HYDROLOGIC TEST WELLS HRES-19, HRES-20, QV-5 COMPLETION REPORT

RESOLUTION COPPER MINING PROJECT SUPERIOR, ARIZONA

Prepared For Resolution Copper Mining, LLC

December, 2012

Prepared By

Clear Creek Associates, PLC 6155 East Indian School Road, Suite 200 Scottsdale, Arizona 85251

TABLE OF CONTENTS

				Page		
1.0	EXEC	CUTIVE	SUMMARY	1		
	1.1	HRES-19				
	1.2	HRES	-20	2		
	1.3	QV-5		2		
2.0	INTR	ODUCT	ΓΙΟΝ	3		
	2.1	SITE S	SETTING	3		
	2.2	PERM	IITTING	4		
	2.3	SCOP	E OF WORK	4		
3.0	HRES	S-19 WE	ELL DRILLING, LOGGING, AND CONSTRUCTION	5		
	3.1		ACE CASING			
	3.2	DRILI	DRILLING OPERATIONS			
		3.2.1	Borehole Drilling	5		
		3.2.2	Plumbness and Alignment	6		
	3.3	_				
		3.3.1	Lithology Summary of HRES-19 Borehole	7		
	3.4	GEOPHYSICAL LOGGING		8		
		3.4.1	Caliper Log	8		
		3.4.2	Natural Gamma Ray Log	8		
		3.4.3	Electric Logs	9		
		3.4.4	Sonic Log	9		
		3.4.5	Optical Borehole Imaging Log	9		
		3.4.6	Acoustic Borehole Imaging Log	10		
		3.4.7	Magnetic Deviation Survey	10		
	3.5	FRAC	TURED AND FAULTED ZONES	10		
	3.6	WELL CONSTRUCTION MATERALS				
		3.6.1	Well Casing	10		
		3.6.2	Well Screen	11		
		3.6.3	Formation Stabilizer	11		
		3.6.4	Bentonite Seals	11		
		3.6.5	Cement Seal	11		
	3.7	CASI	NG, SCREEN, AND ANNULAR MATERIALS INSALLATION	11		

i

		3.7.1 Joints in the Well Casing	11
		3.7.2 Formation Stabilizer Installation	11
		3.7.3 Bentonite Seal Installation	12
	3.8	SWAB AND AIRLIFT DEVELOPMENT	12
4.0	HRES	S-20 WELL DRILLING, LOGGING, AND CONSTRUCTION	13
	4.1	SURFACE CASING	13
	4.2	DRILLING OPERATIONS	13
		4.2.1 Borehole Drilling	13
		4.2.2 Plumbness and Alignment	14
	4.3	LITHOLOGIC LOGGING	14
		4.3.1 Lithology Summary of HRES-20 Borehole	15
	4.4	GEOPHYSICAL LOGGING	15
		4.4.1 Caliper Log	15
		4.4.2 Natural Gamma Ray Log	16
		4.4.3 Electric Logs	16
		4.4.4 Sonic Log	16
		4.4.5 Optical Borehole Imaging Log	16
		4.4.6 Acoustic Borehole Imaging Log	16
		4.4.7 Magnetic Deviation Survey	17
	4.5	FRACTURED AND FAULTED ZONES	17
	4.6	WELL CONSTRUCTION MATERALS	17
		4.6.1 Well Casing	17
		4.6.2 Well Screen	17
		4.6.3 Formation Stabilizer	18
		4.6.4 Bentonite Seal	18
		4.6.5 Cement Seal	18
	4.7	CASING, SCREEN, AND ANNULAR MATERIALS INSALLATION	18
		4.7.1 Joints in the Well Casing	18
		4.7.2 Formation Stabilizer Installation	18
		4.7.3 Bentonite Seal Installation	19
	4.8	SWAB AND AIRLIFT DEVELOPMENT	19
5.0	QV-5	5 WELL DRILLING, LOGGING, AND CONSTRUCTION	20
	5.1	SURFACE CASING	20
	5.2	DRILLING OPERATIONS	20

ii

	5.2.1	Borehole Drilling	20
	5.2.2	Plumbness and Alignment	21
5.3	LITH	DLOGIC LOGGING	22
	5.3.1	Lithology Summary of QV-5 Borehole	22
5.4	GEOP	HYSICAL LOGGING	22
	5.4.1	Caliper Log	22
	5.4.2	Natural Gamma Ray Log	23
	5.4.3	Electric Logs	23
	5.4.4	Sonic Log	23
	5.4.5	Optical Borehole Imaging Log	23
	5.4.6	Acoustic Borehole Imaging Log	23
	5.4.7	Magnetic Deviation Survey	24
5.5	FRAC	TURED AND FAULTED ZONES	24
5.6	WELI	CONSTRUCTION MATERALS	24
	5.6.1	Well Casing	24
	5.6.2	Well Screen	24
	5.6.3	Cement Basket	25
	5.6.4	Formation Stabilizer	25
	5.6.5	Cement Seal	25
5.7	CASI	NG, SCREEN, AND ANNULAR MATERIALS INSTALLATION	25
	5.7.1	Joints in the Well Casing	25
	5.7.2	Cement Basket	25
5.8	AIRLI	FT DEVELOPMENT	25

LIST OF FIGURES

- 1. Well Location Map: HRES-19, HRES-20
- 2. Well Location Map: QV-5
- 3. As-Built Well Diagram: HRES-19
- 4. General Lithologic, Geophysical, and Penetration Rate Data: HRES-19
- 5. As-Built Well Diagram: HRES-20
- 6. General Lithologic, Geophysical, and Penetration Rate data: HRES-20
- 7. As-Built Well Diagram: QV-5
- 8. General Lithologic, Geophysical, and Penetration Rate data: QV-5

LIST OF TABLES

- 1. Well Site Location and Well Construction Details
- 2. QV-5 Airlifting Discharge Rates While Drilling

LIST OF APPENDICES

- A. Permitting Documentation
- B. Photographic Log
- C. Lithologic Logs
- D. Well Construction Documentation
- E. Well Development Documentation

LIST OF PLATES

- 1. HRES-19 Geophysical Logs
- 2. HRES-20 Geophysical Logs
- 3. QV-5 Geophysical Logs

1.0 EXECUTIVE SUMMARY

Clear Creek Associates (Clear Creek) was retained by Resolution Copper Mining, LLC (RCM) under RCM Contract No. CW199525 to oversee the drilling, installation, and testing of two hydrologic test wells for the Resolution Copper Project, and one replacement non-exempt supply well for the Queen Valley Domestic Water Improvement District (QVDWID) near Superior, Arizona. The wells are designated HRES-19, HRES-20, and QV-5, respectively. At HRES-19 and HRES-20, the primary target drilling depth was the contact between the Tertiary Apache Leap Tuff and the underlying White Tail Conglomerate. During drilling operations, data was collected to better characterize the hydrogeologic conditions within the Apache Leap Tuff. The target depth was reached at HRES-19, although the depth to the White Tail Conglomerate was shallower than expected. The White Tail Conglomerate was not reached at HRES-20 due to technical issues encountered while drilling. The hydrologic test wells will eventually be used to further evaluate regional aquifer characteristics through long-term pumping tests and water quality sampling. At QV-5, the main objective was to install and test a well that would provide a reliable supply of fresh water while collecting pertinent lithologic and hydrogeologic data from the site. All well drilling, installation, and development operations were performed between October 21, 2012 and December 14, 2012 by Boart Longyear Drilling Company (Boart). Working under the direction of RCM, Clear Creek provided technical and logistical support for the various phases of the project.

RCM prefers that units of length be reported in meters. All drilling equipment and tooling used by Boart for this project are configured in standard English units; depth measurements were converted to meters with a conversion factor of 3.28 feet/meter. Diameter measurements of drill bits, borehole, pipe, etc. are presented in inches.

1.1 HRES-19

Hydrologic test well HRES-19 was drilled, constructed, and tested between October 21 and November 8, 2012. The well borehole for HRES-19 was drilled to a depth of 291.5 meters below land surface (bls), into the White Tail Conglomerate. A suite of borehole geophysical logs was conducted, including: caliper, natural gamma, an electric suite (e-log), sonic, optical borehole imaging, acoustic borehole imaging, and magnetic deviation. HRES-19 was completed and installed to a depth of 276.8 meters bls. HRES-19 casing includes two screened intervals from 103.6 to 218.8 meters and from 231.6 to 268.2 meters bls with 8-inch J-55 LT&C R-1 casing, with machine-cut perforations. A bentonite seal was installed in the well annulus between the screen intervals. This seal will allow each respective screened interval to be isolated for aquifer testing purposes. Swab and airlift development was conducted at the well during formation stabilizer installation. No water production data was collected during drilling or development. Well construction and development was completed on November 8, 2012.

1

1.2 HRES-20

Hydrologic test well HRES-20 (HRES-20) was drilled, constructed, and tested between November 21 and December 8, 2012. The well borehole for HRES-20 was drilled to a depth of 322.2 meters bls. The target drilling depth was not reached due to drilling complications explained later in this report. A suite of borehole geophysical logs was conducted, including: caliper, natural gamma, an electric log suite (e-log), sonic, optical borehole imaging, acoustic borehole imaging, and magnetic deviation. HRES-20 was completed and installed to a depth of 322.2 meters bls. HRES-20 is screened from 182.1 to 315.7 meters bls with 8-inch J-55 LT&C R-1 casing, with machine-cut perforations. Airlift development was conducted at the well. During well development airlifting discharge rates ranged from 24 to 75 gallons per minute (gpm). Well construction and development was completed on December 8, 2012.

1.3 QV-5

Hydrologic test well QV-5 (QV-5) was drilled, constructed, and tested between December 5 and December 14, 2012. The well borehole for QV-5 was drilled to a depth of 173.2 meters bls. A suite of borehole geophysical logs was conducted, including: caliper, natural gamma, an electric log suite (e-log), sonic, optical borehole imaging, acoustic borehole imaging, and magnetic deviation. QV-5 was completed and installed to a depth of 172.3 meters bls. QV-5 is screened from 45 to 172.3 meters bls with 8-inch J-55 LT&C R-1 casing, with machine-cut perforations. No gravel pack was included in the well, however a cement well seal was installed to a depth of 32 meters. Airlift development was conducted at the well. During well development the airlifting discharge rates ranged from 40 to 250 gpm. Well construction and development was completed on December 14, 2012.

2

2.0 INTRODUCTION

Clear Creek was retained by RCM to oversee the drilling, installation, and testing of two hydrologic test wells for the Resolution Copper Project, and one replacement non-exempt supply well for the QVDWID near Superior, Arizona. The two hydrologic test wells, HRES-19 and HRES-20 were installed in order to characterize hydrogeologic conditions within the Tertiary Apache Leap Tuff unit (Tal) east of Superior, AZ (Figure 1). The non-exempt well, QV-5 was installed in order to characterize hydrogeologic conditions within a Tertiary dacite tuff, and to replace an existing water supply well (well #55-628139) near the community of Queen Valley, Arizona (Figure 2). Field work for this project was conducted between October 21, 2012 and December 14, 2012. This report summarizes the work completed during that period. Details of the locations of the respective well sites and well construction for HRES-19, HRES-20, and QV-5 are presented in Table 1, below.

Well Name	ADWR 55#	Cadastral Location	UTM Coordinates	Borehole Depth	Casing Depth	Screen Interval(s)	
	55-914789	D(2-13)8aaa	496726.0	291.4 m			103.6-218.8 m
HRES-19			3681837.0		276.8 m	231.6-268.2 m	
		D(1-13)27cbd	497607.0	322.2 m	322.2 m	182.1-315.7 m	
HRES-20	55-914790		3685700.0				
	55-221850	5-221850 D(1-10)34cdd	0470845.0	173.2 m	172.3 m		
QV-5			3683975.0			45-172.3 m	

Table 1. Well Site Location and Well Construction Details

Note: UTM coordinates were provided by RCM

2.1 SITE SETTING

Wells HRES-19 and HRES-20 are located in the vicinity of the Resolution Copper Mining project, approximately 4 miles east of Superior, Arizona (Figure 1). The HRES-19 site is located on land owned by the Arizona State Land Department. The HRES-20 site is located on land owned by the United States Forest Service. Mining operations for the project are currently in the prefeasibility phase.

Well QV-5 is located on land owned by the Queen Valley Domestic Water Improvement District (QVDWID), approximately 12 miles west of Superior, Arizona (Figure 2).

2.2 PERMITTING

The drilling company, Boart Longyear (Boart), submitted *Notice of Intent to Drill a Monitor Well* documents to the Arizona Department of Water Resources (ADWR) for HRES-19 and HRES-20; permits were issued by ADWR on October 10, 2012. ADWR assigned well registration numbers of 55-914789 and 55-914790 respectively.

QVDWID submitted *Notice of Intent to Construct a Replacement Non-Exempt Well* documents to ADWR for QV-5. A permit was issued by ADWR on November 26, 2012. ADWR assigned a well registration number of 55-221850. Permitting documentation for HRES-19, HRES-20, and QV-5 is presented in Appendix A.

2.3 SCOPE OF WORK

The wells were drilled, installed, and developed by Boart. Clear Creek's scope of work consisted of documenting and overseeing Boart's activities while in the field to ensure adherence to the technical specifications developed by RCM. Clear Creek also provided technical and logistical support to the project at the direction of RCM.

4

3.0 HRES-19 WELL DRILLING, LOGGING, AND CONSTRUCTION

HRES-19 was drilled, constructed, and developed by Boart using a Drill-Tech D80 rotary drill rig. The primary target drilling depth was the contact between the Tertiary Apache Leap Tuff and the underlying White Tail Conglomerate. The borehole was drilled with a nominal 15-inch diameter, to a total depth (TD) of 291.4 meters bls. Drilling of the HRES-19 borehole began on October 21, 2012 and was completed on November 3, 2012. On November 4, 2012, Southwest Exploration Services, LLC (Southwest) performed a suite of borehole geophysical logs. An As-Built well diagram is presented on Figure 3. Figure 4 presents the results of the geophysical logs, along with general lithology, drilling penetration rate data, and a schematic well diagram. Photographs taken during the well drilling and construction of HRES-19 are presented in Appendix B.

