb and Hutton, 1978 

133. Brustle and Muller, 1983; Haessler and others, 1980; Scherbaum and Stoll, 1983; 
Turnovsky and Schneider, 1982 

134. Somerville and others, 1980 
135. Ambraseys and Melville, 1982; Berberian, 1979, 1982; Berberian and others, 1979; 

Hartzell and Mendoza, 1991; Niazi and Shoja-Taheri, 1985; Niazi and Kanamori, 1981; 
Nowroozi and Mohajer-Ashjai, I 985; Sharp and others, I 978 

136. Peppin and others, 1989 
137. Hauksson and Saldivar, 1986 
138. Ekstrom and Dziewonski, 1985; Hill and others, 1980; Hutton and others, 1980; Stein and 

Lisowski, 1983 
139. Boore and others, 1981; Brustle and Muller, 1983; Console and Favali, 1981; Kanamori 

and Given, 1981; Tselentis and others, 1988 

B-6 



140. Denham and others, 1987; Fredrich and others, 1988; Lewis and others, 1981 
141. Armstrong, 1979; Bouchon, 1982; Ekstrom and Dziewonski, 1985; Herd and others, 

1979; King and others, 1981; Lee and others, 1979; Lui and Helmberger, 1983; 
Reasenberg and Ellsworth, 1982; Uhrhammer, 1980 

142. Hasegawa and Wetmiller, 1980 
143. Deschamps and others, 1984 
144. Archuleta, 1982; Archuleta, 1984; Doser and Kanamori, 1986; Espinosa, 1982; Hartzell 

and Heaton, 1983; Hartzell and Helmberger, 1982; Johnson and Hutton, 1982; Kanamori 
and Regan, 1982; Olson and Apsel, 1982; Reilinger and Larson, 1986; Sharp, 1982; Sharp 
and others, 1982; Silver ¥ind Masuda, 1985 

145. Haghipour and Amidi, 1980; Niazi and Kanamori, 1981; Nowroozi and Mohajer-Ashjai, 
1980, 1985 

146. Haghipour and Amidi, 1980; Niazi and Kanamori, 1981; Nowroozi and Mohajer-Ashjai, 
1980, 1985 

147. Marrow and Roberts, 1985 
148. Boatwright and Boore, 1982; Bolt and others, 1981; BonilJa and others, 1980; Ekstrom 

and Dziewonski, 1985; Scheimer and others, 1982 
149. Frankel, 1984; Sanders and Kanamori, 1984 
150. Gagnepain-Beyneix and others, 1982 
151. Barker and Langston, 1983; Cramer and Toppozada, 1980; Ekstrom and Dziewonski, 

1985; Given and others, 1982; Julian and Sipkin, 1985; Lide and Ryall, 1985; Uhrhammer 
and Ferguson, 1980 

152. Anderson and Brune, 1991; Anderson and Simons, 1982; Ekstrom and Dziewonski, 1985; 
Munguia and Brune, 1984; Nakanishi and Kanamori, 1984; Sharp, 1981; Silver and 
Masuda, 1985; Wong and Frez, 1982 

153. Ishida, 1984; Linde and others, 1982; Matsuura, 1983; Takeo, 1988 
154. Ambraseys and Jackson, 1990; Papazachos and others, I 983 
155. Hermann and others, 1982; Mauk and others, 1982; Somerville, 1986 
156. Ambraseys, 1981; Cisternas and others, 1982; Deschamps and others, 1982; King and 

Yielding, 1984; King and Vita-Finzi, 1981; Nabelek, 1985; Ouyed and others, 1981; 
Ouyed and others, 1983; Phillip and Meghraoui, 1983; Ruegg and others, 1982; F. Swan, 
pers. comm. 1992; Yielding, 1985; Yielding and others, 1981 

157. Amato and others, 1989; Bernard and Zollo, 1989; Brustle and Muller, 1983; Crosson and 
others, 1986; Oel Pezzo and others, 1983; Deschamps and King, 1983; Deschamps and 
King, 1984; Pantosti and Yalensise, 1990; Yaccari and others, 1990; Westaway, 1987; 
Westaway and Jackson, 1984, 1987 

158. Deng and Zhang, 1984; Molnar and Lyon-Caen, 1989; Molnar and Deng, 1984; Qian, 
1986; Tang and others, 1984a; Tang and others, 1984b; Zhou and others, 1983b 

159. Grant and others, 1984 
160. Bezzeghoud and others, 1986; Jackson and others, 1982; Kim and others, 1984; King and 

others, 1985; Stavrakakis and others, 1991 

B-7 



161. Bezzeghoud and others, 1986; Jackson and others, 1982; Kim and others, 1984; King and 
others, 1985; Stavrakakis and others, 1991 

162. Bezzeghoud and others, 1986; Jackson and others, 1982; Kim and others, 1984; King and 
others, 1985; Stavrakakis and others, 1991 

163. Berberian and others, 1984; Gheltanchi and others, 1990; Nowroozi and Mohajer-Ashjai, 
1985; Slevin and Wallace, 1986 

164. Berberian and others, 1984; Gheltanchi and others, 1990; Nowroozi and Mohajer-Ashjai, 
1985; Slevin and Wallace, 1986 

165. Choy and others, 1983; Nguyen and Herrman, 1992; Somerville, 1986; Suarez and 
Nabelek, 1983; Wetmiller and others, 1984 

166. Frankel, 1984; Sanders and Kanamori, 1984 
167. Ekstrom and Dziewonski, 1985; Stein and Ekstrom, 1992 
168. Choy and Kind, 1987; Langer and others, 1987; Plafker and others, 1987; Sipkin, 1986 
169. Lomnitz and Hashizume, 1985 
170. Choy, 1990, Sipkin and Needham, 1990; Eaton, 1984; Eaton, 1990; Eberhart-Phillips and 

Reasonberg, 1990; Ekstrom and Dziewonski, 1985; Pehler and Johnson, 1989; Hanks and 
Boore, 1984; Hartzell and Heaton, 1983; Kanamori, 1983; McGarr and others, 1990; Rial 
and Brown, 1983; Sherburne and others, 1983; Stein, 1985; Tanimoto and Kanamori, 
1986; Uhrhammer and others, 1984 

171. Chen and Wang, 1984 
172. Bolt and Herraiz, 1983; Eaton.1 1990; Eaton and others, 1985; Eberhart-Phillips and 

Reasonberg, 1990; Hart and McJunkin, 1983; Rymer and others, 1985; Uhrhammer and 
others, 1984; 

173. Nabelek and Suarez, 1989; Nguyen and Herrman, 1992 
174. Barrientos and others, 1985; Barrientos and others, 1987; Boatwright, 1985; Crone and 

others, 1987; Doser and Smith, 1985; Ekstrom and Dziewonski, 1985; Richins, 1985; 
Stein and Barrientos, 1985a, 1985b; Tanimoto and Kanamori, 1986 

175. Ambraseys, 1988; Barka and Kadinsky-Cade, 1988; Islami, 1986; Li and others, 1987 
176. Ahorner and Pelzing, 1985; Aspinall 'and King, 1985; Camelbeec

1
k and DeBecker, 1985 

177. Ambraseys and Adams, 1986; Dorbath and others, 1984; Jensen and others, 1989; Langer 
and others, 1987; Suleiman and others, 1993 

178. Bakun and others, 1984a; Bakun and others, 1984b; Beroza and Spudich, 1988; 
Cockerham and Eaton, 1985, 1987; Ekstrom, 1984; Gladwin and Johnston, 1986; Hartzell 
and Heaton, 1986; Hoose, 1987; Prescott and others, 1984a, 1984b; Uhrhammer and 
Darragh, 1984 

179. Haessler and others, 1988 
180. Kondorskaya and others, 1989; Westaway and others, 1989 
181. Ansell and others, 1986; Marrow and Walker, 1988; Trodd and others, 1985; Turbitt and 

others, 1985 
182. Lahr and others, 1986 
183. Mizoue and others, 1985; Takeo and Mikami, 1987; Takeo, 1987; Yamashina and Tada, 

1985 

B-8 



184. Langer and others, 1991; Nguyen and Herrman, 1992 
185. Barker and Wallace, 1986; Doser and Smith, 1989; Gross and Savage, 1985; Johnston and 

others, 1987; Priestley and others, 1988 
186. Castano, 1985; INPRES, 1985 
187. Mori and others, 1987 
188. Mori, 1989 
189. Eaton, 1985; Ekstrom, 1986; Ekstrom and others, 1992; Ekstrom and Stein, 1989 
190. Kaiser and Duda, 1988; Kondorskaya and others, 1989; Ni and Guangwei, 1989 
191. Barker, 1989; Choy and Boatwright, 1988; Hasegawa and others, 1989; Horner and 

others, 1989; Horner and others, 1990; Kondorskaya and others, ~ 989; Wetmiller and 
others, 1988 

192. Bounif and others, 1987; Deschamps and others, 1991 
193. Barker, 1989; Choy and Boatwright, 1988; Hasegawa and others, 1989; Horner and 

others, 1989; .Horner and others, 1990; Kondorskaya and others, 1989; Wetmiller and 
others, 1988 

194. Simpson and others, 1988; Wyss and Habermann, 1988 
195. Glassmoyer and Borcherdt, 1990; Nicholson and others, 1988; Nguyen and Herrman, 1992 
196. Rogers and others, 1990 
197. Fredrich and others, 1988; Machelle and others, 1993; McCue and others, 1987 
198. Bolt and Uhrhammer, 1986; Oppenheimer and MacGregor-Scott, 1991; Zhou and others, 

1989; Zhou and McNally, 1990; Zhou and others, 1993 
199. Cabrera and others, 1991; Mercier and others, 1992; Yeats and others, 1994 
200. Chen and Wang, 1986, 1988; Chen and others, 1988; Hwang and Kanamori, 1989; Liaw 

and others, 1.986; Pezzopane and Wesnousky, 1989; Salzberg and others, 1988; Shin and 
others, 1989; Wu and others, 1989; Yeh and others, 1990; Yu and Lui, 1986 

201. Hartzell, 1989; Jones and others, 1986; Lisowski and Gross, 1987; Mendoza and Hartzell, 
1988, Nicholson and others, 1987; Pacheco and Nabelek, 1988; Seeber and others, 1987 

202. Hauksson and Jones, 1988; Pacheco and Nabelek, 1988 
203. Cockerham and Corbett, 1987; dePolo and others, 1991; dePolo and Ramelli, 1987; Doser 

and Smith, 1989; Gross and Savage, 1987; Johnston and others, l 987; Kahle and others, 
1986; Knuepfer, 1989; Lienkaemper and others, 1987; Pacheco and Nabelek, 1988; 
Prescott and others, 1988; Smith and Priestley, 1987 

204. Lyon-Caen and others, 1988; Papazachos and others, 1988 
205. Harlow and others, 1993; Rymer, 1987; White and others, 1987 
206. Chen and Wang, 1988; Chen and others, 1988; Goldstein and Archuleta, 1991; Hwang 

and Kanamori, 1989; Kanamori, 1988; Pezzopane and Wesnousky, 1989; Salzberg and 
others, 1988; Wu and others, 1989 

207. Tsukuda and others, 1989 
208. Gonzalez-Garcia, 1991 

B-9 



209. Anderson and others, 1990; Anderson and Webb, 1989; Beanland and others, 1989; 
Beanland and others, 1990; Darby, 1989; Grapes, 1987; New Zealand Department of 
Sci en ti fie and Industrial Research, 1987; Pender and Robertson, 1988; Zhang and others, 
1989 

210. Maeda, 1991 
211. Langer and Bollinger, 1991; Taylor and others, 1989 
212. Lei and others, 1991; Wei and Chung, 1993 
213. Pechman and others, 1992 
214. Barker, 1988; Bent and Helmberger, 1989; Bolt and others, 1989; Hartzell and Iida, 1990; 

Hauksson and Jones, 1989; Hauksson and others, 1988; Lin and Stein, 1989; Linde and 
Johnston, 1989 

215. Agnew and Wyatt, 1989; Bent and others, 1989; Hudnut and others, 1989; Lisowski and 
Savage, 1988; Magistrale and others, 1989; Sharp and others, 1989; Sipkin, 1989 

216. Agnew and Wyatt, 1989; Bent and others, 1988; Budding and Sharp, 1988; Hudnut and 
others, 1989; Kahle and others, 1988; Lisowski and Savage, 1988; Magistrale and others, 
1989; McGill and others, 1989; Sharp and others, 1989; Williams and Magistrale, 1989 

217. Bowman, 1991; Bowman and others, 1990; Choy and Bowman, 1990; Chung and.others, 
1988; Crone and others, 1992; Johnston, 1988; McCaffrey, 1989 

218. Bowman, 1991; Bowman and others, 1990; Choy and Bowman, 1990; Chung and others, 
1988; Crone and others, 1992; Johnston, 1988; McCaffrey, 1989 

219. Bowman, 1991; Bowman and others, 1990; Choy and Bowman, 1990; Chung and others, 
1988; Crone and others, 1992; Johnston,··1988; Mccaffrey, 1989 

220. Nava and others, 1989; Pechman and others, 1990, 1992 
221. Chen and Qin, 1991; Chen and Wu, 1989; Holt and Wallace, 1989; Institute of 

Earthquake Engineering, 1989; Li and Nabelek, 1989; Mao and Zhang, 1991; Wang and 
others, 1989; Wu, 1989; Yu and others, 1991 

222. Chen and Qin, 1991; Institute of Earthquake Engineering, 1989; Li and Nabclck, 1989; 
Mao and Zhang, 1991; Zhou and others, 1990 

223. Carabajal and Barker, 1991; Du Berger 'and others, 1991; North and others, 1989; 
Somerville and others, 1990; Wetmil!cr and others, 1989 

,I 

224. Jones and others, 1990; Kanamori, 1989; Kanamori and others, 1990 
225. Arefiev and others, 1989; Bommer and Ambraseys, 1989; Borcherdt and others, 1990; 

Cisternas and others, 1989a, 1989b; Dorbath and others, 1992; Haessler and others, 1989; 
Jimenez and others, 1989; Kanamori, 1993; Langer and othc·rs, 1989; Needham and Sipkin 
1989; Pacheco and others, 1989; Philip and others, 1989; Sharp, 1989 

226. Pechman and others, 1990, 1992 

B-10 



227. Barker and Salzberg, 1990; Choy and Boatwright, 1990; Dietz and Ellsworth, 1990; 
Dziewonski and Zwart, 1990; Kanamori and Helmberger, 1990; Kanamori and Satake, 
1990; Langston and others, 1990; Lisowski and others, 1990; McNally and others, 1989; 
Michael and others, 1990; Nabelek, 1990; Plafker and Galloway, 1989; Prescott and 
others, 1990; Romanowicz and Lyon-Caen, 1990; Ruff and Tichelaar, 1990; Salzberg and 
others, 1990; Somerville and Yoshimura, 1990; Uhrhammer and others, 1990; Zhang and 
Lay, 1990 

228. Ambraseys and others, 1990; Meghraoui, 1991 
229. Adams and others, 1991; Adams and others, 1990; Bent, 1993; Wetmiller and others, 

1991 
230. Fukuyama and Mikuma, 1993 
231. Dreger and Helmberger, 1991a; Hauksson and Jones, 1991a; Hutton, 1990b 
232. Berberian and others, 1992; Niazi and Bozorgnia, 1992; Thio and others, 1990; Tsukuda 

and others, 1991 
233. Abe, 1990; Sharp and Umbal, 1990; Thio and others, 1990; Yoshida and Abe, 1990, 1992 
234. dePolo and Horton, 1991; Dreger and others, 1991; Horton and dePolo, 1992; McNutt 

and others, 1991 
235. Tsukuda and others, 1992 
236. Dreger and Helmberger, 1991b; Hauksson and Jones, 1991b; Wald and others, 1991 
237. McLaren and Savage, 1992; M. McLaren, pers. comm. 1993 
238. Barka and Eyidogan, 1993; Bennett and others, 1992; EERI 1993; Tri fonov and others, 

1993 
239. Hauksson and others, 1992; Hauksson and others, 1993; Hough and others (1993, in 

review); Nicholson and others, 1993; Rymer, 1992 
240. Berryman, 1992; Campillo and Archuleta, 1992; Dreger and Helmberger, 1992; Hart and 

others, 1993; Hauksson and others, 1992; Hauksson and others, 1993; Hough and others 
1992; Kanamori and others, 1992; Sieh and others, 1993 

241. Hauksson and others, 1992; Hauksson and others 1993; Jones and Helmberger, 1993 
242. Anderson and others, 1992; Harmon, pers. comm. 1993; Smith and others, 1993; Sheehan 

and others, 1993; Zhao and Helmberger 1993 
243. Madin and others, 1993; J. Nabelek, pers. comm. 1993 
244. Hauksson and others, 1993; S. Hecker, pers. comm. 1993; J. Scott, pers. comm. 1993 

B-11 



APPENDIX C: REFERENCES FOR TABLE 1 

See Appendix B for listing of references for individual earthquakes 

Abe, K. (1974a). Seismic displacement and ground motion near a fault--the Saitama earthquake 
of September 21, 1931, J. Geophys. Res., 79, 4393-4399. 

Abe, K. (1974b). Fault parameters determined by near- and far-field data--the Wakasa Bay 
earthquake of March 26, 1963, Bull. Seism. Soc. Am., 64, 1369-1382. 

Abe, K. (1975). Re-examination of the fault model for the Niigata earthquake of 1964, J. Phys. 
Earth, 23, 349-366. 

Abe, K. (1978). Dislocations, source dimensions and stresses associated with earthquakes in the 
Izu Peninsula, Japan, J. Phys. Earth, 26, 253-274. 

Abe, K. (1981). Magnitudes of large shallow earthquakes from 1904-1980, Phys. Earth Planet. 
Interiors, 27, 72-92. 

Abe, K. (1990). Seismological aspects of the Luzon, Philippines, earthquake of July 16, 1990 (in 
Japanese), Bull. Earth(]. Res. Inst. Tokyo, 65, 851-873. 

Abe, K., and S. Noguchi (1983a). Determination of magnitude for large shallow earthquakes 
1898-1917, Phys. Earth Planet. l11terim:\·, 32, 45-59. 

Abe, K., and S. Noguchi (1983b). Revision of magnitudes of large shallow earthquakes, 
1897-1912, Phys. Earth Planet. l11teri01:\·, 33, 1-11. 

Adams, J., Wetmiller, R.J., Hasegawa, H.S., and J. Drysdale (1991). The first surface faulting 
from a historical intraplate earthquake in North America, Nature, 352, 617-619. 

Adams, J., North, R.G., Wetmiller, R.J., Hasegawa, H.S., and J. Drysdale (1990). The 
December 25, 1989, MS =6.2 Ungava (Quebec) earthquake: yet another M6 event in the 
Canadian Craton, Seism. Rl!s. Le11ers, 61, no. 1. 40-41. 

Adams, R.D., and M.A. Lowry (1971). The Inangahua earthquake sequence, 1968, in Collins, 
B. W., and Fraser, R., eds., Recent Crustal Movements, Royal Soc. New Zealand Bull. 9, 
129-135. 

Adams, R.D., Lowry, M.A., and D.E. Ware (1971). New Zealand seismological report, 
Inangahua earthquakes, 1968, Seismological 0/Jservatoty Bull., E-147. 

Agnew, D.C., and F.K. Wyatt (1989). The 1987 Superstition Hills earthquake sequence, strains 
and tilts at Pinon Flat Observatory, Bull. Seism. Soc. Am., 79, no. 2., 480-492. 

Ahorner, L., and R. Pelzing (1985). The source characteristics of the Liege earthquake on 
November 8, 1963, from Digital recordings in West Germany, Seismic Activity in Western 
Europe, 263-289. 

Aki, K. (1966). Generation and Propagation of G waves from the Niigata earthquake of June 16, 
1964. Part 2. Estimation of earthquake movement, released energy, and stress-strain drop 
from the G wave spectrum, Bull. Earthq. Res. Im·t. Tokyo, 44, 73-88. 

Allen, C.R., and J.M. Nordquist (1972). Foreshock, main shock, and larger aftershocks of the 
"&,~Jrrego Mountain earthquake, in the Borrego Mountain Earthquake of April 9, 1968, U.S. 

Geo/. Sur. Prof Paper 787, 16-23. 

C-1 



Allen, C.R., Hanks, T.C., and J.H. Whitcomb (1973). San Fernando earthquake--seismological 
studies and their tectonic implications, in Benfer, N.A., Coffman, J.L., Bernick, J.R., and 
Dees, L.T., eds., San Fernando, California, Earthquake of February 9, 1971, Volume Ill, 
Geological and Geophysical Studies, U.S. Department of Commerce, National Oceanic and 
Atmospheric Administration, 13-21. 

Allen, C.R., Hanks, T.C., and J.H. Whitcomb (1975). Seismological studies of the San Fernando 
earthquake and their tectonic implications, in Oakeshott, G .B., ed., San Fernando, California 
Earthquake of 9 February 1971, Calif. Div. Mines Geo!. Bull. 196, 257-262. 

Allen, C.R., St. Amand, P., Richter, C.F., and J.M. Nordquist (1965). Relationship between 
seismicity and geologic structure in the southern California region, Bull. Seism. Soc. Am., 
55, 753-797. 

Allen, C.R., Luo, Z., Qian, H, Wen, X., Zhou, H., and W. Huang (1991). Field study of a 
highly active fault zone: the Xianshuihe fault of southwestern China, Geo!. Soc. Am. Bull., 
103-, 1178-1199. 

Amaike, F. (1987). Seismic explorations of the buried fault associated with the 1948 Fukui 
earthquake, J. Phys. Earth, 35, 285-308. 

Amato, A., Barnaba, P.F., Finetti, I., Groppi, G., Martinis, B., and A. Muzzen (1976). 
Geodynamic outline and seismicity of Friuli Venetia Julia region, in Proceedings of the 
International Meeting on the Friuli Earthquake, Bollettino di Geqfisica, 19, 217-256. 

Amato, A., Cocco, M., Pantosi, G., and G. Valenise (1989). Investigating a complex earthquake 
with a multidisciplinary approach: the 1980, Irpinia, normal faulting event (Ms 6.9), Eos, 70, 
no. 43, 1226. 

Ambraseys, N.N. (1963). The Buyin-Zara (Iran) earthquake of September, 1962, a field report, 
Bull. Seism. Soc. Am., 53, 705-740. 

Ambraseys, N.N. (1970). Some characteristic features of the Anatolian fault zone, 
Tecronophysics, 9, 143-165. 

Ambraseys, N.N. (1975). Studies in historical seismicity and tectonics, in Geodynamics Today, 
The Royal Society, London, 7-16. 

Ambraseys, N.N. (1981). The El Asnam (Algeria) earthquake of 10 October 1980--conclusions 
drawn from a field study, Quart. J. Eng. Geo. London, 14, 143-148. 

Ambraseys, N.N. (1988). Engineering seismology, Earthq. Eng. Srrucr. Dyn., 17, 1-105. 
Ambraseys, N.N., and R.D. Adams (1986). Seismicity of West Africa, Anna/es Geophysicae, 4, 

no. B6, 679-702. 
Ambraseys, N.N., and J.A. Jackson (1990). Seismicity and associated strain of central Greece 

between 1890 and 1988, Geophys. J. 1111., 101, 663-708. 
Ambraseys, N.N., and C.P. Melville (1982). A history of Persian earthquakes: Cambridge Earth 

Science Series, Cambridge University Press, London, 212 p. 
Ambraseys, N.N., and J.S. Tchalenko (1969). The Dasht-e Bayaz (Iran) earthquake of August 31, 

1968, a field report, Bull. Seism. Soc. Am., 59, 1751-1792. 
Ambraseys, N.N., and J.S. Tchalenko (1972). Seismotectonic aspects of the Gediz, Turkey, 

earthquake of March 1970, Geophys. J. R. Asrr. Soc. London, 30, 229-252. 

C-2 



Ambraseys, N.N., and A. Zatopek (1968). The Varto Usturkan (Anatolia) earthquake of 19 
· August 1966--summary of a field report, Bull. Seism. Soc. Am., 58, 47-102. 

Ambraseys, N.N., and A. Zatopek (1969). The Mudurnu Valley, West Anatolia, Turkey, 
earthquake of 22 July 1967, Bull. Seism. Soc. Am., 59, 521-589. 

Ambraseys, N.N., Arsovski, M., and A.A. Moinfar (1979). The Gisk earthquake of 19 December 
1977 and the seismicity of the Kuhbananfault-zone, UNESCO. 

Ambraseys, N.N., Moinfar, A.A., and J.S. Tchalenko (1972). (Iran) Ghir earthquake of 10 April 
1972: UNESCO (Paris), serial no. 2789/RMO.RD/SCE. 

