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John W. Whitney, Susan S. Olig, M.EERI, and Gabriel R. Toro, M.EERI 

We present a methodology for conducting a site-specific probabilistic analysis 
of fault displacement hazard.  Two approaches are outlined.  The first relates the 
occurrence of fault displacement at or near the ground surface to the occurrence 
of earthquakes in the same manner as is done in a standard probabilistic seismic 
hazard analysis (PSHA) for ground shaking.  The methodology for this approach 
is taken directly from PSHA methodology with the ground motion attenuation 
function replaced by a fault displacement attenuation function.  In the second 
approach, the rate of displacement events and the distribution for fault 
displacement are derived directly from the characteristics of the faults or geologic 
features at the site of interest.  The methodology for probabilistic fault 
displacement hazard analysis (PFDHA) was developed for a normal faulting 
environment and the probability distributions we present may have general 
application in similar tectonic regions.  In addition, the general methodology is 
applicable to any region and we indicate the type of data needed to apply the 
methodology elsewhere. 
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INTRODUCTION  

Probabilistic seismic hazard analysis (PSHA) has been used for evaluation of ground 
shaking hazards and establishing seismic design parameters since its development in the late 
1960s and early 1970s (Cornell 1968, 1971).  The effects of ground shaking, notably soil 
liquefaction and landslides, have also been analyzed probabilistically in several studies (e.g., 
Power et al. 1991).  In contrast, probabilistic methods have not been applied to any great 
extent in the evaluation of fault rupture hazard.  In part, this may be because the primary 
method for mitigating fault displacement hazard is avoidance, an option not available for 
ground shaking hazard.  For facilities that cannot use avoidance, notably pipelines, 
deterministic hazard evaluations are typically used because the hazard mitigation design 
solutions are not greatly sensitive to the amount of displacement.  For other facilities, such as 
roads, the design solution is often to accept the risk of displacement and plan for rapid post-
earthquake repair. 

There are situations where a facility may not have the option of complete avoidance, and 
where the design solutions are sensitive to the amount of displacement.  One such facility is 
the potential high- level nuclear waste repository that is proposed for Yucca Mountain, 
Nevada.  A number of block bounding and minor faults and a complex pattern of fracturing 
have been identified within the proposed repository footprint and across access routes.  
Because of the large area require for the repository, it is not possible to avoid all faults.  
Design of pre-closure waste handling and emplacement facilities, as well as evaluation of 
post-closure performance requires an assessment of the hazard posed by potential 
displacements on these faults and fractures. 

The design process for the repository is based on a probabilistic treatment of hazards, 
such as ground shaking, to establish design levels that have an acceptably low probability of 
being exceeded.  The methodology for probabilistic assessment of ground shaking hazard is 
well established in the design community and is described in detail in several of documents 
(e.g., NRC 1988, SSHAC 1997).  In contrast, the methodology for probabilistic assessment 
of fault displacement hazard was not as well established.  Thus, a significant effort went into 
the development of a probabilistic fault displacement hazard analysis (PFDHA) methodology 
for the project.  The complete study is documented in CRWMS M&O (1998).  An overview of 
the complete PSHA analysis and a summary of the results are presented in Stepp et al. (2001).  
This paper describes the formulation of a PFDHA methodology and the various probabilistic 
models that can be used to assess the hazard.  The paper summarizes work performed by the 
many authors in their roles as experts for the Yucca Mountain project and in subsequent 
applications of the methodology to other sites. 

Two basic approaches are presented for PFDHA.  The first, called the earthquake 
approach, is derived from the PSHA formulation for ground shaking hazard and relates the 
occurrence of displacement on a feature at a site at or near the ground surface explicitly to the 
occurrence of earthquakes (fault slip at depth) in the site region.  The feature in question may 
be a fault, a minor shear, a fracture, or unbroken ground.  The second, called the 
displacement approach, utilizes the characteristics of fault displacement observed at the site 
of interest to quantify the hazard without invoking a specific mechanism for their cause.  In 
this paper we describe the two approaches for PFDHA developed for the Yucca Mountain 
project focusing on aspects that have a wider application to assessing fault displacement 
hazards at other sites.  We also list in the Appendix various probability distributions based on 
regional or global data sets that are illustrative of the types of distributions needed to perform 
a PFDHA and may be applicable to assess hazards in regions characterized by normal 
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faulting.  Application of this methodology to the assessment of fault displacement hazard 
should include a formal treatment of uncertainties using the approaches that have become 
standard for ground motion PSHA studies. 

EARTHQUAKE APPROACH FOR PFDHA 

The earthquake-approach formulation that is used for PFDHA is directly taken from that 
for ground motion PSHA.  PSHA is usually expressed in terms of the annual rate of 
earthquakes in which a ground motion parameter, Z, (e.g., peak ground acceleration, peak 
response spectral acceleration) exceeds a specified level, z at site k.  This rate of exceedance, 
νk(z), is computed by the expression (Cornell 1968, 1971): 
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where αn(m0) is the rate of all earthquakes on source n above a minimum magnitude of 
engineering significance, m0; fn(m) is the probability density of earthquake size between m0 
and a maximum earthquake that source n can produce, mn

u; fkn(rm) is the conditional 
probability density function for distance from site k to an earthquake of magnitude m 
occurring on source n; and P(Z>zm,r) is the conditional probability that, given an 
earthquake of magnitude m at distance r from site k, the peak ground motion will exceed 
level z.  [In practice, the density functions fn(m) and fkn(rm) are replaced by discrete mass 
functions Pn(M=mi) and Pkn(R=rjmi), and the integrals of Equation 1 are replaced by 
summations.]  The term P(Z>zm,r) relates the occurrence of ground motion at the site to the 
occurrence of an earthquake through a ground motion attenuation model. 