A number of logistical and technical challenges were encountered during operations at HRES-19. The site is in a remote location with high topographic relief. Site access is only via rough, unimproved dirt roads. Due to space constraints, materials for well drilling and construction were transported to the well site as needed from a storage facility in Superior. Fresh water for drilling operations was conveyed to the drilling site via tanker truck, and/or supplemented from a nearby well (HRES-7). The drill pad was small in size due topographic constraints, and operations at the site were conducted carefully and deliberately, to ensure safety.

3.1 SURFACE CASING

On October 21, 2012, Boart commenced drilling a 20-inch diameter borehole for the surface casing. Shortly after starting to drill the surface casing borehole, the D80 drill rig experienced a hydraulic systems malfunction and had to be shut down for repair. The broken portion of the hydraulic system (the Funk Box) was replaced and drilling resumed on October 24, 2012 and the surface borehole was completed to a depth of 11.9 meters bls on the same day. On October 24, 2012 Boart installed the surface casing is mild steel, has a nominal 16-inch outside diameter, and a wall thickness of approximately 0.25 inches. The cement grout for the HRES-19 surface seal was mixed by Boart onsite and consisted of dry Portland cement, fresh water, and a calcium chloride accelerant to speed the cement curing process. The cement grout for the surface seal had a weight of approximately 16.4 lbs/gal.

3.2 DRILLING OPERATIONS

3.2.1 BOREHOLE DRILLING

On October 24, 2012 Boart began drilling the borehole for HRES-19 to a nominal diameter of 15 inches using an air-actuated hammer drill bit. Boart initially utilized the direct rotary method with compressed air to facilitate cuttings return. Fresh water was injected into the borehole to assist in lifting cuttings from

the borehole and to control dust. The fresh water for drilling operations was supplied to the site initially by tanker truck; several loads of water were required on a daily basis to maintain an adequate supply. Significant time and effort was required to deliver water to the site by tanker. After several days of drilling, RCM equipped nearby well HRES-07 with a generator and submersible pump allowing fresh water from the well to supply drilling operations. Water generated during drilling operations was diverted into an onsite storage tank, and then removed from the site by tanker truck. Drill cuttings from the Apache Leap Tuff unit were spread in a thin layer at the site. Drill cuttings from the White Tail Conglomerate unit were removed from the site to a designated disposal area.

The borehole was drilled with the hammer bit to a depth of approximately 151.5 meters on October 27, 2012. At this point, the drill rate slowed significantly and Boart could no longer return cuttings effectively utilizing direct air and the pneumatic hammer. In an effort to increase the volume of airflow into the borehole and improve cuttings return and drill rate, Boart switched to a tri-cone drill bit with tungsten-carbide buttons and continued drilling with direct air on October 27, 2012. By October 28, 2012 the borehole was drilled to a depth of 152.4 meters. Boart continued to experience difficulty in removing cuttings from the borehole and maintained a drill rate of less than 2 ft/hr. Boart and RCM made the decision to switch drilling methods to dual wall flooded reverse, using fresh water as drill fluid to facilitate the return of drilled cuttings. On October 28, 2012 drilling resumed with the flooded reverse method.

The preliminary well design for HRES-19 developed by RCM had specified that the borehole was to be drilled to a depth of approximately 321 meters. This target depth was based on the assumption that lithology at HRES-19 would be similar to what was encountered during drilling of nearby well HRES-07. However, the vitrophyre and White Tail Conglomerate units were encountered at a shallower depth than had been anticipated probably due to one or more intervening faults. Due to this unexpected change in borehole lithology, RCM modified the well design for HRES-19. The borehole was drilled to a total depth of approximately 291.4 meters bls on November 3, 2012.

3.2.2 PLUMBNESS AND ALIGNMENT

During drilling of the borehole, deviation surveys were conducted every 200 feet using a TOTCO inclinometer. Deviation survey results during drilling ranged from 0-1.5° (See HRES-19 lithologic log, Appendix C). A magnetic deviation survey was also conducted as part of the geophysical survey of the borehole. The magnetic survey indicated that the borehole drifted approximately 17.9 feet to the northeast, and is generally straight (Plate 1). Further discussion of the magnetic survey is contained in section 3.4.7 of this report.

6

3.3 LITHOLOGIC LOGGING

Clear Creek personnel prepared a lithologic log of the cuttings from the HRES-19 borehole in 10 foot intervals throughout the 291.4 meters of borehole. Because the aquifer penetrated by HRES-19 is a fractured rock aquifer, special care was given to identifying hydrothermal alteration within the cuttings, e.g., iron oxide neo-mineralization or euhedral calcite. Potential water producing fracture zones are discussed later in this report. The lithologic log for the HRES-19 boring is presented in Appendix C; a generalized stratigraphic column for the borehole is presented on Figure 4, and is summarized below. Pictures of drill cuttings for each major unit are included in Appendix B.

3.3.1 LITHOLOGY SUMMARY OF HRES-19 BOREHOLE

- 0-94.5 meters (Talg) Apache Leap Gray Unit reddish brown, well-indurated, phaneritic to
 porphyritic tuff with a cryptocrystalline groundmass and phenocrysts up to 5mm. Phenocrysts
 include feldspar (sanidine), quartz, and biotite, with trace magnetite. Pumice fragments within the
 unit are moderately flattened with a high aspect ratio. The unit contains lithic inclusions of
 underlying country rock. Secondary features include limonite on biotite phenocrysts and minor
 iron-oxide staining in the groundmass.
- 94.5-280.5 meters (Talb) Apache Leap Brown Unit reddish brown, well-indurated, phaneritic to porphyritic tuff with a cryptocrystalline groundmass and phenocrysts up to 5mm. Phenocrysts include feldspar (sanidine), quartz, and biotite, with trace magnetite. The unit contains laminations due to highly flattened pumice fragments. The unit contains lithic inclusions of underlying country rock. Secondary features include limonite on biotite phenocrysts, minor iron-oxide staining in the groundmass, local euhedral calcite fragments, and localized flow banding.
- **280.5-286.6 meters** (Talbt & Talv) Apache Leap Basal Tuff and Vitrophyre pinkish-orange porphyritic-phaneritic poorly to moderately indurated tuff, with amorphous black glassy groundmass.
- **286.6-289.6 meters (Talbt) Apache Leap Basal Tuff** Well indurated porphyritic-phaneritic tuff with crystalline groundmass. Phenocrysts include feldspar (sandine), quartz, and biotite. Unit contains fragments of vitrophyre and pinkish-orange tuff as previously described.
- 289.6-292.7 meters (Tw, Talbt & Talv) White Tail Conglomerate, Apache Leap Basal Tuff and Vitrophere pinkish-orange porphyritic-phaneritic poorly to moderately indurated tuff, and vitrophyre as previously described. Phenocrysts include feldspar, quartz, and biotite.

3.4 GEOPHYSICAL LOGGING

Geophysical logging was conducted in the HRES-19 borehole on November 4, 2012, to the total depth of 291.4 meters. Geophysical logs help to characterize subsurface hydrogeologic conditions that cannot be readily determined from drilled cuttings. Southwest Exploration Services LLC (Southwest) conducted a geophysical logging suite including: caliper log, natural gamma ray log, an electric log suite, spontaneous potential log, sonic log, optical televiewer, and acoustic televiewer. The geophysical logs for the HRES-19 borehole are presented in digital format in Plate 1 and summarized with the general geology on Figure 4.

3.4.1 CALIPER LOG

The caliper log provides a measurement of the borehole diameter. Changes in the borehole diameter commonly occur from formation washouts, voids or fracture sets, or swelling of natural clays in the formation. The caliper log is used in conjunction with other logs to differentiate borehole diameter effects from actual lithologic changes.

The caliper log for HRES-19 showed a fairly consistent diameter from the top of the borehole to approximately 125 meters, with borehole diameter averaging approximately 15 inches. A washout zone occurs in this interval from 30 to 85 meters with diameter in the washout ranging from 15 to 22.5 inches. From approximately 125 to 215 meters bls, a large washout zone occurs, with borehole diameter ranging from 16 inches to greater than 28 inches. This is likely due to a fractured zone in the dacite. From 215 meters to TD, borehole diameter is fairly consistent averaging approximately 16 inches. A small washout was indicated within this interval at approximately 280 meters.

3.4.2 NATURAL GAMMA RAY LOG

The gamma-ray log measures the naturally occurring gamma emissions from the decay of unstable elements in the formation surrounding the borehole. One of the most significant and the most abundant radioactive elements is potassium-40. As potassium-40 decays, it emits electromagnetic radiation, which the gamma-ray probe detects and records. The greater the count rate, the higher the amount of potassium-40 in the formation. Potassium-bearing minerals such as feldspar, biotite, and several clay minerals contain potassium-40. Consequently, an increase in clay content in the strata typically results in an elevated gamma-ray response.

In the HRES-19 borehole, the natural gamma ray log shows an average American Petroleum Institute (api) unit count of approximately 160 api units from the bottom of the surface casing to the water table at approximately 119 meters bls. At 119 meters, a notable decrease occurs and the log shows an average api unit count of approximately 80 api units from 119 meters to TD. This decrease is likely due to the

dampening effect that water has on gamma radiation and therefore reflects the depth of the water table rather than a geologic change.

3.4.3 ELECTRIC LOGS

The electric log suite included a spontaneous potential (SP) log, short-normal (16-inch) resistivity log, long-normal (64-inch) resistivity log, and single point resistance (SPR) log which are recorded simultaneously. The SP log measures naturally occurring electrical signals and is used mainly for lithologic correlations or for differentiating non-permeable strata in a clay-sand sequence.

The SP values for HRES-19 fluctuate between -130 and 465 mV from the water table to approximately 140 meters bls. From 140 meters to TD values have a fairly consistent range of 290-360 mV.

The short-normal and long-normal resistivity logs measure the electrical resistance of formation materials. Of interest to hydrogeologic investigations, resistivity can be at least partially controlled by formation porosity. Because groundwater is an electrical conductor, its presence in the interconnected pores reduces the overall formation resistivity. Typically, silt and clay units have lower resistivity values in comparison to sand and gravel units because of their higher porosity and water content. The short-normal resistivity log measures the resistivity of the formation near the borehole, while the long-normal resistivity log measures the resistivity at a greater distance from the borehole.

The short-normal, long-normal, and single point resistivity logs for HRES-19 show a gradual decrease from the water table to approximately 183 meters bls, followed by a gradual increase from 183 to 214 meters bls. From 214 meters to TD, values of single point resistance fluctuate.

3.4.4 SONIC LOG

The sonic log measures the average velocity of a sound wave passing through the formation. The velocity of the sound wave changes as it passes through water and through varying formation materials. Higher sonic velocity indicates an increase in density, which usually correlates with harder, less fractured rock. Conversely, lower velocity indicates lower density, which may correlate with fracture zones.

The sonic velocity values for HRES-19 range from 50- μ Sec to 250- μ Sec from the water table to approximately 200 meters. From 200 meters to borehole TD values range from 50- μ Sec to 100- μ Sec.

3.4.5 OPTICAL BOREHOLE IMAGING LOG

The Optical Borehole Imaging log (OBI) provides a continuous and orientated 360° view of the borehole wall from which the character, relation, and orientation of lithologic and structural planer features can be defined for studies of fractured rock aquifers. The optical images of the OBI allow for direct viewing of

the lithology and fractured zones within the borehole. The OBI log was run from the surface to the fluid level in the borehole (119 meters bls) and was used to locate fractured zones above the fluid level.

3.4.6 ACOUSTIC BOREHOLE IMAGING LOG

The Acoustic Borehole Imaging Log (ABI) provides a continuous orientated 360° view of the borehole wall from which the character, relation, and orientation of lithologic and structural planer features can be defined for studies of fractured rock aquifers. The ABI returns a reflected acoustic signal as a photographic-like borehole image. This allows for the direct viewing of fractured zones and caverns even when the boring is filled with drilling mud.

The ABI at HRES-19 was run from the fluid level (119 meters bls) to a total depth of 291.4 meters bls. The ABI data were used in concert with the lithologic log to determine the location and extent of water producing fractured zones discussed later in this report.

3.4.7 MAGNETIC DEVIATION SURVEY

In conjunction with the OBI and ABI logs, a magnetic deviation survey was conducted in the HRES-19 borehole on November 4, 2012 by Southwest (See Plate 1). There was a total drift distance of 5.5 meters from land surface to borehole TD. The borehole was generally straight, and trends to the northeast.

3.5 FRACTURED AND FAULTED ZONES

HRES-19 is located in a fractured dacite aquifer system. Because of the nature of fractured rock aquifer systems, locating the fractured and faulted zones within the borehole was vital in the productivity of HRES-19. Fractured and faulted zones were identified by corroborating information from drill cuttings, drill rates, rig chatter, and geophysical logs. Fractured zones are presented with the general geology on Figure 4.

Based on our interpretation of all of the data obtained from the drilling at HRES-19, there are at least 11 fractured zones in the well. The largest fractured zone occurs between 200 and 155 meters bls (Figure 4).

3.6 WELL CONSTRUCTION MATERALS

3.6.1 WELL CASING

The blank well casing installed in well HRES-19 is J-55 LT&C R-1 pipe. The threaded and coupled well casing has an inside diameter of 8.0 inches and an outside diameter of 8.625 inches with a wall thickness of 0.304 inches. The couplers have an outside diameter of 9.625 inches. The blank casing was factory-assembled in nominal 21-foot sections.

3.6.2 WELL SCREEN

The screen installed in well HRES-19 is J-55 LT&C R-1 pipe with machine cut perforations. The thread and coupled well screen has an inside diameter of 8.0 inches and an outside diameter of 8.625 inches with a wall thickness of 0.304 inches. The perforations are factory-installed 0.030-inch vertical slots approximately 3 inches in length, spaced approximately 3 inches apart, with 4 perforations per round providing 8 openings per linear foot. The casing couplers have an outside diameter of 9.625 inches. The screen was factory-assembled in nominal 21-foot sections.

3.6.3 FORMATION STABILIZER

The formation stabilizer installed in HRES-19 is Tacna $^{3}/_{8}$ " x $^{1}/_{4}$ " gravel.

3.6.4 BENTONITE SEALS

The bentonite seals installed in HRES-19 are comprised of 3/8-inch coated bentonite pellets ("Pel-Plug") and $\frac{3}{4}$ -inch chips (Baroid "Hole-Plug"). Layers of 10x20 mesh silica choke sand were installed adjacent to the seals to prevent the incursion of the bentonite into the filter pack.