Ambraseys, N.N., Elnashai, A.S., Bommer, J.J., Haddar, F., Madas, P., Elghazouli, A., and 
J. Vogt (1990). The Chenoua (Algeria) earthquake of 29 October 1989, Engineering 
Seismology and Earthquake Engineering Research Report No. 90-4, Imperial College of 
Science and Technology, London. 

Anderson, H., Smith, E., and R. Robinson (1990). Normal faulting in a back-arc basin-
seismological characteristics of the 1987 March 2 Edgecumbe, New Zealand, earthquake 
(abs.), Eos, 71, no. 2, 51-52. 

Anderson, H., and T. Webb (1989). The rupture process of the 1987 Edgecumbe earthquake, 
New Zealand, New Zealand J. Geo!. Geophys., 32, 43-52. 

Anderson, J.G., and J.N. Brune (1991). The Victoria accelerogram for the 1980 Mexicali Valley 
earthquake, Earthq. Spectra, 7, 29-43. 

Anderson, J.G., and R.S. Simons, eds. (1982). The Mexicali Valley earthquake of 9 June 1980: 
Earthquake Engineering Research Institute Newsletter 161 24 p. 

Anderson, J.G., Brune, J.N., dePolo, D., Gomberg, J., Harmsen, S.C., Savage, M.K., Sheehan, 
A.F., and K.D. Smith (1992). Preliminary report: The Little Skull Mountain earthquake, in 
Proceedings of C01?ference on Dynamic Analysis and Design Considerations for High-Level 
Nuclear Waste Repositories, San Francisco, 162-175. 

Ando, M. (1977). Slip rates and recurrence times from analysis of major earthquakes on Pacific
North American plate boundary in western North America (abs.), Eos, 58, 438. 

Ansell, J., Aspinall, W., King, G., and R. Westaway (1986). The 1984 July 19 North Wales 
earthquake - a lower crustal continent event indicating brittle behavior at an unusual depth, 
Geophys. J. R. Astr. Soc. London, 84, 201-206. 

Arabasz, W.J. (1991). A synopsis of the 1966 Caliente/Clover Mountains, Nevada, earthquake: 
Unpublished paper, Supplementary data for Electric Power Research Institute-High Level 
Waste Performance Assessment Project, 26 p. 

Arabasz, W.J., Richins, W.D., and C.J. Langer (1981). The Pocatello Valley (Idaho-Utah 
border) earthquake sequence of March to April 1975, Bull. Seism. Soc. Am., :h, 803-826. 

Archuleta, R.J. (1982). Analysis of near-source static and dynamic measurements from the 1979 
Imperial Valley earthquake, Bull. Seism. Soc. Am., 72, 1927-1956. 

Archuleta, R.J. (1984). A faulting model for the 1979 Imperial Valley earthquake, J. Geophys. 
Res., 89, 4,559-4,585. 

Archuleta, R.J., and S.M. Day (1980). Dynamic rupture in a layered medium--the 1966 Parkfield 
earthquake, Bull. Seism. Soc. Am., 70, 671-689. 

C-3 



Arefiev, S.S., Borissoff, B.A., and R.E. Tatevosyan (1989). Some features of the epicentral area 
of Spitak, December 7, 1988 earthquake, in Schenk, V., and Schenkova, Z., eds., 
Proceedings of the 4th illternational Symposium on the Analysis of Seismicity and Seismic 
Risk, Bechnye Castle, Czechoslovakia, Geophysical Institute, Czechoslovak Academy of 
Sciences, Prague, 49-56. 

Armijo, R., Tapponnier, P., and H. Tonglin (1989). Late Cenozoic right-lateral strike-slip 
faulting in southern Tibet, J. Geophys. Res., 94, 2787-2838. 

Armstrong, C.F. (1979). Coyote Lake earthquake, 6 August 1979, California Geology, 
November, 248-251. 

Arpat, E. (1977). Lice earthquake of September 6, 1975: Yeryuvari ve Insan, (Subat, 1977), 15-
27. 

Arpat, E., and E. Bingol (1969). The rift system of the western Turkey; thoughts on its 
development, Bull. Min. Res. Exp/. Instil. Turkey, 73, 1-9. 

Aspinall, W.P., and G.C.P. King (1985). A temporary search for aftershocks of the 1983 
November 8, Liege, Belgium, earthquake: Seismic Activity in Western Europe, 319-329. 

Bache, T.C., Lambert, D.G., and T.G. Barker (1980). A source model for the March 28, 1975, 
Pocatello Valley earthquake from the time-domain modeling of teleseismic P waves, Bull. 
Seism. Soc. Am., 70, 405-418. 

Bakun, W.H. (1984). Seismic moments, local magnitudes, and coda-duration magnitudes for 
earthquakes in central California, Bull. Seism. Soc. Am., 74, 439-458. 

Bakun, W.H., Clark, M.M., Cockerham, R., Ellsworth, W.L., Lindh, A.G., Prescott, W.H., 
Shakal, A.F., and P. Spudich (1984a). The 1984 Morgan Hill, California, earthquake, in 
Hoose, S.N., ed., The Morgan Hill, California, Earthquake of April 24, 1984 (Preliminary 
report), U.S. Geo/. Sur. Open-File Reporr 84-498A, 1-9. 

Bakun, W.H., Clark, M.M., Cockerham, R.S., Ellsworth, W.L., Lindh, A.G., Prescott, W.H., 
Shakal, A.F., and P. Spudich (1984b). The 1984 Morgan Hill, California, earthquake, 
Science, 225, 288-291. 

Balakina, L.M., Rustanovich, D.N., and D. Khodzhiyevskiy (1968). The focal mechanism of the 
aftershocks of the earthquake of July 26, 1963, at Skopje, lvestia, Physics <?{the Solid Earth, 
1, 110-114. 

Barka, A., and H. Eyidogan (1993). The Erzincan earthquake of 13 March 1992 in eastern 
Turkey, Terra Nova, 5, 190-194. 

Barka, A., Toksoz, M.N., Kadinsky-Cade, K., and L. Gulen (1987). The segmentation, 
seismicity and earthquake potential of the eastern part of the north Anatolian fault zone: 
submitted to J. Geophys. Res., 34 p. 

Barka, A., and K. Kadinsky-Cade (1988). Strike-slip fault. geometry in Turkey and its influence 
on earthquake activity, Tectonics, 1, 663-684. 

Barker, J.S. (1988). A teleseismic body wave analysis of the October 1, 1987 Whittier Narrows 
earthquake, Seism. Res. Le11ers, 59, 4. 

Barker, J.S. (1989). A teleseismic body wave analysis of the October and December 1985 
Nahami, NWT, earthquakes, Eos, 70, no. 15, 398. 

C-4 



Barker, J.S. (1992). Body-wave inversion for the source mechanism of the November 23, 1977 
Caucete, Argentina, earthquake, Seism. Res. Letters, 63, 73. 

Barker, J.S., and C.A. Langston (1981). Inversion of teleseismic body waves for the moment 
tensor of the 1978 Thessaloniki, Greece, earthquake, Bull. Seism. Soc. Am., 71, 1423-1444. 

Barker, J.S., and C.A. Langston (1983). A teleseismic body-wave analysis of the May 1980 
Mammoth Lakes, California, earthquakes, Bull. Seism. Soc. Am., 73, 419-434. 

Barker, J.S., and D.H. Salzberg (1990). Long-period and broad-band teleseismic body-wave 
modeling of the October 18, 1989 Loma Prieta earthquake, Geophys. Res. Letters, 17, 1409-
1412. 

Barker, J.S., and T.C. Wallace (1986). A note on the teleseismic body waves from the 23 
November 1984 Round Valley, California, earthquake, Bull. Seism. Soc. Am., 76, 883-888. 

Barrientos, S.E., Stein, R.S., and S.N. Ward (1987). Comparison of the 1959 Hebgen Lake, 
Montana, and the 1983 Borah Peak, Idaho, earthquakes from geodetic observations, Bull. 
Seism. Soc. Am., 77, 784-808. 

Barrientos, S.E., Ward, S.N., Gonzalez-Ruiz, J.R., and R.S. Stein (1985). Inversion for moment 
as a function of depth from geodetic observations and long period body waves of the 1983 
Borah Peak, Idaho earthquake, in Stein, R.S., and Bucknam, R.C., eds., Proceedings of 
Workshop XXVIII, On the Borah Peak, Idaho, Earthquake, U.S. Geo!. Sur. Open.-File Report 
85-290, 485-518. 

Bayer, K.C., Keuckroth, L.E., und R.A. Karim (1969). An investigation of the Dasht-e Bayaz, 
Iran, earthquake of August 31, 1968, Bull. Seism. Soc. Am., 59, 1793-1822. 

Beanland, S., Berryman, K.R., and G.H. Blick (1989). Geological investigations of the 1987 
Edgecumbe earthquake, New Zealand, New Zealand J. Geo/. Geophys., 32, 73-91. 

Beanland, S., Blick, G.H., and D.J. Darby (1990). Normal faulting in a back arc basin: 
geological and geodetic characteristics of the 1987 Edgecumbe earthquake, New Zealand, J. 
Geophys. Res., 95, 4693-4707. 

Beanland, S., and M.M. Clark (1987). The Owens Valley fault zone, eastern California, and 
surface rupture associated with the 1872 earthquake (abs.), Seism. Res. leuers, SB, 32. 

Beck, S.L. (1989). Rupture process of the Feb. 6, 1973, Luhuo earthquake, Seism. Res. Leuers, 
60, 23. 

Bellier, 0., Dumont, J.F., Sebrier, and Mercier, J.L. (1991). Geological constraints on the 
kinematics and fault-plane solution for the Quiches fault zone reactivated during the 
10 November 1946 Ancash earthquake, northern Peru, Bull. Seism. Soc. Am., 81, 468-490. 

Bell, J.W. (1984). Quaternary Fault Map of Nevada, Reno Sheet: Nevada Bureau of Mines and 
Geology Map 79, scale 1 :250,000. 

Ben-Menahem, A. (1977). Renormalization of the magnitude scale, Phys. Earth Planet. Imeriors, 
15, 315-340. 

Ben-Menahem, A. (1978). Source mechanism of the 1906 San Francisco earthquake, Phys. Earth 
Planet. Interiors, 17, 163-181. 

Ben-Menahem, A., and M.N. Toksoz (1963). Source-mechanism from spectra of. long-period 
seismic surface waves--3, The Alaska earthquake of July 10, 1958, Bull. Seism. Soc. Am., 
53, 905-919. 

C-5 



Benioff, H. (1955). Mechanism and strain characteristics of the White Wolf fault as indicated by 
aftershock sequence, in Oakeshott, 0.P., ed., Earthquakes in Kern County California during 
1952, Calif. Div. Mines Geo/. Bull. 171, 199-202. 

Bennett, R.A. (1992). Source parameters of the 1992 Erzincan, Turkey earthquake, Eos, 73, no. 
43, 353. 

Bent, A.L. (1993). The 1989 Ungava Quebec earthquake: A complex intraplate earthquake, 
Seism. Res. Letters, 64, 31. 

Bent, A.L., and D.V. Helmberger (1989). Source complexity of the October 1, 1987, Whittier 
Narrows earthquake, J. Geophys. Res., 94, 9548-9556. 

Bent, A.L., and D. Helmberger (1991a). A teleseismic master event technique for relocating 
historic earthquakes: examples from the San Jacinto fault zone (abs.), Eos, 72, no. 17, 190. 

Bent, A.L., and D.V. Helmberger (1991b). Seismic characteristics of earthquakes along the 
offshore extension of the western Transverse Ranges, California, Bull. Seism. Soc. Am., 81, 
399-422. 

Bent, A.L., Ho-Liu, P., and D. Helmberger (1988). The November 1987 Superstition Hills 
earthquake and comparisons with previous neighboring events (abs.), Seism. Res. Leuers, 59, 
49. 

Bent, A.L., Helmberger, D.V., Stead, R.J., and P. Ho-Liu (1989). Waveform modeling of the 
Noyember 1987 Superstition Hills earthquakes, Bull. Scism. Soc. Am., 79, 500-514. 

Berberian, M. (1976). Documented earthquake faults in Iran, Geo!. Sur. Iran, Report No. 39, 
143-186. 

Berberian, M. (1979). Earthquake faulting and bedding thrust associated with the Tabas-E
Golshan (Iran) earthquake of September 16, 1978, Bull. Seism. Soc. Am., 69, 1861-1887. 

Berberian, M. (1982). Aftershock tectonics of the 1978 Tabas-e-Golshan (Iran) earthquake 
sequence--a documented active 'thin- and thi0,k-skinned tectonic' case, Geophys. J. R. Astr. 
Soc. London, 68, 499-530. 

Berberian, M., and D. Papastamatiou (1978). Khurgu (north Bandar Abbas, Iran) earthquake of 
March 21, 1977--a preliminary field report and a seismotectonic discussion, Bull. Seism. Soc. 
Am., 68, 411-428. 

Berberian, M., Asudeh, I., Bilham, R.G., Scholz, C.H., and C. Soufleris (1979). Mechanism of 
the main shock and the aftershock study of the Tabas-E-Golshan (Iran) earthquake of 
September 16, 1978--a preliminary report, Bull. Seism. Soc. Am., 69, 1851-1859. 

Berberian, M., Jackson, J.A., Ghorashi, M., and M.H. Kadjar (1984). Field and teleseismic 
observations of the 1981 Golbaf-Sirch earthquakes in SE Iran, Geophys. J. R. Astr. Soc. 
London, 77, 809-838. 

Berberian, M., Papastamatiou, D., and M. Qoraishi (1977). Khurgu (north Bandar Abbas, Iran) 
earthquake of March 21, 1977, in Berberian, M., ed., Contributions to the Seismotectonics 
of Iran (Part Ill), Geo!. Mining Sur. Iran, Report No. 40, 7-49. 

Bernard, P., and A. Zollo (1989). The Irpinia (Italy) 1980 earthquake--detailed analysis of a 
complex normal faulting,]. G£iophys. Res., 94, 1631-1647. 

Beroza, G.C., and P. Spudich (1988). Linearized inversion for fault rupture behavior: application 
to the 1984 Morgan Hill, California, earthquake, J. Geophys. Res., 93, 6275-6296. 

C-6 



Berryman, K.R. (1984). Late Quaternary tectonics in New Zealand, in Walcott, R.I., compiler, 
An Introduction to the Recent Crustal Movements of New Zealand, Royal Soc. New Zealand 
Misc. Series 7, 91-107. 

Berryman, K.R. (1992). Reconnaissance field investigation of the Landers earthquake (Ms 7.5) 
of June 28, 1992, San Bernadino County, California, USA, Bull. New Zealand Nat. Soc. 
Earthq. Eng., 25, 230-241. 

Bevin, A.J., Otway, P.M., and P.R. Wood (1984). Geodetic monitoring of crustal deformation 
in New Zealand,· in Walcott, R.I., compiler, An Introduction to the Recent Crustal 
Movements of New Zealand, Royal Soc. New Zealand Misc. Series 7, 13-60. 

Bezzeghoud, M., Deschamps, A., and R. Madariaga (1986). Broad-band modeIIing of the 
Corinth, Greece earthquakes of February and March 1981, Anna/es Geophysicae, 4, no. B3, 
295-304. 

Boatwright, J. (1985). Characteristics of the aftershock sequence of the Borah Peak, Idaho, 
earthquake determined from digital recordings of the events, Bull. Seism. Soc. Am., 75, 1265-
1284. 

Boatwright, J., and D.M. Boore (1982). Analysis of the ground accelerations radiated by the 1980 
Livermore Valley earthquakes for directivity and dynamic source characteristics, Bull. Seism. 
Soc. Am., 72, 1843-1865. 

Bolt, B.A. (1967). Seismological notes--jottings from Japan, the Tango, Nobi, Niigata and 
Matsushiro earthquakes and the Nikari train, Bull. Seism. Soc. Am., 57, 133-138. 

Bolt, B.A. (1968). The focus of the 1906 California earthquake, Bull. Seism. Soc. Am., 50, 457-
471. 

Bolt, B.A., and M. Herraiz (1983). Simplified estimation of seismic moment from seismograms, 
Bull. Seism. Soc. Am., 73, 735-748. 

Bolt, B.A., Lomax, A., and R.A. Uhrhammer ( 1989). Analysis of regional broadband recordings 
of the 1987 Whittier Narrows, California, earthquake, J. Geophys. Res., 94, 9557-9568. 

Bolt, B.A., and R.A. Uhrhammer (1986). Report on the March 31, 1986 Mt. Lewis, California, 
earthquake (east of Fremont)--seismology aspects: Earthquake Engineering Research Institute 
Special Earthquake Report, University of California, Berkeley, 3 p. 

Bolt, B.A., McEvilly, T.V., and R.A. Uhrhammer (1981). The Livermore Valley, California, 
sequence of January 1980, Bull. Seism. Soc. Am., 71, 451-463. 

Bommer, J.J., and N.N. Ambraseys (1989). The Spitak (Armenia, USSR) earthquake of 7 
December 1988: a summary engineering seismology report, Earthq. Eng. Srrucr. Dyn, 18, 
921-925. 

Bonilla, M.G. (1959). Geologic observations in the epicentral area of the San Francisco 
earthquake of March 22, 1957, in Oakeshott, G.B., ed., San Francisco Earthquakes of March 
1957, Calif. Div. Milws Geo!. Special Reporr 57, 25-37. 

Bonilla, M.G. (1970). Surface faulting and related effects, in Weigel, R.L., ed., Earthquake 
Engineering, Prentice Hall, Englewood Cliffs, New Jersey, 47-74. 

Bonilla, M.G. (1977). Summary of Quaternary faulting and elevation changes in Taiwan, Memoir 
Geo!. Soc. China, 2, 43-55. 

C-7 



Bonilla, M.G., Lienkaemper, J.J., and J.C. Tinsley (1980). Surface faulting near Livermore, 
California associated with the January 1980 earthquakes, U.S. Geol. Sur. Open-File 
Report 80-523, 31 

Boore, D.M., and D.J. Stierman (1975). Source parameters of the Pt. Mugu, California 
earthquake of 21 February, 1973, Eos, 56, no. 12, 1028. 

Boore, D.M., and D.J. Stierman (1976). Source parameters of the Pt. Mugu, California, 
earthquake of February 21, 1973, Bull. Seism. Soc. Am., 66, 385-404. 

Boore, D.M., Sims, J.D., Kanamori, H., and S. Harding (1981). The Montenegro, Yugoslavia, 
earthquake of April 15, 1979--source orientation and strength, Phys. Earth Planet. Interiors, 
27, 133-142. 

Borcherdt, R.D., Langer, C., Filson, J.R., Simpson, D.W., Glassmoyer, G., Andrews, M., and 
E. Cranswick (1990). On the rupture zone and local geologic effects of the Armenian 
earthquake of December 7, 1988, in Proceedings of the Fourth U.S. National Conference on 
Earthquake Engineering, Palm Springs, California, Volume 1, 131-140. 

Bouchon, M. (1982). The rupture mechanism of the Coyote Lake earthquake of 6 August 1979 
inferred from near-field data, Bull. Seism. Soc. Am., 72, 745-757. 

Bounif, A., Haessler, H., and M. Meghraoui (1987). The Constantine (northeast Algeria) 
earthquake of October 27, 1985--surface ruptures and aftershock study, Earth Planet. Sci. 
Letters, 85, 451-460. 

Bowman, J.R. (1991). Geodetic evidence for conjugate faulting during the 1988 Tennant Creek, 
Australia earthquake sequence, Geophys. J. 1111., 107, 46-56. 

Bowman, J.R., Gibson, G., and T. Jones (1990). Aftershocks of the 1988 January 22 Tennant 
Creek, Australia intraplate earthquakes: evidence for a complex thrust-fault geometry, 
Geophys. J. Int., 100, 87-97. 

Boyd, T.M., Mori, J., and G. Suarez (1984). Fault plane determination of the 1964 Niigata, 
Japan earthquake (abs.), Eos, 65, no. ,45, 1016. 

Brantley, B.J., and W.Y. Chung (1991). Body-wave waveform constraints on the source 
parameters of the Yangjiang, China, earthquake of July 25, 1969: a devastating earthquake 
in a stable continental region, Pure App/il!d Geophys., 135, 529-543. 

Briole, P., de Natale, G., Gaulon, R., Pingue, F., and R. Scarpa (1986). Inversion of geodetic 
data and seismicity associated with the Friuli earthquake sequence (1976-1977), Anna/es 
Geophysicae, 4, no. B4, 481-492. 

Brown, R. D., and J. G. Vedder ( 1967). Surface tectonic fractures along the San Andreas fault, 
in Brown, R.D., Vedder, J.G., Wallace, R.C., Roth, E.F., Yerkes, R.F., Castle, R.0., 
Waananen, A.O., Page, R.W., and Eaton, J.P., eds., The Parkfield-Cholame, California, 
Earthquakes of June-August 1966--Surface Geologic Effects, Water-Resources Aspects, and 
Preliminary Seismic Data, U.S. Geo/. Sur. Prof. Paper 579, 2-23. 

Brown, R.D., Vedder, J.G., Wallace, R.C., Roth, E.F., Yerkes, R.F., Castle, R.O., Waanonen, 
A.O., Page, R.W., and Eaton, J.P., eds., The Parkfield-Cholame, California, Earthquakes 
of June-August 1966--Surface Geologic Effects, Water-Resources Aspects, and Preliminary 
Seismic Data, U.S. Geo/. Sur. Prof. Paper 579, 66 p. 

C-8 



Brown, R.D., Jr., Ward, P.L., and G. Plafk:er (1973). Geologic and seismologic aspects of the 
Managua, Nicaragua, earthquakes of December 23, 1972, U.S. Geo/. Sur. Prof. Paper 838, 
34 p. 

Briistle, W., and G. Miiller (1983). Moment and duration of shallow earthquakes from Lone
wave modeling for regional distances, Phys. Earth Planet. Interiors, 32, 312-324. 

Bucknam, R.C., Plafk:er, G., and R.V. Sharp (1978). Fault movement (afterslip) following the 
Guatemala earthquake of February 4, 1976: Geology, 6, 170-173. 

Budding, K.E., and R. V. Sharp ( 1988). Surface faulting associated with the Elmore Desert Ranch 
and Superstition Hills, California, earthquakes of 24 November 1987 (abs.), Seism. Res. 
Letters, 59, 49. 

Bufe, C.G., Lester, F.W., Lahr, K.M., Lahr, J.C., Seekins, L.C., and T.C. Hanks (1976). 
Oroville earthquakes--normal faulting in the Sierra Nevada foothills, Science, 192, 72-74. 

Bull, W.B., and P.A. Pearthree (1988). Frequency and size of late Quaternary surface ruptures 
of the Pitaycachi fault, northeast Sonora, Mexico, Bull. Seism. Soc. Am., 78, 956-978. 

Burdick, L.J., and G.R. Mellman (1976). Inversion of the body waves from the Borrego 
Mountain earthquake to the sourc;e mechanism, Bull. Seism. Soc. Am., 66, 1485-1499. 

Burford, R.O. (1972). Continued slip on the Coyote Creek fault after the Borrego Mountain 
earthquake, in The Borrego Mountain Earthquake of April 9, 1968, U.S. Geo/. Sur. Prof. 
Paper 787, 105-111. 

Butler, R. (1983). Surface wave analysis of the 9 April 1968 Borrego Mountain earthquake, Bull. 
Seism. Soc. Am., 73, 879-883. 

Butler, R., Stewart, G.S., and H. Kanamori (1979). The July 27, 1976 Tangshan, China 
earthquake--a complex sequence of intraplate events, Bull. Seism. Soc. Am., 69, 207-220. 

Buwalda, J.P., and P. St. Amand (1955). Geological effects of the Arvin-Tehachapi earthquake, 
in Earthquakes in Kern County, California, During 1952, Cal({. Div. Mines Geo/. Bull. I 71, 
41-56. 

Cabrera, J., Sebrier, M., and J.L. Mercier (1991). Plio-Quaternary geodynamic evolution of a 
segment of the Peruvian Andean Cordillera located above the change in the subduction 
geometry: the Cuzco region, Tectonophysics, 190, 331-362. 

Cagnetti, V., and V. Pasquale (1979). The earthquake sequence of Friuli, Italy, 1976, Bull. 
Seism. Soc. Am., 69, 1797-1818. 

Camelbeeck, T., and M. De Becker (1985). The earthquakes of Liege of November 8, 1983 and 
December 21, 1965, Seismic Activity in Western Europe, 233-248. 

Campillo, M., and R.J. Archuleta (1992). A rupture model for the 28 June 1992 Landers, 
California, earthquake, Eos, 73, no. 43, 374. 

Canitez, N., and M.N. Toksoz (1972). Static and dynamic study of earthquake source mechanism
-San Fernando earthquake, J. Geophys. Res., 77, no. 14, 2583-2594. 

Carabajal, C.C., and .T.S. Barker (1991). Source processes and wave propagation effects on the 
November .25, 1988 Saguenay, Quebec earthquake (abs.), Eos, 72, no. 17, 202. 