Using the formulation of Equation 1, an earthquake-based approach to assessing the rate 
at which the displacement, D, on a feature exceeds a specified amount, d, during a single 
event can be expressed as: 
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where Pkn
*(D>dm,r) is an “attenuation function” for fault displacement at or near the 

ground surface.  We use P* because the displacement attenuation function differs from the 
usual ground motion attenuation function in that it contains two terms, specifically: 

),,(),(),(* SlipSlip rmdDPrmPrmdDP knknkn >⋅=>   (3) 

The first term of Equation 3, Pkn(Slipm,r), is the conditional probability that some 
amount of displacement occurs at k as a result of an earthquake (fault slip at depth) on source 
n of magnitude m with rupture at a distance of r from the site.  In PSHA it is assumed that 
each earthquake produces some level of ground shaking at site k [Pkn(shakingm,r) = 1], 
though it may be very weak.  However, not every earthquake results in fault offset at every 
site.  The trace of the principal fault rupture may be discontinuous and distributed ruptures 
occur at discrete locations. 

The second term of (3) defines the conditional distribution of the amount of fault 
displacement given that slip occurs.  This probability is computed using a continuous 
distribution with parameters that are functions of m and perhaps r in the same manner that 
ground motion attenuation relationships typically define lognormal distributions for Z as 
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functions of m and r.  The conditional probability Pkn(D>dm,r,Slip) is given subscripts 
because it may depend on more than just m and r, unlike the standard ground motion 
attenuation relationship.  For example, the displacement may depend on the relative location 
of the site along the length of the fault rupture. 

The parallelism between PSHA and the earthquake approach to PFDHA is illustrated 
schematically on Figures 1 and 2.  Figure 1 shows the steps in PSHA.  First, potential seismic 
sources are identified, represented in this case by a fault.  The rate of occurrence of 
earthquakes of various sizes on the fault is characterized by a recurrence relationship that 
defines αn(m0) and fn(m) in (1).  The conditional distribution fkn(rm) is computed by 
randomly locating a rupture appropriate for magnitude m on the fault (illustrated by the heavy 
line) and computing the distance from the rupture to the site.  The conditional probability of 
exceeding ground motion level z, P(Z>zm,r), is obtained using a ground motion attenuation 
relationship that specifies the conditional probability distribution for Z (peak acceleration in 
this example) as a continuous function of m and r.  These are combined to produce a ground 
motion hazard curve that relates the ground motion level z to the rate that it is exceeded. 

 
Figure 1. Schematic diagram illustrating the components of PSHA for ground shaking. 

Figure 2 shows the equivalent steps in the earthquake approach to PFDHA.  Source 
identification and characterization of the rate and size distribution of earthquakes are 
identical to those steps in PSHA.  The distance distribution is computed in the same manner 
as for PSHA.  However, additional information on the geometry of the ruptures may be 
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retained for defining the displacement, as will be described subsequently.  The conditional 
probability of exceeding displacement d, Pkn

*(D>dm,r), is computed using a displacement 
attenuation relationship that differs from that for ground motion in that there is a finite 
probability that no slip will occur [equal to the conditional probability 1-Pkn(Slipm,r)].  The 
probability distributions are again combined to develop a displacement hazard curve that 
relates the displacement d at point k in a single event to the rate that it is exceeded.  The 
characteristics of displacement hazard curves are described in the discussion section of this 
paper. 

 
Figure 2. Schematic diagram illustrating the components of the earthquake approach to PFDHA. 

At this point we introduce the distinction between two types of fault displacement : 
principal faulting and distributed faulting.  These are illustrated on Figure 3, which shows the 
characterization of principal and distributed faulting for several Basin and Range earthquakes.  
Principal faulting is slip along the main plane (or planes) of crustal weakness responsible for the 
release of seismic energy during the earthquake.  Where the principal fault rupture extends to the 
surface, it may be represented by displacement along a single narrow trace or over a zone that 
may range from a few to many meters wide.  The faults of concern are those that may produce 
earthquakes (i.e., are directly related to the primary source of energy release).  Principal faulting 
is the type of fault displacement hazard that has typically been evaluated in the past. 
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Distributed faulting is defined as displacement that occurs on other faults, shears, or 
fractures in the vicinity of the principal rupture in response to the principal faulting.  It is 
expected that distributed faulting will be discontinuous in nature and occurs over a zone that 
may extend outward several tens of meters to many kilometers from the principal rupture.  A 
fault that can produce principal rupture may also undergo distributed faulting in response to 
principal rupture on other faults.  These distinctions are important because different models and 
data sets are used to assess the terms of Equation 3 depending on the type of faulting being 
evaluated, principal or distributed. 

 
Figure 3. Example mapped displacement patterns showing principal and distributed faulting (data 
from Pezzopane and Dawson, 1996). 
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MODELS FOR PRINCIPAL FAULTING 

Conditional Probability of Slip 

The term Pkn(Slipm,r) for principal faulting expresses the conditional probability that 
the rupture on the fault causing the earthquake reaches the surface (or near the surface for 
assessments of underground facilities) at location k on that fault.  This probability can be 
computed using either simulation or empirical models. 

Where seismic sources are represented as planar faults in a standard PSHA, the 
conditional probability distribution for the distance from the earthquake rupture to the site is 
typically computed numerically.  For an earthquake of magnitude mi the length and down-dip 
width are computed from empirical relationships.  The rupture area is then randomly placed 
on the fault plane according to specified distributions and the distance to the site computed 
for each location to construct Pkn(R=rjmi).  Typically, it is assumed that the rupture location 
is uniformly distributed along the length of the fault.  The down-dip location of the rupture is 
based on the observed hypocenter depth distribution for the region and the hypocenter is 
assumed to be located within the rupture area according to a specified distribution, such as 
uniformly distributed in the lower half of the rupture.  For the case where site k is located on 
the fault trace, then Pkn(Slipm,r) in Equation 3 is equal to Pkn(R=0mi). 