3.6.5 CEMENT SEAL

The cement-grout seal installed in HRES-19 was mixed by Boart onsite in a mixing tank. Each batch of cement consisted of a 2000-lb super sack of dry cement, 25-lbs of powdered bentonite, approximately 120 gal of fresh water, and 50 lbs of calcium chloride to accelerate the curing process.

3.7 CASING, SCREEN, AND ANNULAR MATERIALS INSALLATION

3.7.1 JOINTS IN THE WELL CASING

The sections of casing and screen were assembled with factory installed threads and couplers. Hydraulic tongs were used to tighten the sections into place. Casing centralizers were installed at periodic intervals to ensure the casing and screen remained centered in the borehole during the installation of annular materials. A threaded bottom cap was installed at the bottom of the sump. The field pipe talley for well construction is presented in Appendix D.

3.7.2 FORMATION STABILIZER INSTALLATION

The formation stabilizer was installed by use of a tremie pipe. The formation stabilizer was gravity fed using fresh water through the tremie pipe. Formation stabilizer was installed from 272.5 to 228.9 meters bls, and from 221.9 to 91.4 meters bls. In order to avoid bridging during gravel installation, and to develop the borehole, formation stabilizer material was settled by swab and airlift. Formation stabilizer

installation took place from November 5-8, 2012. Field forms documenting Clear Creek's oversight of formation stabilizer installation are presented in Appendix D.

3.7.3 BENTONITE SEAL INSTALLATION

The bentonite seals (and choke sand where applicable) were installed by use of a tremie pipe. The bentonite was gravity fed using fresh water through the tremie. Bentonite seals were installed in the borehole from 291.4 to 285.6 meters bls, 280.4 to 272.5 meters bls, 227.4 to 224.3 meters bls, and 89.9 to 88.4 meters bls.

3.8 SWAB AND AIRLIFT DEVELOPMENT

No additional swab and airlift development was performed at HRES-19 subsequent to formation stabilizer installation.

12

4.0 HRES-20 WELL DRILLING, LOGGING, AND CONSTRUCTION

HRES-20 was drilled, constructed, and developed by Boart using a Drill-Tech D80 rotary drill rig. The primary target drilling depth was the contact between the Tertiary Apache Leap Tuff and the underlying White Tail Conglomerate. The borehole was drilled with a nominal 15-inch diameter, to a total depth of 322.2 meters bls. Drilling of the HRES-20 borehole began on November 20, 2012 and was completed on December 2, 2012. On December 3, 2012, Southwest Exploration Services, LLC performed a suite of borehole geophysical logs. An As-Built well diagram is presented on Figure 5. Figure 6 presents the results of the geophysical logs, along with general lithology, drilling penetration rate data, and a schematic well diagram. Photographs taken during the well drilling and construction of HRES-20 are presented in Appendix B.

A number of logistical and technical challenges were encountered during operations at HRES-20. The site is in a remote location with high topographic relief. Access is limited via rough, unimproved dirt roads. Due to space constraints, materials for well drilling and construction were transported to the well site as needed from a storage facility in Superior. Fresh water for drilling operations was pumped to the site from the adjacent well HRES-15, and supplemented by tanker truck. Operations at the site were conducted carefully and deliberately, to ensure safety.

4.1 SURFACE CASING

On November 20, 2012, Boart drilled a 20-inch diameter borehole for the surface casing to a depth of 11.9 meters bls. Boart installed the surface casing to a depth of 11.9 meters bls and sealed the casing into place with neat-cement grout. The surface casing is mild steel, has a nominal 16-inch outside diameter, and a wall thickness of approximately 0.25 inches. The cement grout for the HRES-20 surface seal was mixed by Boart onsite and consisted of dry Portland cement, fresh water, and a calcium chloride accelerant to speed the cement curing process.

4.2 DRILLING OPERATIONS

4.2.1 BOREHOLE DRILLING

On November 21, 2012 Boart began drilling the borehole for HRES-20 to a nominal diameter of 15 inches using an air-actuated hammer drill bit. Boart initially utilized the direct rotary method with compressed air as a drilling fluid. Fresh water was injected into the borehole to assist in lifting cuttings from the borehole and to control dust. The fresh water for drilling operations was supplied to the site initially by pumping from nearby well HRES-15. When drilling mud products were utilized in the HRES-20 borehole, the pump at HRES-15 was shut down to avoid drawing drilling fluids into the well and fresh water was delivered to the site via tanker truck. Water generated during drilling operations was diverted

into an onsite storage tank, and then removed from the site by tanker truck. Drill cuttings were spread in a thin layer at the site.

The borehole was drilled with the hammer bit to a depth of approximately 172 meters on November 24, 2012. Boart was unable to return cuttings effectively from 152.4 to 172 meters due to lost fluid circulation. Boart and RCM made the decision to switch drilling methods to dual wall flooded reverse with a tri-cone drill bit, using fresh water drilling fluid to facilitate the return of drill cuttings. On November 24, 2012 drilling resumed with the flooded reverse method and fresh water fluid. Boart drilled to 186 meters bls but was still unable to stabilize or effectively clean the borehole. On November 25, 2012 RCM gave approval for Boart to drill direct mud rotary with bentonite mud drilling fluid until the borehole was stabilized and free of drilled cuttings.

Drilling with the direct mud method Boart successfully stabilized and cleaned the borehole, and drilled to a depth of approximately 213.65 meters bls on November 27, 2012. Drilling continued from 213.65 meters bls to 322.2 meters bls with the flooded reverse method and fresh water fluid. In order to investigate a slowing drill rate, on December 2, 2012, Boart removed the drill bit from the hole and discovered that part of the bottom hole assembly (a tungsten-carbide button roller from one of the rolling reamers) had become dislodged and had fallen to the bottom of the borehole, damaging the drill bit. The preliminary well design for HRES-20 proposed by RCM had specified that the borehole was to be drilled to a depth of approximately 598 meters. Boart was unsuccessful in removing the lost roller; therefore, RCM made the decision to cease drilling the borehole at 322.2 meters.

4.2.2 PLUMBNESS AND ALIGNMENT

During drilling of the borehole, deviation surveys were conducted every 200 feet using a TOTCO inclinometer. Deviation survey results during drilling ranged from 0-0.75° (See HRES-20 lithologic log, Appendix C). A magnetic deviation survey was also conducted as part of the geophysical survey of the borehole. The magnetic survey indicated that the borehole drifted approximately 2 meters to the west. The borehole is moderately aligned with minor doglegging throughout. There is an artificial dogleg at 152 meters bls that resulted from the way in which the survey was compiled. The nature of this artificial dogleg is disused further in section 4.4.7 of this report.

4.3 LITHOLOGIC LOGGING

Clear Creek personnel prepared a lithologic log of the cuttings from the HRES-20 borehole in 10 foot intervals throughout the 322.2 meters of borehole. Because the aquifer penetrated by HRES-20 is a fractured rock aquifer, special care was given to identifying hydrothermal alteration within the cuttings, e.g., iron oxide neo-mineralization or euhedral calcite. Potential water producing fracture zones are discussed later in this report. The lithologic log for the HRES-20 boring is presented in Appendix C; a generalized stratigraphic column for the borehole is presented in Figure 6, and is summarized below.

Photographs of cuttings representing each lithologic unit are provided in Appendix B Results of the lithologic log from nearby well HRES-15 (provided by RCM) were referenced in determining subunit contacts.

4.3.1 LITHOLOGY SUMMARY OF HRES-20 BOREHOLE

- **0-118.9 meters** (**Talw**) **Apache Leap White Unit** reddish brown, well-indurated, phaneritic tuff with aphanitic crystalline groundmass. Phenocrysts include plagioclase, quartz, and biotite. The unit contains fragments of pinkish-gray to white pumice and lithic inclusions of red-brown siltstone. Pumice inclusions are slightly flattened maintaining a low aspect ratio.
- **118.9-256 meters** (**Talg**) **Apache Leap Gray Unit** reddish brown, well -indurated, porphyritic to phaneritic tuff with an aphanitic groundmass. Phenocrysts include plagioclase feldspar, quartz, and biotite. The unit contains fragments of pinkish gray to white pumice that are moderately to highly flattened with a high aspect ratio. Unit contains lithic inclusions of underlying country rock. Secondary features include limonite on biotite phenocrysts, and minor iron-oxide staining in the groundmass.
- **256-322.2 meters** (**Talb**) **Apache Leap Brown Unit Unit** reddish brown, well-indurated, phaneritic to porphyritic tuff with a cryptocrystalline groundmass and phenocrysts up to 5mm. Phenocrysts include feldspar (sanidine), quartz, and biotite, with trace magnetite. The unit contains laminations due to highly flattened pumice fragments. The unit contains lithic inclusions of underlying country rock. Secondary features include limonite on biotite phenocrysts, minor iron-oxide staining in the groundmass, local euhedral calcite fragments, and localized flow banding.

4.4 GEOPHYSICAL LOGGING

Geophysical logging was conducted in the HRES-20 borehole on December 3, 2012, to the total depth of 321.4 meters. Geophysical logs help to characterize subsurface hydrogeologic conditions that cannot be readily determined from drilled cuttings. Southwest conducted a geophysical logging suite including: caliper log, natural gamma ray log, electric logs, spontaneous potential log, sonic log, optical televiewer, and acoustic televiewer. The geophysical logs for the HRES-20 borehole are presented in digital format in Plate 2 and summarized with the general geology in Figure 6. A detailed description of each geophysical log is presented in section 3.4 of this report. This section only contains unique results for HRES-19.

4.4.1 CALIPER LOG

The caliper log for HRES-20 shows a fairly consistent borehole diameter from land surface to approximately 102 meters bls with diameter averaging approximately 15.5 inches. A large washout with

diameters ranging from 15 to 28 inches occurs from 102 to 141 meters. The diameter is fairly consistent from 141 to 200 meters, averaging 15.5 inches. From 200 meters to TD, significant washouts occur with borehole diameter ranging from 15 to 25.5 inches.

4.4.2 NATURAL GAMMA RAY LOG

In the HRES-20 borehole, natural gamma ray log shows an average American Petroleum Institute (api) unit count of approximately 160 api units from the bottom of the surface casing to the water table at approximately 195 meters bls. At 195 meters a notable decrease occurs and the log shows an average api unit count of approximately 80 api units from 195 meters to TD. This decrease is likely due to the dampening effect that water has on gamma radiation and therefore reflects the water table rather than a geologic change.

4.4.3 ELECTRIC LOGS

The SP values for HRES-20 fluctuate between -290 and 225 mV from the water table to approximately 217 meters bls. From 217 meters bls to TD values have a fairly consistent range of 260-390 mV. The short-normal, long-normal, and single point resistivity logs for HRES-20 show decreasing resistivity from the water table to 265 meters bls, and fairly consistent values from 262 meters bls to TD.

4.4.4 SONIC LOG

The sonic velocity values for HRES-20 range from -50- μ Sec to 160- μ Sec from the water table at approximately 195 meters, to borehole TD.

4.4.5 OPTICAL BOREHOLE IMAGING LOG

The Optical Borehole Imaging log (OBI) provides a continuous and orientated 360° view of the borehole wall from which the character, relation, and orientation of lithologic and structural planer features can be defined for studies of fractured rock aquifers. The optical images of the OBI allow for direct viewing of the lithology and fractured zones within the borehole. The OBI log was run from the surface to the fluid level in the borehole (195.5 meters bls) and was used to locate fractured zones above the fluid level.

4.4.6 ACOUSTIC BOREHOLE IMAGING LOG

The Acoustic Borehole Imaging Log (ABI) provides a continuous orientated 360° view of the borehole wall from which the character, relation, and orientation of lithologic and structural planer features can be defined for studies of fractured rock aquifers. The ABI returns a reflected acoustic signal as a photographic-like borehole image. This allows for the direct viewing of fractured zones and caverns. The ABI was run from the fluid level (195.5 meters bls) to a total depth of 321.4 meters. The ABI data were

used in concert with the lithologic log to determine the location and extent of water producing fractured zones discussed later in this report.

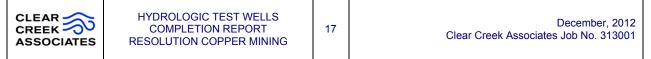
4.4.7 MAGNETIC DEVIATION SURVEY

In conjunction with the OBI and ABI logs, a magnetic deviation survey was conducted in the HRES-20 borehole on December 3, 2012 by Southwest (See Plate 2). The magnetic survey indicated that the borehole drifted approximately 2 meters to the west from land surface to TD. The magnetic deviation survey is constructed by combining the OBI and ABI orientation data. The OBI log is run from the surface to the static water level, and the ABI log is run from the static water level to the total depth of the borehole. The geophysical logger from Southwest indicated that the stitching process between the two sets of data generated an artificially significant dogleg at 152 meters bls. Borehole alignment initially trends slightly northwest do a depth of approximately 152 meters, and then doglegs to the west, but at a less extreme angle than indicated by the survey.

4.5 FRACTURED AND FAULTED ZONES

HRES-20 is located in a fractured dacite aquifer system. Because of the nature of fractured rock aquifer systems, locating the fractured and faulted zones within the borehole was vital in the productivity of HRES-20. Fractured and faulted zones were identified by corroborating information from drill cuttings, drill rates, rig chatter, and geophysical logs. Fractured zones are presented with the general geology in Figure 6.

Based on our interpretation of all of the data obtained from the drilling at HRES-20, there are numerous fractured zones in the well. The largest fractured zone occurs between approximately 316.3 and 261.2 meters bls (See Figure 6).


4.6 WELL CONSTRUCTION MATERALS

4.6.1 WELL CASING

The blank well casing installed in well HRES-20 is J-55 LT&C R-1 pipe. The threaded and coupled well casing has an inside diameter of 8.0 inches and an outside diameter of 8.625 inches with a wall thickness of 0.304 inches. The couplers have an outside diameter of 9.625 inches. The blank casing was factory-assembled in nominal 21-foot sections.

4.6.2 WELL SCREEN

The screen installed in well HRES-20 is J-55 LT&C R-1 pipe with machine cut perforations. The thread and coupled well screen has an inside diameter of 8.0 inches and an outside diameter of 8.625 inches with a wall thickness of 0.304 inches. The perforations are factory-installed 0.030-inch vertical slots

approximately 3 inches in length, spaced approximately 3 inches apart, with 4 perforations per round providing 8 openings per linear foot. The casing couplers have an outside diameter of 9.625 inches. The screen was factory-assembled in nominal 21-foot sections.