C-9 



Caskey, S.J., Wesnousky, S.G., Zhang, P., and D.B. Slemmons (1993). Reinvestigation of fault 
trace complexity and slip distribution for the 16 December 1954 Fairview Peak (Ms = 7.2) 
and Dixie Valley (Ms = 6.8) earthquakes, central Nevada, Geo!. Soc. Am. Abstracts with 
Programs, 25, 19. 

Castano, J.C. (1982). Algunas consideraciones sobre los parametros focales del terremoto de 
Caucete, San Juan, Argentina, del 23 de noviembre de 1977, Revista Geofisica, no. 17, 129-
137. 

Castano, J.C. (1985). Aspectos generales del terrmoto de Mendoza -Argentina del 26 de enero de 
1985, Revista Geojlsica, no. 22/23, 5-40. 

Castle, R.O., Church, J.P., Elliott, M.R., and J.C. Savage (1977). Preseismic and coseismic 
elevation changes in the epicentral region of the Point Mugu earthquake of February 21, 
1973, Bull. Seism. Soc. Am., 67, 219-231. 

Chang, L.-S., Chow, M., and P.-Y. Chen (1947). The Tiainan earthquake of December 5, 1946, 
Bull. Geo!. Sur. Taiwan, 17-20. 

Chang, T. ( 1979). Land deformation associated with the Tangshan M = 7. 8 earthquake, in 
Terrestrial and Space Techniques in Earthquake Prediction Research, Friedr. Vieweg and 
Sohn, Braunschwieg, 569-583. 

Chen, K-C., and J-H. Wang (1984). On the study of May, 10, 1983 Taipingshan, Taiwan 
earthquake sequence, Bulletin of Institute of Earth Sciences, Academia Sinica, 4, 1-27. 

Chen, K-C., and J-H. Wang (1986). The May 20, 1986 Hualien, Taiwan, earthquake and its 
aftershocks, Bull. Instil. Earth Sciences, Academia Sinica, 6, 1-13. 

Chen, K-C., and J-H. Wang (1988). A study on aftershocks and focal mechanisms of two 1986 
earthquakes in Hualien, Taiwan, Proc. G£iol. Soc. China, 31, 65-72. 

Chen, K-C., Wang, J-H., and F.T. Wu (1988). Two 1986 Hualien, Taiwan, earthquakes and their 
aftershocks (abs.), Seism. Res. Le11e1:\·, 59, 5. 

Chen, P-S., and J-Z. Qin (1991). The rupture process of Lancang-Gengma earthquake, J. Seism. 
Res., 14, 95-103. 

Chen, W., and P. Molnar (1977). Seismic moments of major earthquakes and the average rate 
of slip in Central Asia, J. Geophys. Res., 82, 2945-2969. 

Chen, Y., and F.T. Wu (1989). Lancang-Gengma earthquake, a preliminary report on the 
November 6, 1988, event and its aftershocks (abs.), Eos, 70, no. 49, 1527, 1540. 

Chen, Y-T., Lin, B-H., Wang, X-H., Huang, L-R., and M-L Liu (1979). A dislocation model 
of the Tangshan earthquake of 1976 from the inversion of geodetic data, Acta Academia 
Sinica, 22, 201-217. 

Choy, G.L. (1990),:_:,Source parameters of the earthquake, as inferred from broadband body 
waves, in Rymer, M.J, and Ellsworth, W.L. eds., The Coalinga, California, Earthquake of 
May 2, 1983, U.S. Geo!. Sur. Prof. Paper 1487, 193-206. 

Choy, G.L., and J. Boatwright (1988). Teleseismic and near-field analysis, of the. Nahanni 
earthquakes in the Northwest Territories, Canada, Bull. Seism. Soc. Am., 78, 1627-1652. 

Choy, G.L., and J. Boatwright (1990). Source characteristics of the Loma Prieta, California, 
earthquake of October 18, 1989 from global digital seismic data, Geophys. Res. Lellers, 17, 
1183-1186. 

C-10 



Choy, G.L., and J.R. Bowman (1990). Rupture process of a multiple main shock sequence: 
analysis of teleseismic, local, and field observations of the Tennant Creek, Australia, 
earthquakes of January 22, 1988, J. Geophys. Res., 95, 6867-6882. 

Choy, G.L., and R. Kind (1987). Rupture complexity of a moderate-sized (mb 6.0) earthquake-
broadband body-wave analysis of the North Yemen earthquake of 13 December 1982, Bull. 
Seism. Soc. Am., 77, 28-46. 

Choy, G.L., Boatwright, J., Dewey, J.W., and S.A. Sipkin (1983). A teleseismic analysis of the 
New Brunswick earthquake of January 9, 1982, J. Geophys. Res., 88, 2199-2212. 

Chung, W-Y., and B.J. Brantley (1989). The 1984 southern Yellow Sea earthquake of eastern 
China--sr:mrce properties and seismotectonic implications for a stable continental area, Bull. 
Seism. Soc. Am., 79, 1863-1882. 

Chung, W-Y., Brantley, B.J., and A.C. Johnston (1988). Source mechanisms, surface rutpure, 
and relative locatins of the 22 January 1988 Tennant Creek earthquake5, central Australia 
(abs.), Eos, 69, no. 44, 1301. 

Ci par, J. (1979). Source processes of the Haicheng, China earthquake from observations of P and 
S waves, Bull. Seism. Soc. Am., 69, 1903-1916. 

Cipar, J. (1980). Teleseismic observations of the 1976 Friu!i, Italy, earthquake sequence, Bull. 
Seism. Soc. Am., 70, 963-983. 

Cipar, J. (1981). Broadband time domain modeling of earthquakes from Friuli, Italy, Bull. Seism. 
Soc. Am., 71, 1215-1231. 

Cisternas, A., Dore!, J., and R. Gaulon (1982). Models of the complex source of the El Asnam 
earthquake, Bull. Seism. Soc. Am., 72, 2245-2266. 

Cisternas, A., and others (1989a). The Spitak (Armenia) earthquake of 7 December 1988--field 
observations, seismology, and tectonics, Nature, 339, 675-679. 

Cisternas, A., and others (1989b). The Spitak (Armenia) earthquake of December 7, 1988: a 
synthesis of seismotectonic observations, Eos, 70, no. 43, 1198. 

Clark, M.M. (1972). Surface rupture along the Coyote Creek fault, in The Borrego Mountain 
Earthquake of April 9, 1968, U.S. Geo/. Sur. Prof. Paper 7S7, 55-86. 

Clark, M.M. (1992). Late Quaternary slip rates on active faults of Califcirnia-Owens Valley fault 
zone: National Earthquake Hazards Reduction Program, Summaries of Technical Reports 
Volume XXXIII, U.S. Geological Survey Open-File Report 92-258 

Clark, M.M., Sharp, R.V., Castle, R.O., and P.W. Harsh (1976). Surface faulting near Lake 
Oroville, California in August, 1975, Bull. Seism. Soc. Am., 66, 1101-1110. 

Cockerham, R.S., and E.J. Corbett (1987). The July 1986 Chalfant Valley, California, earthquake 
sequence""-preliminary results, Bull. Seism. Soc. Am., 77, 280-289. 

Cockerham, R.S., and J.P. Eaton (1985). The April 24, 1984 Morgan Hill earthquake and its 
aftershocks--April 24 through September 30, 1984, in Bennett, J.H., and Sherburne, R.W., 
eds., The 1984 Morgan Hill, California Birthquake, Cal{(. Div. Mines Geo/. Special 
Publication 68, 215-236. 

Cockerh_am, R.S.~ and J.P. Eaton (1987). The earthquake and its aftershocks, April 24, through 
September 30, 1984, in Hoose, S.N., ed., The Morgan Hill, California, Earthquake of 
April 24, 1984, U.S. Geo{ Sur.,. Bull. 1639, 15-28. 

C-11 



Console, R., and P. Favali (1981). Study of the Montenegro earthquake sequence (March-July, 
1979), Bull. Seism. Soc. Am., 71, 1233-1248. 

Corbett, E.J. Johnson C.E. (1982). The Santa Barbara, California, earthquake of 13, August 
1978, Bull. Seis. Soc. Am., 72, 2201-2226. 

Cramer, C.H, and Toppozada, T.R. (1980). A seismological study of the May, 1980, and earlier 
earthquake activity near Mammoth Lakes, California, in Sherburne, R. W., ed., Mammoth 
Lakes, California, Earthquakes of May, 1980, Calif. Div. Mines Geo!. Special Report 150, 
91-136. 

Crampin, S. (1969). Aftershocks of the Daht-e Bayaz, Iran, earthquake of August, 1968, Bull. 
Se ism. Soc. Am. , 59, 1823-1841. 

Crone, A.J., Machette, M.N., Bonilla, M.G., Lienkaemper, J.J., Pierce, K.L., Scott, W.E., and 
R.C. Bucknam (1987). Surface faulting accompanying the Borah Peak earthquake and 
segmentation of the Lost River fault, central Idaho, Bull. Seism. Soc. Am., 77, 739-770. 

Crosson, R.S., Martini, M., Scarpa, R., and S.C. Key (1986). The southern Italy earthquake of 
23 November 1980--an unusual pattern of faulting, Bull. Seism. Soc. Am., 76, 381-394. 

Darby, D.J. (1989). Dislocation modelling of the 1987 Edgecumbe earthquake, New Zealand, 
New Zealand J. Geo!. Geophys., 32, 115-122. 

Del Pezzo, E., Iannaccone, G., Martini, M., and R. Scarpa (1983). The 23 November 1980 
southern Italy earthquake, Bull. Seism. Soc. Am., 73, 187--200. 

Deng, Q., and P. Zhang (1984). Research on the geometry of shear fracture zones, J. Geophys. 
Res., 89, 5699-5710. 

Deng, Q., Wu, D., Zhang, P., and S. Chen (1986). Structure and deformational character of 
strike-slip fault zones, Pure Applied Geophys., 124, no. 1/2, 203-223. 

Denham, D., Alexander, L.G., and G. Worotnicki (1980). The stress field near the sites of the 
Meckering (1968) and Calingiri (1970) earthquakes, western Australia, Tectonophysics, 67, 
283-317. 

Denham, D., Alexander, L.G., Everingham, 1.8., Gregson, P.J., McCaffrey, J., andJ.R. Enever 
(1987). The 1979 Cadoux earthquake and intraplate stress in western Australia, Australian 
J. Earth Sciences, 34, 507-521. 

dePolo, C.M., and A.R. Ramelli (1987). Preliminary report on surface fractures along the White 
Mountains fault zone associated with the July 1986 Chalfant Valley earthquake sequence, 
Bull. Seism. Soc. Am., 77, 290-296. 

dePolo, C.M., Bell, J.W., and A.R. Ramelli (1987). Geometry of strike-slip faulting related to 
the 1932 Cedar Mountain earthquake, central Nevada (abs.), Geo/. Soc. Am. Abstracts with 
Programs, 19, no. 6, 371. 

dePolo, C.M., Clark, D.G., Slemmons, D.B., and W.H. Aymard (1989). Historical Basin and 
Range Province surface faulting and fault segmentation and controls of rupture initiation and 
termination, in Schwartz, D.P., and Sibson, R.H., eds., Workshop on fault segmentation and 
controls of rupture initiation and termination, U.S. Geo/. Sur. Open-File Report 89-315, 131-
162. 

C-12 



dePolo, C.M., Clark, D.G., Slemmons, D.B., and A.R. Ramelli (1991). Historical surface 
faulting in the Basin and Range province, western North America: implications for fault 
segmentation, J. Struct. Geo/., 13, 123-136. 

dePolo, D.M., and S.P. Horton (1991). A magnitude 5.0 earthquake near Mono Lake, California, 
Seism. Res. Letters, 62, 52. 

Deschamps, A., and G.C.P. King (1983). The Campania-Lucania (southern Italy) earthquake of 
23 November 1980, Earth Planet. Sci. Letters, 62, 296-304. 

Deschamps, A., and G.C.P. King (1984). Aftershocks of the Campania-Lucania (Italy) earthquake 
of 23 November 1980, Bull. Seism. Soc. Am., 74, 2483-2517. 

Deschamps, A., Bezzeghoud, M., and A. Bounif (1991). Seismological Study of the Constantine 
(Algeria) earthquake (27 October 1985), in Mezcua, J., and Udias, A., ed., Seismicity, 
Seismotectonics and Seismic Risk of ~.iie lberio-Maghrebian Region: lnstituto Geografico 
Nacional, Monografia No. 8, Madrid, Spain, 163-173. 

Deschamps, A., Gaudemer, Y., and A. Cisternas (1982). The El Asnam, Algeria, earthquake of 
10 October 1980--multiple-source mechanism determined from long-period records, Bull. 
Seism. Soc. Am., 72, 1111-1128. 

Deschamps, A., Iannaccone, G., and R. Scarpa (1984). The Umbrian earthquake (Italy) of 19 
September 1979, Anna/es Geophysicae, 2, no. I, 29-36. 

Dewey, J.W., and B.R. Julian (1976). Main event source parameters from teleseismic data, in 
Espinosa, A.F., ed., The Guatemalan Earthquake of February 4, 1976, A Preliminary 
Report, U.S. Geo/. Sur. Prof. Paper 1002, 19-23. 

Dewey, J. W. (1976). Seismicity of northern Anatolia, Bull. Seism. Soc. Am., 66, 843-868. 
Dewey, J.W., Algermissen, S.T., Langer, C., Dillinger, W., and M. Hopper (1973). The 

Managua earthquake of December 23, 1972: location, focal mechanism, aftershocks, & 
relationship to recent seismicity of Nicaragua, in Managua, Nicaragua earthquake of 
December ,23, 1972, Earthq. Eng. Res. In.wit. Co11fl.!re11ce Proceedings, Volume I, 66-88. 

Dewey, J.w.,:and A. Grantz (1973). The Ghir earthquake of April 10, 1972 in the Zagros 
Mountains:of southern Iran--seismotectonic aspects and some results of a field reconnaissance, 
Bull. Seism. Soc. Am., 63, 2071-2090. 

Deza, E. (1971). The Pariahuanca earthquakes, Huancayo, Peru: July-October 1969, preliminary 
report, in Collins, B.W., and Fraser, R., eds., Recent Crustal Movements, Royal Soc. New 
Zealand Bull. 9, 77-83. 

Dietz, L.D., and W.L. Ellsworth (1990). The October 17, 1989, Loma Prieta, California, 
earthquake and its aftershocks: geometry of the sequence from high-resolution locations, 
Geophys. Res. Lellers, 17, 1417-1420. 

Dorbath, C., Dorbath, L., Gaulon, R., George, T., Mourgue, P., Ramdani, M., Robineau, B., 
and B. Tadili (1984). Seismotectonics of the Guinean earthquake of December 22, 1983, 
Geophys. Res. Le1te1:'i, 11, 971-974. 

Dorbath, L., Dorbath, C., Rivera, L., Fuenzalida, A., Cisternas, A., Tatevossian, R., Aptekman, 
J., and S. Arefiev (1992). Geometry, segmentatio11 and stress regime, of the Spitak, ~f-rmenia) 
earthquake from the analysis of the aftershock sequence, Geophys. J. Im., 108, 309-328. 

C-13 



Doser, D.I. (1985). Source parameters and faulting processes of the 1959 Hebgen Lake, Montana, 
earthquake sequence, J. Geophys. Res., 90, 4537-4555. 

Doser, Li.1. (1986). Earthquake processes in the Rainbow Mountain-Fairview Peak-Dixie Valley, 
Nevada, region 1954 - 1959, J. Geophys. Res., 91, 12,572-12,586. 

Doser, D.I. (1987). The Ancash, Peru, earthquake of 1946 November 10--evidence for low-angle 
normal faulting in the high Andes of northern Peru, Geophys. J. R. Astr. Soc. London, 91, 
57-71. 

Doser, D.I. (1988). Source parameters of earthquakes in the Nevada seismic zone, 1915-1943, 
J. Geophys. Res., 93, 15,001-15,015. 

Doser, D.I. (1990). Source characteristics of earthquakes along the southern San Jacinto and 
Imperial fault zones, Bull. Seism. Soc. Am., 80, 1099-1177. 

Doser, D.I. (1991). Faulting process of the 1956 San Miguel, Baja California, earthquake 
sequence (abs), Eos, 72, no. 17, 189-190. 

Doser, D.I. (1992). A complex sequence of strike-slip earthquakes in Baja California (1954 -
1956), Seism. Res. letters, 63, 67. 

Doser, D.I., and H. Kanamori (1986). Depth of seismicity in the Imperial Valley region (1977-
1983) and its relationship to heat flow, crustal structure, and Jhe October 15, 1979, 
earthquake, J. Geophys. Res. , 91, 675-688. 

Doser, D.I., and H. Kanamori (1987). Long-period surface waves of four western United States 
earthquakes recorded by the Pasadena strainmeter, Bull. Seism. Soc. Am., 77, 236-243. 

Doser, D.I., and R.B. Smith (1985). Source parameters of the 28 October 1983 Borah Peak, 
Idaho, earthquake from body wave analysis, Bull. Seism. Soc. Am., 75, 1041-1051. 

Doser, D.I., and R.B. Smith (1989). An assessment of the source parameters of earthquakes in 
the Cordillera of the western United States, Bull. Seism. Soc. Am., 79, 1383-1409. 

Dowrick, D.J. (1991). Magnitude reassessment of New Zealand earthquakes, Earthq. Eng. Struct. 
Dyn., 20, 577-596. 

Dreger, D.S., and D.V. Helmberger (1991a). Complex faulting deduced from broadband 
modeling of the 28 February 1990 Upland earthquake (ML 5.2), Bull. Seism. Soc. Am., 81, 
1129-1144. 

Dreger, D.S., and D.V. Helmberger (1991b). Source parameters of the Sierra Madre mainshock 
aryd largest aftershock fro111 regional and local body waves, Eos, 72, no. 44, 311. 

Drege.;, D.S., and D. V. Helmberger (1992). Constraints on source directivity and slip distribution , ...... , 
for the Landers earthquake from Terrascope low gain data, Eos, 73, no. 43, 373. 

Dreger, D.S., Helmberger, D. V., and L.-S. Zhao (1991). Three component wavefonn inversion 
of regional earthcftiakes: The October 24, 1990 Lee Vining event, Seism. Res. le11ers, 62, 
15 p. 

Du Berger, R., Roy, D.W., Lamontagne, M., Woussen, G., North, R.G., and R.J. Wetmiller 
(1991). The Saguenay (Quebec) earthquake of November 25, 1988: seismologic data and 
geologic setting, Tectonophysics, 186, 59-74. 

Duda, SJ. (1965). Secular seismic energy release in the circum-Pacific belt, Tectonophysics, 2, 
409-452. 

C-14 



Dunbar, W.S., Boore, D.M., and W. Thatcher (1980). Pre-, co-, and post-seismic strain changes 
associated with the 1952 ML = 7.2, Kern County, California, earthquake, Bull. Seism. Soc. 
Am., 70, 1893-1905. 

Dziewonski, A.M., and G. Zwart (1990). Preliminary CMT solution of the Loma Prieta 
earthquake of October 18, 1989, Eos, 71, no. 8, 287. 

Earthquake Engineering Research Institute (1993) Geology and geotechnical effects: ~rzincan, 
Turkey Earthquake of March 13, 1992 Reconnaissance Report, Earthq. Spectra Supplement, 
9, Publication 93-01, 11-33. 

Earthquake Research Institute (1950). Observation of aftershocks carried out in Imaichi district, 
Tochigi prefecture, Bull. Earth(]. Res. Inst. Tokyo, 28, 387-392. 

Eaton, J.P. (1984). Seismic setting, location, and focal mechanism of the May 2, 1983, Coalinga 
earthquake: in Scholl, R.E., and Stratta, J.L., eds., Coalinga, California, Earthquake of May 
2, 1983: Earthquake Engineering Research Institute Report 84-03, 18-21. 

Eaton, J.P. (1985). The May 2, 1983 Coalinga earthquake and its aftershocks: a detailed study 
of the hypocenter distribution and of the focal mechanisms of the larger aftershocks, in 
Rymer, M.J., and Ellsworth, W.L., eds., Mechanics of the May 2, 1983 Coalinga 
Earthquake; U.S. Geo/. Sur. Open-File Report 85-44, 132-201. 

Eaton, J.P. (1990). The earthquake and its aftershocks from May 2 through September 30, 1983, 
in Rymer, M.J, and Ellsworth, W.L. eds., The Coalinga, California, Earthquake of May 2, 
1983, U.S. Geo/. Sur. Prof. Paper 1487, 113-170. 

Eaton, fP., O'Neill, M., and J.N. Murdock (1970). Aftershocks of the 1966 Parkfield-Cholame, 
California, earthquake, Bull. Seism. Soc. Am., 60, 1151-1197. 

Ebel, J.E., and D.V. Helmberger (1982). P-wave complexity and fault asperities--the Borrego 
Mountain, California, earthquake of 1968, Bull. Seism. Soc. Am., 72, 413-437. 

Eberhart-Phillips, D., and P. Reasenberg (1990). Complex faulting structure inferred from local 
seismic observations of M~l.O aftershocks, May 2-June 30, 1983, in Rymer, M.J, and 
Ellsworth, W.L. eds., The Coalinga, California, Earthquake of May 2, 1983, U.S. Geo/. Sur. 
Prof. Paper 1487, 171-192. 

Ekstrom, G. (1984). Centroid-moment tensor solution for the April 24, 1984 Morgan Hill, 
California, earthquake, in, Bennett, J.H., and Sherburne, R.W., eds., The 1984 Morgan Hill, 
California, Earthquake, Cal((. Div. Mines Geo/. Special Puhlication 68, 209-213. 

Ekstrom, G. (1986). A very broad band teleseismic analysis of the August 4, 1985, North 
Kettleman Hills earthquake (abs.), Eos, 67, no. 44, 1223. 

Ekstrom, G., and A.M. Dziewonski ( 1985). Centroid-moment tensor solutions for 35 earthquakes 
in western North America (1977-1983), Bull. Seism. Soc. Am., 75, 23-39. 

Ekstrom, G., and R.S. Stein (1989). A broadband seismic, geodetic and structural analysis of the 
4 August 1985 Kettleman Hills earthquake, Eos, 70, no. 43, 1368. 

Ekstrom, G., Stein, R.S., Eaton, J.P., and D. Eberhardt-Phillips (1992). Seismicity and geometry 
of a 110-km long blind thrust fault, I: the 1985 Kettleman Hills, California, earthquake, J. 
Geophys. Res., 97, 4843-4864. 

Ellsworth, W.L. (1975). Bear Yiilley, California, earthquake sequence of February - March, 
1972, Bull. Seism. Soc. Am., 65, 483-506. 

C-15 



Ellsworth, W.L., and others (1973). Point Mugu, California, earthquake of 21 February 1973 and 
its aftershocks: Science, 182, 1127-1129. 

Espinosa, A.F. (1982). ML and M0 determination from strong-motion accelerograms, and 
expected-intensity distribution, in The Imperial Valley, California, Earthquake of October 15, 
1979, U.S. Geo/. Sur. Prof Paper 1252, 433-438. 

Evans, D.G., and T.V. McEvilly (1982). A note on relocating the 1963 Watsonville earthquakes, 
Bull. Se ism. Soc. Am. , 72, 1309-1316. 

Eyidogan, H. (1980). The source parameters of the Lice, Turkey earthquake of September 6, 
1975: Proceedings of?, 107-130. 

Eyidogan, H. (1988). Rates of crustal deformation in western Turkey as deduced from major 
earthquakes, Tectonophysics, 148, 83-92. 

Eyidogan, H., and J. Jackson (1985). A seismological study of normal faulting in the Demirci, 
Alasehir and Gediz earthquakes of 1969-70 in western Turkey--implications for the nature and 
geometry of deformation in the continental crust, Geophys. J. R. Astr. Soc. London, 81, 569-
607. 

Eyidogan, H., Nabelek, J., and M.N. Toksoz (1985). The Gazli, USSR, 19 March 1984 
earthquake--the mechanism and tectonic implications, Bull. Seism. Soc. Am., 75, 661-675. 

Pehler, M.C., and P.A. Johnson (1989). Determination of fault planes at Coalinga, California, 
by analysis of patterns in aftershock locations, J. Geophys. Res., 94, 7496-7506. 

Finetti, I., Russi, M., and D. Slejko (1979). The Friuli earthquake (1976-1977), Tectonophysics, 
53, 261-272. 

Florensov, N.A., and V.P. Solonenko, eds. (1965). The Gobi-Altai earthquake, Academy of 
SciencesJ>! the USSR: translated.from Russian by Israel Program for Scient{fic Translations, 
Jerusalem, 424. 

Frankel, A. (1984). Source parameters of two ML -5 earthquakes near Anza, California, and a 
comparison with an Imperial Valley aftershock, Bull. Seism. Soc. Am., 14, 1509-1527. 