As an alternative, an empirical approach can be used to compute the conditional 
probability that the rupture will reach the surface.  Wells and Coppersmith (1993), dePolo 
(1994), and Pezzopane and Dawson (1996) present data sets that define the rate at which 
earthquakes of various magnitudes rupture the surface.  Wells and Coppersmith (1993) used a 
logistic regression model to evaluate the conditional probability of surface rupture.  The 
logistic regression model (e.g., Hosmer and Lemeshow 1989) is a commonly used model for 
assessing the outcome of a dichotomous variable − given the occurrence of an earthquake, 
surface rupture either occurs or does not occur.  The probability of a positive outcome (the 
occurrence of principal surface rupture given the occurrence of the earthquake) is given by the 
expression (Wells and Coppersmith 1993): 
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where m is earthquake magnitude, and parameters a and b are estimated from the data.  
Figure 4 presents the results of fitting Equation 4 to the various data sets presented by 
Pezzopane and Dawson (1996) for surface rupture as a function of earthquake magnitude for 
Basin and Range normal faulting earthquakes.  Also shown for comparison is the relationship 
obtained by Wells and Coppersmith (1993) for a worldwide data set of all slip types.  The 
parameters of these models are listed in the Appendix.  These conditional distributions 
combined with a conditional distribution for the location of the rupture along the length of 
the fault provides an assessment of Pkn(Slipm,r) for principal rupture. 

Conditional Probability of Exceedance 

The conditional probability that the displacement will exceed a specified value d given 
slip occurs from a magnitude m earthquake at a distance r from the site, Pkn(D>dm,r,Slip), 
can be assessed using models built on empirical data, much as ground motion attenuation 
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relationships are constructed.  The conditional probability Pkn(D>dm,r,Slip) represents the 
probability that at a specific point k on a rupture the fault displacement exceeds d.  Figure 5 
shows the variation in amount of surface displacement along the principal rupture for 
historical Basin and Range normal faulting events compiled by Wheeler (1989).  The 
displacements are normalized by the maximum displacement, MD, measured for each 
rupture.  These data were used to define a distribution for the ratio D/MD.  The distribution 
for D/MD is expressed as a function of the location of point j along the rupture, denoted by 
the ratio x/L, where x is the distance from one end of the rupture to point j and L is the length 
of rupture.  The distribution was constructed by assuming that D/MD is limited to the range 
of 0 to 1 and f(D/MDx/L) is symmetric about x/L = 0.5.  Although the rupture patterns 
shown on Figure 5 are not symmetric about x/L = 0.5, one does not know before hand 
whether one is at the end of the rupture with the larger or smaller displacements.  Combining 
the data symmetrically about x/L = 0.5 results in a larger variability in the model to reflect 
this uncertainty. 

 
Figure 4. Empirical models for conditional probability of surface rupture for principal faulting 
obtained from Equation 4 with parameters determined from the indicated data sets.  (The parameters 
are listed in the Appendix.) 
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Figure 5. Principal faulting displacement distributions for the five historical ruptures presented in 
Wheeler (1989). 

A very flexible distribution for modeling variables that have a fixed range is the beta 
distribution.  When the variable y is limited to the range 0 ≤ y ≤ 1, the beta distribution has the 
form: 

∫ −− −
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where Γ( ) is the gamma function and F(y) is the cumulative probability that variable Y is less 
than or equal to a specific value y.  The data shown on Figure 5 were smoothed by eye by J. 
McCalpin to form three curves representing the minimum, median, and maximum values of 
the ratio D/MD as a function of x/L.  These curves are shown on the left of Figure 6. Setting y 
= D/MD, and assuming that the minimum curve represents the 5th percentile and the 
maximum curve represents the 95th percent ile, beta distribution parameters were defined as 
functions of x/L (see the Appendix).  Shown on the right of Figure 6 are examples of the 
resulting cumulative distribution functions (CDF’s) for D/MD. 



11 

 
Figure 6. Distribution for the ratio D/MD based on the data in Wheeler (1989).  (a) Curves defining 
the range in D/MD smoothed by eye by J. McCalpin for the Yucca Mountain PSHA using the data 
shown on Figure 5.  (b) Cumulative distributions for beta distributions fit to the curves in (a).  The 
dots indicate the values from (a). 

An evaluation of the maximum displacement during an individual earthquake is needed to 
complete the assessment of Pkn(D>dm,r,Slip).  Empirical distributions for MD as a function 
of earthquake magnitude have been published recently by Wells and Coppersmith (1994).  
The conditional probability of exceedance, Pkn(D>dm,r,Slip), can be obtained by 
convolving Equation 5 with the lognormal distribution for MD.  Note that the computation of 
Pkn(D>dm,r,Slip) requires assessment of the ratio x/L for each rupture location.  As a result, 
the conditional probability of slip Pkn(Slipm,r) and the conditional probability of 
exceedance Pkn(D>dm,r,Slip) must be computed jointly. 

As an alternative, the displacement along the length of the rupture can be normalized by 
the average displacement that occurred, AD, and the distribution for D/AD fit with an 
appropriate probability model.  Pkn(D>dm,r,Slip) is then computed by convolving the 
distribution for D/AD with an empirical distribution for AD as a function of earthquake 
magnitude (e.g., Wells and Coppersmith 1994). 

More extensive data sets of mapped displacement distributions for historical ruptures has 
been compiled and analyzed by McCalpin and Slemmons (1998) and Hemphill-Haley and 
Weldon (1999).  Figure 7 shows the data from McCalpin and Slemmons (1998) displayed in 
terms of D/MD and D/AD.  The data for D/MD were fit with a beta distribution model with 
parameters that are functions of x/L (see the Appendix).  The resulting percentiles of the 
distribution are shown on the upper panel of Figure 7.  The ratio D/AD is limited to positive 
values and may be skewed to the right.  A flexible distribution of this type is the gamma 
distribution, which has the cumulative form:  
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where Γ( ) is again the gamma function.  Setting y equal to D/AD and making the parameters 
a and b functions of x/L, we obtain the percentiles shown on the lower panel of Figure 7.  The 
relationships for parameters a and b obtained by fitting the data shown on Figure 7 are listed in 
the Appendix. 