4.6.3 FORMATION STABILIZER

The formation stabilizer installed in HRES-20 is Tacna $^{3}/_{8}$ " x $^{1}/_{4}$ " gravel.

4.6.4 BENTONITE SEAL

The bentonite seal installed in HRES-20 is comprised of $\frac{3}{4}$ -inch chips (Baroid "Hole-Plug"). A layer of 10x20 mesh silica choke sand was installed below the bentonite seal to prevent the incursion of the bentonite into the filter pack.

4.6.5 CEMENT SEAL

The cement-grout seal installed in HRES-20 was mixed by Boart onsite in a mixing tank. Each batch of cement consisted of a 2000-lb super sack of dry cement, 25-lbs of powdered bentonite, approximately 120 gal of fresh water, and 50 lbs of calcium chloride to accelerate the curing process.

4.7 CASING, SCREEN, AND ANNULAR MATERIALS INSALLATION

4.7.1 JOINTS IN THE WELL CASING

The sections of casing and screen were assembled with factory installed threads and couplers. Hydraulic tongs were used to tighten the sections into place. Casing centralizers were installed at periodic intervals to ensure the casing and screen remained centered in the borehole during the installation of annular materials. A threaded bottom cap was installed at the bottom of the sump. A field pipe tally documenting the installation of the well casing is presented in Appendix D.

4.7.2 FORMATION STABILIZER INSTALLATION

At the direction of RCM, Clear Creek did not oversee the installation of formation stabilizer in HRES-20 and relied on reports from Boart for the details of this section. The formation stabilizer was installed by use of a tremie pipe. The gravel pack was gravity fed using fresh water through the tremie pipe. The formation stabilizer was installed from 322.2 to 177.2 meters bls.

4.7.3 BENTONITE SEAL INSTALLATION

The bentonite seal (and choke sand) was installed by use of a tremie pipe. The bentonite was gravity fed using fresh water through the tremie. A bentonite seal was installed in the borehole from 175.9 to 174.9 meters bls.

4.8 SWAB AND AIRLIFT DEVELOPMENT

Swab and airlift development began on December 7, 2012 and was completed on December 8, 2012. Utilizing a double-cup swab tool, Boart swabbed and airlifted in 40-foot intervals throughout the entire screen interval to remove excess suspended drilling mud, silt, and sand. The rate of airlifting discharge ranged from 24 to 75 gpm throughout the development period. Clear Creek Associates monitored field parameters and clarity of the discharge water from each 40-foot interval until parameters were stable and the water was of acceptable clarity prior to moving to the next interval. Field forms documenting the swab and airlift development process are presented in Appendix E.

19

5.0 QV-5 WELL DRILLING, LOGGING, AND CONSTRUCTION

QV-5 was drilled, constructed, and developed by Boart using a Drill-Tech DH40 rotary drill rig. Drilling operations commenced with the objective of drilling to a depth of 183 meters, or until a significant change in lithology was encountered i.e., contact with basement rock. The borehole was drilled with a nominal 15-inch diameter, to a depth of 173.2 meters bls. Drilling of the QV-5 borehole began on December 6, 2012 and was completed on December 13, 2012. On December 13, 2012, Southwest Exploration Services, LLC performed a suite of borehole geophysical logs. An As-Built well diagram is presented on Figure 7. Figure 8 presents the results of the geophysical logs, along with general lithology, drilling penetration rate data, and a schematic well diagram. Photographs taken during the well drilling and construction of QV-5 are presented in Appendix B.

The QV-5 site is located within a QVDWID facilities maintenance yard, and access was through the community of Queen Valley, AZ. Boart was able to stage all materials for well drilling and construction in a lay-down area adjacent to the site. Operations at the site were conducted carefully and deliberately, to ensure safety.

5.1 SURFACE CASING

On December 6, 2012, Boart drilled a 20-inch diameter borehole for the surface casing to a depth of 17.9 meters bls on the same day. On October 24, 2012 Boart installed the surface casing to a depth of 17.9 meters bls and sealed the casing into place with neat-cement grout. The surface casing is mild steel, has a nominal 16-inch outside diameter, and a wall thickness of approximately 0.25 inches. The cement grout was mixed by Boart onsite and consisted of dry Portland cement, fresh water, and a calcium chloride accelerant to speed the cement curing process. The cement grout for the QV-5 surface seal had a weight of approximately 15.6 lbs/gal.

5.2 DRILLING OPERATIONS

5.2.1 BOREHOLE DRILLING

On December 7, 2012 Boart began drilling the borehole for QV-5 to a nominal diameter of 15 inches using an air-actuated hammer drill bit. Boart initially utilized the direct rotary method with compressed air as a drilling fluid. Fresh water was injected into the borehole to assist in lifting cuttings from the borehole and to control dust. Fresh water for the drilling operations was supplied by nearby hydrant belonging to QVDWID. Water generated during drilling operations was discharged to a retention basin owned by QVDWID, adjacent to the well site. Drill cuttings from the QV-5 borehole were conveyed to a disposal site designated by QVDWID. The borehole was drilled with the hammer bit to a depth of approximately 118.3 meters on December 10, 2012. From 81.7 to 118.3 meters bls Clear Creek monitored

airlifting discharge from the borehole at 20-foot intervals, using a 9-gallon container placed beneath the cyclone. Details of the discharge monitoring are presented in Table 2, below.

Date	Drilling Depth (meters)	Discharge Rate (gallons per minute)
12/8/12	81.7	2.5
12/8/12	87.8	4.5
12/8/12	93.9	18
12/9/12	100	60
12/9/12	106.1	70
12/9/12	112.2	108
12/10/12	118.3	108

Table 2. Airlifting Discharge Rates While Drilling

At 118.3 meters the borehole was producing too much water for the hammer bit to continue drilling effectively. On December 10, 2012 Boart switched to a tri-cone drill bit with tungsten-carbide buttons and continued drilling flooded reverse with fresh water. At approximately 160 meters, the drilling rate slowed and the formation became much harder than previously encountered, although no significant change was noted in the appearance of drill cuttings. After drilling for approximately 13 meters in the harder formation with no evidence of additional water production or fracturing, RCM made the decision to call borehole TD at a depth of 173.2 meters On December 13, 2012.

5.2.2 PLUMBNESS AND ALIGNMENT

During drilling of the borehole, deviation surveys were conducted every 200 feet using a TOTCO inclinometer. Deviation survey results during drilling ranged from $0-2^{\circ}$ (See QV-5 lithologic log, Appendix C). A magnetic deviation survey was also conducted as part of the geophysical survey of the borehole. The magnetic survey indicated that the borehole drifted approximately 2 meters to the southwest, and is generally straight. Further discussion of the magnetic survey is contained in section 5.4.7 of this report.

5.3 LITHOLOGIC LOGGING

Clear Creek personnel prepared a lithologic log of the cuttings from the QV-5 borehole in 10 foot intervals throughout the 173.2 meters of borehole. Because the aquifer penetrated by QV-5 is a fractured rock aquifer, special care was given to identifying hydrothermal alteration within the cuttings, e.g., iron oxide neo-mineralization or euhedral calcite. Potential water producing fracture zones are discussed later in this report. The lithologic log for the QV-5 boring is presented in Appendix C; a generalized stratigraphic column for the borehole is presented in Figure 8, and is summarized below.

5.3.1 LITHOLOGY SUMMARY OF QV-5 BOREHOLE

- **0-6.1 meters** (**Qal**) Alluvium unconsolidated, poorly sorted gravel and sand with trace fines. Clasts are angular to sub-angular, polylithic, and predominantly of felsic composition. Clasts include milky quartz, and fragments of sandstone, silt stone, mixed volcanics, and schist.
- 6.1-173.2 meters (Tal) Apache Leap Tuff dark pink/red/brown moderately to well-indurated, crystal-rich porphyritic tuff with an aphanitic groundmass. Phenocrysts include feldspar (sanidine), quartz, biotite, and trace magnetite. Secondary features include limonite on biotite phenocrysts and occasional iron-oxide staining on groundmass. Also includes fragments of white to gray pumice and trace lithic inclusions.

5.4 GEOPHYSICAL LOGGING

Geophysical logging was conducted in the QV-5 borehole on December 13, 2012, to the total depth of 173.2 meters. Geophysical logs help to characterize subsurface hydrogeologic conditions that cannot be readily determined from drilled cuttings. Southwest conducted a geophysical logging suite including: caliper log, natural gamma ray log, electric logs, spontaneous potential log, sonic log, optical televiewer, acoustic televiewer, and magnetic deviation. The geophysical logs for the QV-5 borehole are presented in digital format in Plate 3 and summarized with the general geology in Figure 8. A detailed description of each geophysical log is presented in section 3.4 of this report. This section only contains unique results for QV-5.

5.4.1 CALIPER LOG

The caliper log for QV-5 showed a fairly consistent borehole diameter from land surface to 61 meters bls, with borehole diameter averaging approximately 15 inches. A large washout zone occurs from 61 to 113 meters bls, with borehole diameter ranging from 15 to 27 inches. The borehole diameter averages 16 inches from 113 to 163 meters bls, with a moderate washout up to 27 inches occurring from 142 to 158 meters bls. From 163 meters to TD borehole diameter is a consistent 14.75 inches.

5.4.2 NATURAL GAMMA RAY LOG

In the QV-5 borehole, the natural gamma ray log shows an average American Petroleum Institute (api) unit count of approximately 160 api units from the bottom of the surface casing to approximately 45 meters. At 45 meters a notable decrease occurs and the log shows an average api unit count of approximately 80 api units from 45 meters bls to TD. This decrease is likely due to the dampening effect that water has on gamma radiation.

5.4.3 ELECTRIC LOGS

The SP values for QV-5 fluctuates between -160 and 325 mV from the water table to approximately 65 meters bls. From 65 to 97 meters bls, values gradually increased from 325 mV to 475 mV. SP values from 97 meters bls to TD have a fairly consistent range of approximately 438 to 513 mV. The short-normal, long-normal, and single point resistivity logs for QV-5 show fluctuating values from the water table at 45 meters bls and 148 meters bls, and decreasing resistivity values from 148 meters bls to TD.

5.4.4 SONIC LOG

The sonic log measures the average velocity of a sound wave passing through the formation. The velocity of the sound wave changes as it passes through water and through varying formation materials. Higher sonic velocity indicates an increase in density, which correlates with harder, less fractured rock. Conversely, lower velocity indicates lower density, which may correlate with fracture zones. The sonic velocity values for QV-5 range from $60-\mu$ Sec to $160-\mu$ Sec from the water table to 113 meters bls. From 113 meters bls to TD values are fairly consistent ranging from $60-\mu$ Sec to $100-\mu$ Sec.

5.4.5 OPTICAL BOREHOLE IMAGING LOG

The Optical Borehole Imaging log (OBI) provides a continuous and orientated 360° view of the borehole wall from which the character, relation, and orientation of lithologic and structural planer features can be defined for studies of fractured rock aquifers. The optical images of the OBI allow for direct viewing of the lithology and fractured zones within the borehole. The OBI log was run from the surface to the fluid level in the borehole (45 meters bls) and was used to locate fractured zones above the fluid level.

5.4.6 ACOUSTIC BOREHOLE IMAGING LOG

The Acoustic Borehole Imaging Log (ABI) provides a continuous orientated 360° view of the borehole wall from which the character, relation, and orientation of lithologic and structural planer features can be defined for studies of fractured rock aquifers. The ABI returns a reflected acoustic signal as a photographic-like borehole image. This allows for the direct viewing of fractured zones and caverns. The ABI was run from the fluid level (45 meters bls) to a total depth of 173.2 meters bls. The ABI data were

used in concert with the lithologic log to determine the location and extent of water producing fractured zones discussed later in this report.

5.4.7 MAGNETIC DEVIATION SURVEY

In conjunction with the OBI and ABI logs, a magnetic deviation survey was also conducted as part of the geophysical survey of the borehole. The magnetic survey indicated that the borehole drifted approximately 2 meters to the southwest, and is generally highly aligned.

5.5 FRACTURED AND FAULTED ZONES

QV-5 is located in a fractured dacite tuff aquifer system. Because of the nature of fractured rock aquifer systems, locating the fractured and faulted zones within the borehole was vital in the productivity of QV-5. Fractured and faulted zones were identified by corroborating information from drill cuttings, drill rates, rig chatter, and geophysical logs. Fractured zones are presented with the general geology in Figure 8.

Based on our interpretation of all of the data obtained from the drilling at QV-5, there are at least 6 fractured zones in the well. The two largest fractured zones occur between 61.1-88.5 and 95.7-113.4 meters bls (Figure 8).

5.6 WELL CONSTRUCTION MATERALS

5.6.1 WELL CASING

The blank well casing installed in well QV-5 is J-55 LT&C R-1 pipe. The threaded and coupled well casing has an inside diameter of 8.0 inches and an outside diameter of 8.625 inches with a wall thickness of 0.304 inches. The couplers have an outside diameter of 9.625 inches. The blank casing was factory-assembled in nominal 21-foot sections.

5.6.2 WELL SCREEN

The screen installed in well QV-5 is J-55 LT&C R-1 pipe with machine cut perforations. The threaded and coupled well screen has an inside diameter of 8.0 inches and an outside diameter of 8.625 inches with a wall thickness of 0.304 inches. The perforations are factory-installed 0.030-inch vertical slots approximately 3 inches in length, spaced approximately 3 inches apart, with 4 perforations per round providing 8 openings per linear foot. The casing couplers have an outside diameter of 9.625 inches. The screen was factory-assembled in nominal 21-foot sections.

5.6.3 CEMENT BASKET

The cement basket installed in well QV-5 is factory assembled, constructed of spring steel, and has a nominal outside diameter of 15 inches.

5.6.4 FORMATION STABILIZER

No formation stabilizer was installed in QV-5 in order to maximize water production of the well.

5.6.5 CEMENT SEAL

The cement-grout seal installed in QV-5 was mixed by Boart onsite in a mixing tank. Each batch of cement consisted of a 2000-lb super sack of dry cement, 25-lbs of powdered bentonite, approximately 120 gal of fresh water, and 50 lbs of calcium chloride to accelerate the curing process.