Fredrich J., McCaffrey, R. Denham D. (1988). Source parameters of seven large Australian 
earthquakes determined by body waveform inversion, Geophys. J. R. Astr. Soc. London, 95, 
1-13. 

Fuis, G. (1976). Ground breakage and aftershocks of the ML = 5.2 Galway Lake earthquake, 
June 1975, Mojave Desert, California (abs.), Eos, 57, no. 11, 954. 

Gagnepain-Beyneix, J., Haessler, H., and T. Modiano (1982). The Pyrenean earthquake of 
February 29, 1980: an example of complex faulting, Tectonophysics, 85, 273-290. 

Gan, R.J., Chang, S.C., Yan, F.T., and L.S. Yu (1978). On the present tectonic stress field and 
present tectonic characteristics of southwestern China, Chinese Geophysics, 1, 79-96. 

Gedney, L., Berg, E., Pulpan, H., Davies, J., and W. Feetham (1969). A field report on the 
Rampart, Alaska earthquake of October 29, 1969, Bull. Seism. Soc. Am., 59, 1421-1423. 

Geodetic Survey Brigade for Earthquake Research, National Seismological Bureau (1975). The 
characteristics of the crustal deformation associated with the Tonghai earthquake, Yunnan, 
in January 1970, Acra Geophysica Sinica, 18, 240-245. 

C-16 



Geodetic Survey Brigade for Earthquake Research, National Seismological Bureau (1978). Ground 
surface deformation of the Haicheng earthquake of magnitude 7.3, Chinese Geophysics, 1, 
139-155. 

Gheltanchi, M.R., Kilkuchi, M., and M. Misone (1990). Far field source analysis of the 1981 
Golbaf-Sirch, south-east Iran, earthquake, Eos, 71, no. 43, 1480. 

Gianella, V.P. (1957). Earthquake and faulting, Fort Sage Mountains, California, December, 
1950, Bull. Seism. Soc. Am., 47, 173-177 

Gianella, V.P., and E. Callaghan (1934). The Cedar Mountain, Nevada, earthquake of December 
20, 1932, Bull. Seism. Soc. Am., 24, 345-377. 

Gibowicz, S.J. (1973). Variation of the frequency-magnitude relation during the 1931 Hawkes 
Bay, 1934 Pahuatua, and 1942 Wairarapa aftershock sequences, New Zealand J. Geo!. 
Geophys. 16, 1009-1045. 

Givens, J.W., Wallace, T.C., and H. Kanamori (1982). Teleseismic analysis of the 1980 
Mammoth Lakes earthquake sequence, Bull. Seism. Soc. Am., 72, 1093-1109. 

Gladwin, M.T., and M.J.S. Johnston (1986). Co-seismic moment and total moment of the 
April 24, 1984, Morgan Hill and the January 26, 1986, Quiensabe earthquakes (abs.), Eos, 
67, no. 16, 308. 

Glassmoyer, G., and R.D. Borcherdt (1990). Source parameters and effects of bandwidth and 
local geology on high-frequency ground motions observed for aftershocks of the northeastern 
Ohio earthquake of 31 January 1986, Bull. Seism. Soc. Am., 80, 889-912. 

Goldstein, P., and R.J. Archuleta (1991). Deterministic frequency-wave number methods and 
direct measurements of rupture propagation during earthquakes using a dense array: data 
analysis, J. Geophys. Res., 96, 6187-6198. 

Gonzalez, J.J., Nava, F.A., and C.A. Reyes (1984). Foreshock and aftershock activity of the 
1976 Mesa de Andrade, Mexico, earthquake, Bull. Seism. Soc. Am., 74, 223-233. 

Gonzalez-Ruiz, J.R., Rebollar, C.J., Soares, J., and K.C. McNalley (1987). Seismological 
evidence of rupture patterns along the San Miguel fault (Peninsular Ranges, Baja California, 
Mexico) during February 9-15, 1956 (abs.), Eos, 68, no. 44, 1348. 

Gordon, F.R. (1971). Faulting during the earthquake at Meckering, western Australia: 14 October 
1968, in CoJlins, B.W., and Fraser, R., eds., Recent Crustal Movements, Royal Soc. New 
Zealand Bull. 9, 85-93. 

Gordon, F.R., and J.D. Lewis (1980). The Meckering and Calingiri earthquakes October 1968 
and March 1970, Bull. Geo!. Sur. West. Australia, 126, 229 p. 

Grant, W.C., Weaver, C.S., and J.E. Zollweg (1984). The 14 February 1981 Elk Lake, 
Washington, earthquake sequence, Bull. Seism. Soc. Am., 74, 1289-1309. 

Grapes, R.H. (1987). Faulting and subsidence during the Edgecumbe earthquake, March 2, 1987, 
New Zealand, J. Phys. Earth, 35, 415-423. 

Green, R.W.E., and S. Bloch (1971). The Ceres, South Africa, earthquake of September 29, 
1969--I, report on some aftershocks, Bull. Seism. Soc. Am., 61, 851-859. 

Green, R.W.E., and A. McGarr (1972). A comparison of the focal mechanism and aftershock 
distribution of the Ceres, South Africa, earthquake of September 29, 1969, Bull. Se ism. Soc. 
Am., 62, 869-871. 

C-17 



Greensfelder, R. (1968). Aftershocks of the Truckee, California, earthquake of September 12, 
1966, Bull. Seism. Soc. Am., 58, 1607-1620. 

Gross, W.K., and J.C. Savage (1985). Deformation near the epicenter of the 1984 Round Valley, 
California, earthquake, Bull. Seism. Soc. Am., 75, 1339-1347. 

Gross, W.K., and J.C. Savage (1987). Deformation associated with the 1986 Chalfant Valley 
earthquake, eastern California, Seism. Res. Letters, 58, 20. 

Gu, H-D., Chen, Y-T., Gao, X-L., and Y. Zhao (1976). Focal mechanism of Haicheng, Liaoning 
Province, earthquake of February 4, 1975, Acta Geophysica Sinica, 19, 270-285. 

Gulkan, P., Gurpinar, A., Celebi, M., Arpat, E., and S. Gencoglu (1978). Engineering report 
on the Muradiye-Caldiran, Turkey, earthquake of 24 November 1976: prepared for 
Committee on Natural Disasters, Commission on Sociotechnical Systems, National Research 
Council, 32 p. 

Gutenberg, B., and C.F. Richter (1954). Seismicity of the Earth and Associated Phenomena, 2nd 
ed.: Princeton University Press, Princeton, New Jersey, 310 p. 

Haessler, H., Gaulon, R., Rivera, L., Console, R., Frogneux, Gasparini, G., Martel, L., Patau, 
G., Siciliano, M., and A. Cisternas (1988). The Perugia (ltaly)earthquakeof29, April 1984: 
a microearthquake survey, Bull. Seism. Soc. Am., 78, 1948-1964. 

Haessler, H., Cara, M., Jimenez, E., Deschamps, A., and B. Romanowicz (1989). Rupture 
process of the Armenian earthquake from broad-band and very long period teleseismic 
records, Eos, 40, no. 43, 1199. 

Haessler, H., Hoang-Trong, P., Schick, R., Schneider, G., and K. Stroback (1980). The 
September 3, 1978 Swabian Jura earthquake, Tectonophysics, 68, 1-14. 

Haghipour, A., and M. Amidi (1980). The November 14 to December 25, 1979 Ghaenat 
earthquakes of northeast Iran and their tectonic implications, Bull. Seism. Soc. Am., 70, 1751-
1757. 

Hall, W. B., and P. E. Sablock (1985). Comparison of the geomorphic and surficial fracturing 
effects of the 1983 Borah Peak, Idaho earthquake with those of the 1959 Hebgen Lake, 
Montana, earthquake, in Stein, R.S., and Bucknam, R.C., eds., Proceedings of Workshop 
XXVIII on the Borah Peak, Idaho, Earthquake, U.S. Geo!. Sur. Open-File Report 85-290, 
141-152. 

Hamilton, R.M. (1972). Aftershocks of the Borrego Mountain earthquake from April 12 to June 
12, 1968, in The Borrego Mountain Earthquake of April 9, 1968, U.S. Geo!. Sur. Prof. 
Paper 787, 31-54. 

Hanks, T.C. (1974). The faulting mechanism of the San Fernando earthquake, J. Geophys. Res., 
79, 1215-1229. 

Hanks, T.C., and D.M. Boore (1984). Moment-magnitude relations in theory and practice, J. 
Geophys. Res., 89, 6229-6235. 

Hanks, T.C., and M. Wyss (1972). The use of body-wave spectra in the determination of seismic
source parameters, Bull. Seism. Soc. Am., 62, 561-589. 

Hanks, T.C., Hileman, J.A., and W. Thatcher (1975). Seismic moments of the larger earthquakes 
of the southern California region, Geo!. Soc. Am. Bull., 86, 1131-1139. 

C-18 



Harlow, D.H., White, R.A., Rymer, M.J., and A.G. Salvador (1993). The San Salvador 
earthquake of 10 October 1986 and its historical context, Bull. Seism. Soc. Am., 83, 1143-
1154. 

Hart, E.W., and R.E. Harpster (1978). Surface faulting associated with the Oroville, California, 
Earthq. Notes, 49, no. 1, 87. 

Hart, E.W., and J.S. Rapp (1975). Ground rupture along the Cleveland Hill fault, in Sherburne, 
R.W., and Harge, C.J., eds., Oroville, California, Earthquake 1 August, 1975, Calif. Div. 
Mines Geo/. Special Report 124, 61-72. 

Hart, R.S., Butler, R., and H. Kanamori (1977). Surface-wave constraints on the August 1, 1975, 
Oroville earthquake, Bull. Seism. Soc. Am., 67, 1-7. 

Hartzell, S.H. (1980). Faulting process of the May 17, 1976 Gazli, USSR earthquake, Bull. 
Seism. Soc. Am., 70, 1715-1736. 

Hartzell, S.H. (1989). Comparison of seismic waveform inversion results for the rupture history 
of a finite fault--application to the 1986 North Palm Springs, California, earthquake, J. 
Geophys. Res., 94, 7515-7534. 

Hartzell, S.H., and J.N. Brune (1979). The Horse Canyon earthquake of August 12, 1975 - two
stage stress-relief process in a strike-slip earthquake, Bull. Seism. Soc. Am., 69, 1161-1173. 

Hartzell, S.H., and T.H. Heaton (1983). Inversion of strong ground motion and teleseismic 
waveform data for the fault rupture history of the 1979 Imperial Valley, California, 
earthquake, Bull. Seism. Soc. Am., 73, 1553-1583. 

Hartzell, S.H., and D.V. Helmberger (1982). Strong-motion modeling of the Imperial Valley 
earthquake of 1979, Bull. Seism. Soc. Am., 72, 571-596. 

Hartzell, S.H., and T.H. Heaton (1986). Rupture history of the 1984 Morgan Hill, California, 
earthquake from the inversion of strong motion records, Bull. Seism. Soc. Am., 76, 649-674. 

Hartzell, S.H., and M. Iida (1990). Source complexity of the 1987 Whittier Narrows, California, 
earthquake from the inversion of strong motion records, J. Geophys. Res., 95, 12,4 75-
12,485. 

Hartzell, S.H., and C. Mendoza (1991). Application of an iter~tive least-squares waveform 
inversion of strong-motion and teleseismic records to the 1978 Tabas, Iran, earthquake, Bull. 
Seism. Soc. Am., 81, 305-331. 

Hasegawa, A., Kasahara, K., Hasegawa, T., and S. Hori (1975). On the focal mechanism of the 
southeastern Akita earthquake in 1970 (2), Bull. Seism. Soc. Japan, 28, 141-151. 

Hasegawa, H.S., and R.J. Wetmiller (1980). The Charlevoix earthquake of 19 August 1979 and 
its seisom-tectonic environment, Earthq. Notes, 51, no. 4, 23-37. 

Hasegawa, H.S., Wetmiller, R.J., and M. Lamontagne (1989). A comparision of the three largest 
Nahanni earthquakes (1985-1988) and the seismotectonic environment, Seism. Res. Leffers, 
60, 29. 

Hatanaka, Y., and K. Shimazaki (1988). Rupture process of the 1975 central Oita, Japan, 
earthquake, J. Phys. Earth, 36, 1-15. 

Hatanaka, Y., and M. Takeo (1989). Detailed rupture process of the 1975 central Oita, Japan, 
earthquake inferred from near-field data, J. Phys. Earth, 37, 251-264. 

C-19 



Hauksson, E. (1990). The 1933 Long Beach earthquake and its aftershocks, Seism. Res. Letters, 
61, 42. 

Hauksson, E., and S. Gross (1991). Source parameters of the 1933 Long Beach earthquake, Bull. 
Seism. Soc. Am., 81, 81-99. 

Hauksson, E., and L.M. Jones (1988). The July 1986 Oceanside (ML= 5.3) earthquake sequence 
in the continental borderland, southern California, Bull. Seism. Soc. Am., 78, 1885-1906. 

Hauksson, E., and L.M. Jones (1989). The 1987 Whittier Narrows earthquake sequence in Los 
Angeles, southern California--seismological and tectonic analysis, J. Geophys. Res., 94, 
9569-9589. 

Hauksson, E., and L.M. Jones (1991a). The 1988 and 1990 Upland earthquakes: left-lateral 
faulting adjacent to the central Transverse Ranges, J. Geophys. Res., 96, 8143-8165. 

Hauksson, E., and L.M. Jones (1991b). The 1991 (ML = 5.8) Sierra Madre earthquake in 
southern California: seismological and tectonic analysis, Eos, 72, no. 44, 319. 

Hauksson, E., Jones, L.M., Hutton, K., and D. Eberhart-Phillips (1993). The 1992 Landers 
earthquake sequence: seismological observations: J. Geophys. Res., 99, no. Bl 1, 19,835-
19,858. 

Hauksson, E., and others (1988). The 1987 Whittier Narrows earthquake in the Los Angeles 
metropolitan area, California, Science, 239, 1409-1412. 

Hauksson, E., Hutton, K., Kanamori, H., Bryant, S., Qian, H., Douglass, K., Jones, L.M., 
Eberhart-Phillips, D., Mori, J., and T.H. Heaton (1992). Overview of the 1992 
(M6.1,7.5,6.6) Landers earthquake sequence in San Bernardino County, California, Eos, 73, 
no. 43, 357. 

Heaton, T.H. (1982). The 1971 San Fernando earthquake--a double event?, Bull. Seism. Soc. 
Am., 72, 2037-2062. 

Heaton, T.H., and D. V. Helmberger (1977). A study of the strong ground motion of the Borrego 
Mountain, California, earthquake, Bull. Seism. Soc. Am., 67, 315-330. 

Heaton, T.H., and D. V. Helmberger (1979). Generalized ray models of the San Fernando 
earthquake, Bull. Seism. Soc. Am., 69, 1311-1341. 

Helmberger D. V., and G.R. Engen (1980). Modeling the long-period body waves from shallow 
earthquakes at regional ranges, Bull. Seism. Soc. Am., 70, 1699-1714. 

Herd, D.G, and C.R. McMasters (1982). Surface faulting in the Sonora, Mexico, earthquake of 
1887, Geo/. Soc. Am. Abstracts with Programs, 14, no. 4, 172. 

Herd, D.G., and others (1979). Surface faulting accompanying the August 6, 1979, Coyote Lake 
earthquake, Eos, 60, 890. 

Herrmann, R.B., Langston, C.A., and J.E. Zollweg (1982). The Sharpsburg, Kentucky, 
earthquake of 27 July 1980, Bull. Seism. Soc. Am., 72, 1219-1239. 

Hill, R.L., and D.J. Beeby (1977). Surface faulting associated with the 5.2 magnitude Galway 
Lake earthquake of Maf3 t', 1975, Mojave Desert, San Bernardino County, California, Geo!. 
Soc. Am. Bull., 88, 1378-1384. 

Hill, R.L., Pechmann, J.C., Treiman, J.A., McMillan, J.R., Given, J.W., and J.E. Ebel (1980). 
Geologic study of the Homestead Valley earthquake swarm''of March 15; 1979, Cal[fomia 
Geology, 33, 60-67. 

C-20 



Hobbs, W.H. (1910). The earthquake of 1872 in the Owens Valley, California: Beitrage Zur 
Geophysik, 10, 352-385. 

Holt, W.E., and T.C. Wallace (1989). Source parameters of three recent earthquakes in Eastern 
India and Burma: Implications for the style of deformation in the India-Eurasia collision zone, 
Seism. Res. Letters, 60, 26. 

Hoose, S.N. (1987). The Morgan Hill earthquake--an overview, in Hoose, S.N., ed., The 
Morgan Hill, California, Earthquake of April 24, 1984, U.S. Geol. Sur. Bull. 1639, 1-14. 

Homer, R.B., Wetmiller, R.J., Lamontagne, M., and M. Plouffe (1989). The Nahanni, NWT, 
earthquake sequence, 1985-1988, Seism. Res. Letters, 60, 28. 

Homer, R.B., Wetmiller, R.J., Lamontagne, M., and M. Plouffe (1990). A fault model for the 
Nahanni earthquakes from aftershock studies, Bull. Seism. Soc. Am., 80, 1553-1570. 

Horton, S., and D. Depolo (1992). The October 24, 1990 Lee Vining, California earthquake and 
other recent moderate earthquakes in the western basin and range, Seism. Res. Letters, 63, 
39. 

Hough, S.E., Mori, J., Sembera, E., Glassmoyer, G., Mueller, C., and S. Lydeen (1993, in 
review). Surface rupture associated with the 6/28/92 M7.4 Landers earthquake: Did it all 
happen during the mainshock?: Unpublished Paper. 

Hsu, T.L. (1962). Recent faulting in the longitudinal valley of eastern Taiwan, Memoir Geo!. 
Soc. China, no. 1, 95-102. 

Hsu, T.L., and H.C. Chang (1979). Quaternary faulting in Taiwan, Memoir Geo!. Soc. China, 
no. 3, 155-165. 

Huan, W.L., Gu, M., and X.D. Chang (1991). Multiple rupture characteristics of the 1920 
Haiyuan M81/2 earthquake, Acw Seismologica Sinica, 13, 21-31. 

Huang, J., and W.-P. Chen (1986). Source mechanisms of the Mogod earthquake sequence of 
1967 and the event of 1974 July 4 in Mongolia, Geophys. J. R. Asrr. Soc. London, 84, 361-
379. 

Hudnut, K., Seebeer, L., Rockwell, T., Goodmacher, J., Klinger, R., Lindvall, S., and R. 
McElwain (1989). Surface ruptures on cross-faults in the 24 November 1989 Superstition 
Hills, California, earthquake sequence, Bull. Seism. Soc. Am., 79, 282-296. 

Hull, A.G. (1990). Tectonics of the 1931 Hawke's Bay earthquake, New Zealand J. Geo!. 
Geophys. 33, 309-320. 

Hutton, L.K., Johnson, C.E., Pechmann, J.C., Ebel, J.E., Given, J.W., Cole, D.M., and P.T. 
German (1980). Epicentral locations for the Homestead Valley earthquake sequence, March 
15, 1979, California Geology, 33, .110-114. 

Hwang, L.J., and H. Kanamori ( 1989). Teleseismic and strong-motion source spectra from two 
earthquakes in eastern Taiwan, Bull. Seism. Soc. Am., 79, 935-944. 

Imagawa, K., Mikami, N., and T. Mikun10 (1984). Analytical and semi-empirical synthesis of 
near-field seismic waveforms for investigating the rupture mechanism of major earthquakes, 
J. Phys. Earth, 32, 317-338. 

INPRES (1985). El terremoto de Mendoza, Argentina del 26 de ~nero de 1985, /11sri111ro Nacional 
de Prevencion Sismica (INPRES), Republica Argentina, 137. 

C-21 



Institute of Earthquake Engineering (1989). Corrected accelerograms and response spectra of 
Lancang-Gengma earthquake, Seismological Bureau of Yunnan Province, Seismological 
Press, Beijing. 

Ishida, M. (1984). Spatial-temporal variation of seismicity and spectrum of the 1980 earthquake 
swarm near the Izu Peninsula, Japan, Bull. Seism. Soc. Am., 74, 199-221. 

Islami, A.A. (1986). Erzurum-Kars earthquake of 30 October, 1983, analysis, J. Earth Space 
Physics, 15, no. 1-2, 39. 

Jackson, J .A., and T .J. Fitch (1979). Seismotectonic implications of relocated aftershock 
sequences in Iran and Turkey, Geophys. J. R. Astr. Soc. London, 57, 209-229. 

Jackson, J.A., and T.J. Fitch (1981). Basement faulting and the focal depths of the larger 
earthquakes in the Zagros mountains (Iran), Geophys. J. R. Astr. Soc. London, 64, 561-586. 

Jackson, J.A., Gagnepain, J., Houseman, G., King, G.C.P., Papadimitriou, P., Soufleris, C., 
and J. Virieux (1982). Seismicity, normal faulting, and the geomorphological development 
of the Gulf of Corinth (Greece): the Corinth earthquakes of February and March 1981, Earth 
Planet. Sci. Letters, 51, 377-397. 

Jackson, J.A., and D. McKenzie (1984). Active tectonics of the Alpine-Himalayan belt between 
western Turkey and Pakistan, Geophys. J. R. Astr. Soc. London, 77, 185-264. 

Jackson, J.A., and G. Yielding (1983). The Seismicity of Kohistan, Pakistan: source studies of 
the Hamran (1972.9.3), Dare] (1981.9.12) and Patan (1974.12.28) earthquakes, 
Tectonophysics, 91, 15-28. 

Jackson, J.A., Molnar, P., Patton, H., and T. Fitch (1979). Seismotectonic aspects of the 
Markansu Valley, Tadjikstan, earthquake of August 11, 1974, J. Geophys. Res., 84, 
6157-6167. 

Jennings, P.C. (1980). Earthquake engineering and hazards reduction in China: National Research 
Council, CSCPRC Report No. 8, Washington, D.C., 69-133. 

Jensen, B.L., Chung, W.-Y., and A.C. Johnston·(l989). The Guinea, West Africa earthquake 
of 22 December 1983: Source parameters from teleseismic P- and S- waveforms, Eos, 70, 
no. 15, 398. 

Jimenez, E., Cara, M., and D. Reuland (1989). Focal mechanisms of moderate-size earthquakes 
from the analysis of single-station three-component surface-wave records, Bull. Seism. Soc. 
Am., 79, 955-972. 

Johnson, C.E., and L.K. Hutton (1982). Aftershocks and preearthquake seismicity, in The 
Imperial Valley, California, Earthquake of October 15, 1979, U.S. Geo/. Sur. Prof. Paper 
1254, 59-76. 

Johnson, L.R., and T.V. McEvilly (1974). Near-field observations and source parameters of 
central California earthquakes, Bull. Seism. Soc. Am., 64, 1855-1886. 

Johnson, T.L., Madrid, J., and T. Kaczynski (1976). A study of microseismicity in northern Baja 
California, Bull. Seism. Soc. Am., 66, 1921-1929. 

Johnston, A.C. (1988). Observations of the surface rupture of the 22 January 1988 Tennant Creek 
earthquake sequence, central Australia: Center for Earthquake Research and Information 
Special Report 88-1. 

C-22 



Johnston, M.J.S., Borcherdt, R.D., Glassmoyer, G., and A.T. Linde (1987). Static and dynamic 
strain during the July 21, 1986, Chalfant earthquake near the Long Valley Caldera, 
California, Seism. Res. Letters, 58, 20. 

Jones, L.E., and D.V. Helmberger (1993). Source parameters of the 1992 Big Bear earthquake 
sequence, Eos, 74, no. 16. 

Jones, L.M., Han, W., Hauksson, E., Jin, A., Zhang, Y., and Z. Luo (1984). Focal mechanisms 
and aftersho* locations of the Songpan earthquakes of August 1976 in Sichuan, China, J. 
Geophys. Res., 89, 7697-7707. 

Jones, L.M., Hutton, L.K., Given, D.D., and C.R. Allen (1986). The July 1986 North Palm 
Springs, California, earthquake, Bull. Seism. Soc. Am., 16, 1830-1837. 

Jones, L.M., Sieh, K.E., Hauksson, E., and L.K. Hutton (1990). The 3 December 1988 
Pasadena, California earthquake, evidence for strike-slip motion on the Raymond fault, Bull. 
Seism. Soc. Am., 80, 474-482. 

Jones, L.M., Wang, B., Xu, S., and T.J. Fitch (1982). The foreshock sequence of the February 
4, 1975, Haicheng earthquake (M = 7.3), J. Geophys. Res., 87, 4575-4584. 

Julian, B.R., and S.A. Sipkin (1985). Earthquake processes in the Long Valley Caldera area, 
California, J. Geophys. Res., 90, l 1155-11169. 

Kachadoorian, R., Yerkes, R.F., and A.O. Waananen (1967). Effects of the Truckee California, 
earthquake of September 12, 1966, U.S. Geo/. Sur. Gire. 537, 1-14. 