 
Figure 7. Combined data sets for D/MD and D/AD from McCalpin and Slemmons (1998) for 11 
normal faulting earthquakes.  The curves show the percentiles of the beta (D/MD) and gamma (D/AD) 
distributions fit to the data. 

Figure 8 shows the conditional probability of exceedance, Pkn(D>dm,r,Slip), for three 
values of x/L and for magnitude 6 and 7 earthquakes.  The complementary-cumulative 
distributions were obtained by convolving the distributions for D/MD or D/AD shown on 
Figures 6 and 7 with lognormal distributions for MD or AD from Wells and Coppersmith 
(1994) for normal faulting earthquakes.  The variability between the different conditional 
probabilities of exceedance curves shown on Figure 8 results from the broader distribution 
shown on Figure 7 compared to that on Figure 6, differences between the magnitude scaling 
in the Wells and Coppersmith (1994) relationships for AD and MD, and differences in the 
shape of the gamma and beta distributions.  In addition, the relationships shown on Figure 6a 
were constrained to approach zero displacement at the ends of the rupture while those shown 
on Figure 7a were not constrained, allowing for the potential of large displacements very near 
the end of the fault rupture.  These differences are analogous to variability in the conditional 
probability of exceeding ground shaking levels computed using alternative ground motion 
attenuation models in a ground shaking PSHA and emphasize the importance of considering 
alternative approaches and models in performing a PFDHA. 
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Figure 8. Conditional distributions for the probability of exceeding various values of principal 
faulting displacement.  Pkn(D>dm,r,Slip) is computed by convolving distributions for D/MD and 
D/AD shown on Figures 6 and 7 with lognormal distributions for MD and AD for normal faulting 
earthquakes from Wells and Coppersmith (1994).  Plots are shown for M 6 and 7 and for x/L = 0.05, 
0.25 and 0.5. 

MODELS FOR DISTRIBUTED FAULTING, EARTHQUAKE APPROACH 

Conditional Probability of Slip 

The term Pkn(Slipm,r) for distributed faulting expresses the conditional probability that 
surface (or near-surface) displacement occurs on a feature at location k due to an earthquake 
occurring on some other source.  Distributed slip on both minor and major faults adjacent to 
the principal faulting rupture is presumed to be causally linked to the primary rupture, but the 
causal mechanism usually is not sufficiently understood, and there may be multiple 
mechanisms at work.  We have taken an empirical approach to define this probability 
function, using data from historical ruptures. 

Pezzopane and Dawson (1996) present a set of maps of historical ruptures that have 
occurred in the extensional cordillera of the western United States on which they indicate the 
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location of distributed (secondary) ruptures around the principal (primary) fault rupture.  
Examples of these ruptures are shown on Figure 3.  Several patterns are observable from these 
data.  The amount of distributed rupture increases with the size of the earthquake and decreases 
with distance from the principal rupture.  In addition, the density of distributed ruptures is 
greater in the hanging wall than in the footwall of the principal (normal fault) ruptures. 

The data presented by Pezzopane and Dawson (1996) were digitized by constructing a raster 
scan of each map using a 0.5-km × 0.5-km pixel size.  The number of pixels containing 
distributed faulting divided by the total number of pixels within the faulting area gives a 
measure of rate of occurrence of distributed rupture for each earthquake.  Figure 9 presents the 
data obtained from analyzing the rupture maps of Pezzopane and Dawson (1996).  The data 
represent 13 earthquakes ranging in magnitude from M 5.5 to M 7.4.  The data are plotted in 
terms of rate of distributed faulting as a function of distance from the principal rupture and 
location on the hanging wall or footwall.  The rate is computed as the number of pixels with 
distributed faulting divided by the total number of pixels within 0.5-km distance increments 
from the principal rupture.  Each point represents the rate of distributed rupture at a specific 
distance for a single earthquake, with the earthquake magnitude indicated by the symbol type.  
The rows of data at the bottom of each plot represent data from an individual earthquake where 
there were zero observations of distributed faulting at a given distance from the principal 
rupture. 

The data shown on Figure 9 also represent the outcome of a dichotomous variable — 
distributed rupture either occurs or does not occur at each point (represented in this case by a 
0.25 km2 pixel).  The logistic regression model was used to compute the conditional probability 
of distributed rupturing occurring at a point.  The data were fit with a functional form that 
incorporates the observed trends of decreasing frequency with increasing distance, increased 
density with increasing magnitude, and lower frequency and faster decrease in frequency with 
increasing distance in the footwall than in the hanging wall: 

)ln()()(

)( )(

)(

54321with 

1
rupture surface ddistribute

CrhCmCCCxf

e
e

P xf

xf

+⋅+++=

+
=

   (7) 

where m is again earthquake magnitude, r is the distance to the principal rupture (km), and h 
is an indicator variable taking the value of 1 for the hanging wall side of the rupture and 0 for 
the footwall side of the rupture.  The dashed curves shown on Figure 9 are the result of fitting 
Equation 7 to the data shown on the figure.  These curves represent a balance between the 
nonzero frequency data points scattered throughout the plots and the zero frequency data 
represented by the rows of points at the bottom of the plots. 
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Figure 9. Conditional probability of slip, Pkn(Slipm,r), for distributed faulting.  Symbols show the 
rate of occurrence of distributed faulting for individual earthquakes (data from Pezzopane and 
Dawson, 1996).  The curves show Pkn(Slipm,r) for specific magnitudes using Equations 7 and 8. 