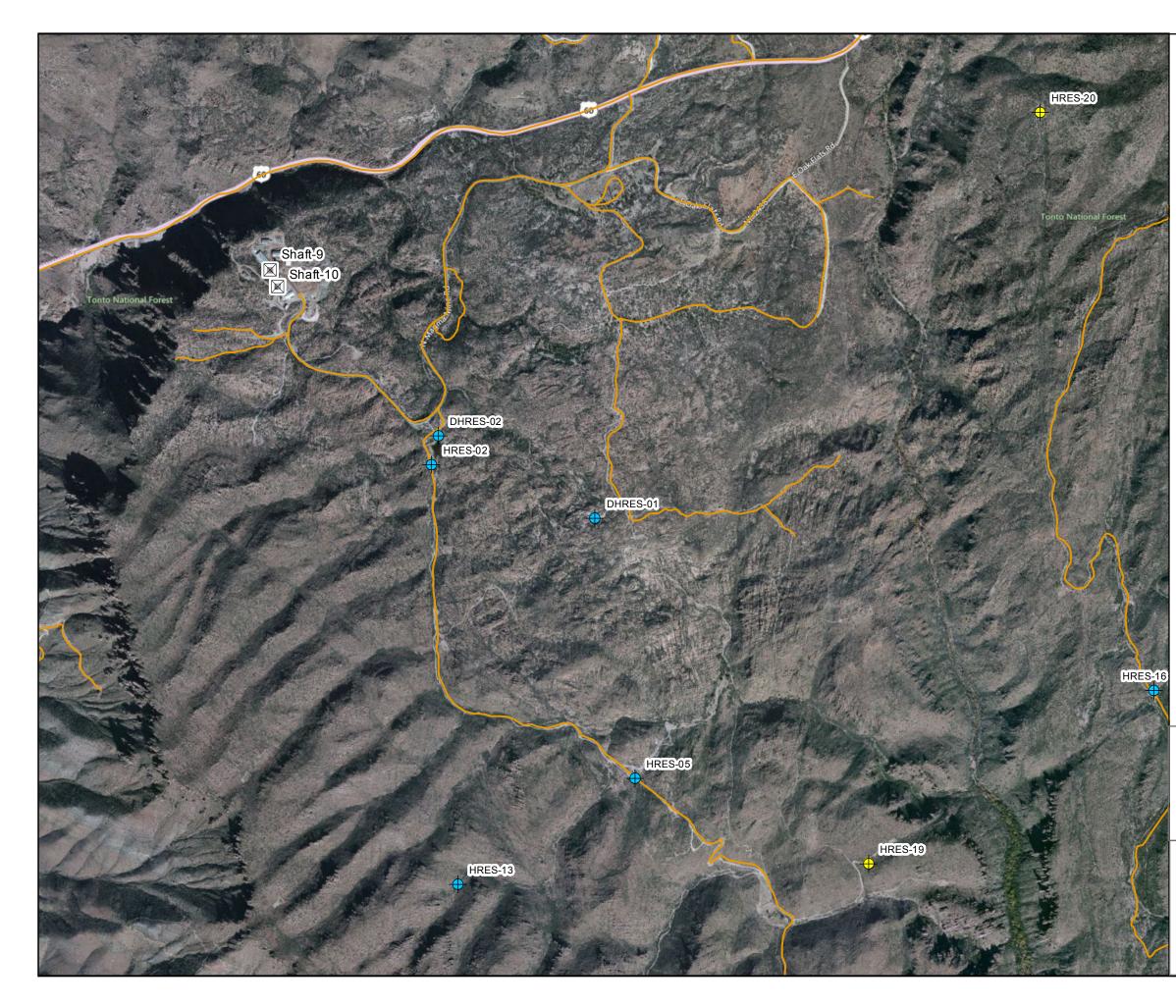
5.7 CASING, SCREEN, AND ANNULAR MATERIALS INSTALLATION

5.7.1 JOINTS IN THE WELL CASING

The sections of casing and screen were assembled with factory installed threads and couplers. Hydraulic tongs were used to tighten the sections into place. Casing centralizers were installed at periodic intervals to ensure the casing and screen remained centered in the borehole during the installation of annular materials. No sump or bottom cap was installed.

5.7.2 CEMENT BASKET

The cement basket was installed on the blank casing at a depth of approximately 32 meters bls. The basket was supported from below by a casing coupler, and was held in place by a stop collar.

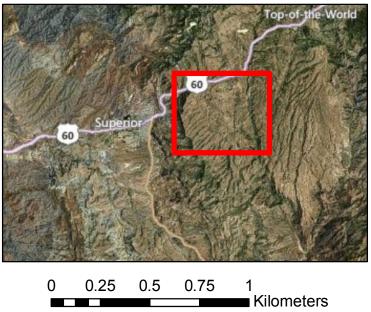
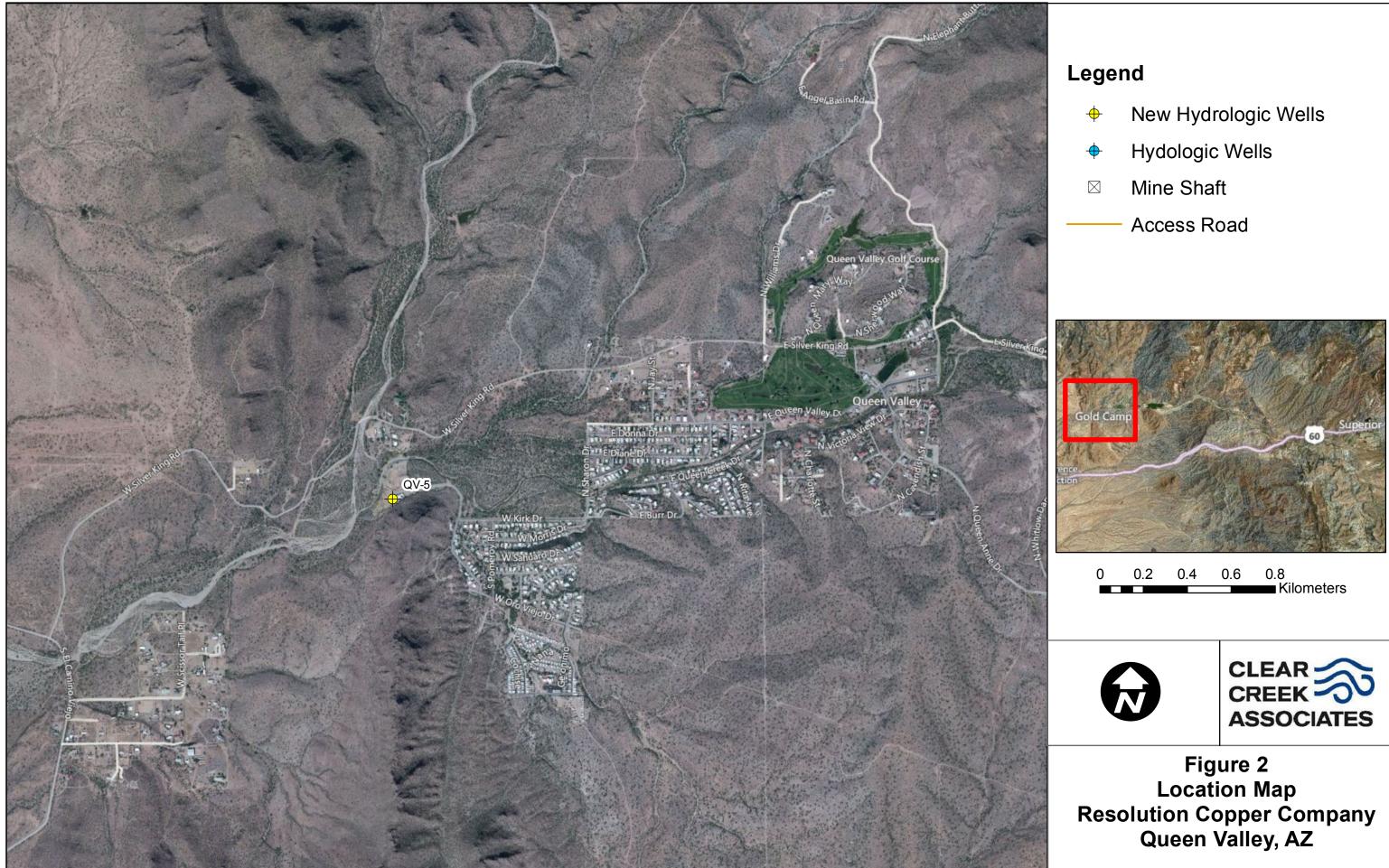
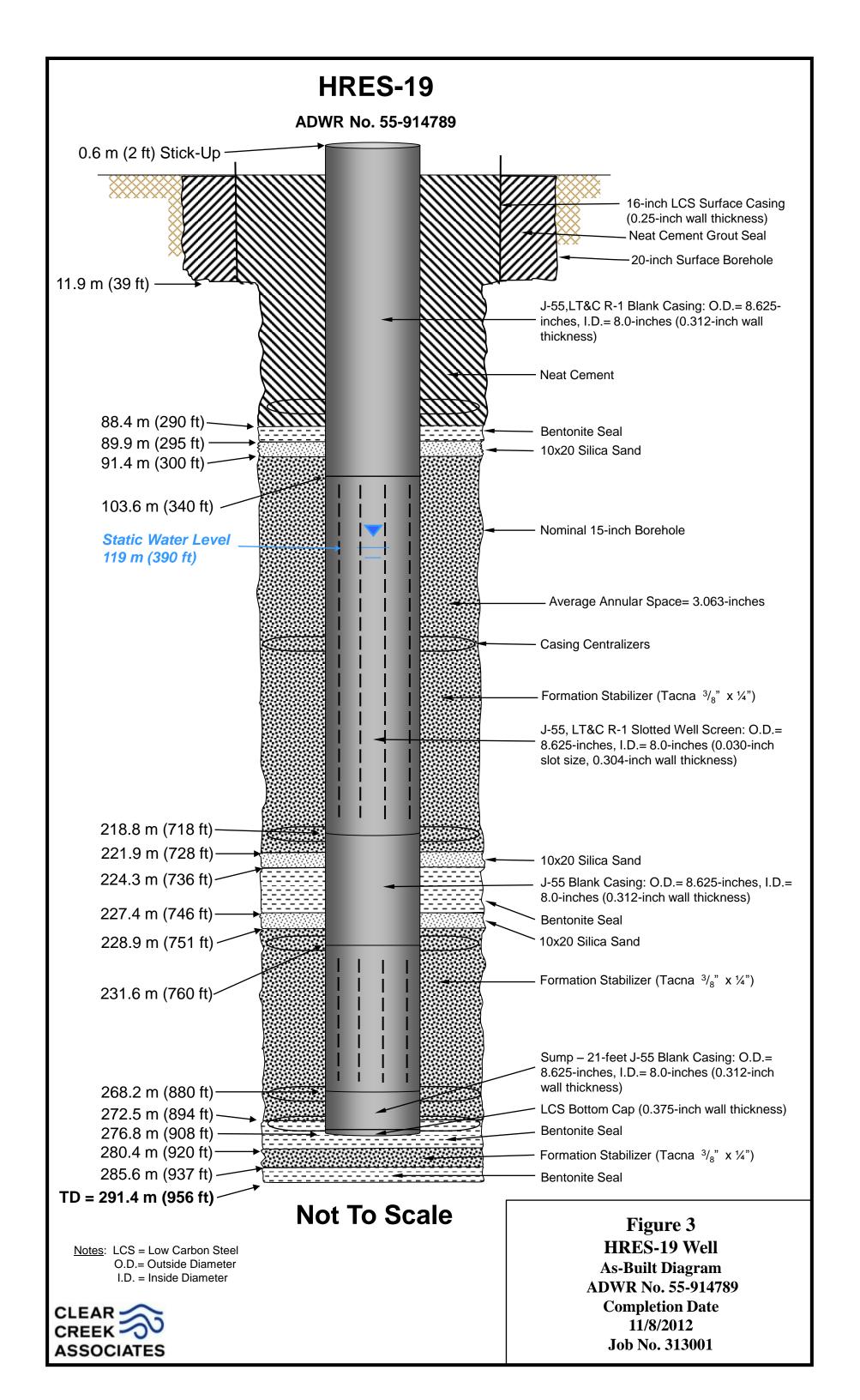

5.8 AIRLIFT DEVELOPMENT

Airlift development was conducted on December 14, 2012. Boart airlifted in stages throughout the entire screen interval to remove excess suspended fine sediment, and sand. The rate of airlifting discharge ranged from 40 to 250 gpm throughout the development period. Clear Creek Associates monitored field parameters and clarity of the discharge until parameters were stable and the water was of acceptable clarity. Field forms documenting the swab and airlift development process are presented in Appendix E.