Kadinsky-Cade, · K.A. (1985). Seismotectonics of the Chile margin and the 1977 Caucete 
earthquake of western Argentina: Ph.D. thesis, Cornell University, 253 p. 

Kadinsky-Cade, K.A., and A.A. Barka (1989). Effects of restraining bends on the rupture of 
strike-slip earthquakes, in Schwartz, D.P., and Sibson, R.H., eds., Fault Segmentation and 
Controls of Rupture Initiation and Termination, U.S. Geo/. Sur. Open-File Report 89-315, 
181-192. 

Kadinsky-Cade, K.A., Reilinger, R., and B. !sacks (1985). Surface deformation associated with 
the November 23, 1977, Caucete, Argentina, earthquake sequence, J. Geophys. Res., 90, 
12,691-12, 700. 

Kahle, J.E., Bryant, W.A., and E.W. Hart (1986). Fault rupture associated with the July 21, 
1986 Chalfant Valley earthqtiake, Mono and Inyo counties, California, California Geology, 
39, 243-245. 

Kahle, J.E., Wills, C.J., Hart, E.W., Treiman, J.A., Greenwood, R.B., and R.S. Kaumeyer 
(1988). Preliminary report--surface rupture Superstition Hills earthquakes of November 23 
and 24, 1987, Imperial County, California, Cal(fomia Geology, 41, 75-84. 

Kaiser, D., and S.J. Duda (1988). Magnitude spectra and other source parameters for some major 
1985 and 1986 earthquakes, Tectonophysics, 152, 303-318. 

Kamb, B., Silver, L.T., Abrams, M.J., Carter, B.A., Jordan, T.H., and J.B. Minster (1971). 
Pattern of faulting and nature of fault movement in the San Fernando earthquake, in The San 
Fernando Earthquake of February 9, 1971, U.S. Geo/. Sur. Prof. Paper 733, 41-54. 

Kaminuma, K., and Y. Goto (1970). On the observational studies of aftershocks in Japan, Bull. 
Earthq. Res. Inst. Tokyo, 48, 507-520. 

C-23 



Kanamori, H. (1972). Determination of effective tectonic stress associated with earthquake 
faulting--the Tottori earthquake of 1943, Phys. Earth Planet. Interiors, 5, 426-434. 

Kanamori, H. (1973). Mode of strain release associated with major earthquakes in Japan, Ann. 
Rev. Earth Planet. Sci., 1, 213-239. 

Kanamori, H. (1977). The energy release in great earthquakes, J. Geophys. Res., 82, 2981-2987. 
Kanamori, H. (1983). Mechanism of the 1983 Coalinga earthquakes determined from long-period 

surface waves, in Bennett, J.H., and Sherburne, R.W., eds., The 1983 Coalinga, California 
Earthquakes, Calif. Div. Mines Geo!. Special Publication 66, 233-240. 

Kanamori, H. (1988). State of stress near seismic gaps, in National Earthquake Hazards 
Reduction Program, Summaries of Technical Reports Volume XXV, U.S. Geo/. Sur. Open
File Report 88-16, 257-260. 

Kanamori, H. (1989). A slow seismic event recorded in Pasadena, Geophys. Res. letters, 16, 
1411-1414. 

Kanamori, H'. (1993). Source complexity of the 1988 Armenian earthquake: evidence for a slow 
after-slip event, J. Geophys. Res., 99, no. B9, 15,797-15,808. 

Kanamori, H., and D.L. Anderson (1975). Theoretical basis of some empirical relations in 
seismology, Bull. Seism. Soc. Am., 65, 1073-1096. 

Kanamori, H., and J.W. Given (1981). Use of long-period surface waves for rapid determiniation 
of earthquake-source parameters, Phys. Earth Planet. lnterio_rs, 27, 8-31. 

Kanamori, H., and D. V. Helmberger (1990). Semi-realtime study of the 1989 Loma Prieta 
Earthquake using teleseismic and regional data, Eos, 71, no. 8, 290. 

Kanamori, H., and J. Regan (1982). Long-period surface waves, in The Imperial Valley, 
California, Earthquake of October 15, 1979, U.S. Geo/. Sur. Pn~f. Paper 1254, 55-58. 

Kanamori, H., and K. Satake (1990). Broadband study of the 1989 Loma Prieta earthquake, 
Geophys. Res. Le/lers, 17, 1179-1182. 

Kanamori, H., and G.S. Stewart (1978). Seismological aspects of the Guatemala earthquake of 
February 4, 1976, J. Geophys. Res., 83, 3427-3434. 

Kanamori, H., Mori, J., and H. Heaton (1990). The 3 December 1988, Pasadena earthquake (ML 
= 4.9) recorded with the very broadband system in Pasadena, Bull. Seism. Soc. Am., 80, 
483-487. 

Kanamori, H., Thio, H., Dreger, 0., Hauksson, E., and T. Heaton (1992). Initial investigation 
of the Lander~, California, earthquake of 28 June 1992 using terrascope, Geophys. Rl!S. 
Le11ers, 19, no. 22, 2267-2270. 

Karakaisis, G.F., and T. Mikumo (1993). Dynamic fault rupture process during the 1978 
Thessaloniki earthquake, northern Greece, Tectonophysics, 217, 65-71. 

Kawasumi, H. (1950). The Imaichi earthquake of December 26th, 1949. General Description, 
Bull. Earthq. Res. Inst. Tokyo, 28, 355-367. 

Keightley, W.0. (1975). Destructive earthquakes in Burdurand Bingo/, Turkey--May 197.Z, report 
to Commillee on Natural Disa.we,:\·, N'ational Research Council, Washington, D.C. 

Kelleher, J., and J. Savino (1975). Distribution of seismicity before large strike slip and 
thrust-type earthquakes, J. Geophys. Res., 80, 260-271. 

C-24 



Kikuchi, M., and H. Kanamori (1982). Inversion of complex body waves, Bull. Seism. Soc. Am., 
72, 491-506. 

Kikuchi, M., and H. Kanamori (1986). Inversion of complex body waves-II, Phys. Earth Planet. 
Interiors, 43, 205-222. 

Kikuchi, M., and K. Sudo (1984). Inversion of teleseismic P-waves of Izu-Oshima, Japan 
earthquake of January 14, 1978, J. Phys. Earth, 32, 161-171. 

Kim, W-Y., Kulhanek, 0., and K. Meyer (1984). Source processes of the 1981 Gulf of Corinth 
earthquake sequence from body-wave analysis, Bull. Seism. Soc. Am., 74, 459:-477. 

King, G.C.P., and C. Vita-Finzi (1981). Active folding in the Algerian earthquake of 10 October 
1980, Nature, 292, 22-26. 

King, G.C.P., and G. Yielding (1984). The evolution of a thrust fault system--processes of 
rupture initiation, propagation and termination in the 1980 El Asnam (Algeria) earthquake, 
Geophys. J. R. Astr. Soc. London, 77, 915-933. 

King, G.C.P., Ouyang, Z.X., Papadimitriou, P., Deschamps, A., Gagnepain, J., Houseman, G., 
Jackson, J.A., Soufleris, C., and J. Virieux (1985). The evolution of the Gulf of Corinth 
(Greece)--an aftershock study of the 1981 earthquakes, Geophys. J. R. Astr. Soc. London, 
80, 677-693. 

King, N.E., Savage, J.C., Lisowski, M., and W.H. Prescott (1981). Preseismic and coseismic 
deformation associated with the Coyote Lake, California, earthquake, J. Geophys. Res., 86, 
892-898. 

Knuepfer, P.L.K. (1989). Implications of the characteristics of end-points of historical surface 
fault ruptures for the nature of fault segmentation, in Schwartz, D.P., and Sibson, R.H., eds., 
Fault Segmentation and Controls of Rupture Initiation and Termination, U.S. Geo!. Sur. 
Open-File Report 89-315, 193-228. 

Kocyigit, A. (1989). Susehri basin; an active fault-wedge basin on the North Anatolian fault zone, 
Turkey, Tecronophysics, 167, 13-39. 

Kondorskaya, N.V., Zakharova, A.I., and L.S. Chepkunas (1989). The quantitative 
characteristics of earthquake sources as determined in the seismological practice of the 
U.S.S.R., Tectonophysics, 166, 45-52. 

Koto, B. (1990). On the cause of the great earthquake in Central Japan, 1891, Terra Nova, 2, 
301-305. 

Krestnikov, V.N., Bulousov, T.P., and D.V. Shtange (1980). Seismotectonic conditions of the 
occurrence of the Gazli earthquakes of 1976, Izvestiya, Earth Physics, 16, 648-660. 

Kristy, M.J., Burdick, L.J., and D.W. Sinwson (1980). The focal mechanisms of the Gazli, 
USSR, earthquakes, Bull. Seism. Soc. Am., 70, 1737-1750. 

Kudo, K. (1983). Seismic source characteristics of recent major earthquakes in Turkey, in Ohta, 
Y., ed., A Comprehensive St11dy on Earthquake Disasters in Turkey in View qf Seismic Risk 
Reduction, Haokkaido Univeristy, Sapporo, Japan, 23-66. 

Kulhanek, 0., and K. Meyer (1979). Source parameters of the Volvi-Langadhas earthquake of 
June 20, 1978, deduced from body-wave spectra at stations Uppsala and Kiruna, Bull. Seism. 
Soc. Am., 69, 1289-1294. 

C-25 



Kupfer, D.H., Muessig, S., Smith, G.I., and G.N. White (1955). Arvin-Tehachapi earthquake 
damage along the Southern Pacific Railroad near Beal ville, California, in Oakeshott, G.B., 
ed., Earthquakes in Kern County California During 1952, Calif. Div. Mines Geo/. Bull. 171, 
67-74. 

Kurita, T. (1976). Source processes of earthquake sequences along the San Andreas fault zone in 
central California, Phys. Earth Planet. Interiors, 13, 1-17. 

Lahr, J.C., Page, R.A., Stephens, C.D., and K.A. Fqgleman (1986). Sutton, Alaska, earthquake 
of 1984: evidence for activity on the Talkeetna segment of the Castle Mountain fault system, 
Bull. Seism. Soc. Am., 76, 967-983. 

Lahr, K.M., Lahr, J.C., Lindh, A.G., Bufe, C.G., and F.W. Lester (1976). The August 1975 
Oroville earthquakes, Bull. Seism. Soc. Am., 66, 1085-1099. 

Lander, J.P. (1969a). Seismological notes (July and August), Bull. Seism. Soc. Am., 60, 262-263. 
Lander, J.P. (1969b). Seismological notes (September and October), Bull. Seism. Soc. Am., 60, 

688-689. 
Lander, J.P. (1973). Seismological notes (July-August, 1972), Bull. Seism. Soc. Am., 63, 745-

749. 
Langer, CJ., and G.A. Bollinger (1979). Secondary faulting near the terminus of a seismogenic 

strike-slip fault: aftershocks of the 1976 Guatemala earthquake, Bull. Seism. Soc. Am., 69, 
427-444. 

Langer, C.J., and G.A. Bollinger (1991). The southeastern Illinois earthquake t1f 10 June 1987, 
the later aftershocks, Bull. Seism. Soc. Am., 81, 423-445. 

Langer, C.J., Hopper, Ni:G., Algermissen, S.T., and J.W. Dewey (1974). Aftershocks of the 
Managua, Nicaragua, earthquake of December 23, 1972, Bull. Seism. Soc. Am., 64, 1005-
1016. 

Langer, C., Simpson, D., Pacheco, J., Cranswick, E., Glassmoycr, G., and M. Andrews (1989). 
Aftershocks of the December 7, 1988 Armenian earthquake, Eos, 70, no. 70, 1200. 

Langer, C.A., and G.A. Bollinger (1988). Aftershocks of the western Argentina (Caucete) 
earthquake of23 November 1977--some tectonic implications, Tectonophysics, 148, 131-146. 

Langer, C.A., Bollinger, G.A., and J.M. Merghelani (1987). Aftershocks of the 13 December 
1982 North Yemen earthquake--conjugate normal faulting in an extensional setting, Bull. 
Seism. Soc. Am., 77, 2038-2055. 

Langston, C.A. (1978). The February 9, 1971, San Fernando earthquake--a study of source 
finiteness in teleseismic body waves, Bull. Seism. Soc. Am., 68, 1-29. 

Langston, C.A. (1987). Depth of faulting during the 1968 Meckering, .,Australia, earthquake 
sequence determined from waveform analysis of local seismograms, J. Geophys. Res., 92, 
11,561-11,574. 

Langston, C.A., and R. Butler (1976). Focal mechanism of the August 1, 1975, Oroville 
earthquake, Bull. Seism. Soc. Am., 66, 1110-1120. 

Langston, C.A., and J.M. Dermengian (1981). Comment on "Seismotectonic aspects of the 
Markansu Valley, Tadjikstan, earthquake of August 11, 1974" by Jackson, J., Molnar, P., 
Patton, H., and Fitch, T., J. Geophys. Res., 86, 1091-1093. 

C-26 



Langston, C.A., Furlong, K.P., Vogfjord, K.S., Clouser, R.H., and C.J. Ammon (1990). 
Analysis of teleseismic body waves radiated from the Loma Prieta earthquake, Geophys. Res. 
Letters, 17, 1405-1408. 

Lawson, A.C., and others (1908). The California Earthquake of April 18, 1906--report of the 
State Earthquake Investigation Committee: Carnegie Institute, Washington, Publication 87, 
1. 

Lee, W.H.K., Herd, D.G., Cagnetti, V., Bakun, W.H., and A. Rapport (1979). A preliminary 
study of the Coyote Lake earthquake of August 6, 1979, and its major aftershocks, U.S. 
Geo/. Sur. Open-File Report 79-1621, 43 p. 

Lee, W.H.K., Johnson, C.E., Henyey, T.L., and R.L. Yerkes (1978). A preliminary study of 
the Santa Barbara, California, earthquake of August 13, 1978, and its major aftershocks, U.S. 
Geo!. Sur. Circ. 797, 11 p. 

Lee, W.H.K., Wu, F.T., and S.C. Wang (1978). A catalog of instrumentally determined 
earthquakes in China (magnitude > 6) compiled from various sources, Bull. Seism. Soc. 
Am., 68, 383-398. 

Lei, T.C., Wang, Y.D., and B.S. Ou (1991). Surface rupture pattern by Xunwu earthquake of 
magnitude 5.5 on August 2, 1987, Seismology Geology, 13, 353-360. 

Lensen, G.J., and P.M. Otway (1971). Earthshift and post-earthshift deformation associated with 
the May 1968 Inangahua earthquake, New Zealand, in Collins, B.W., and Fraser, R., eds., 
Recent Crustal Movements, Royal Soc. New Zealand Bull. 9, 107-116. 

Lester, F.W., Bufe, C.G., Lahr, K.M., and S.W. Stewart (1975). Aftershocks of the Oroville 
earthquake of August 1, 1975, in Sherburne, R.H., and Hauge, C.J., eds., Oroville, 
California, Earthquake I August, 1975, Cal((. Div. Mines Geo!. Special Report 124, 131-138. 

Lewis, J.D., Daetwyler, N.A., Bunting, J.A., and J.S. Moncrieff (1981). The Cadoux 
earthquake, 2 June 1979, Geo!. Sur. Wtsr! Australia, Report 11, 131 p. 

Li, V.C., Seale, S.H., and T. Cao (1987). PostseismiL: stress and pore pressure readjustment and 
aftershocks distributions, Tectonophysics, 144, 37-54. 

Li, X-Q., and J. Nabelek (1989). The 1988 Lancang-Gengma, China, earthquake doublet, Eos, 
70, 138. 

Liaw, Z-S., Wang, C., and Y. T. Yeh ( 1986). A study of aftershocks of the 20 May 1986 Hualien 
earthquake, Bull. In.wit. Earth Sciences, Academia Sinica, 6, 15-27. 

Lide, C.S., and A.S. Ryall (1985). Aftershock distribution related to the controversy regarding 
mechanisms of the May 1980, Mom moth Lakes, California, earthquakes, J. Gmphys. Res., 
90, 11,151-11,154. 

Liebermann, R.C., and P.W. Pomeroy (1970). Source dimensions of small earthquakes as 
determined from the size of the aftershock zone, Bull. Seism. Soc. Am., 60, 879-890. 

Lienkaemper, J.J. (1984). Comparison of two surface-wave magnitude scales--M of Gutenberg 
and Richter (1954) and Ms of "preliminary determination of epicenters", Bull. Seism. Soc. 
Am., 74, 2357-2378. 

Lienkaemper, J.J., Pezzopane, S.K., Clark, M.M., and M.J. Rymer (1987). Fault fractures 
formed in association with the 1986 Chalfant Valley, California, earthquake sequence-
preliminary report, Bull. Seism. Soc. Am., 77, 297-305. 

C-27 



Lin, B.-H., Chen, Y.-T., Wei, F.-S., and Z.-Y. Li (1979). A study of asymmetrically bilateral 
rupture process with application to the Haicheng earthquake, Acta Seismologica Sinica, 1, 
133-149. 

Lin, J., and R.S. Stein (1989). Coseismic folding, earthquake recurrence, and the 1987 source 
mechanism at Whittier Narrows, Los Angeles basin, California, J. Geophys. Res., 94, 9614-
9632. 

Linde, A.T., and M.J.S. Johnston (1989). Source parameters of the October 1, 1987 Whittier 
Narrows earthquake from crustal deformation data, J. Geophys. Res., 94, 9633-9643. 

Linde, A.T., Sacks, I.S., and J.A. Snoke (1982). The Izu earthquake-slowquake sequence-
additional ground deformation and far-field seismic data (abs.), Eos, 63, no. 18, 373. 

Lindh, A.G., and D.M. Boore (1981). Control of rupture by fault geometry during the 1966 
Parkfield earthquake, Bull. Seism. Soc. Am., 71, 95-116. 

Lisowski, M., and W.K. Gross (1987). Horizontal deformation associated with the North Palm 
Springs, California, earthquake of July 1986, Seism. Res. Le/lers, 58, 20. 

Lisowski, M., and J.C. Savage (1988). Deformation associated with the Superstition Hills, 
California, earthquakes of November 1987 (abs.), Seism. Res. Leners, 59, 35. 

Lisowski, M., and W. Thatcher (1981). Geodetic determination of horizontal deformation 
associated with the Guatemala earthquake of 4 February 1976, Bull. Seism. Soc. Am., 71, 
845-856. 

Lisowski, M., Prescott, W.H., Savage, J.C., and M.J. Johnston (1990). Geodetic estimate of 
coseismic slip during the 1989 L~ma Prieta, California, earthquake, Geophys. Res. Leuers, 
17, 1437-1440. 

Liu, H.L., and D. V. Helm berger (1983). The near-source ground motion of the 6 August 1979 
Coyote Lake, California, earthquake, Bull. Seism. Soc. Am., 73, 201-218. 

Lominitz, C., and M. Hashizume (1985). The Popayan, Colombia, earthquake of 31 March 1983, 
Bull. Seism. Soc. Am., 75, 1315-1326. 

Lubetkin, L.K.C., and M.M. Clark (1988). Late Quaternary activity along the Lone Pine fault, 
eastern California, Geo!. Soc. Am. Bull., 100, 755-766. 

Lyon-Caen, H., Armijo, R., Drakopoulos, J., Baskoutass, L, Delibassis, N., Gaul on, R., 
Kouskouna, Y., Latoussakis, J., Makropoulos, K., Papadimhi-iou, P., Papanastassiou, D., 
and G. Pedotti (1988). The I 986 Kalama ta (South Peloponnesus) earthquake--detailed study 
of a normal fault, evidences for east-west extension in the 'Hellenic arc, J. Geophys. Res., 
93, 14,967-15,000. 

Maasha, N., and P. Molnar (1972). Earthquake fault. parameters and tectonics in Africa, J. 
Geophys. Res., 77, no. 29, 5731-5743. 

Machette, M.N. (1993). Temporal and spatial behavior of late Quaternary faultling, western 
United States, in Jacobson, M.L, compiler, National Earthquake Hazards Reduction Program 
Summaries ofTEchnical Reports Volume XXXIV, U.S. Geological Survey Open-File Report 
93-195, 458-463. 

Machette, M.N., Crone, A.J., and J.R. Bowman (1993). Geologic investigations of the 1986 
Marryat Creek, Australia, earthquakes - implications for paleoseismicity in stable continental 
regions, U.S. Geo!. Sur. Bull. 2032-B, 29. 

C-28 



Madin, I.P., Priest, G.R., Mabey, M.A., Malone, S., Yelin, T.S., and D. Meier (1993). March 
25, 1993, Scotts Mills earthquake - western Oregon's wake-up call, Oregon Geology, 55, 51-
57. 

Magistrale, H., Jones, L., and H. Kanamori (1989). The Superstition Hills, California, 
earthquakes of 24 November 1987, Bull. Se ism. Soc. Am., 79, 239-251. 

Mao, Y.-P., and J.-C. Zhang (1991). Preliminary analysis on the seismogenic tectonics of the 
November 6, 1988, Langang-Gengma earthquake, J. Seism. Res., 14, 15. 

Marrow, P.C., and A.B. Walker (1988). Lleyn earthquake of 1984 July 19: aftershock sequence 
and focal mechanism, Geophys. J. Int., 92, 487-493. 

Martinis, B. (1976). The Friuli earthquake of May 6, 1976--geology, in Proceedings of the 
International Meeting on the Friuli Earthquake, Bollettino di Geofisica, 19, 755-808. 

Matsuda,,T. (1972). Surface associated with Kita-Izu earthquake of 1930 in Izu Peninsula, Japan, 
in Hoshino, M., and T. Aoki, H., eds., Izu Peninsula, Tokai Univ,~rsity Press, 73-93. 

Matsuda, T. (1974). Surface faults associated with Nobi (Mino-Owari) earthquake of 1897, Japan, 
Special Bull. Earthq. Res. Inst. Tokyo, 13, 85-126. 

Matsuda, T., and K. Yamashina (1974). Surface faults associated with the Izu-Hanto-Oki 
earthquake of 1974, Japan, Special Bull. Earthq. Res. Inst. Tokyo, 14, 135-158. 

Matsuda, T., Yamazaki, H., Nakata, T., and T. Imaizumi (1980). The surface faults associated 
with the Rikuu earthquake of 1896, Bull. Earthq. Res. Inst. Tokyo, 55, 795-855. 

Matsuura, R.S. (1983). Detailed study of the earthquake sequence in 1980 off the east coast of 
the Izu Peninsula, Japan, J. Phys. Earth, 31, 65-101. 

Matumoto, T., and G. Latham (1973). Aftershock and intensity of the Managua earthquake of23 
December 1972, in Managua, Nicaragua earthquake of December 23, 1972, Earrhq. Eng. 
Res. Instil. Conference Proceedings, Volume I, 97- 103. 

Mauk, F.J., Christensen, D., and S. Henry (1982). The Sharpsburg, Kentucky, earthquake 27 
July 1980: main shock parameters and isoseismal maps, Bull. Seism. Soc. Am., 72, 221-236. 

McCaffrey, R. (1989). Teleseismic investigation of the January ,:,22, 1988 Tennant Creek, 
Australia, earthquakes, Geophys. Res. Leffel:\·, 16, 413-416. 

McCall, G.J.M. (1967). VI.-Geophysics, l. Seismology: geology of the Nakura-Thomson's Falls
Lake Hanninton area, Geo!. Sur. Kenya, Report No. 78, 86-88. 

McCue, K., Barlow, B.C., Denham, D., Jones, T., Gibson, G., and M. Michael-Leiba (1987). 
Another chip off the old Australian block (abs.), Eos, 68, no. 26, 609-612. 

McEvilly, T.V., and M. Niazi (1975). Post-earthquake observations at Dasht-e Bayaz, Iran, 
Tectonophysics, 26, 267-279. 

McGarr, A., Mueller, C., Fletcher, J.B., and M. Andrews (1990). Ground-motion and source 
parameters of the Coalinga earthquake sequence, in Rymer, M.J., and Ellsworth, W.L., eds., 
The Coalinga, California, Earthquake of May 2, 1982, U.S. Geo/. Sur. Pr<?{ Paper 1487, 
215-234. 

McGill, S.F., Allen, C.R., Hudnut, K.W., Johnson, D.C., Miller, W.F., and K.E. Sieh (1989). 
Slip on the Superstition Hills fault and on nearby faults associated with the 24 November 
1987 Elmore Ranch and Superstition Hills earthquakes, southern California, Bull. Scism. Soc. 
Am., 79, 362-375. 

C-29 



McLaren, M.K., and W.U. Savage (1992). The 17 September 1991 (ML5.1) Ragged Point, 
California earthquake and aftershock sequence, Seism. Res. Letters, 63, 67. 

McNally, K.C., Lay, T., Pritto-Quesada, M., Valensise, G., Orange, D., and R.S. Anderson 
(1989). Santa Cruz Mountains (Loma Prieta) earthquake, Eos, 70, no. 45, 1463, 1467. 