The maps compiled by Pezzopane and Dawson (1996) show a large variability in the 
density of distributed faulting between earthquakes of similar magnitude, indicating that there 
may be other important factors not accounted for by Equation 7.  Improving the fit of a 
predictive model usually requires adding additional terms using other explanatory variables 
and/or cross products of the variables.  However, it is not clear what other variables to add in 
this case.  An alternative approach is to represent the unknown variables by a random variate 
(e.g., Brillinger and Preisler, 1983).  Equation 7 is modified to the form: 

ii ztCrhCmCCCxf  54321 ++⋅+++= )ln()()(    (8) 

where zi is a normal variate with 0 mean and unit variance representing a random effect for 
the ith event and τ is the measure of variability from event to event.  This model assumes that 
there are unknown characteristics not accounted for in Equation 7 that vary randomly from 
earthquake to earthquake.  Brillinger and Preisler (1983) present a general approach for 
estimating the coefficients of Equation 8 using maximum likelihood combined with Gaussian 
quadrature.  The resulting fit to the data is shown by the solid lines on Figure 9 for the case of 
zi = 0 (the average behavior).  Hosmer and Lemeshow (1989, page 141) define a goodness of 
fit statistic, Ĉ , as a Pearson χ2 statistic for a table of observed and predicted frequencies for 
grouped data.  Use of this statistic for the data grouped by each earthquake indicates that 
Equation 8 results in an improved prediction of the observed frequencies of distributed 
faulting compared to Equation 7.  The parameters of both are listed in the Appendix. 

The model described above assumes that the mapping data for the historical ruptures is 
complete.  Incomplete mapping would lead to an underestimate of the rate of distributed rupture.  
However, this possible deficiency is counterbalanced by the assumption in our application that 
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the occurrence of distributed rupture anywhere within a 0.5 km ×0.5 km square is considered to 
be the same as the occurrence of rupture at the point of interest.  This assumption is likely to 
produce an overestimate of the rate of occurrence at a point (such as a building footprint with an 
area << 0.25 km2).  We postulate that the use of the large pixel size more than compensates for 
the effect of incomplete mapping. 

We also investigated the influence of the angle θ  between the strike of the fault with the principal 
rupture and the strike of the individual faults with distributed rupture on the relative rate of distributed 
slip.  The digitized maps of historical ruptures of Pezzopane and Dawson (1996) were analyzed 
to calculate the strike azimuths of the principal faulting trace and the individual distributed 
faulting traces by minimizing the squared distance from the fault trace digitization points 
measured normal to the strike line.  The top plot of Figure 10 shows the data in terms of the 
frequency of ruptures in each 5° increment of θ  (the number of ruptures in each increment 
divided by the total number of ruptures).  The number of digitization points for each distributed 
rupture trace is indicated on the figure.  It is expected that the estimate of the true strike of a 
trace is improved as the number of digitization points is increased. 

 
Figure 10. Effect of azimuth on frequency of distributed slip.  (a) Relative frequency of distributed 
slip as a function of the angle, θ between the strike of the distributed fault and the strike of the 
principal rupture.  (b) Results of fitting Equation 9 to the data in (a) normalized to give a probability 
of 1 at θ = 0. 

The frequency data plotted at the top of Figure 10 were fit with the functional form: 
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2
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where int( ) is the integer function [i.e., int(4/5) = 0, int(7/5) = 1].  The parameters obtained for 
the various data sets are listed in the Appendix.  Equation 9 can be used to assess the relative 
probability of slip as a function of θ  by assuming that the probability is unity at θ = 0 (i.e., 
setting C1 to 0 in Equation 9).  The lower plot on Figure 10 shows the resulting relationships for 
the different data sets. 

Conditional Probability of Exceedance 

Unlike principal faulting, there are very limited data for the amount of slip that occurs on 
the secondary features that move during distributed faulting.  For example, in compiling their 
database of maps of historical ruptures, Pezzopane and Dawson (1996) were able to find many 
fewer reported offsets on distributed rupture features.  Previous evaluations of distributed 
faulting (McGuire et al. 1990, Coppersmith and Youngs 1992) were also able to find only 
limited data for the amount of slip that occurs in distributed faulting.  Typically the principal 
rupture is mapped and described in much greater detail than the distributed ruptures, which are 
more numerous and widely dispersed, yet smaller in size, and unlikely to be preserved for older 
events. 

Figure 11 shows the data compiled by C. dePolo for the ratio of the displacement on a 
distributed rupture, Ddistributed, to the maximum displacement on the associated principal 
rupture, MDprincipal, for normal faulting earthquakes.  Also shown on Figure 11 are curves that 
are postulated to represent a high percentile of the distribution of possible displacements that 
may occur on a distributed rupture (in the range of the 85th to 95th percentile of the 
distribution for Ddistributed /MDprincipal).  The curves were constructed to conform to the general 
trends observed in the density of distributed faulting data; that is, greater amplitude in the 
hanging wall and a more rapid falloff in amplitude with distance in the footwall.  The 
equations describing these curves are listed in the Appendix.  The distribution for 
Ddistributed/MDprincipal can then be defined by specifying a probability distribution form and 
anchoring the appropriate percentile of that distribution to the curves shown on Figure 11.  
For example, we have found that a gamma distribut ion (e.g., Equation 6) with a shape 
parameter, a, near 2.5 adequately describes the distribution of individual displacements 
observed on a feature.  The 95th percentile of a gamma distribution with a equal to 2.5 occurs 
at x/b equal to 5.535.  Setting x in Equation 6 equal to Ddistributed /MDprincipal, the value of 
parameter b at a given distance from the principal rupture is found by dividing the value of 
Ddistributed /MDprincipal shown on Figure 11 by 5.535.  The conditional probability of exceedance, 
Pkn(D>dm,r,Slip), is then obtained by convolving the resulting gamma distribution for 
Ddistributed /MDprincipal with a distribution for MD on the principal rupture (such as the lognormal 
distributions given by Wells and Coppersmith 1994) in the same manner as was done for 
principal faulting.  If the curves shown on Figure 11 are assumed to represent the 85th percentile, 
then parameter b at a given distance from the principal rupture is found by dividing the value 
of Ddistributed /MDprincipal shown on Figure 9 by 4.058.  Other distributions could also be used, 
such as a log normal with a specified coefficient of variation. 