FIGURES

Legend

+	Hydologic Wells
÷	New Hydrologic Wells
\boxtimes	Mine Shaft
	- Access Road

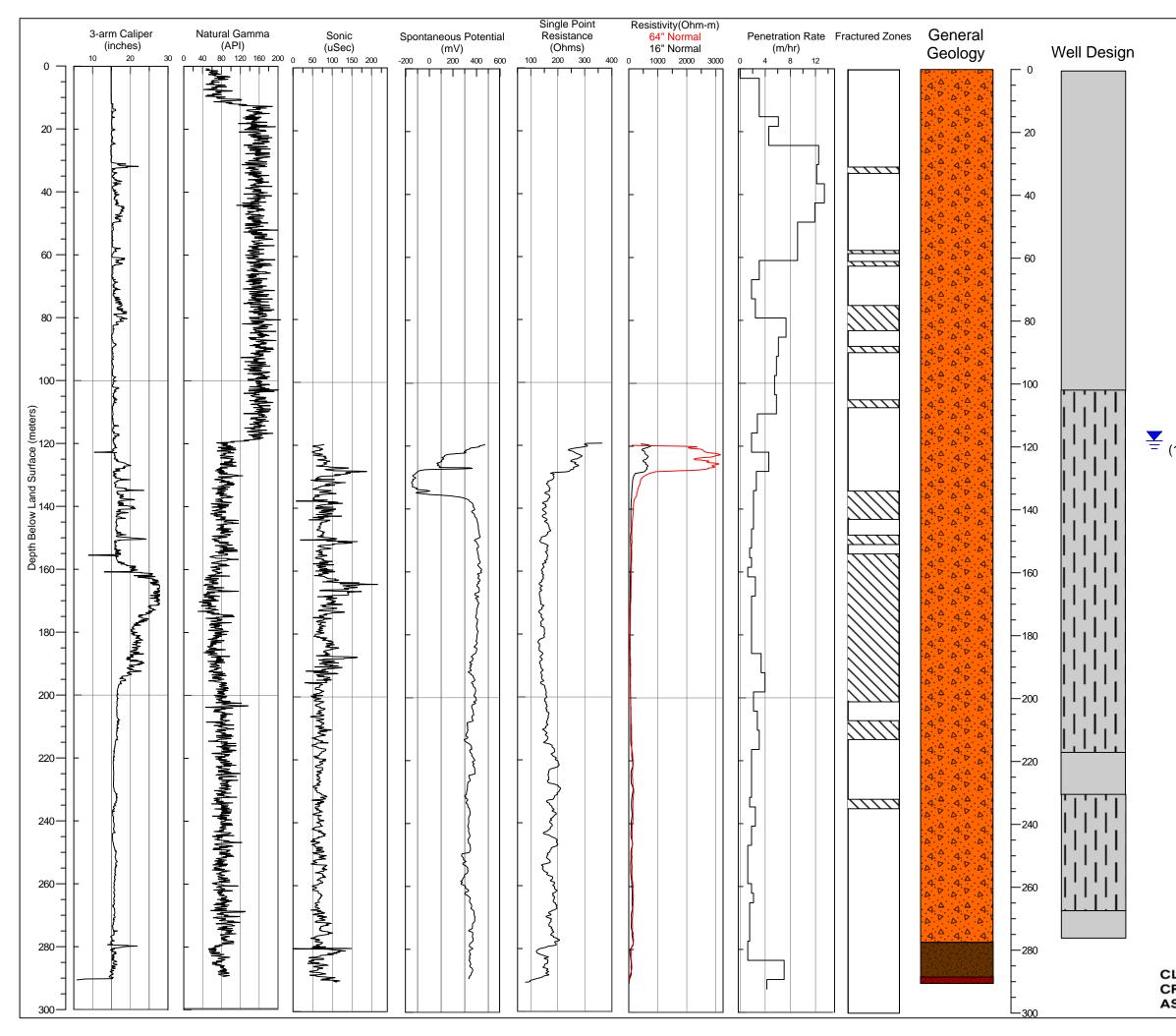


Figure 1 Location Map East Plant Resolution Copper Company Superior, AZ

EXPLANATION

Apache Leap Tuff (Tal)

Apache Leap Vitrophyre/Basal Tuff (Talv/Talbt)

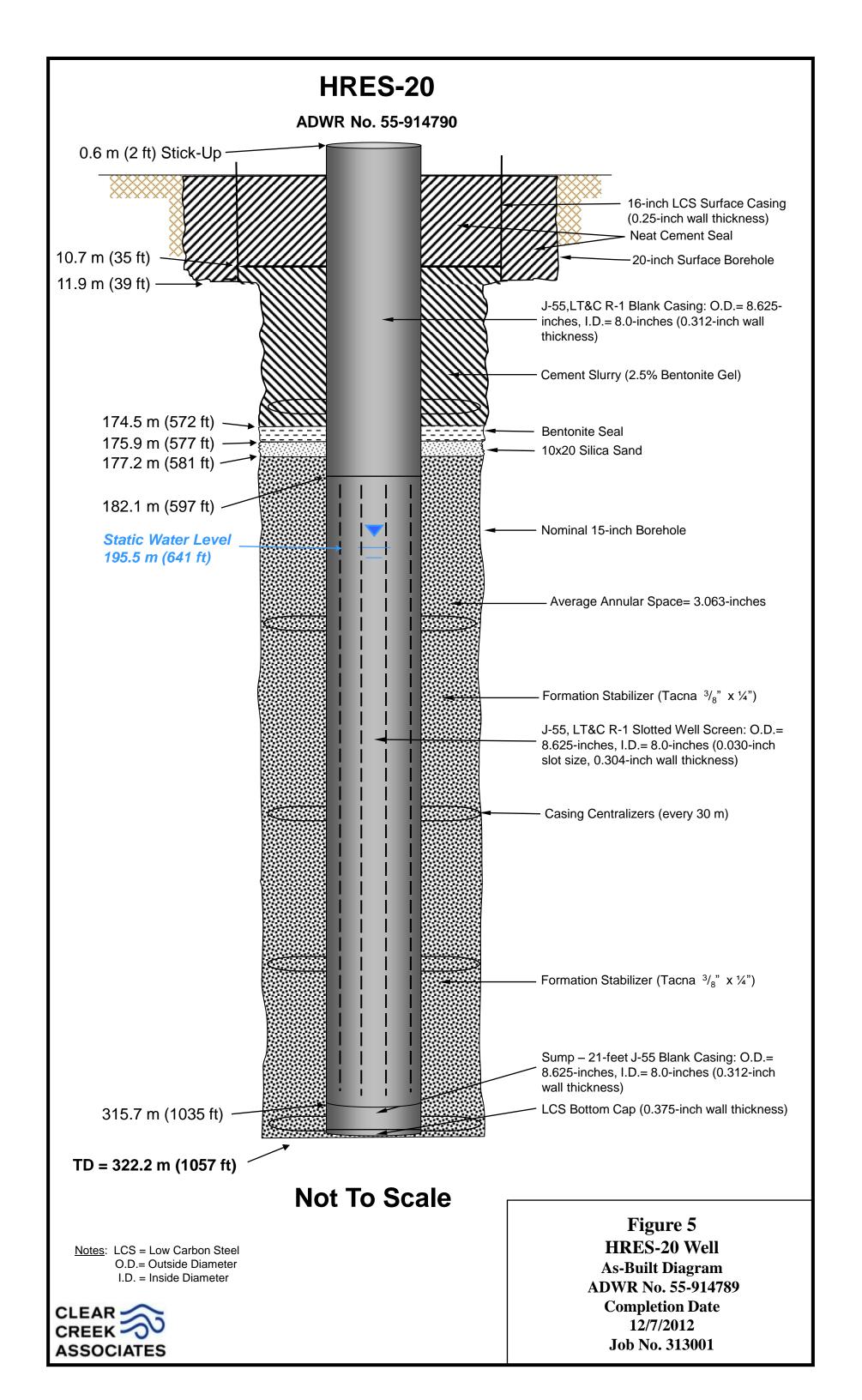
Whitetail Conglomerate (Tw)

Fractured Zones

8-inch J-55 Blank Well Casing

119 m (11/4/12)

8-inch J-55 R1 Slotted Well Screen



Static Water Level

*Notes: Fracture Sets Determined by Acoustic Televiewer Drilled Air Hammer Rotary from 0-151m Drilled Tricone Rotary Flooded Reverse 151-291.4m TD=291.4m Geophysical Logging Conducted by Southwest Exploration on 11/4/2012 PI = American Petroleum Institute mV = millivolts Ohm-m = Ohm-meter uSec = microseconds SWL = Static Water Level

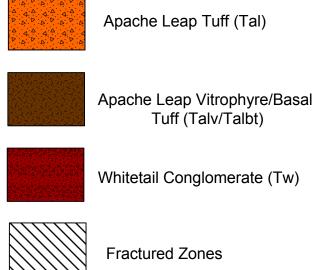


Figure 4 HRES-19 ADWR No. 55-974789 General Geology & Geophysical Data Resolution Copper Company Superior, AZ

10	3-arm Caliper (inches) 0 20 30 (Natural Gamma (API) 0 100 200 300 -50 (Sonic (uSec) 0 50 100 150 200	Spontaneous Potential (mV) -200 0 200 400	Single Point Resistance (Ohms) 80 120 160 200 240	Resistivity(Ohm-m) 64" Normal 16" Normal 0 500 1000 1500 2000	Penetration Rate Fractured Zones (m/hr) 0 4 8 12	General Geology	Well Design
								$\begin{bmatrix} D & A & D & A & A & A & A & A & A & A &$	
Depth Below Land Surface (meters)	Harrison and Harri				- -			A A A A A A A B D A D A	
					- Man			$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \begin{array}{c} \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \begin{array}{c} \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \begin{array}{c} \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \begin{array}{c} \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \begin{array}{c} \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \begin{array}{c} \end{array}{}\\ \end{array}{}\\ \begin{array}{c} \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \begin{array}{c} \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \begin{array}{c} \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \begin{array}{c} \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \begin{array}{c} \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \begin{array}{c} \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \begin{array}{c} \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \begin{array}{c} \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \end{array}{}$	
	and a share and the share of th	And the second of the second s	the traditional and the manual the many work and the second standing at the second stand					$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

EXPLANATION

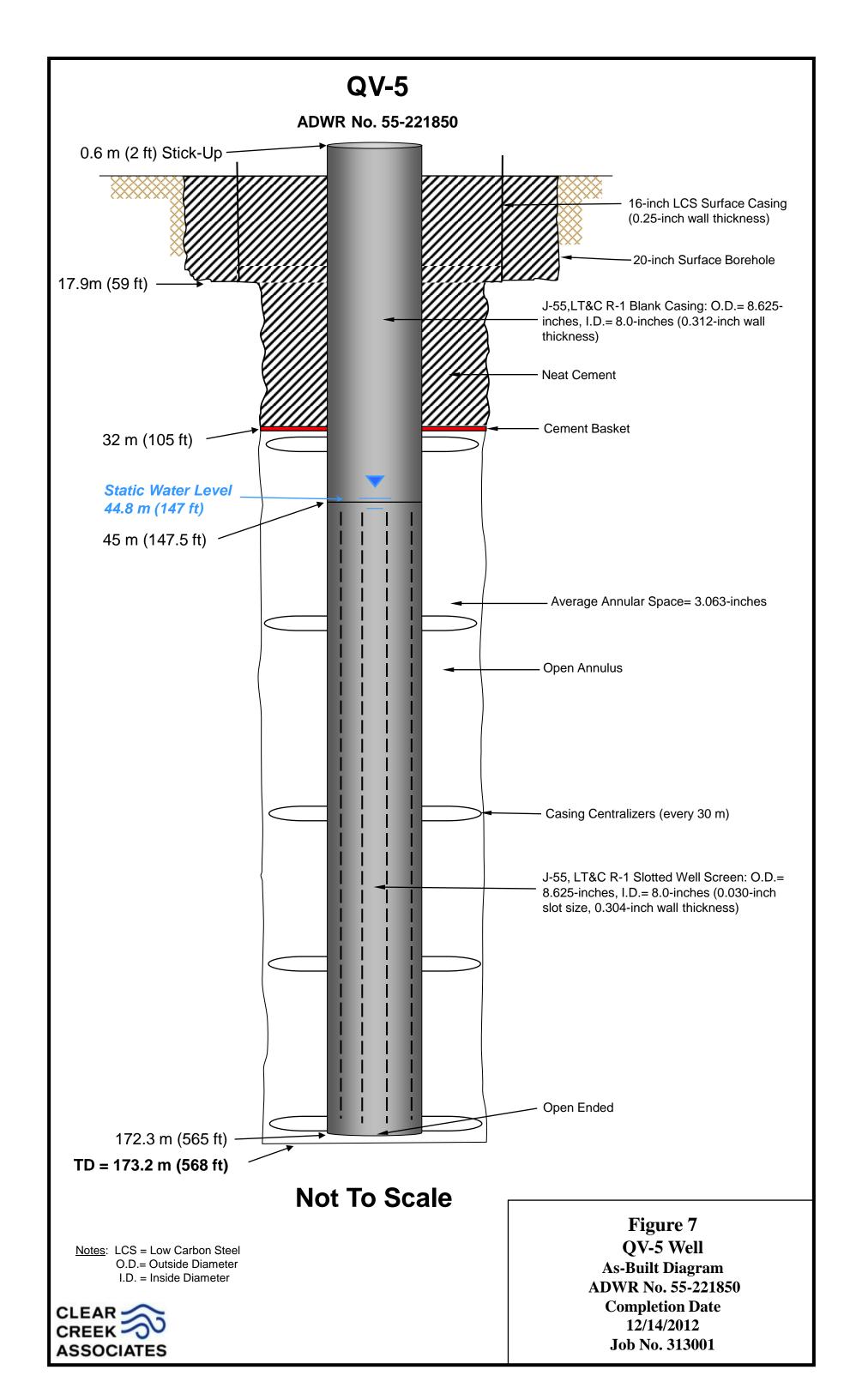
Tuff (Talv/Talbt)

Whitetail Conglomerate (Tw)

Fractured Zones

8-inch J-55 Blank Well Casing

8-inch J-55 R1 Slotted Well Screen


Static Water Level

2 195.5 m (12/3/12)

*Notes: Fracture Sets Determined by Optical and Acoustic Televiewer Drilled Pneumatic Hammer Air Rotary from 0-172m Drilled Conventional Mud Rotary from 172-186m Drilled Tricone Rotary Flooded Reverse 186-322.1m TD=322.1m Geophysical Logging Conducted by Southwest Exploration on 12/3/2012 PI = American Petroleum Institute mV = millivolts Ohm-m = Ohm-meter uSec = microseconds SWL = Static Water Level Figure 6

HRES-20 ADWR No. 55-974790 General Geology & Geophysical Data Resolution Copper Company Superior, AZ

1(3-arm Caliper (inches) 0 20	Natural Gamma (API) 0 100 200 300 ₀	Sonic (uSec) 40 80 120 160	Spontaneous Potential (mV) -200 0 200 400 600	Single Point Resistance (Ohms) 80 120 160 200 240	Resistivity(Ohm-m) 64" Normal 16" Normal 0 400 800 1200	Penetration Rate (m/hr) 0 4 8 12	Fractured Zones	General Geology	Well Design
0									$ \begin{array}{c} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 $	
40 - 40 04 1 - 06 1 - 08 08 120 100 140	- Martin Martin Andrew	Manny Man	how why have been been and the second of the							

EXPLANATION

Unconsolidated Alluvium

Apache Leap Tuff (Tal)

Fractured Zones

8-inch J-55 Blank Well Casing

8-inch J-55 R1 Slotted Well Screen

45.6 m = (1/25/2013)

Static Water Level

*Notes: Fracture Sets Determined by Acoustic Televiewer Drilled Air Hammer Rotary from 0-118.3m Drilled Tricone Flooded Reverse Rotary 118.3-173.2m TD=173.2m Geophysical Logging Conducted by Southwest Exploration on 12/13/2012 PI = American Petroleum Institute mV = millivolts Ohm-m = Ohm-meter uSec = microseconds SWL = Static Water Level

> Figure 8 QV-5 ADWR No. 55-221850 General Geology & Geophysical Data Resolution Copper Company Superior, AZ Job No. 313001

APPENDIX A

PERMIT DOCUMENTS

ARIZONA DEPARTMENT OF WATER RESOURCES

Electronic Filing - NOI Report 3550 N. Central Avenue Suite 200 Phoenix, Arizona 85012

NOI Type: Notice of Intent to Drill, Deepen, Modify a Monitor/Piezometer/Environmental Well Well Type: MONITOR Date Received at ADWR Website: 10/10/2012 8:26:44 AM
Fee Paid: \$150.00 Order Number: VPFE7AF6F73E
Well Registration Number: 55 - 914789 Number of Wells/Holes: 1 Drilling Authority Expires On: 10/9/2013
Driller's ADWR License Number: 468
Authorized Driller: LANG EXPLORATORY DRILLING DBA BOART LONGYEAR ROC License Number Entered By Driller: 073446 Qualifying Party License Categories: A-4
Well Owner Name:Resolution Copper MiningWell Owner Address:P.O. Box 1944Well Owner City, State - Zip:Resolution, AZ - 85173Well Owner Phone:520 689-9374
Book: Map: Parcel:
Is the Land Owner the same as the Well Owner?: No
Land Owner Name:Arizona State Land DepartmentLand Owner Address:1616 W. Adams St.Land Owner City, State - Zip:Phoenix, AZ - 85007Land Owner Phone:602 542-4621
Well Location: NE 1/4 of the NE 1/4 of the NE 1/4 Section 8 Township 2 S Range 13 E
AMA: NOT WITHIN ANY AMA OR INA County: PINAL Contamination Site: NOT IN ANY WQARF SITE
Primary Water Use: TEST Secondary Water Use(s): N/A
Is any portion of the land, on which the well is to be located, within 100 feet of a designated municipal provider's operating water distribution system as shown on the municipal provider's most recent digitized service area map filed by the municipal provider with the director of ADWR. N/A
Proximity to a designated municipal provider's operating water distribution system exemption type: N/A

.