McNutt, S., Bryant, W., and R. \l/ilson (1991). Mono Lake earthquake of Octoer 23, 1990, 
California Geology, February, 27-32. 

Meghraoui, M. (1991). Blind reverse faulting system associated with the Mont Chenoua-Tipaza 
earthquake of 29 October 1989 (north-central Algeria), Terra Nova, 3, 84-93. 

Mendoza, C., and S.H. Hartzell (1988). Inversion for slip distribution using teleseismic P 
waveforms--North Palm Springs, Borah Peak, and Michoacan earthquakes, Bull. Seism. Soc. 
Am., 78, 1092-1111. 

Mercier, J.L., Mouyaris, N., Simeakis, C.,· Roundoyannis, T., and C. Angelidhis (1979). Intra
plate deformation: a quantitative study of the faults activated by the 1978 Thessaloniki 
earthquakes, Nature, 278, 45-48. 

Mercier, J-L., Carey-Gailhardis, E., Mouyaris, N., Simeakis, K., Roundoyannis, T., and C. 
Anghelidhis (1983). Structural analysis of recent and active faults and regional state of stress 
in the epicentral area of the 1978 Thessaloniki earthquakes (northern Greece), Tectonics, 2, 
577-600. 

Mercier, J.L., Sebrier, M., Lavenu, A., Cabrea, J., Bellier, 0., Dumont, J.F., and J. Machare 
(1992). Changes in the tectonic regime above a subduction zone of Andean type: The Andes 
of Peru and Bolivia during the Pliocene-Pleistocene, J. Geophys. Res., 91, 11,945-11,982. 

Meyer, B., Tapponnier, P., Gaudemer, Y., Peltzer, G., and A. Blusson (1989). 1932 Chang Ma 
(M-7.6) earthqual-:e surface breaks and neotectonics of northern Tibet-Quinghai Highlands 
(abs.), Eos, 70, no. 43, 1350. 

Michael, A.J., and U.S.G.S. Branch of Seismology, 1990, Seismogenic structure and seismicity 
of the 1989 Loma Prieta, California sequence, Eos, 11, no. 8, 291. 

Mikumo, T. (1973a). Faulting mechanism of the Gifu earthquake of September 9, 1969, and some 
related problems, J. Phys. Earth, 21, 191-212. 

Mikumo, T. (1973b). Faulting process of the San Fernando earthquake of February 9, 1971, 
inferred from static and dynamic near-field displacements, Bull. Seism. Soc. Am., 63, 249-
269. 

Mikumo, T. (1974). Some considerations of the faulting mechanism of th" southeastern Akita 
earthquake of October 16, 1970, J. Phys. Eanh, 22, 87-108. 

Mikumo, T., and M. Ando (1976). A search into the faulting mechanism of the 1891 great Nobi 
earthquake, J. Phys. Earth, 24, 63-87. 

Mizoue, M., Nakamura, M., Seto, N., Sakai, K., Kobayashi, M., Haneda, T., and S. Hashimoto 
(1985). A concealed fault system as inferred from the aftershock activity accompanying the 
1984 Western Nagano prefecture earthquake of M6.8, Bull. Eanhq. Instit. ToA..yo, 60, 
199-220. 

Mogi, A., Kawamura, B., and Y. Iwabuchi (1964). Submarine crustal movement due to the 
Niigata earthquake in 1964, in the environs of the Awa Sima Island, Japan Se.:1, J. Geodetic 
Sur. Japan, 10, no. 3-4, 180-186. 

C-30 



Mohajer, G.A., and G.R. Pierce (1963). Geological notes--Qazvin, Iran, earthquake, Am. Assoc. 
Petroleum Geo/. Bull. , 41, 1878-1883. 

Molinari, M. (1984). Late Cenozoic structural geology of Stewart and Monte Cristo valleys, 
Walker Lane of west central Nevada, in Lintz, J., Jr., ed., Western Geological Excursions, 
Geo/. Soc. Am. Field Trip Guidebook, 4, 219-231. 

Molnar, P., and W.-P. Chen (1983). Focal depths and fault plane solutions of earthquakes under 
the Tibetan plateau, J. Geophys. Res., 88, 1180-1196. 

Molnar, P., and Q. Deng (1984). Faulting associated with large earthquakes and the average rate 
of deformation in central and eastern Asia, J. Geophys. Res., 89, 6203-6227. 

Molnar, P., and H. Lyon-Caen (1989). Fault plane solutions of earthquakes and active tectonics 
of the Tibetan Plateau and its margins, Geophys. J. Int., 99, 123-153. 

Mori, J. (1989). The New Ireland earthquake of July 3, 1985 and associated seismicity near the 
Pacific-Solomon Sea-Bismarck Sea triple junction, Phys. Earth Planet. Interiors, 55, 144-153. 

Mori, J., and T. Boyd (1985). Seismological evidence indicating rupture along an eastward 
dipping fmu1l plane for the 1964 Niigata, Japan earthquake, J. Phys. Earth, 33, 227-240. 

Mori, J., McKee, C., and H. Letz (1987). The central New Britain earthquake of May 10, 1985: 
tensional stresses in the fro11tal arc, Phys. Earth Planet. Imeriors, 48, 73-78. 

Moskvina, A.G. (1978). Focal mechanisms and parameters of the Mogod earthquake of January 
5, 1967, and its aftershocks: Earth Physics, 14, 1-10. 

Mungu{a, L., and J.N. Brune (1984). Local magnitude and sediment amplification observations 
from earthquakes in the northern Baja California-Southern California Region, Bull. Seism. 
Soc. Am., 74, 107-119. 

Murai, I., and T. Matsuda (1975). The earthquake of 1975 in the central part of Oita Prefecture, 
Kyushu, Bull. Earthq. Res. Inst. Tokyo, 50, 303-327. 

Nabelek, J. (1990). Broadband teleseismic body wave analysis of the November 18, 1989, Loma 
Prieta Earthquake, Eos, 71, no. 8, 289. 

Nabelek, J. (1985). Geometry and mechanism of faulting of the 1980 El Asnam, Algeria, 
earthquake from inversion of teleseismic body waves and comparison with field observations, 
J. Geophys. Res., 90, 12,713-12,728. 

Nabelek, J., and G. Suarez (1989). The 1983 Goodnow earthquake in the central Adirondacks, 
New York--rupture of a simple, circular crack, Bull. Seism. Soc. Am., 79, 1762-1777. 

Nabelek, J., and M. Toksoz (1978a). The source mechanism of the Sept. 6, 1975 Turkish 
earthquake, Earrhq. Notes, 49, no. 4, 82. 

Nabelek, J., and M. Toksoz (1978b). Sources properties of the 1976 earthquake in E. Turkey, 
Earthq. Notes, 49, no. 1, 82. 

Nabelek, J. 1 Chen, W.P., and H. Ye (1987). The Tangshan earthquake sequence--its implications 
for the evolution of the north China Basin, J. Geophys. Res., 92, 12,615-12,628. 

Nakamura, K., Kasahara, K., and T. Matsuda (1964). Tilting and uplift of an Island, Awashima, 
near the epicentre of the Niigata earthquake in 1964, J. Geodetic Sur. Japan, 10, no. 3-4, 
172-179. 

C-31 



Nakanishi, I., and H. Kanamori (1984). Source mechanisms of twenty-six large, shallow 
earthquakes (Ms~ 6.5) during 1980 from P-wave first motion and long-period Rayleigh wave 
data, Bull. Seism. Soc. Am., 74, 805-818. 

Natali, S.G., and M.L. Sbar (1982). Seismicity in the epicentral region of the 1887 northeast 
Sonora earthquake, Mexico, Bull. Seism. Soc. Am., 72, 181-196. 

Nava, F.A., and J.N. Brune (1983). Source mechanism and surface wave excitation for two 
earthquakes in northern Baja California, Mexico, Geophys. J. R. Astr. Soc. London, 73, 738-
763. 

Needham, R.E., and S.A. Sipkin (1989). Teleseismic source parameters of the 7 December 1988 
Armenian earthquake, Eos, 70, no. 43, 1200. 

Nelson, M.R., Mccaffrey, R., and P. Molnar (1986). Source parameters for 17 earthquakes in 
the Tien Shan, central Asia, determined by P and SH waveform inversion (abs.), Eos, 61, 
no. 16, 305. 

New Zealand Department of Scientific and Industrial Research (1987). The March 2, 1987, 
earthquake near Edgecumbe, North Island, New Zealand, Eos, 68, no. 44, 1162-1171. 

Nguyen, B.V., and R.B. Herrmann (1992). Determination of source parameters for central and 
eastern North American earthquakes (1982-1986), Seism. Res. Leuers, 63, 567-586. 

Ni, J.F., and F. Guangwei (1989). Fault plane solutions of earthquakes and active tectonics of 
the Pamir-Korakorum region (abs.), Eos, 70, no. 43, 1226. 

Niazi, M. (1968). Fault rupture in the Iranian (Dasht-e-Bayaz) earthquake of August 1968, 
Nature, 220, 569-570. 

Niazi, M., and H. Kanamori (1981). Source parameters of 1978 Tabas and 1979 Quaint, Iran, 
earthquakes from long-period surface waves, Bull. Seism. Soc. Am., 71, 1201-1213. 

Niazi, M., and J. Shoja-Taheri (1985). Source geometry and mechanism of 1978 Tabas, Iran, 
earthquake from well located aftershocks, Tecronophysics, 115, 61-68. 

Nicholson, C., Kanamori, H., and C.R. Allen (1987). Comparison of the 1948 and 1986 
earthquakes along the southern San Andreas fault, Coachella Valley, California (abs.), Eos, 
68, no. 44, 1362. 

Nicholson, C., Roeloffs, E., and R.L. Wesson (1988). The northeastern Ohio earthquake of 31 
January 1986: was it induced?, Bull. Seism. Soc. Am., 78, 188-217. 

Nicholson, C., Harris, R.A,c:; and R. W. Simpson (1993). Changes in attitude-changes in latitude: 
what happened to the faults in the Joshua Tree area before and after the M7.4 Landers 
mainshock, Seism. Res. Le11ers, 64, 34. 

Nishenko, S.P., and K.H. Jacob (1990). Seismic potential of the Queen Charlotte-Alaska-Aleutian 
seismic zone, J. Geophys. Res., 95, 2511-2532. 

North, R.G. (1977). Seismic moment, source dimensions, and stresses associated with earthquakes 
in the Mediterranean and Middle East, Geophys. J. R. Astr. Soc. London, 48, 137-161. 

North, R.G., Wetmiller, R.J., Adams, J., Anglin, F.M., Hasegawa, H.S., Lamontagne, M., Du 
Berger, R., Seeber, L., and J. Armbruster (1989). Preliminary results from the 
November 25, 1988 Saguenay (Quebec) earthquake, Seism. Res. Lett~rs, 60, 89-93. 

Nowroozi, A.A. (1985). Empirical relations between magnitudes and fault parameters for 
earthquakes in Iran, Bull. Seism. Soc. Am., 75, 1327-1338. 

C-32 



Nowroozi, A.A., and A.M. Mohajer-Ashjai (1980). Faulting of Kurizan and Koli (Iran) 
earthquakes of November 1979, a field report, Bull. du Bureau de Rechereches Geologiques 
et Minieres (Deuxieme Serie), Section IV, Geologic General, no. 2, 91-99. 

Nowroozi, A.A., and A.M. Mohajer-Ashjai (1985). Fault movements and tectonics of eastern 
Iran--boundaries of the Lut plate, Geophys. J. R. Ast,:.;Soc. London, 83, 215-237. 

Ohnaka, M. (1978). Earthquake-source parameters related. to magnitude, Geophys. J. R. Astr. 
Soc. London, 55, 45-66. 

Okal, E.A. (1976). A surface-wave investigation of the rupture mechanism of the Gobi-Altai 
(December 4, 1957) earthquake, Phys. Earth Planet. Interiors, 12, 319-328. 

Okal, E.A. (1992). Use of the mantle magnitude MM for the ressessment of the moment of 
historical earthquakes, Pure Applied Geophys., 139, 17-57. 

'·' 
Olson, A.H., and R.J. Apse! (1982). Finite faults and inverse theory with applications to the 1979 

Imperial Valley earthquake, Bull. Seism. Soc. Am., 72, 1969-2001. 
Omote, S. (1950a). On the aftershocks of the Fukui earthquake, Bull. Earthq. Res. Inst. Tokyo, 

28, 311-319. 
Ornate, S. (1950b). Aftershocks of Imaichi earthquake observed at Nishi-oashi station, Bull. 

Earthq. Res. Inst. Tokyo, 28, 401-413. 
Oppenheimer, D.H., and N.G. MacCregor-Scott (1991). Seismic potential of the East San 

Francisco Bay region of California, Seism. Res. Letters, 62, 13. 
Otuka, Y. (1933). The geomorphology and geology of northern Idu Peninsula, the earthquake 

fissures of No26, 1930, and the pre- and post-seismic crust deformations, Bull. Earthq. Res. 
Inst. Tokyo, 11, 530-574. 

Ouyed, M., Meghraoui, M., Cisternas, A., Deschamps, A., Dorel, J., Frechet, J., Gaulon, R., 
Hatsfeld, D., and 'H. Philip (1981). Seismotectonics of the El Asnam earthquake, Nature, 
292, 26-31. 

Ouye.d, M., Yielding, G., Hatzfield, D., and G.C.P'. King (1983). An aftershock study of the El 
Asnam (Algeria) earthquake of 1980 October 10, Geophys. J. R. Asrr. Soc. London, 73, 605-
639. 

Pacheco, J .F., and J.L. Nabelek ( 1988). Source mechanisms of three moderate California 
earthquakes of July 1986, Bull. Seism. Soc. Am., 78, 1907-1929. 

Pacheco, J.F., Estabrook. C.H., Simpson, D., Gariel, J.C., Nabelek, J., and C. Langer (1989). 
Teleseismic, nearfield and aftershock analysis of the 1988 Spitak Armenia, earthquake, Eos, 
70, no. 43, 1200. 

Page, R. (1968). _Focal depths of aftershocks, J. Geophys. Res., 73, 3897-3903. 
Page, R.W. (1973). The Sitka, Alaska, earthquake of 1972--an unexpected visitor: Earthquake 

Information Bull., 5, no. 5, 4-9. 
Pantosti, D., and G. Valensise (1990). Faulting mechanism and complexity of the 23 November 

1980: Campania-Lucania earthquake, inferred from surface observations, J. Geophys. Res., 
95, 15319-15341. 

Papazachos, B.C., Mountrakis, D., Psilovikos, A., and G. Leventakis (1979). Surface fault traces 
and fault plane solutions of the May'."June 1978 major shocks in the Thessaloniki area, 
Greece, Tectonophysics, 53, 171-183. 

C-33 



Papazachos, B.C., Panagiotopoulos, D.G., Tsapanos, T.M., Mountrakis, D.M., and G.Ch. 
Dimopoulos (1983). A study of the 1980 summer seismic sequence in the Magnesia region 
of central Greece, Geophy. J. R. Astr. Soc. London, 15, 155-168. 

Papazachos, B.C., Kiratzi, A., Karacostas, B., Panagiotopoulos, D., Scordilis, E., and D.M. 
Mountrakis (1988). Surface fault traces, fault plane solution and spatial distribution of the 
aftershocks of the September 13, 1986, earthquake of Kalamata (southern Greece), Pure 
Applied Geophys., 126, 55-68. 

Pavlides, S.B., and M.D. Tranos (1991). Structural characteristics of two stong earthquakes in 
the North Aegean: Ierissos (1932) and Agios Efstratios (1968), J. Struc. Geol., 13, 205-214. 

Pechmann, J.C., Nava, S.J., and W.J. Arabasz (1990). Left-lateral shear beneath the NW 
Colorado Plateau: the 1988 San Rafael Swell and 1989 South Wasatch Plateau earthquakes, 
Seism. Res. Letters, 61, 44. 

Pechmann, J.C., Nava, S.J., and W.J. Arabasz (1992). Seismological analysis of four recent 
moderate (ML 4.8 to 5.4) earthquakes in Utah, Utah Geo/. Sur., Contract Report 92-1, 107 

Peltzer, G., 'fapponnier, P., Gaudemer, Y., Meyer, B., Guo, S., Yin, K., Chen, Z., and H. Dai 
(1988). Offsets of Late Quaternary morphology, rate of slip, and recurrence of large 
earthquakes on the Chang Ma fault (Gansu, China), J. Geophys. Res., 93, 7793-7812. 

Pender, M.J., and T.W. Robertson (1987). Edgecumbe earthquake--reconnaissance report, 
Earthq. Spectra, 3, 659-743. 

Peppin, W.A., Honjas, W., Somerville, M.R., and U.R. Vetter (1989). Precise master-event 
locations of aftershocks of the 4 October 1978 Wheeler Crest earthquake sequence near Long 
Valley, California, Bull. Seism. Soc. Am., 79, 67-76. 

Perez, OJ., and K.H. Jacob (1980). Tectonic model and seismic potential of the eastern Gulf of 
Alaska and Yakataga seismic gap, J. Geophys. Res., 85, 7132-7150. 

Peterson, M.D., Seeber, L., Nabelek, J., and K. Hudnut (1989). The interaction between 
secondary and master faults within the southern San Jacinto fault zone, southern California, 
Eos, 70, no. 43, 1211. 

Peterson, M.D., Seeber, L., Sykes, L.R., Nabelek, J.L., Armbruster, J.G., Pacheco, J., and 
K.W. Hudnut (1991). Seismicity and fault interaction, southern San Jacinto fault zone and 
adjacent faults, southern California: Implications for seismic hazard, Tectonics, 10, 1187-
1203. 

Petrescu, G., and G. Purcaru (1964). The mechanism and stress pattern at the focus of the 
September 1, 1962, Buyin-Zara (Iran) earthquake, Anna/es de Geophysique, 20, 242-247. 

Pezzopane, S.K., and S.G. Wesnousky (1989). Large earthquakes and crustal deformation near 
Taiwan, J. Geophys. Res., 94, 7250-7264. 

Phillips, D.E., and P. Reasenberg (1990). Complex faulting structure inferred from local seismic 
observation of M> 1.0 aftershocks, May 2-June 30, 1983, in Rymer, M.J, and Ellsworth, 
W.L., eds., The Coalinga, California, Ea;thquake of May 2, 1983, U.S. Geol. Sur. Prof. 
Paper 1487, 171-192. 

Philip, H., and M. Meghraoui (1983). Structural analysis and interpretation of the surface 
deformation of the El Asnam earthquake of October 10, 1980, Tectonics, 2, 17-49. 

C-34 



Philip, H., and F. Megard (1977). Structural analysis of the superficial deformation of the 1969 
Pariahuanca earthquakes (central Peru), Tectonophysics, 38, 259-278. 

Phillip, H., Bousquet, J.C., and A. Cisternas (1989). The Spitak earthquake of December 7, 
1988: surface breaks and tectonics, Eos, 70, no. 43, 1199. 

Pitt, A.M., Weaver, C.S., and W. Spence (1979). The Yellowstone Park earthquake of June 30, 
1975, Bull. Seism. Soc. Am., 69, 187-205. 

Plafker, G. (1976). Tectonic aspects of the Guatemala earthquake of 4 February 1976, Science, 
193, 1201-1208. 

Plafker, G., and Jr. _Brown, R.D. (1973). Surface geologic effects of the Managua earthquake of 
December 23, 1972, in Managua, Nicaragua Earthquake of December 23, 1972, Earth. Eng. 
Res. Instil. Conference Proceedings, Volume I, San Francisco, 115-142. 

Plafker, G., and J.P. Galloway, eds. (1989). Lessons learned from the Loma Prieta, California, 
Earthquake of October 17, 1989, U.S. Geo!. Sur. Gire. 1045, 48 p. 

Plafker, G., Bonilla, M.G., and S.B. Bc,nis (1976). Geologic effects, jn Espinosa, A.F., ed., The 
Guatemalan Earthquake of February 4, 1976, A Preliminary Report, U.S. Geo!. Sur. Prof 
Paper 1002, 38-51. 

Plafker, G., Hudson, T., Bruns, T., and M. Rubin (1978). Late Quaternary offsets along the 
Fairweather fault and crustal plate interactions in southern Alaska, Canadian J. Earth Sci., 
15, 805-816. 

Plafker, G., Agar, R., Asker, A.H., and M. Hanif (1987). Surface effects and tectonic setting 
of the 13 December 1982 North Yemen earthquake, Bull. Seism. Soc. Am., 77, 2018-2037. 

Prescott, W.H., Lisowski, M., Johnston, M.J.S., Schulz, S.S., and J.C. Savage (1990). 
Deformation before, during and after the Loma Prieta earthquake of October 1989, Eos, 71, 
no. 8, 290. 

Prescott, W.H., King, N.E., and G. Guohua (1984a). Preseismic, coseismic, and postseismic 
deformation associated with the 1984 Morgan Hill, California, earthquake: in Bennett, J.H., 
and Sherburne, R. W., eds., The 1984 Morgan Hill, California, Earthquake, Calif. Div. Mines 
Geo!. Special Publication 68, 137-148. 

Prescott, W.H., King, N.E., and G. Guohua (1984b). Preseismic and coseismic deformation 
associated with the 1984 Morgan Hill, California, earthquake, in Hoose, S.N., ed., The 
Morgan Hill, California, Earthquake of April 24, 1984 (A Preliminary Report), U.S. Geo!. 
Sur. Open-File Report 84-498A, 50-59. 

Prescott, W.H., Savage, J.C., and M. Lisowski (1988). Crustal strain, in National Earthquake 
Hazards Reduction Program, Summaries of Technical Reports, v. XXV, U.S. Geo!. Sur. 
Open-File Report 88-16, 274-281. 

Priestley, K.F., Smith, K.D., and R.S. Cockerham (1988). The 1984 Round Valley, California, 
earthquake sequence, Geophys. J. R. Astr. Soc. London, 95, 215-235. 

Purcaru, G., and H. Ber~:.khemer (1982). Quantitative relations of seismic source parameters and 
a classification of t\arthquakes, in Duda, SJ., and Aki, K., eds., Quantification of 
Earthquakes, TectonJ~hysics, 84, 57-128. 

Qian, H. (1986). Recent displacements along Xianshuihe fault belt and its relation with seismic 
activities, J. Seism. Res., 9, 601-613. 

C-35 



Qiang, Z., and L. Zhang (1984). The classification of Quaternary active faults in north China: 
Earthquake Prediction Research, 2, 267-276. 

Raleigh, C.B. (1977). Prediction of the Haicheng earthquake, Eos, 58, no. 5, 236-272. 
Reasenberg, P., and W.L. Ellsworth (1982). Aftershocks of the Coyote Lake, California, 

earthquake of August 6, 1979, J. Geophys. Res., 87, 10637-10655. 
Reilinger, R. (1984) .. Coseismic and postseismic vertical movement associated with the 1940 M 

7.1 Imperial Valley, California, earthquake, J. Geophys. Res., 89, 4531-4537. 
Reilinger, R., and S. Larsen (1986). Vertical crustal deformation associated with the 1979 M=6.6 

Imperial Valley, California, earthquake--implications for fault behavior, J. Geophys. Res., 
91, 14,044-14,056. 

Rial, J.A., and E. Brown (1983). Waveform modeling of long period p-waves from the Coalinga 
earthquake of May 2, 1983, in Bennett, J .H., and R. W. Sherburne, eds., The 1983 Coalinga, 
California Earthquakes, 1983, Calif. Div. Mines Geo/. Special Publication 66, 247-259. 

Richardson, W.P. (1989). The Matata earthquake of 1977 May 31: a recent event near 
Edgecumbe, Bay of Plenty, New Zealand, New Zealand J. Geo!. Geophys., 32, 17-30. 

Richins, W.E. (1985). The 1983 Borah Peak, Idaho, earthquake--a review of seismicity, surface 
faulting and regional tectonics: Proceedings of DOE Natural Phenomena Hazards Mitigation 
Conference, Las Vegas, Nevada, 152-160. 

Richter, C.F. (1955). Foreshocks and aftershocks, in Oakeshott, O.P., ed., Earthquakes in Kern 
County California during 1952, Calif. Div. Mines Geo/. Bull. 171, 177-197. 

Richter, C.F. (1958). Elementary Seismology: W.H. Freeman, San Francisco, 768 p. 
Richter, C.F., Allen, C.R., and J.M. Nordquist (1958). The Desert Hot Springs earthquakes and 

their tectonic environment, Bull. Seism. Soc. Am., 48, 315-337. 
Robinson, R., Arabasz, W.J., and F.F. Evison (1975). Long-term behavior of an aftershock 

sequence: the Inangahua, New Zealand, earthquake of 1968, Geophys. J. R. Astr. Soc. 
London, 41, 37-49. 