An alternative approach for specifying Pkn(D>dm,r,Slip) utilizes solely the 
characteristics of the feature of interest.  These methods will be described in the next section 
outlining the displacement approach. 
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Figure 11. Data for larger displacements on distributed ruptures divided by the maximum 
displacement on the principal rupture.  The curves represent a high percentile (e.g., 85th to 95th) of the 
distribution for Ddistributed /MDprincipal.  The data were compiled by C. dePolo for the Yucca Mountain 
PSHA. 

DISPLACEMENT APPROACH FOR PFDHA 

The relationships for the rate of exceeding a specified level of displacement can be 
written in simplified form as: 

)Slip()( dDPd DE >⋅= λν     (10) 

where λDE is the rate of displacement events and P(D>dSlip) is the conditional probability that 
the displacement in a single event will exceed value d, given that slip on the feature occurs.  In 
Equation 10 the rate of displacement events on the feature is directly specified without 
identifying the causal mechanism of these events.  Because the source is not treated explicitly, 
the principal and distributed rupture distinctions are not needed and the conditional probability 
function P(slipevent) is subsumed into the specification of λDE.  Ideally, λDE would be 
estimated from the age dates for ruptures of a fault and P(D>dSlip) would be estimated from 
the distribution of measured slip for these ruptures.  However, these data are often not available 
and other approaches are needed to assess λDE and P(D>dSlip).  These approaches are 
described below. 

RATE OF DISPLACEMENT EVENTS 

There are two techniques for estimation of λDE: direct estimation of recurrence interva ls (the 
inverse of λDE) from paleo-earthquake age data and slip rate data.  Where discrete slip events on 
a fault can be dated, or if the number of events that have occurred within a known time interval 
can be identified, then the rate of displacement events can be directly assessed.  This is the same 
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approach used to assess the rate of large earthquakes on a fault from paleoseismic data.  Where 
these data are not available, one usually can estimate fault slip rate, SR, by dividing the amount 
of offset for a marker horizon of a known age by the elapsed time.  This latter method 
assumes that the rate of displacement events has been uniform over the elapsed time since the 
creation of the marker horizon. 

When the slip rate and the average slip in a faulting event, DE

−
, are known, then λDE can 

be estimated by: 

λDE ESR D=
−

/       (11) 

The use of Equation 11 requires an estimate of the average displacement per event, DE

−
.  

For some features (typically those that may be locations of principal faulting), this may be 
assessed directly from measured offsets exposed by trenching.  For other features, scaling 

relationships that relate DE

−
 to a characteristic of the feature of interest, such as total length or 

cumulative displacement can be used. 

Data summarized by Abercrombie (1995, her Figure 11), among others, provide an 
empirical basis for relating seismic moment to the cube of source dimension (without any 
assumption about stress drop) over the range in source dimension from 10 m to at least 10 
km.  The source dimensions are assessed primarily from evaluation of corner frequencies 
from shear-wave spectra in terms of the radius, r, of an equivalent circular fault.  Based on 
the seismic moment equation, these data imply that the average displacement on the fault 
plane, U , scales linearly with r.  In a similar fashion, U  can be inferred to scale linearly 
with rupture length, LR, for roughly equi-dimensional fault ruptures in this range of source 
dimensions, leading to a scaling relationship of the form: 

RLU α=        (12) 

where α is a constant of proportionality.  Cowie and Scholz (1992) also proposed a scaling 
relationship of the form of Equation 12 and obtain values of α ranging from 1.5×10-5 m/m for 
continental plate boundary earthquakes to 1×10-4 m/m for intraplate earthquakes.  In addition, 
the moment magnitude relationship of Hanks and Kanamori (1979) together with the 
empirical observation that moment magnitude scales nearly directly with the log of fault area 
(Wyss 1979, Wells and Coppersmith 1994) leads to Equation 12.  In order to use Equation 
12, we make the assumption that the rupture length, LR is equal to the total length of the fault 
in question, LTotal, which allows one to use the mapped length of a feature to estimate U .  

We also need to assess the relationship between the average displacement at the surface, DE

−
, 

and the average displacement on the fault plane, U .  Wells and Coppersmith (1994) present 
data for the ratio U /AD, where AD is again the average displacement at the surface, with a 

modal value of 1.32.  If we assume that DE

−
 is equivalent to AD, then we obtain the scaling 

relationship: 

TotalE LD 'α=      (13) 

The value of α ′ derived from the assessments of Cowie and Scholz (1992) ranges from 
1.2×10-5 to 7.7×10-5.  We obtained a value of 3.7×10-5 for faults in the Yucca Mountain area 
from estimates of U  and LTotal for 19 faults (CRWMS M&O 1998). 
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Another approach to developing a scaling relationship is to relate DE

−
 to the cumulative 

offset on the feature, Dcum .  Cowie and Scholz (1992) also present relationships between Dcum 
and LTotal of the form  

Totalcum L?D =      (14) 

More recently, rigorous statistical testing by Clark and Cox (1996) of 11 worldwide data 
sets for faults ranging in length from tenths of a meter to hundreds of kilometers confirm a 
relationship of the form of Equation 14, with the value of γ dependent on the data set 
analyzed.  These data also indicate that γ  tends to decrease with decreasing fault length.  
Using Equations 13 and 14 and the arguments presented above, we obtain the scaling 
relationship: 

cumE DßD =      (15) 

For faults in the vicinity of Yucca Mountain, we obtain values for β  in the range of 
0.0014 to 0.019.  Using a similar approach and the data set of Carter and Winter (1995) for 
faults in the vicinity of Los Alamos, New Mexico, we obtain a β  of 0.007. 

If both fault slip rate, SR, and the recurrence interval for displacement events, 1/λDE, can 

be estimated from the available data, then Equation 11 can be used to estimate DE

−
. 