Will you be installing a dedicated pump ?: N/A

Will the installed pump have a pumping capacity of greater than 35 GPM, or will the well will be used to withdraw greater than 10 Acre Feet per year?: N/A

Is this NOI an application to replace, deepen, or modify an existing well? No

Variance(s) Granted To Driller: None

Certification(s) Made By Driller:

- By checking this box, I certify that I have all necessary Registrar of Contractor (ROC) licenses in all necessary license categories for this drilling or abandonment project and that those licenses are current.
- If the landowner and the well owner are not the same, by checking this box, I certify that I have obtained written approval from the landowner in order to conduct this drilling or abandonment project. A copy of the written approval shall be submitted to ADWR with the Well Driller Report and Well Log or Well Abandonment Completion Report within 30 days of completion of drilling or abandonment.
- By checking this box, I certify that this NOI application is not an application to replace, deepen, or modify an existing well.
- By checking this box, I certify that I have been authorized by the above-named well owner to submit this Notice of Intent on the well owner's behalf.
- By checking this box, I certify that the information above is complete and correct, and that the well shall be drilled or abandoned in compliance with all pertinent statutes and rules, including any special standards that may be required to protect the aquifer or other water sources.

ARIZONA DEPARTMENT OF WATER RESOURCES

3550 N. Central Avenue Suite 200, Phoenix, Arizona 85012 Telephone (602) 771-8500 Fax (602) 771-8691

Wednesday, October 10, 2012

Janice K. Brewer Governor

Sandra A. Fabritz-Whitney Director

Resolution Copper Mining P.O. Box 1944 Resolution, AZ 85173

Registration No. 55- 914789 File No. D(2-13)8 AAA

Dear Applicant:

Enclosed is a copy of the Notice of Intent to Drill a Monitor/Piezometer/Environmental Well ("NOI") which you recently filed with this Department pursuant to A.R.S. § 45-596. This is to inform you that the Department has approved the NOI and has mailed (or otherwise provided) a drilling card authorizing the drilling of the well to the well driller identified in the NOI. The driller may not begin drilling until he has received the drilling card which he must keep in his possession at the well site during drilling. Well drilling activities must be completed within one year after the date the NOI was filed with the Department. If drilling is not completed within one year, you must file a new NOI before proceeding with further drilling.

If it is necessary to change the location of the proposed well, you may not proceed with drilling until you file a new NOI with the Department and the Department issues an amended drilling card to the driller. If you change drillers, you must notify the Department of the new driller's identity. A new driller may not begin drilling until he receives a new drilling card from the Department. If in the course of drilling the well, it is determined that the well cannot be successfully completed as initially intended (dry hole, cave in, lost tools, etc.), the well must be properly abandoned and a Well Abandonment Completion Report filed as required by A.A.C. R12-15-816(F).

A.R.S. § 45-600 requires the driller to file a complete and accurate Well Drillers Report and Well Log (DWR Form 55-55) with the Department within 30 days after completion of drilling. That form was mailed to your driller with the drilling card.

Please be advised that A.R.S. § 45-593(C) requires the person to whom a well is registered to notify the Department of a change in ownership of the well and/or information pertaining to the physical characteristics of the well in order to keep this well registration file current and accurate. Any change in well information or a request to change well driller must be filed on a Request to Change Well Information form (DWR form 55-71A) that may be downloaded from the ADWR Internet website at

http://www.azwater.gov/dwr/Content/Find_by_Category/Permits_Forms_Applications/default.htm.

ARIZONA DEPARTMENT OF WATER RESOURCES

Electronic Filing - NOI Report 3550 N. Central Avenue Suite 200 Phoenix, Arizona 85012

NOI Type: Notice of Intent to Drill, Deepen, Modify a Monitor/Piezometer/Environmental Well Well Type: MONITOR Date Received at ADWR Website: 10/10/2012 8:45:31 AM Fee Paid: \$150.00 Order Number: VREE7B4214BA Well Registration Number: 55 - 914790 Number of Wells/Holes: 1 Drilling Authority Expires On: 10/9/2013 Driller's ADWR License Number: 468 Authorized Driller: LANG EXPLORATORY DRILLING DBA BOART LONGYEAR ROC License Number Entered By Driller: 073446 Qualifying Party License Categories: A-4 Well Owner Name: **Resolution Copper Mining** Well Owner Address: P.O. Box 1944 Well Owner City, State - Zip: Resolution, AZ - 85173 Well Owner Phone: 520 689-9374 Book: Map: Parcel: Is the Land Owner the same as the Well Owner?: No Land Owner Name: U.S. Forest Service Land Owner Address: 333 Broadway SE Land Owner City, State - Zip: Albuquerque, NM - 87102 Land Owner Phone: 505 842-3292 Well Location: SE 1/4 of the NW 1/4 of the SW 1/4 Section 27 Township 1 S Range 13 E AMA: NOT WITHIN ANY AMA OR INA County: PINAL **Contamination Site:** NOT IN ANY WQARF SITE Primary Water Use: TEST Secondary Water Use(s): N/A Is any portion of the land, on which the well is to be located, within 100 feet of a designated municipal provider's operating water distribution system as shown on the municipal provider's most recent digitized service area map filed by the municipal provider with the director of ADWR. N/A Proximity to a designated municipal provider's operating water distribution system exemption type:

Will you be installing a dedicated pump ?: N/A

N/A

Will the installed pump have a pumping capacity of greater than 35 GPM, or will the well will be used to withdraw greater than 10 Acre Feet per year?: N/A

Is this NOI an application to replace, deepen, or modify an existing well? No

Variance(s) Granted To Driller: None

Certification(s) Made By Driller:

- By checking this box, I certify that I have all necessary Registrar of Contractor (ROC) licenses in all necessary license categories for this drilling or abandonment project and that those licenses are current.
- If the landowner and the well owner are not the same, by checking this box, I certify that I have obtained written approval from the landowner in order to conduct this drilling or abandonment project. A copy of the written approval shall be submitted to ADWR with the Well Driller Report and Well Log or Well Abandonment Completion Report within 30 days of completion of drilling or abandonment.
- By checking this box, I certify that this NOI application is not an application to replace, deepen, or modify an existing well.
- By checking this box, I certify that I have been authorized by the above-named well owner to submit this Notice of Intent on the well owner's behalf.
- By checking this box, I certify that the information above is complete and correct, and that the well shall be drilled or abandoned in compliance with all pertinent statutes and rules, including any special standards that may be required to protect the aquifer or other water sources.

ARIZONA DEPARTMENT OF WATER RESOURCES

3550 N. Central Avenue Suite 200, Phoenix, Arizona 85012 Telephone (602) 771-8500 Fax (602) 771-8691

Wednesday, October 10, 2012

Janice K. Brewer Governor

Sandra A. Fabritz-Whitney Director

Resolution Copper Mining P.O. Box 1944 Resolution, AZ 85173

Registration No. 55- 914790 File No. D(1-13)27 CBD

Dear Applicant:

Enclosed is a copy of the Notice of Intent to Drill a Monitor/Piezometer/Environmental Well ("NOI") which you recently filed with this Department pursuant to A.R.S. § 45-596. This is to inform you that the Department has approved the NOI and has mailed (or otherwise provided) a drilling card authorizing the drilling of the well to the well driller identified in the NOI. The driller may not begin drilling until he has received the drilling card which he must keep in his posssession at the well site during drilling. Well drilling activities must be completed within one year after the date the NOI was filed with the Department. If drilling is not completed within one year, you must file a new NOI before proceeding with further drilling.

If it is necessary to change the location of the proposed well, you may not proceed with drilling until you file a new NOI with the Department and the Department issues an amended drilling card to the driller. If you change drillers, you must notify the Department of the new driller's identity. A new driller may not begin drilling until he receives a new drilling card from the Department. If in the course of drilling the well, it is determined that the well cannot be successfully completed as initially intended (dry hole, cave in, lost tools, etc.), the well must be properly abandoned and a Well Abandonment Completion Report filed as required by A.A.C. R12-15-816(F).

A.R.S. § 45-600 requires the driller to file a complete and accurate Well Drillers Report and Well Log (DWR Form 55-55) with the Department within 30 days after completion of drilling. That form was mailed to your driller with the drilling card.

Please be advised that A.R.S. § 45-593(C) requires the person to whom a well is registered to notify the Department of a change in ownership of the well and/or information pertaining to the physical characteristics of the well in order to keep this well registration file current and accurate. Any change in well information or a request to change well driller must be filed on a Request to Change Well Information form (DWR form 55-71A) that may be downloaded from the ADWR Internet website at

http://www.azwater.gov/dwr/Content/Find_by_Category/Permits_Forms_Applications/default.htm.

SANDRA A. FABRITZ-WHITNEY Director

ARIZONA DEPARTMENT OF WATER RESOURCES

3550 North Central Avenue, Second Floor PHOENIX, ARIZONA 85012-2105 (602) 771-8500

November 26, 2012

Queen Valley Domestic Water Improvement District Attention: Mr. Steve Wene 1552 East Queen Valley Drive Queen Valley, AZ 85218

SUBJECT: Notice of Intention to Construct a Replacement Non-Exempt Well at Approximately the Same Location Registration No. 55-221850 (Replacing Well No. 55-628139) File No. D (1-10) 34CDD

Dear Mr. Wene:

The above-referenced Notice of Intention to Construct an Existing Non-Exempt Well in Approximately the Same Location within the Phoenix Active Management Area has been approved. An annotated copy of the Notice is enclosed for your records. As the well owner you are required to submit the enclosed Completion Report within thirty (30) days of installation of pump equipment.

Pursuant to the provisions of A.R.S. § 45-604, any person withdrawing groundwater from a well is required to use a water measuring device to record rates of withdrawal in order to provide or allow the computation of an annual volume of groundwater withdrawn from the well. The total volume of withdrawals from the well which is being replaced and the completed new well shall be reported on your Annual Water Withdrawal and Use Report for calendar year 2012. Subsequent annual reporting periods shall be from January 1 through December 31.

The Department has issued the authorization to drill this well pursuant to A.R.S. §§ 45-596 and 45-597 of the Groundwater Code. The legal nature of the water withdrawn from the well may be the subject of court action in the future as part of a determination of surface water rights in your area. If there are court proceedings that could affect your well, you will be notified and be given the opportunity to participate.

Please be aware that the withdrawals from the proposed well cannot exceed the maximum annual capacity of the original well you wish to replace. The maximum annual capacity of the original

JANICE K. BREWER Governor well is 177 acre-feet per year. In addition, if the original well will be used in conjunction with the proposed replacement well, the withdrawals from both wells cannot exceed the maximum annual capacity of the original well.

If the maximum annual capacity is exceeded in any calendar year, the well will no longer qualify as a replacement well in approximately the same location, and will instead fall into the category of "new well." This means that you will not be able to pump the well again until you first submit an application for a non-exempt well permit, and obtain a determination from the Department that the well will not cause unreasonably increasing damage to other land and water users.

Under A.R.S. § 45-593, the person to whom a well is registered must notify the Department of a change in ownership, physical characteristics or any other data about the well in order to keep the well registration records current and accurate. A *Request to Change Well Information* form may be obtained online at http://www.azwater.gov.

Your permit has been issued by this Department without a hearing. As such, it is an appealable agency action. You are entitled to appeal and your rights are described in the enclosed notice of right to appeal.

If you have any questions about the terms and conditions of the permit or require any administrative corrections to this permit, please contact the Groundwater Permitting and Wells Section at 602-771-8527.

Sincerely,

tilla Murils

Stella Murillo, Manager Groundwater Permitting and Wells Section

Enclosures

cc: File

ARIZONA DEPARTMENT OF WATER RESOURCES WATER MANAGEMENT DIVISION 3550 N. Central Avenue, Phoenix Arizona 85012

THIS AUTHORIZATION SHALL BE IN THE POSSESSION OF THE DRILLER DURING ALL DRILL OPERATIONS

WELL REGISTRATION NO: 55-221850

REPLACING: 55-628139

PERMIT NO.: S-221850

AUTHORIZED DRILLER: BOART LONGYEAR

LICENSE NO.: 468

A PERMIT TO DRILL A REPLACEMENT NON-EXEMPT WELL INSIDE THE PHOENIX ACTIVE MANAGEMENT AREA HAS BEEN GRANTED TO:

WELL OWNER: QUEEN VALLEY DOMESTIC WATER IMPROVEMENT DISTRICT

The well(s) is/are to be located in the:

SE ¼ of the SE ¼ of the SW ¼ of Section 34 Township 1 South, Range 10 East

No. of well(s) in this project: 1

THIS AUTHORIZATION EXPIRES AT MIDNIGHT ON THE 18TH DAY OF NOVEMBER 2013

ENGINEERING AND PERMITS DIVISION

THE DRILLER MUST FILE A WELL DRILLER REPORT AND WELL LOG WITHIN 30 DAYS OF COMPLETION OF DRILLING.