Rogers, G.C., Cassidy, J.F., and R.M. Ellis (1990). The Prince George, British Columbia, 
earthquakeof21 March 1986, Bull. Seism. Soc. Am., 80, 1144-1161. 

Romanowicz, B., and H. Lyon-Caen (1990). The Loma Prieta earthquake of October 18, 1989: 
results of the teleseismic mantle and body wave inversion, Geophys. Res. letters, 17, 1191-
1194. 

Romney, C. (1957). Seismic waves from the Dixie Valley-Fairview Peak earthquakes, Bull. 
Seism. Soc. Am., 47, 301-319. 

Rothe, J.P. (1969). The Seismicity of the Earth, 1953-1965: Unesco 
Ruegg, J.C., Kasser, M., Tarantola, A., Lepine, J.C., and B. Chouikrat (1982). Deformations 

associated with the El Asnam earthquake of 10 October 1980-- geodetic determinations of 
vertical and horizontal movements, Bull. Seism. Soc. Am., 72, 2227-2244. 

Ruff, L.J., and B. W. Tichelaar ( 1990). Moment tensor rate functions for the 1989 Loma Prieta 
earthquake, deophys. Res. letters, 17, 1187-1190. 

C-36 



Ryall, A., and J .D. Van Wormer (1975). Field-seismic investigation of the Oroville, California, 
earthquakes of August 1975: in Sherburne, R.W., and Hague, C.J., eds., Oroville, 
California, Earthquake of 1 August, 1975, Calif. Div. Mines Geo!. Special Report 124, 
139-145. 

Ryall, A., Van Wormer, J.D., and A.E. Jones (1968). Triggering of microearthquakes by earth 
tides and other features of the Truckee, California, earthquake sequence of September, 1966, 
Bull. Seism. Soc. Am., 58, 215-248. 

Rymer, M.J. (1987). The San Salvador earthquake of October 19, 1986 - geologic aspects, 
Earthq. Spectra, 3, 435-464. 

Rymer, M.J. (1992). The 1992 Joshua Tree, California, earthquake: tectonic setting and triggered 
slip, Eos, 73, no. 43, 363. 

Sacks, LS., Linde, A.T., Snoke, J.A., and S. Suyehiro (1981). A slow earthquake sequence 
following the Izu-Oshima earthquake of 1978, in Simpson, D., and Richards, P.O., eds., 
Earthquake Prediction, An International Review, American Geophysical Union, Maurice 
Ewing Series 4, 617-628. 

Salzberg, D.H., Carabajal, C.C., Barker, J .S., and F.T. Wu (1990). Preliminary source 
characteristics of the October 18, 1989 Loma Prieta mainshock based on teleseismic P and 
S waveforms, Eos, 71, no. 8, 290. 

Salzberg, D.H., Wu, F., Barker, J., McCaffrey, R., Wang, J., and K.C. Chen (1988). 
Seismicity, focal mechanisms and tectonics related to three 1986 earthquakes in the vicinity 
of Taiwan, Eos, 69, no. 16, 400. 

Sanders, C.O., and H. Kanamori (1984). A seismotectonic analysis of the Anza seismic gap, San 
Jacinto fault zone, southern California, J. Geophys. Res., 89, 5873-5890. 

Sanders, C., Magistrale, H., and H. Kanamori (1986). Rupture patterns and preshocks of large 
earthquakes in the southern San Jacinto fault zone, Bull. Seism. Soc. Am., 76, 1187-1206. 

Satake, K., and K. Abe (1983). A fault model for the Niigata, Japan, earthquake of June 16, 
1964, J. Phys. Earth, 31, 217-223. 

Savage, J.C., and L.M. Hastie (1966). Surface deformation associated with dip-slip faulting, J. 
Geophys. Res., 71, no. 20, 4897-4904. 

Savage, J.C., and L.M. Hastie (1969). A dislocation model for the Fairview Peak, Nevada, 
earthquake, Bull. Seism. Soc. Am., 59, 1937-1948. 

Savage, J.C., Burford, R.O., and W.T. Kinoshita (1975). Earth movements from geodetic 
measurements, in Oakeshott, G.B., ed., San Fernando, California, Earthquake of 9 February 
1971, Calif. Div. Mines Geo!. Bull. 196, 175-186. 

Savage, W.U., Alt, J.N., and A. Mohaher-Ashari (1977). Microearthquake investigations of the 
1972 Qir, Iran, earthquake zone and adjacent arc.:as, Geo/. Soc. Am. Abstracts with Programs, 
9, no. 4, 496. 

Scheimer, J.F., Taylor, S.R., and M. Sharp (1982). Seismicity of the Livermore Valley region, 
1969-1981, in Hart, E.W., Hirschfeld, S.E., and Schulz, S.S., eds., Proceedings of 
Conference on Earthquake Hazards in the Eastern San Francisco Bay Area, Calif. Div. Mines 
Geo!. Special Publication 62, 155-165. 

C-37 



Schell, M.M., and L.J. Ruff (1986). Southeastern Alaska tectonics--source process of the large 
1972 Sitka earthquake, Eos, 61, no. 16, 304-305. 

Schell, M.M., and L.J. Ruff (1989). Rupture of a seismic gap in southeastern Alaska--the 1972 
Sitka earthquake (Ms 7.6), Phys. Earth Planet. Interiors, 54, 241-257. 

Scherbaum, F., and D. Stoll (1983). Source parameters and scaling Jaws of the 1978 Swabian 
Jura (Southwest Germany) aftershocks, Bull. Seism. Soc. Am., 73, 1321-1343. 

Sebrier, M., Mercier, J.L., Machare, J., Bonnot, D., Cabrera, J., and J.L. Blanc (1988). The 
state of stress in an overriding plate situated above a flat slab: The Andes of central Peru, 
Tectonics, 1, 895-928. 

Seeber, L., Armbruster, J.G., and M. Tuttle (1987). Secondary faults associated with the 7 July 
1986 Palm Springs earthquake rupture on the San Andreas fault, Seism. Res. Letters, 58, 20. 

Seymen, I., and A. Aydin (1972). The Bingo! earthquake fault and its relation to the North 
Anatolian fault zone, Bull. Min. Res. Exp!. Instit. Ankara, 19, 1-8. 

Sharp, R.V. (1975). Displacement on tectonic ruptures, in Oakshott, G.B., ed., San Fernando, 
California, Earthquake of 9 February 1971, Calif. Div. Mines Geo!. Bull. 196, 187-194. 

Sharp, R.V. (1981a). Displacements on tectonic ruptures in the San Fernando earthquake of 
February 9, 1971, discussion and some implications, U.S. Geo!. Sur. Open-File Report 81-
668, 16 p. 

Sharp, R. V. (1981b). Surface faulting in the Colorado River delta region in Mexico associated 
with the M5 =6.3 earthquake of June 9, 1980, Earthq. Notes, 52, no. 1, 48. 

Sharp, R.V. (1982). Comparison of 1979 surface faulting with earlier displacements in the 
Imperial Valley, in The Imperial Valley California, Earthquake of October 15, 1979, U.S. 
Geo!. Sur. Prof. Paper 1254, 213-221. 

Sharp, R. V. (1989). Right~reverse faulting associated with the 7 December 1988 Armenia S.S.R. 
earthquake, ~-nearly reconnaissance, Eos, 70, no. 43, 1199. 

Sharp, R.V., and J. Umbal (1990). Displacement on the Philippine-Digdig fault associated with 
the MS 7.8 Nueva Ecija earthquake of 16 July 1990 (abs.), Eos, 71, no. 43, 1441-1442. 

Sharp, R.V., Akasheh, B., Eshghi, I., and N. Orsini (1978). The Tabas, Iran earthquake of 
September 16, 1978: Observations on surface faulting, Earthq. Notes, 49, no. 4, 84. 

Sharp, R.V., Lienkaemper, J.J., Bonilla, M.G., Burke, D.B., Fox, B.F., Herd, D.G., Miller, 
D.M., Morton, D.M., Ponti, D.J., Rymer, M.J., Tinsley, J.C., Yount, J.C., Kahle, J.E., 
Hart, E.W., and K.E. Sieh (1982). Surface faulting in the central Imperial Valley, in The 
Imperial Valley California, Earthquake of October 15, 1979, U.S. Geo/. Sur. Pro.f. Paper 
1254, 119-143. 

Sharp, R.V., and others (1989). Surface faulting along the Superstition Hills fault zone and 
nearby faults associated with the earthquakes of 24 November 1987, Bull. Seism. Soc. Am., 
79, 252-281. 

Shedlock, K.M., Baranowski, J., Weiwen, X., and H.X. Liang (1987). The Tangshan aftershock 
sequence, J. Geophys. Res., 92, 2791--2803. 

Sheehan, A.F., Zeng, Y., and K.D. Smith (1993). Waveform analysis of aftershocks of the June 
.1992 Little Skull ·Mountain, Nevada, earthq'uake, Geo!. Soc. Amer. Abstracts with Programs, 
25, no. 5, 145. 

C-38 



Shepherd, R., Dodd, T.A.H., Sutherland, A.J., Moss, P.J., Carr, A.J., Gordon, D.R., and A.H. 
Bryant (1970). The 1968 Inangahua earthquake--report of the University of Canterbury survey 
team, Bull. Seism. Soc. Am., 60, 1561-1606. 

Sherburne, R., McNally, K., Brown, E., and A .. Aburto (1983). The mainshock-aftershock 
sequence of2 May 1983: Coalinga, California, in Bennett, J.H., and Sherburne, R.W., eds., 
The 1983 Coalinga, California Earthquakes, 1983, Calif. Div. Mines Geo!. Special 
Publication 66, 275-292. 

Shi, J., Feng, X., Ge, S., Yang, Z., Bo, M., and J. Hu (1984). The Fuyun earthquake fault zone 
in Xinjiang, China, in A Collection of Papers of the International Symposium on Continental 
Seismicity and Earthquake Prediction, Seismology Press, Beijing, China, 325-346. 

Shih, C.L., Ruan, W.L., Yao, K.K., and Y.T. Hsie (1978). On the fracture zones of the 
Changma earthquake of 1932 and their genesis, Chinese Geophysics, 1, 17-45. 

Shimazaki, K., and P. Somerville (1979). Static and dynamic parameters of the Izu-Oshima, 
Japan, earthquake of January 14, 1978, Bull. Seism. Soc. Am., 69, 1343-1378. 

Shin, T.-C., Chang, Z.-S., and G.-K. Yu (1989). The complex rupture of the 20th May, 1986, 
Taiwan earthquake, Proc. Geo/. Soc. China, 32, 233-253. 

Shirokova, Y.I. (1968). Focal mechanism of the earthquake of July 26, 1963, at Skopje: Physics 
of the Solid Earth (Izvestia, Earth Physics), 104-109. 

Shor, G., and E.E. Roberts (1958). San Miguel, Baja California Norte, earthquakes of February, 
1956--a field report, Bull. Seism. Soc. Am., 46, 101-116. 

Shteynberg, V.V., Ivanova, T.G., and V.M. Grayzer (1980). The earthquake in Gazli on 
May 17, 1976, Physics of the Solid Earth (lzvestiya, Geophysics series), 16, no. 3, 159-167. 

Shudofsky G.N. (1985). Source mechanisms and focal depths of East African earthquakes using 
Rayleigh-wave inversion and body-wave modelling, Geophys. J. R. Astr. Soc. London, 83, 
563-614. 

Sieh, K.E. (1978). Slip along the San Andreas fault associated with the great 1857 earthquake, 
Bull. Seism. Soc. Am.~ 68, 1421-1448. 

Sieh, K., Jones, L., Hauksson, E., Hudnut, K., Eberhart-Phillips, D., Heaton, T., Hough, S., 
Hutton, K., Kanamori, H., Lilje, A., Lindvall, S., McGill, S.F., Mori, J., Rubin, C., 
Spotila, J.A., Stock, J., Thio, H.K., Treiman, J., Wernicke, B., and J. Zachariasen (1993). 
Near-field investigations of the Landers earthquake sequence, April to July 1992, Science, 
260, 171-176. 

Silgado, F.E. (1951). The Ancash, Peru, earthquake of November 10, 1946, Bull. Seism. Soc. 
Am .. 41, 83-100. 

Silver, P., and T. Masuda (1985). A source extent analysis of the Imperial Valley earthquake of 
October 15, 1979, and the Victoria earthquake of June 9, ·1980, J. Geophys. Res., 90, 7,639-
7,651. 

Simpson, R.W., Schulz, S.S., Dietz, L.D., and R.O. Burford (1988). The response of creeping 
parts of the San Andreas fault to earthquakes on nearby faults: two examples, Pure Applied 
Geophys., 126, no 2-4. 

C-39 



Singh, D.D., Rastogi, B.K., and H.K. Gupta (1978). Spectral analysis of body waves for 
earthquakes and their source parameters in the Himalaya and nearby regions, Phys. Earth 
Planet. Interiors, 18, 143-152. 

Singh, D.D., and H.K. Gupta (1979). Source mechanism and surface-wave attenuation studies for 
Tibet earthquake of July 14, 1973, Bull. Seism. Soc. Am., 69, 737-750. 

Sipkin, S.A. (1986). Interpretation of non-double-couple earthquake mechanisms derived from 
moment tensor inversion, J. Geophys. Res., 91, 531-547. 

Sipkin, S.A. (1989). Moment-tensor solutions for the 24 November 1987 Superstition Hills, 
California, earthquakes, Bull. Seism. Soc. Am., 79, 493-499. 

Sipkin, S.A., and R.E. Needham (1990). Kinematic source parameters of the earthquake, 
determined by time-dependent moment-tensor inversion and an analysis of teleseismic first 
motions, in Rymer, M.J, and Ellsworth, W.L. eds., The Coalinga, California, Earthquake 
of May 2, 1983, U.S. Geo!. Sur. Prof. Paper 1487, 207-214. 

Slemmons, D.B. (1956). Geologic setting for the Fallon-Stillwater earthquakes of 1954, Bull. 
Seism. Soc. Am., 46, 4-9. 

Slemmons, D.B. (1957). Geological effects of the Dixie Valley-Fairview Peak, Nevada, 
earthquake of December 16, 1954, Bull. Seism. Soc. Am., 47, 353-375. 

Slemmons, D.B. (1984). Dixie Valley-Fairview Peak earthquake areas, in Lintz, J., Jr., ed., 
Western Geological Excursions, Geo!. Soc. Am. Field Trip Guidebook, 4, 418-420. 

Slemmons, D.B., Zhang, P., and P. Mao (1989). Geometry and displacement of the surface 
rupture zone associated with the 1954 Fairview Peak, Nevada, earthquake, Seism. Res. 
Letters, 60, 29. 

Slevin, J.J., and T.C. Wallace (1986). Time dependent moment tensor inversion of the June 11, 
1981, Golbaf and July 28, 1981, Sirch earthquakes in southern Iran (abs.), Eos, 67, no. 44, 
1104. 

Smith, K.D., and K.F. Priestley (1987). Foreshock sequence of the ML 6.4 July 1986 Chalfant, 
California, earthquake (abs.), Seism. Res. Leffers, 58, 20. 

Smith, K.D., Sheehan, A.F., Savage, M.K., dePolo, D., Brune, J.N., and J.G. Anderson (1993). 
Aftershocks of the June 29, 1992 ML 5.6 Little Skull Mountain earthquake, Seism. Res. 
Letters, 64, 22. 

Snay, R.A., Cline, M.W., and E.L. Timmerman (1985). Dislocation models for the 1954 
earthquake sequence in Nevada, in Stein, R.S., and Bucknam, R.C., eds., Proceedings of 
Workshop XXVIII on the Borah Peak, Idaho, Earthquake, U.S. Geo/. Sur. Open-File Report 
85-290, 531-555. 

Sobouti, M., Eshghi, I., and J.H. Javaheri (1972). The Qir earthquake of 10th April, 1972, J. 
Earth Space Physics, 1, 17-74. 

Somerville, P.G. (1986). Source-scaling relations of eastern North America earthquakes: Electric 
Power Research Institute, Palo Alto, California, Report NP-4790, 152 p. 

Somerville, P.G., and J. Yoshimura (1990). Strong motion modeling of the October 17, 1989, 
:: 

Loma Prieta earthquake, Eos, 71, no. 8, 290. 

C-40 



Somerville, P.G., McLaren, J.P., Saikia, C.K., and D.V. Helmberger (1990). The 25 November 
1988 Saguenay, Quebec, earthquake: source parameters and the attenuation of strong ground 
motion, Bull. Seism. Soc. Am., 80, 1118-1143. 

Soufleris, C., and G.S. Stewart (1981). A source study of the Thessaloniki (northern Greece) 
1978 earthquake sequence, Geophys. J. R. Astr. Soc. London, 67, 343-358. 

Soufleris, C., Jackson, J.A., King G.C.P., Spencer, C.H., and C.H. Scholz (1982). The 1978 
earthquake sequence near Thessaloniki (northern Greece), Geophys. J. R. Astr. Soc. London, 
68, 429-458. 

Spadea, M.C., Vecchi, J., Gardellini, P., and S. Del Mese (1985). The Avezzano earthquake of 
January 13, 1915, in Postpischi, D., ed., Atlas of lsoseismal Maps of Italian Earthquakes, 
Consiglio Nazionale Delle Ricerche, Bologna. 

Stauder, W. (1960). The Alaska earthquake of July 10, 1958: seismic studies, Bull. Seism. Soc. 
Am., 50, 293-322. ' 

Stavrakakis, G.N., Blionas, S.V., and C.E. Goutis (1991). Dynamic source parameters of the 
1981 Gulf of Corinth (central Greece) earthquake sequence based on FFT and iterative 
maximum entropy techniques, Tectonophysics, 185, 261-275. 

Stein, R.S. (1985). Evidence for surface folding and subsurface fault slip from geodetic elevation 
changes associated with the 1983 Coalinga, California, earthquake, in Rymer, M.J., and 
Ellsworth, W.L., eds., Mechanics of the May 2, 1983, Coalinga Earthquake, U.S. Geo!. Sur. 
Open-File Report 85-44, 225-253. 

Stein, R.S., and S.E. Barrientos (1985a). Planar high-angle faulting in the Basin and Range-
geodetic analysis of the 1983 Borah Peak, Idaho, earthquake, J. Geophys. Res., 90, 11,355-
11,366. 

Stein, R.S., and S.E. Barrientos (1985b). The 1983 Borah Peak, Idaho, earthquake-- geodetic 
evidence for deep rupture on a planar fault, in Stein, R.S., and Bucknam, R.C., eds., Pro
ceedings of Workshop XXVIII on the Borah Peak, Idaho, Earthquake, U.S. Geo!. Sur. Open
File Report 85-290, 459-484. 

Stein, R.S., and M. Lisowski (1983). The 1979 Homestead Valley earthquake sequence, 
California--control of aftershocks and postseismic deformation, J. Geophys. Res., 88, 
6477-6490. 

Stein, R.S., and W. Thatcher (1981). Seismic and aseismic deformation associated with the 1952 
Kern County, California, earthquake and relationship to the Quaternary history of the White 
Wolf fault, J. Geophys. Res., 86, 4913-4928. 

Stewart, G.S., Butler, R., and H. Kanamori (1976). Surface and body wave analyses for the 
Feb. 4, 1975, Haicheng and July 27, 1976, Tangshan chinese earthquakes (abs.), Eos, 57, 
no. 11, 951-954. 

Stewart, S. W., Hofmann, R. B., and W. H. Di men t (1964). Some aftershocks of the Heb gen Lake 
earthquake, U.S. Geo!. Sur. Prof: Paper 435-D, 19-24. 

Stierman, D.J., and W.L. Ellsworth (1976). Aftershocks of the February 21, 1973, Point Mugu, 
California, earthquake, Bull. Seism. Soc. Am., 66, 1931-1952. 

C-41 



Suarez, G., and J Nabelek (1983). The January 9, 1982, New Brunswick earthquake--a moment 
tensor invf..rsion from the amplitude spectra of Rayleigh waves, Earthq. Notes, 54, no, 3, 34-
35. 

Suarez, G., Molnar, P., and B.C. Burchfiel (1983). Seismicity, fault plane solutions, depth of 
fauH;ng, and active tectonics of the Andes of Peru, Ecuador, and southern Colombia, J. 
Geophys. Res., 88, 10,403-10,428. 

Suleiman, A.S., Yarwood, D.R., and D.I. Doser (1989). The source parameters of earthquakes 
along the passive margin of western Africa, Eos, 70, no. 43, 1219. 

Suleiman, A.S., Doser, D.I., and D.R. Yarwood (1993). Source parameters of earthquakes along 
the coastal margin of West Africa and comparisons with earthquakes in other coastal margin 
settings, Tectonophysics, 222, 79-91. 

Sulstarova, E., and S. Kociaj (1980). The Dibra (Albania) earthquake of November 30, 1967, 
Tectonophysics, 67, 333-343. 

Sumner, J.R. (1977). The Sonora earthquake of 1887, Bull. Seism. Soc. Am., 67, 1219-1223. 
Takeo, M. (1987). An inversion method to analyze the rupture processes of earthquakes using 

near-field seismograms, Bull. Seism. Soc. Am., 77, no. 2. 490-513. 
Takeo, M. (1988). Rupture process of the 1980 Izu-Hanto-Toho-Oki earthquake· deduced from 

strong motion seismograms, Bull. Seism. Soc. Am., 78, 1074-1091. 
Takeo, M. (1989). Rupture process of the 1974 Izu-Hanto-Oki earthquake, Bull. Seism. Soc. 

Japan, 42, 59-66. 
Takeo, M., and N. Nikami (1987). Inversion of strong motion seismograms for the source 

process of the Naganoken-Seibu earthquake of 1984, Tectonophysics, 144, 271-285. 
Tang, R.-C., Huang, Z., Qian, H., Deng, T., Jiang, L., Ge, P., Liu, S., Cao, Y., and C. Zhang 

(1984). On the recent tectonic activity and earthquake of the Xianshuihe fault zone, in A 
Collection of Papers of the Imemational Symposium on Cominental Seismicity and Earthquake 
Prediction, Seismological Press, Beijing, China, 347-369. 

Tang, R-C., Qian, H., Chang, W., Chang, C., Cao, Y., and S. Liu (1984). On the 
seismogeologic setting and conditions of seismogenic structures of 1981 Daofu earthquake, 
Seismology Geology, 6, 33-40. 

Tang, R-C., Wen, D-H., Deng, T-G., and S-M. Huang (1976). A preliminary study on the 
characteristics of the ground fractures during the Lu-Huo M = 7.9 earthquake, 1973, and the 
origin of the earthquake, Ac1a Geophysica Sinica, 19, 17-27. 

Tanimoto, T., and H. Kanamori (1986). Linear programming approach to moment tensor 
inversion of earthquake sources and -some tests on the three-dimensional structure of the upper 
mantle, Geophys. J. R. Astr. Soc. Londo11, 84,Al3-430. 

Tapponnier, P., and P. Molnar (1979). Active faulting and Cenozoic tectonics of the Tien Shan, 
Mongolia, and Baykal regions, J. Geophys. Res., 84, 3425-3459. 

Tasdemiroglu, M. (1971). The 1970 Gediz earthquake in western Anatolia, Turkey, Bull. Seism. 
Soc. Am., 61, 1507-1527. 

Taylor, K.B., Herrmann, R.B., Hamburger, M.W., Pavlis, G.L., Johnston, A., Langer, C., and 
C. Lam (1989). The southeastern Illinois earthquake of 10 June 1987, Seism. Res. Leuers, 
60,,,101-110. 

C-42 



Tchalenko, J.S., and N.N. Ambraseys (1970). Structural analysis of the Dasht-e-Bayaz (Iran) 
earthquake fractures, Geo!. Soc. Am. Bull., 81, 41-60. 

Tchalenko, J.S., and M. Berberian (1974). The Salmas (Iran) earthquake of May 6th, 1930: 
Annali di Geofisica, 27, no. 1-2, 151-212. 

Tchalenko, J.S., and M. Berberian (1975). Dasht-e Bayaz fault, Iran--earthquake and earlier 
related structures in bed rock, Geo/. Soc. Am. Bull., 86, 703-709. 

Thatcher, W. (1975). Strain accumulation and release mechanism of the 1906 San Francisco 
earthquake, J. Geophys. Res., 80, no. 35, 4862-4872. 

Thatcher, W., and R.M. Hamilton (1973). Aftershocks and source characteristics of the 1969 
Coyote Mountain earthquake, San Jacinto fault zone, California, Bull. Seism. Soc. Am., 63, 
647-661. 

Thatcher, W., and T.C. Hanks (1973). Source parameters of southern California earthquakes, J. 
Geophys. Res., 78, no. 35, 8547-8576. 

Thatcher, W., and M. Lisowski (1987). 1906 earthquake slip on the San Andreas fault in offshore 
northwestern California (abs.), Eos, 68, no. 44, 1507. 

Thio, H.K., Satake, K., Kikuchi, M., and H. Kanamori (1990). On the Sudan, Iran and 
Philippines earthquakes of 1990 (abs.), Eos, 71, no. 43, 1438. 