CONDITIONAL PROBABILITY OF EXCEEDANCE 

The conditional probability of exceedance, P(D>dSlip), specifies the probability that the 
displacement in a slip event at site k exceeds a specified amount d.  The ideal data set to 
evaluate this distribution is a set of repeated slip events at a single location.  Trenching data 
collected as part of the studies for the Yucca Mountain project provide measurements of 
multiple displacements at 19 locations.  For each trenching site we computed the average 

displacement per event, DE

−
, for paleo-earthquakes, normalized the data at each site by the 

site average, and then pooled the data.  We then tested several distribution forms and found 

that a gamma distribution provided the best fit to the pooled D/ DE

−
 data. 

Several other normalizing factors were also examined.  These include the average 
displacement for each fault estimated from paleoseismic data from the entire fault, ADpaleo; 
the average displacement for each fault estimated from the fault length and the Wells and 
Coppersmith (1994) empirical relationship between fault length and average displacement, 
ADW&C; and the cumulative fault displacement, Dcum .  Figure 12 shows the resulting pooled 

data sets and fitted distribution for D/ DE

−
, D/ADpaleo, D/ADW&C, and D/Dcum .  The parameters 

of these distributions are listed in the Appendix.  Each of these can be used to assess 

P(D>dSlip), with the appropriate estimate of the normalizing parameter ( DE

−
, ADpaleo, 

ADW&C, or Dcum). 

The distributions shown on Figure 12 could also be used to assess the conditional 
probability of exceedance on a distributed rupture in the earthquake approach with the 
appropriate normalizing parameter estimated from the characteristics of the fault at the site of 
interest. 
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Figure 12. Normalized distributions for displacement per event.  The normalizing parameters are: (a) 

DE

−
, the average displacement observed at a site of multiple displacements; (b) ADpaleo, the average 

displacement for a fault estimated from the paleoseismic data for the fault; (c) ADW&C, the average 
displacement for a fault estimated from fault length and an empirical relationship between length and 
average displacement; and (d) Dcum, the cumulative fault offset. 

DISCUSSION 

We have presented a framework for conducting a probabilistic assessment of fault 
displacement hazard at a specific site that is analogous to a probabilistic assessment of ground 
shaking hazard.  This framework is a straight forward extension of the probabilistic 
methodology for ground shaking hazard with the ground shaking effects conditional 
probabilistic model [P(Z>zm,r) in Equation 1] is replaced by probabilistic models for the 
amount of fault offset given the occurrence of an earthquake [P*(D>dm,r) in Equation 2].  In 
effect, ground motion attenuation relationships are replaced by “fault displacement attenuation” 
relationships.  These fault displacement attenuation relationships are in an early state of 
development as evidenced by the wide variety of approaches and probabilistic models that we 
have proposed.  The immaturity of these models leads to greater uncertainty in the computed 
fault displacement hazard than one would obtain for a ground motion assessment in the same 
tectonic environment, as indicated in the applications of this methodology (CRWMS M&O 
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1998, Olig et al. 1998, Braun 2000, Stepp et al. 2001).  Consequently, it is important that a 
formal treatment of uncertainty be incorporated into the application of the methodology.  
Uncertainty in hazard characterization is now a standard part of PSHA studies (see NRC 1988, 
SSHAC 1997) and the methodologies are directly transferable to PFDHA. 

A formal treatment of uncertainty was used in the application of the methodology described 
in this paper to the assessment of fault displacement hazard at Yucca Mountain, Nevada 
(CRWMS M&O 1998, Stepp et al. 2001) and Los Alamos, New Mexico (Olig et al. 1998) 
and the relative weighting of the models presented in this paper is documented in those 
studies.  Figure 13 shows the general form of the logic tree used in those studies to assess 
uncertainty in the PFDHA for principal faulting.  The first node addressed the use of the two 
alternative approaches.  Following the earthquake approach branch, there are four nodes that 
represent the uncertainty in characterizing the seismic source.  These nodes would be 
identical to those developed for a ground-shaking hazard PSHA.  The next two nodes on the 
earthquake approach branch address relative weighting of the alternative approaches for 
assessing the conditional probability of slip, Pkn(Slipm,r).  The last two nodes address 
weighting alternative approaches for assessing the conditional distributions for fault slip at a 
point, given an earthquake surface rupture.  The lower level of the logic tree outlines the 
uncertainty treatment for the displacement approach.  The first two nodes address the 
uncertainty in the displacement event recurrence and the last two nodes address uncertainty 
in characterizing the average displacement and the conditional distribution for displacement 
in a single event. 

 
Figure 13. Generalized logic tree for PFDHA. 
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Figure 14 shows example PFDHA results from the Yucca Mountain and Los Alamos 
studies.  Each plot shows the mean hazard curve and hazard curves corresponding to the 15th, 
50th, and 85th percentiles of the distribution for rate of exceedance.  The uncertainty in rate of 
exceedance is large at large displacement levels.  The large uncertainty arises because of the 
limited data sets that are available for characterizing the various probability distributions, 
particularly for distributed faulting hazard.  The distributions described above and listed in the 
Appendix were derived primarily for normal faulting earthquakes and, in some cases are 
focused on faulting in a limited region (e.g., faulting within Yucca Mountain, Nevada).  
Improvement in the models for surface faulting in this environment will require compilation of 
the appropriate data that describe the detained characteristics of faulting, particularly distributed 
faulting.  These improvements can come principally from detailed mapping of earthquake 
rupture patterns and fault offsets, providing the opportunity to develop better-constrained 
probability models. 

 
Figure 14. Example displacement hazard curves resulting from PFDHA calculations for sites on the 
Solitario Canyon fault at Yucca Mountain, Nevada and on a possible extension of the Rendija Canyon 
fault at Los Alamos, New Mexico.  Shown are the mean hazard curves and hazard curves 
corresponding to the 15th, 50th, and 85th percentiles of the distribution for rate of exceedance. 