Tocher, D. (1956). Movement on the Rainbow Mountain fault, Bull. Seism. Soc. Am., 46, 10-14. 
Tocher, D. (1959). Seismographic results from the 1957 San Francisco earthquakes, in Oakeshott, 

G.B., ed., San Francisco Earthquakes of March 1957, Cal({. Div. Mines Geo/. Special Report 
57, 60-127. 

Tocher, D. (1960). The Alaska earthquake of July 10, 1958--movement on the Fairweather fault 
and field investigation of southern epicentral region, Bull. Seism. Soc. Am., 50, 267-292. 

Toksoz, M.N., and E. Arpat (1977). Studies of premonitory phenomena preceding two large 
earthquakes in eastern Turkey, Eos, 58, 1195. 

Toksoz, M.N., Arpat, E., and R. Saroglu (1977). East Anatolian earthquake of 24 November 
1976, Nature, 270, 423-425. 

Toksoz, M.N., Nabelek, J., and E. Arpat (1978). Source properties of the 1976 earthquake in 
east Turkey--a comparison of field data and teleseismic results, Tectonophysics, 49, 199-205. 

Tokuyama, A. (1976). Crustal deformation after Friuli earthquak~, northern Italy, in Proceedings 
of the International Meeting on the Friuli Earthquake, Bollettino di Ge<?fisica, 19, 945-952. 

Toppozada, T.R., and D.L. Parke (1982). Area damaged by the 1868 Hayward earthquake and 
recurrence of damaging earthquakes near Hayward, in Hart, E.W.,~Hirschfeld, S.E., and 
Schulz, S.S., eds., Proceedings of the Conference on Earthquake Hazards in the Eastern San 
Francisco Bay Area, Cal({. Div. Mines Geo/. Special Report 62, 321-328. 

Trifonov, V.C., Bayractutan, M.S., Karakhanian, A.S., and T.P. Ivanova (1993). The Erizincan 
earthquake of 13 March 1992 in eastern Turkey: tectonic aspects, Terra Nova, 5, 184-189. 

Trifunac, M.D. (1972). Tectonic stress and the source mechanism of the Imperial Valley, 
California, earthquake of 1940, Bull. Seism. Soc. Am., 62, 1283-1302. 

Trifun,ac, M.D. (1974). A three-dimensional model for the San Fernando, California, earthquake 
of February 9, 1971, Bull. Seism. Soc. Am., 64, 149-172. 

C-43 



Trifunac, M.D., and J.N. Brune (1970). Complexity of energy release during the Imperial Valley, 
California, earthquake of 1940, Bull. Seism. Soc. Am., 60, 137-160. 

Trifunac, M.D., and F.E. Udwadia (1974). Parkfield, California, earthquake of June 27, 1966: 
a three dimensional moving dislocation, Bull. Seism. Soc. Am., 64, 511-533. 

Trodd, H., Warbuton, P., and C.I. Pooley (1985). The great British earthquake of 1984 as seen 
from afar, Geophys. J. R. Astr. Soc. London, 83, 809-912. 

Tsai, Y.-B., and K. Aki (1969). Simultaneous determination of the seismic moment and 
attentuation of seismic surface waves, Bull. Seism. Soc. Am., 59, 275-287. 

Tsai, Y.-B., and K. Aki (1970). Source mechanism of the Truckee, California, earthquake of 
September 12, 1966, Bull. Seism. Soc. Am., 60, 1199-1208. 

Tsubokawa, I., Ogawa, Y., and T. Hayashi (1964). Crustal movements before and after the 
Niigata earthquake, J. Geodetic Sur. Japan, 10, no. 3-4, 165-171. 

Tsukuda, T., Sakai, K., Kobayashi, M., Hashimoto, S., Haneda, T. (1989). Source process, 
characteristics of associated seismicity and seismotectonic implications of the 1986 Omachi 
earthquake of M 5.9 in the north.western part of Nagano Prefecture, central Japan, Bull. 
Earthq. Res. Inst. Tokyo, 64, 433-456. 

Tsukuda, T., Sakai, K., Hashimoto, S., Gheitanchi, M.R., Soltanian, So., Mozaffari, P., 
Mozaffari, N., Akasheh, B., and A. Javaherian (1991). Aftershock distribution of the 1990 
Rudbar, northwest Iran, earthquake of M7.3 and its tectonic implications, Bull. Earthq. Res. 
Inst. Tokyo, 66, 351-381. 

Tsukuda, T., Sakai, K., Hashimoto, S., Haneda, T., and M. Kobayashi (1992). Structural 
features of the precursory seismic gap and aftershock region of the 1990 southern Niigata 
earthquake of M 5.4, Bull. Earthq. Res. Inst. Tokyo, 67, 361-388. 

Tsuya, H. (1950). The Fukui earthquake of June 28, 1948--report of the special committee for 
the study of the Fukui earthquake: Japan Science Council, Special Committee, Tokyo, 197 p. 

Turbitt, T., Barker, E.J., Browitt, C.W.A., Howells, M., Marrow, P.C., Musson, R.M.W., 
Newmark, R.H., Redmayne, D.W., Walker, A.B., Jacob, A.W.B., Ryan, E., and V. Ward 
(1985). The North Wales earthquake of 19 July 1984, J. Geo!. Soc. London, 142, 567-571. 

Turnovsky, J., and G. Schneider (1982). The seismotectonic character of the September 3, 1978, 
Swabian Jura earthquake series, Tectonophysics, 83, 151-162. 

Udias, A.SJ. (1965). A study of the aftershocks and focal mechanism of the Salinas-Watsonville 
earthquakes of August 31 and September 14, 1963, Bull. Seism. Soc. Am., 55, 85-106. 

Uhrhammer, R.A., Lomax, A., and E.R. Collins (1990). BDSN recording of Santa Cruz 
Mountains (Loma Prieta) earthquakes, June 1988 to November 1989,

1
Eos, 71, no. 8, 290. 

Uhrhammer, R.A. (1980). Observations of the Coyote Lake, California, earthquake sequence of 
August 6, 1979, Bull. Seism. Soc. Am., 70, 559-570. 

Uhrhammer, R.A., and R.B. Darragh (1984). The 1984 Halls Valley ("Morgan Hill") earthquake 
sequence: April 24 through June 30, in Ben'nett, J.H., and Sherburne, R.W., eds., The 1984 
Morgan Hill, California, Earthquake, Cal({. Div. Mines Geo!. Special Publication 68, 191-
208. 

C-44 



Uhrhammer, R.A., and R.W. Ferguson (1980). The 1980 Mammoth Lakes earthquake sequence, 
in Sherburne, R. W., ed., Mammoth Lakes, California Earthquake of May 1980, Calif. Div. 
Mines Geo/. Special Report 150, 131-136. 

Uhrhammer, R.A., Darragh, R.B., and B.A. Bolt (1984). The 1983 Coalinga earthquake 
sequence, May 2 through August 1, in Scholl, R.E., and Stratta, J. L., eds., Coalinga, 
California, Earthquake of May 2, 1983, Earthq. Eng. Res. Instit. Report 84-03, 9-17. 

U.S. Geological Survey Staff (1971). Surface faulting, in the San Fernando Earthquake of 
February 9, 1971, U.S. Geo/. Sur. Prof Paper 733, 55-76. 

Utsu, T. (1962). On the nature of three Alaskan aftershock sequences of 1957 and 1958, Bull. 
Seism. Soc. Am., 52, 279-297. 

Utsu, T. (1969). Aftershoc~s and earthquake statistics (I), some parameters which characterize 
an aftershock sequence and their interrelations, J. Faculty Sci., Hokkaido Univ., Japan, 
Series VII, III, no. 3, 129-195. 

Vaccari, F, Suhadolc, P., and G.F. Panza (1990). Irpinia, Italy, 1980 earthquake: waveform 
modelling of strong motion data, Geophys. J. R. Astr. Soc. London, 101, 631-647. 

Vogfjord, K.S., and C.A. Langston (1987). The Meckering earthquake of 14 October 1968--a 
possible downward propagating rupture, Bull. Seism. Soc. Am., 77, 1558-1578. 

Wagner, G.S., and C.A. Langston (1988). East African earthquake body wave inversion with 
implications for continental structure and deformation, Geophys. J. R. Astr. Soc. London, 94, 
503-518. 

Wagner, G.S., and C.A. Langston (1989). Some pitfalls and trade-offs in source parameter 
determination using body wave modeling and inversion, Tectonophysics, 166, 101-1114. 

Wallace, R.E. (1968). Earthquake of August 19, 1966, Yarto area, eastern Turkey, Bull. Seism. 
Soc. Am., 58, 11-45. 

Wallace, R.E. (1984). Faulting related to the 1915 earthquakes in Pleasant Valley, Nevada, U.S. 
Geo/. Sur. Prof. Paper 1274-A, 33 p. 

Wallace, R.E., and E.F. Roth (1967). Rates and patterns of progressive deformation, in Brown, 
R.D., Vedder, J.G., Wallace, R.E., Roth, E.F., Yerkes, R.F., Castle, R.0., Waananen, 
A.O., Page, R.W., and Eaton, J.P., eds., The Parkfield-Cholame California, Earthquakes 
of June-August 1966--Surface Geologic Effects, Water-Resources Aspects, and Preliminary 
Seismic Data, U.S. Geo!. Sur. Prof. Paper 579, 23-40. 

Wallace, T.C. (1988). The seismic source process of the 1952 Kern County, California 
earthquake, Seism. Res. Lette1:\·, 59, 20. 

Wallace, T.C., Helmberger, D.Y., and J.E. Ebel (1981). A broadband study of the 13 August 
1978 Santa Barbara earthquake, Bull. Seism. Soc. Am., 71, 1701-1718. 

Wang, C.-Y., Zhu, C.-N., and Y.-Q .. Liu (1978). Determination of earthquake fault parameter 
for the Tonghai earthquake from ground deformation data, Acta Geophysica Sinica, 21, 191-
198. 

Wang, K., Yao, Z., Gao, L., and T.C. Wallace (1989). Source mechanism of the 1988 Lancang
Gengma, China, earthquake, Eos, 70, no. 43, 1218. 

C-45 



Ward, P.L., Gibbs, J., Harlow, D., and Aburto, Q.A. (1974). Aftershocks of the Managua, 
Nicaragua, earthquake and the tectonic significance of the Tiscapa fault, Bull. Seism. Soc. 
Am., 64, 1017-1029. 

Ward, S.N., and G.R. Valensise (1989). Fault parameters and slip distribution of the 1915 
Avezzano, Italy, earthquake derived from geodetic observations, Bull. Se ism. Soc. Am., 79, 
690-710. 

Warren, D.H., Bufe, C., Coakley, J., and S. Marks (1978). Aftershocks of the November 22, 
1977, earthquake near Willits, California, Earthq. Notes, 49, no. 4, 95. 

Warren, D.H., Scofield, C., and C.G. Bufe (1985). Aftershocks of the 22 November 1977 
earthquake at Willits, California, activity in the Maacama fault zone, Bull. Seism. Soc. Am., 
75, 507-517. 

Wei, B.Z., and W.Y. Chung (1993). Regional waveform constraints on the source parameters of 
the Xunwu, China, earthquake of 2 August 1987, with implications for mid-plate 
seismotectonics, Phys. Earth Planet. Interiors, 18, 57-68. 

Wesnousky, S.G., Scholz, C.H., and K. Shimazaki (1982). Deformation of an island arc--rates 
of moment release and crustal shortening in intraplate Japan determined from seismicity and 
Quaternary fault data, J .. Geophys. Res., 87, 6829-6852. 

Wesson, R.L. (1987). Modelling aftershock migration and afterslip of the San Juan Bautista, 
California, earthquake of October 3, 1972, Tectonophysics, 144, 215-229. 

Wesson, R.L., and W.L. Eilsworth (1972). Preliminary hypocentral data for the Stone Canyon 
earthquake of September 4, 1972, Earthq. Notes, 153, no. 3, 13-15. 

Westaway, R. (1987). Comment on "The southern Italy earthquake of 23 November 1980--an 
unusual pattern of faulting" by Crosson, R.S., Martini, M., Scarpa, R., and R. Key, S.C., 
Bull. Seism. Soc. Am., 77, 1071-1074. 

Westaway, R. (1990). Block rotation in western Turkey, J. Geophys. Res., 95, 19,857-19,884. 
Westaway, R., and J. Jackson (1984). Surface faulting in the southern Italian Campania-Basilicata 

earthquake of 23 November 1980, Narure, 312, 436-438. 
Westaway, R., and J. Jackson (1987). The earthquake of 1980 November 23 in Campania

Basilicata (southern Italy), Geophys. J. R. Astr. Soc. London, 90, 375-443. 
Westaway, R., and R.B. Smith (1989). Source parameters of the Cache Valley (Logan), Utah, 

earthquake of 30 August 1962, Bull. Seism. Soc. Am., 19, 1410-1425. 
Westaway, R., Gawthorpe, R., and M. Tozzi (1989). Seismological and field observations of the 

1984 Lazio-AB\uzzo earthquakes--implications for the active tectonics of Italy, Geophys. J. 
R. Astr. Soc. London, 98, 489-514. 

Westphal, W.H., and A.L. Lange (1967). Local seismic monitoring--Fairview Peak area, Nevada, 
Bull. Seism. Soc. Am., 57, 1279-1298. 

Wetmiller, R.J., Adams, J., Anglin, F.M., Hasegawa, H.S., and A.E. Stevens (1984). 
Aftershock sequences of the 1982 Miramichi, New Brunswick, earthquakes, Bull. Seism. Soc. 
Am., 74, 621-653. 

Wetmiller, R.J., Horner, R.B., Hasegawa, H.S., North, R.G., Lamontagne, M., Weichert, D.H., 
and S.G. Evans (1988). An analysis of the 1985 Nahanni earthquakes, Bull. Seism. Soc. Am., 
78, 590-616. 

C-46 



Wetmiller, R.J., Adams, J., Anglin, F.A., Lamontagne, M., and J. Drysdale (1989). Focal 
mechanisms and aftershock distribution of the 1988 Saguenay, Quebec earthquake sequence, 
Seism. Res. Letters, 60, 18. 

Wetmiller, R.J., Adams, J., Drysdale, J., and J. Boily (1991). Lac Turquoise fault scarp, 
Ungava, Quebec - 1991 survey, Seism. Res. Letters, 62, no. 3-4, 189-190. 

Whitcomb, J.H., and L.K. Hutton (1978). On the magnitude of the August 13, 1978, Santa 
Barbara, California, earthquake, Eos, 59, 1978. 

White, R.A., Harlow, D.H., and S. Alvarez (1987). The San Salvador earthquake of October 10, 
1986 - seismological aspects and other recent local seismicity, Earthq. Spectra, 3, 419-434. 

Williams, B.R. (1979). M0 ca1culations from a generalized AR parameter method for WWSSN 
instrnments, Bull. Seism. Soc. Am., 69, 329-351. 

Williams, P.L., and H.W. Magistrale (1989). Slip along the Superstition Hills fault associated 
with the 24 November 1987 Superstition Hills, California, earthquake, Bull. Seism. Soc. Am., 
79, 390-410. 

Wilson, J.T. (1936). Foreshocks and aftershocks of the Nevada earthquake of December 20, 
1932, and the Parkfield earthquake of June 7, 1934, Bull. Seism. Soc. Am., 26, 189-194. 

Wong~ V., and J. Prez (1982). Aftershock locations and fault mechanisms, in Anderson, J.G., 
and F.T. Simons, R.S., eds., The Mexicali Valley Earthquake of9 June 1980, Earthq. Eng. 
Res. Instil. Newsletter 16, 76-79. 

Woodward-Clyde Consultants (1979). Appendix E, Analysis of teleseismic data for the 1933 Long 
Beach earthquake: in Report of the Evaluation of Maximum Earthquake and Site Ground 
Motion Parameters Associated with the Qffshore Zone of Deformation, San Onofre Nuclear 
Generating Station, prepared for Southern California Edison, Rosemead, California, 28 p. 

Wu, F.T. (1968). Parkfield earthquake of June 28, 1966--magnitude and source mechanism, Bull. 
Seism. Soc. Am., 58, 689-709. 

Wu, F.T. (1989). The source mechanisms of the November 6, 1988 Lancang-Gengma, Yunnan, 
China, mainshock using surface waves, Eos, 70,. no. 43, 1218. 

Wu, F.T., Chen, K.-C., Wang, J.-H., Mccaffrey, R., and D. Salzberg (1989). Focal 
mechanisms of recent large earthquakes and the nature of faulting in the Longitudinal Valley 
of eastern Taiwan, Proc. Geo/. Soc. China, 32, 157-177. 

Wu, K.-T., Li, Z., Jin, X., Chen, G., Lu, P., Cao, X.-L., and K.-Y. Tian (1981). Tangshan 
great earthquake and its forshocks and aftershocks, Seismology Geology, 3, 1-9. 

Wu, K.-T., Yue, M.-S., Wu, H.-Y., Cao, X.:.:L., Chen, H.-T., Huang, W.-Q., Tian, K.-Y., and 
S-D. Lu (1976). Certain characteristics of Haicheng earthquake (M = 7.3) sequence, Acta 
Geophysica Sinica, 19, 95-109. 

Wyss, M., and T.C. Hanks (1972a). Source parameters of the Borrego Mountain earthquake, in 
The Borrego Mountain Earthquake of April 9, 1968, U.S. Geo/. Sur. Prof. Paper 787, 24-30. 

Wyss, M., and T.C. Hanks (1972b). The source parameters of the San Fernando, earthquake 
inferred from teleseismic body waves, Bull. Seism. Soc. Am., 62, 591-602. 

Wyss, M., and R.E. Habermann (1988). Precursory quiescence before the August 1982 St?ne 
Canyon San Andreas fault, earthquakes, Pure Applied Geophys., 126, no. 2-4, 333-356. 

C-47 



Xie, X.-B., and Z.-X. Yao (1991). The faulting process of Tangshan earthquake inverted 
simultaneously from the teleseismic waveforms and geodesic deformation data, Phys. Earth 
Planet. Interiors, 66, 265-277. 

Yamasaki, N., and F .. Tada (1928). The Oku-Tango earthquake of 1927, Bull. Earthq. Res. Inst. 
Tokyo, 4, 159-179. 

Yamashina, K. and Tada, T. (1985). A fault model of the 1984 Western Nagano prefecture 
earthquake based on the distance change of trilateration points, Bull. Earthq. Res. Instil. 
Tokyo, 60, 221-230. 

Yeats, R., Sieh, K., and C.R. Allen (1994 (in press)). Geology of Earthquakes (Table of Historic 
Earthquakes with Surface Rupture). 

Yeh, Y.-L., Wang, J.-H., and K.-C. Chen (1990). Temporal-spatial source function of the May 
20, 1986 Hualien, Taiwan earthquake, Proc. Geo/. Soc. China, 33, 109-126. 

Yielding, G. (1985). Control of rupture by fault geometry during the 1980 El Asnam (Algeria) 
earthquake, Geophys. J. R. Astr. Soc. London, 81, 641-670. 

Yielding, G., Jackson, J.A., King, G.C.P., Sinvhal, H., Vita-Finzi, C., and R.M. Wood (1981). 
Relations between surface deformation, fault geometry, seismicity, and rupture characteristics 
during the El Asnam (Algeria) earthquake of IO October 1980, Earth Planet. Sci. Letters, 56, 
287-304. 

Yong, C., Tsoi, K.-L., Feibi, C., Zhenhuan, G., Qijia, Z., and C. Zhangli (1988). The Tangshan 
earthquake--seismological features, Chapter 3 in Yong, C., Tsoi, K.-L., Feibi, C., Zhenhuan, 
G., Qijia, Z., and Zhangli, C., eds., The Grear Tangshan Earthquake of 1976, An Anatomy 
of Disaster, Pergamon Press, Elmsford, New York, 96-127. 

Yoshida, A., and N. Hamada (1991). Redetermination of hypocenters of foreshocks, main shock, 
and aftershocks of the Kita-Izu earthquake and the Ito earthquake swarm of 1930, J. Phys. 
Earth, 39, 329-344. 

Yoshida, Y., and K. Abe (1990). Mechanism of the Luzon, Philippine earthquake of July 16, 
1990, Eos, 71, no. 43, 1441. 

Yoshida, Y., and K. Abe (1992). Source mechanism of the Luzon, Philippines earthquake of July 
1990, Geophys. Res. Lette1:\·, 19, 545-548. 

Young, C.J., Lay, T., and C.S. Lynnes (1989). Rupture of the 4 February 1976 Guatemalani; 
earthquake, Bull. Seism. Soc. Am., 79, 670-689. 

Yu, S-B., and C-C. Lui (1986). Coseismic deformation associated with the May 1986 Hualien 
earthquake, Bull. Instil. Earth Sciences, Academia Sinica, 6, 73-84. 

Yu, W.X., Cai, T.J., and X.Y. Hou (1991). Deformation zone of M=7.6 Lanchang earthquake, 
Seismology Geology, 13, 343-352. 

Zakharova, A.I., Starovoit, O.E., and L.S. Chepkunas (1978). Seismic moment and its 
determination in practice of data generalization of unified system of seismic observations 
(USSO) of the U.S.S.R., Tecronophysics, 49, 247-253. 

'·' 
Zhang, J., and T. Lay (1990). Source parameters of the 1989 Loma Prieta earthquake determined 

from long-period Rayleigh waves, Geophys. Res. Letters, 17, 1195-1198. 
Zhang, J., Anderson, J.G., King, G., Priestley, K., and R. Robinson (1989). Later aftershocks 

of the March 2, 1987 Edgecumbe, New Zealand, earthquake, Eos, 70, no. 43, 1210. 

C-48 



Zhang, P., Mao, F., and D.B. Slemmons (1989). Geometry and displacement of the surface 
rupture zone associated with the 1954 Dixie Valley, Nevada, earthquake, Seism. Res. Letters, 
60, 30. 

Zhang, P., Molnar, P., Burchfiel, B.C., Royden, L., Wang, Y., Deng, Q., and F. Song (1988). 
Bounds on the Holocene slip rate of the Haiyuan fault, north-central China: Quaternary 
Research, 30, 151-164. 

Zhang, S., and B. Liu (1978). Seismic geological characteristics of Tonghai earthquake in 1970: 
Scientia Geologica Sinica, 4, 323-335. 

Zhang, W., Jiao, D., Zhang, P., Molnar, P., Burchfiel, B.C., and Q. Deng (1987). Displacement 
along the Haiyuan fault associated with the great 1920 Haiyuan, China, earthquake, Bull. 
Seism. Soc. Am. , 77, 117-131. 

Zhang, Y., and S. Ge (1980). Preliminary study of the fracture zone by 1931 Fuyun earthquake 
and the features of neotectonic movement, Seismology Geology, 2, 31-37. 

Zhao, L.S., and D. V. Helmberger (1993 (in review)). Source estimation from broadband regional 
seismograms, Bull. Seism. Soc. Am. 

Zhou, H. (1987). Moment magnitudes of historical earthquakes in China, Earthquake Research 
in China, 1, no. 3., 347-360. 

Zhou, H-L., Allen, C.R., and H. Kanamori (1983). Rupture complexity of the 1970 Tonghai and 
1973 Luhuo earthquakes, China, from P-wave inversion, and relationship to surface faulting, 
Bull. Seism. Soc. Am., 73, 1585,'."1597. 

Zhou, H-L., Liu, H-L., and H. Kanamori (1983). Source processes of large earthquakes along 
the Xianshuihe fault in southwestern China, Bull. Seism. Soc. Am., 73, 537-551. 

Zhou, R.-Q., Yu, W.-X., Gu, Y.-S., and X.-Z. Yao (1990). A study on rupture zone of the 1988 
Gengma earthquake with magnitude 7.2 in Yunnan Province, Seismology Geology, 12, 291-
302. 

Zhou, Y., and K.C. McNally (1990). Spatial-temporal variation of seismicity associated with the 
1986 Mt. Lewis, California earthquake, Eos, 71, no. 43, 1452. 

Zhou,, Y., McNally, K.C., and G.D. Nelson (1989). A remarkable fornshock-mainshock
aftershock sequence: Mt. Lewis, California earthquake (ML=5.8) 31 March 1986, Eos, 70, 
no. 43, 1229. 

Zhou, Y., McNally, K.C., and T. Lay (1993). Analysis of the 1986 Mt. Lewis, California, 
earthquake: preshock sequence-mainshock-aftershock sequence, Phys. Earth Planet. Imeriors, 
75, 267-288. 

Zohoorian Izadpanah, A.A., Mohajer-Ashjai, A., Salehi Rad, M.R., Taghizadeh, Gh.A., and A. 
Kabiri (1981). Damage distribution and aftershock sequence of Zarand earthquake of 19 
December 1977, J. Eanh Space Physics, 10, no. l and 2, 25-42. 

C-49 