The general methodology is applicable to all types of tectonic environments.  What are 
needed to perform PFDHA in regions of strike-slip or reverse faulting are fault displacement 
attenuation relationships for these types of earthquakes.  In particular, compilations and analysis 
of data for  slip distributions along the principal fault rupture (similar to the data shown of 
Figure 5 for normal faulting earthquakes) and  analysis of mapped distributions of distributed 
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faulting (similar to the data shown on Figure 3) would be needed to develop these relationships 
for other types of faulting. 

In closing, we point out some characteristics of the result of a PFDHA calculation.  The 
example hazard curves shown on Figure 14 represent the relationship between the amount of 
displacement in a single event and the rate of events that produce larger displacements in the 
same way that a ground motion hazard curve represents the relationship between the level of 
shaking and the rate at which it is exceeded.  The first thing to notice is that the displacement 
hazard curves have a somewhat different shape than typical ground motion hazard curves (see 
part 4 of Figure 1) in that the rate of exceedance does not continue to increase as the 
displacement amplitude decreases.  The reason for this difference in shape at low amplitudes is 
due to the introduction of the conditional probability of slip term, Pkn(Slipm,r), into the 
formulation of Equation 3.  As discussed above, whereas every earthquake is expected to 
produce some level of shaking at a site, not every earthquake is expected to produce slip on a 
feature.  Thus all of the small and/or distant earthquakes that contribute to the hazard at low 
levels of ground shaking do not produce low levels of slip on the feature of interest.  For the 
displacement approach, the term Pkn(Slipm,r) is implicitly incorporated into the calculation 
of the rate of slip events, λDE.  From Equation 10 one can see that the rate of exceedance, νk(d 
), can never be greater than the rate of slip events and the shape of the hazard curve for the 
displacement approach is defined by the complementary cumulative distribution function for the 
displacement per event. 

The second point of interest is that an effective slip rate can be derived from the 
displacement hazard curve, allowing a check of the results.  The negative of the slope of the 
hazard curve, -dνk(d)/dd, is the rate density of displacements of amount d.  Assuming that all 
displacement events produce slip in the same direction, integrating the product of the rate 
density, -dνk(d)/dd, and the amount of displacement, d, provides an estimate of fault slip rate, 
SR.  Specifically: 

[ ] ddddSR kk d d)(d
0
∫
∞

×−= ν     (16) 

Using integration by parts, the above integral may be expressed directly in terms of the 
hazard curve, obtaining: 

ddSR kk d )(
0
∫
∞

= ν      (17) 

The resulting effective slip rate can be compared with direct estimates for the feature to 
provide a check on the reasonableness of the computed hazard.  For example, application of 
Equation 17 to the hazard curves for the mean hazard curves shown on Figure 14 yields slip 
rates of 0.001 and 0.003 cm/yr (0.01 and 0.03 mm/yr), respectively.  These values are consistent 
with the typical range of directly assessed slip rates of 0.005 to 0.02 mm/yr for the Solitario 
Canyon fault (CRWMS M&O 1998) and 0.01 to 0.06 mm/yr for the Rendija Canyon fault 
(Olig et al. 1998). 
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APPENDIX -PROBABILITY DISTRIBUTIONS FOR PFDHA 

Listed in this appendix are the specific probability models illustrated in the text of the 
paper.  Conceptually, these can be considered as alternative fault displacement attenuation 
functions.  It is recommended that application of the PFDHA methodology incorporate an 
explicit treatment of uncertainty.  Within such an uncertainty treatment, multiple probability 
models for fault displacement should be used with weights assigned based on their 
applicability to the site under study. 

Coefficients for Equation 4 shown on Figure 4 

Data Set a b 
Data from Pezzopane and Dawson (1996) 

32 Great Basin earthquakes -16.02 2.685 
47 northern Basin & Range earthquakes -18.71 3.041 
105 extensional cordillera earthquakes -12.53 1.921 

Data from Wells and Coppersmith (1993) 
276 world wide earthquakes -12.51 2.053 

 

Coefficients for beta distribution for D/MD shown on Figure 6 

a = exp[0.6064+21.83x/L -108.0(x/L)2 +136.6(x/L)3] 
b = exp[2.027+12.21x/L -87.90(x/L)2 +115.5(x/L)3] 

with 0 ≤ x /L ≤0 .5 
 

Coefficients for beta distribution for D/MD shown on Figure 7 

a = exp(-0.705+1.138x/L) 
b = exp(0.421-0.257x/L). 

with 0 ≤ x /L ≤0 .5 
 

Coefficients for gamma distribution for D/AD shown on Figure 7 

a = exp(-0.193+1.628x/L) 
b = exp(0.009-0.476x/L) 

with 0 ≤ x /L ≤0 .5 
 

Coefficients for logistic regression model for probability of slip for distributed rupture 

For Equation 7 

)32.3ln()682.0118.062.4(06.2)( +⋅++−+= rhmxf  

The goodness of fit statistic Ĉ  = 317 with a p-value of 0.00. 
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For Equation 8 

izrhmxf 611.0)14.4ln()629.0577.028.8(27.3)( ++⋅++−+=  

The goodness of fit statistic Ĉ = 8.4 with a p-value of 0.68. 

 
Coefficients of Equation 9 

Data Set C1 C2 C3 
n ≥ 2 -2.09 -0.0732 -0.00546 
n ≥ 3 -1.84 -0.130 -0.00415 
n ≥ 4 -1.73 -0.173 -0.00226 
n ≥ 5 -1.72 -0.186 -0.00132 
n ≥ 6 -1.86 -0.0734 -0.0117 

 
Coefficients for 85th to 95th percentile of distribution for Ddistributed /MDprincipal shown on 

Figure 11. 

Ddistributed(hanging wall)/MDprincipal = 0.35×exp(-0.091r) 
Ddistributed(footwall)/MDprincipal = 0.16×exp(-0.137r) 

 
Coefficients of gamma distributions for Dnorm  shown on Figure 12. 

Dnorm  a B 

DE

−
 

2.71 0.369 

ADpaleo 2.17 0.461 

ADW&C  0.821 1.77 

Dcum  1.79 0.000983 
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