ARIZONA DEPARTMENT OF WATER RESOURCES

NON-EXEMPT WELL PERMIT

PURSUANT TO A.R.S. §§ 45-598 AND 45-599

PERMIT NO. S-221850

STATE OF ARIZONA)
) ss.
COUNTY OF MARICOPA)

This is to certify that Application No. S-221850 meets the requirements of A.R.S. §§ 45-598 and 45-599 for a replacement well in approximately the same location. The Director hereby grants authority to the Permittee to construct and operate a non-exempt well, subject to the following limitations and conditions:

Permit Limitations

Permittee:	Queen Valley Domestic Water Improvement District 1552 East Queen Valley Drive Queen Valley, AZ 85218				
Well Registration Number:	55-221850 File No. D(1-10)34CDD				
Active Management Area:	Phoenix				
Subbasin:	East Salt River Valley				
Well Location:	THE SE ¼ OF THE SE ¼ OF THE SW ¼ OF SECTION 34, TOWNSHIP 1 SOUTH, RANGE 10 EAST of the GSRB&M				
Depth:	600 feet				
Casing Material:	Steel				
Casing Diameter:	Eight (8) inches				
Maximum Pumping Capacity:	150 gallons per minute				

PERMIT NO. S-221850

Maximum Annual Volume:	177 acre-feet per annum
Authorized Place of Use for Groundwater Withdrawn:	As Authorized by Water Provider Right No. 56-002221
Authorized Use of Groundwater:	As Authorized by Water Provider Right No. 56-002221
Latest Date for Completing Well:	November 18, 2013

Permit Conditions

- 1. If the permitted well is not completed on or before November 18, 2013, the Permittee will be required to file a new application, and secure a new permit before proceeding with construction.
- 2. This permit is issued pursuant to A.R.S. § 45-599 and authorizes the permittee to construct a a replacement well in approximately the same location for the purpose of withdrawing groundwater for the use or uses set forth in the permit. This permit does not authorize the permittee to withdraw surface water from the well. If the permittee withdraws surface water from the well in any year, the permittee shall do so only pursuant to a decreed or appropriative surface water right and shall separately report in the annual report filed pursuant to A.R.S. § 45-632 the amount of groundwater and surface water withdrawn from the well.
- 3. The permittee shall monitor withdrawals of groundwater and shall report the total amount of groundwater withdrawn on an Annual Water Withdrawal and Use Report. The first annual reporting period shall be from the date of issuance of this permit through December 31, 2012. Subsequent annual reporting periods shall be from January 1 through December 31.
- 4. The proposed well shall be constructed in accordance with the minimum well construction standards, pursuant to A.A.C. R12-15-811.
- 5. The issuance of the permit does not waive any federal, state, county or local government ordinances, regulations or permits for which the facility may have to comply.

WITNESS my hand and seal of office this 26th day of November, 2012.

Michael J. Johnson, Assistant Director

APPENDIX B

PHOTOGRAPHIC LOG

December, 2012 Clear Creek Associates Job No. 313001

HRES-19

View of D80 drill rig at HRES-19

22 inch Tri-cone button bit and 7 inch drill collars

15- inch Hammer bit

HRES-19

Roll reamers

View of 0.030-inch mill slot casing

Gravel install during well construction

Tacna gravel (3/8" x 1/4") on well screen

HRES-20

D80 Drill Rig

Threaded and Coupled Well Casing

Well Casing Couplers

HRES-20

View of damaged tri-cone bit

Southwest Exploration Services, LLC conducting geophysical logging

Roll Reamer with missing roller

HRES-20

Magnetic fishing tool used to retrieve roller reamer fragments

Steel band centralizers

Discharge water during airlift development

QV-5

D40 Drill Rig

Tri-cone button bit

Hammer bit

QV-5

Well casing

Well casing

Tungsten carbide button roller

QV-5

View of drill cuttings

Southwest Exploration Services, LLC conducting geophysical logging

Cement basket

Lithology

Apache Leap Tuff- White Unit

Apache Leap Tuff- Brown Unit

Apache Leap Tuff- Gray Unit

Apache Leap Tuff- Vitrophyre and Basal Tuff

Lithology

White Tail Conglomerate and Apache Leap Basal Tuff

Bronzy Biotite- Limonite on Boitite

Apache Leap Tuff at QV-5

Iron-oxide in Groundmass

APPENDIX C

LITHOLOGIC LOGS

December, 2012 Clear Creek Associates Job No. 313001

Project No.: 313001	Well/Boring Name: HRES-19
Project Name: RCC Hydro Wells	Date/Time Started: 10/21/2012
55-914789	Date/Time Completed: 11/03/2012
Cadastral: T25, R13E, Sec 8 (D-2-13) 08 AAA	Drilling Equipment: Drill Tech
NAD 83:	Drilling Method(s): Direct Air, flooded reverse
Drill Company: Boart Longyear	Bit Size(s)/Type(s): 15" Hammer Bit, 14.75" Tri-Cone
Driller(s): Chris Perry, Mike , Hunter Skalls	Conductor Casing (type; diameter; depth): 16" Steel to 39'bls
Logged By: RM/ BWH/ GJM	Total Well/Borehole Depth: 956' bis

Depth (feet)	Depth (meters)	Drill Rate (ft/hr)	HCI Rxn	Munsell Color	Sample Description	Secondary Features	Remarks	
0-10	0-3	10	None	2.5 YR 5/4 Reddish Brown	<u>Apache Leap Tuff - Gray Unit</u> (Talg). Well indurated, phaneritic to porphoritic textured tuff, 50-60% plagioclase (sanidine), quart, biotite, cryptocrystalline ground mass, red in color.	Surficial weathering iron oxide on biotite and ground mass	Air rotary for surface casing.	
20	6.1	10	None	2.5 YR 5/4 Reddish Brown	Talg	Limonite on biotite		
30	9.1	10	None	2.5 YR 5/4 Reddish Brown	Talg	Limonite on biotite		
40	12.2	10	None	2.5 YR 4/4 Reddish Brown	Talg	Limonite on biotite	Cuttings are sand- sized: No large chips	
50	15.2	20	None	2.5 YR 4/3 Reddish Brown	Talg	Limonite on biotite. Surface weathering on larger chips	Surface casing set to 39' bls 14 ^{3/4} . Air hammer bit cuttings or predominantly sand- sized, no large chips. Down to 120 ft	
60	18.3	15	None	2.5 YR 4/3 Reddish Brown	Talg		200-mesh on the mud shaker explains abundance of finds.	
70	21.3	15	None	2.5 YR 4/3 Reddish Brown	Talg			

Depth (feet)	Depth (meters)	Drill Rate (ft/hr)	HCI Rxn	Munsell Color	Sample Description	Secondary Features	Remarks
70-80	21.3-24.4	41	None	2.5 YR 4/3 Reddish Brown	Apache Leap Tuff-Gray Unit (Talg). Well indurated, phaneritic to porphoritic textured tuff. Phenocryst up to 4mm, plagioclase (sanidine), quartz, biotite. ~40% Cryptocrystalline ground mass.	Limonite on biotite.	Cuttings are sand- sized: No large chips. Down to 120 ft.
90	27.4	41	None	2.5 YR 4/3 Reddish Brown	Talg		
100	30.5	40	None	2.5 YR 4/3 Reddish Brown	Talg		
110	33.5	40	None	2.5 YR 4/3 Reddish Brown	Talg		Per-Driller log: Fracutre Set 100-130' bls
120	36.6	44	None	2.5 YR 4/4 Reddish Brown	Talg		
130	39.6	44	None	2.5 YR 4/4 Reddish Brown	Talg	Evidence of weathering on chip faces	Increase in chip size up to 3cm
140	42.7	39	None	2.5 YR 4/4 Reddish Brown	Talg		
150	45.7	39	None	2.5 YR 4/4 Reddish Brown	Talg		

Depth (feet)	Depth (meters)	Drill Rate	HCI Rxn	Munsell Color	Sample Description	Secondary Features	Remarks
150-160	45.7-48.8	30	None	2.5 YR 4/4 Reddish Brown	Apache Leap Tuff-Gray Unit (Talg). Well indurated, phaneritic to porphoritic textured tuff. Phenocryst up to 4mm, plagioclase (sanidine), quartz, biotite. ~40% Cryptocrystalline ground mass.	Limonite on biotite. Fe-Oxide stains on ground mass.	Chips mostly sed size (~50% up to 5cm)
170	51.8	30	None	2.5 YR 4/4 Reddish Brown	Talg		
180	54.9	30	None	2.5 YR 4/4 Reddish Brown	Taig		
190	57.9	30	None	2.5 YR 4/4 Reddish Brown	Talg		
200	61	10	None	2.5 YR 4/4 Reddish Brown	Talg		
210	64	10	None	2.5 YR 4/4 Reddish Brown	Talg		
220	67.1	6	None	2.5 YR 4/3 Reddish Brown	Talg		Sand Produced by hammer bit are effecting the pneumatic, driller slowed down to accomidate
230	70.1	6	None	2.5 YR 4/4 Reddish Brown	Talg		

Depth (feet)	Depth (meters)	Drill Rate (ft/hr)	HCI Rxn	Munsell Color	Sample Description	Secondary Features	Remarks
230-240	70.1-73.2	8	None	2.5 YR 4/4 Reddish Brown	Apache Leap Tuff-Gray Unit (Talg). Well indurated, phaneritic to porphoritic textured tuff. Phenocryst up to 4mm, plagioclase (sanidine), quartz, biotite. ~40% Cryptocrystalline ground mass.		
250	76.2	8	None	2.5 YR 4/4 Reddish Brown	Talg		Increase in drill rate
260	79.3	24	None	2.5 YR 4/4 Reddish Brown	Taig		
270	82.3	24	None	2.5 YR 4/4 Reddish Brown	Taig		
280	85.4	20	None	2.5 YR 4/4 Reddish Brown	Taig		
290	88.4	20	None	2.5 YR 4/4 Reddish Brown	Taig		
300	91.5	19	None	2.5 YR 4/4 Reddish Brown	Talg		
310	94.5	19	None	2.5 YR 4/4 Reddish Brown	Talg		Deviation survey taken =1.0°

Depth (feet)	Depth (meters)	Drill Rate (ft/hr)	HCI Rxn	Munsell Color	Sample Description	Secondary Features	Remarks
310-320	94.5-97.6	18	None	2.5 YR 4/4 Reddish Brown	Apache Leap Tuft-brown Unit (Talb). Well indurated, phaneritic to porphoritic textured tuff. Phenocryst up to ~5mm, Predominantly 1-2mm. Some flow banding. Plagioclase (sanidine), quartz, biotite. Lineations could suggest brown unit.	Limonite on biotite.	Cuttings are mostly sand-grain in size, very few gravel-sized framents.
330	100.6	18	None	2.5 YR 4/4 Reddish Brown	Talb		
340	103.7	19	None	2.5 YR 4/4 Reddish Brown	Talb		
350	106.7	19	None	2.5 YR 4/4 Reddish Brown	Talb		
360	109.8	9	None	2.5 YR 4/4 Reddish Brown	Talb		
370	112.8	9	None	2.5 YR 4/4 Reddish Brown	Talb		Slow down in rate. Driller reports formation is actually soft and broken up- causing slow progress with hammer bit.
380	115.9	6	None	2.5 YR 4/4 Reddish Brown	Ground mass predominetly brown in color.		
390	118.9	6	None	2.5 YR 4/4 Reddish Brown	Talb		

Depth (feet)	Depth (meters)	Drill Rate (ft/hr)	HCI Rxn	Munsell Color	Sample Description	Secondary Features	Remarks
390-400	118.9- 122.0	15	None		<u>Apache Leap Tuff-Brown Unit (Talb)</u> . Well indurated, phaneritic to porphoritic tuff, ~30% Phenocrysts of anhedral plagioclase (sanidine), quartz, biotite (subhedral), Lithic inclusions of brown siltstone.	Limonite on biotite. Fe-Oxide mixed in matrix	Chips are mostly sand sized.
410	125	15	None	2.5 YR 4/4 Reddish Brown	Talb		
420	128.1	8.5	None	2.5 YR 4/4 Dark Reddish Brown	Apache Leap Tuff-Brown Unit (Talb). Well indurated, phaneritic to porphoritic tuff, 30-40% Phenocrysts of anhedral plagioclase (sanidine), quartz, biotite (subhedral), Lithic inclusions of brown siltstone.	Limonite on biotite. Fe-Oxide stains on ground mass.	Groundmass logging sand sized cuttings
430	131.1	8.5	None	2.5 YR 4/4 Dark Reddish Brown	Talb		
440	134.2	7	None	2.5 YR 4/4 Dark Reddish Brown	Talb		
450	137.2	7	None	2.5 YR 4/4 Dark Reddish Brown	Talb		
460	140.3	7	None	2.5 YR 4/4 Dark Reddish Brown	Talb		
470	143.3	7	None	2.5 YR 4/4 Dark Reddish Brown	Talb		

Depth (feet)	Depth (meters)	Drill Rate (ft/hr)	HCI Rxn	Munsell Color	Sample Description	Secondary Features	Remarks
470-480	143.3- 146.4	6	None	5 YR 3/3 Dark Reddish Brown	<u>Apache Leap Tuff-Brown Unit (Talb).</u> Well indurated, phaneritic to porphoritic tuff, 30-40% Phenocrysts of anhedral plagioclase (sanidine), quartz, biotite (subhedral), Lithic inclusions of brown siltstone.	Limonite on biotite. Fe-Oxide stains on ground mass.	Sand sized cuttings
490	149.4	6	None	5 YR 3/3 Dark Reddish Brown	Talb		
500	152.5	5	None	5 YR 3/3 Dark Reddish Brown	Talb		(Deveation survey = 1.5°) Switch to flooded reverse drilling
510	155.5	6	None	5 YR 3/3 Dark Reddish Brown	Talb		
520	158.5	4	None	5 YR 3/3 Dark Reddish Brown	Talb		
530	161.6	8	None	5 YR 3/3 Dark Reddish Brown	Talb		
540	164.7	8	None	5 YR 3/3 Dark Reddish Brown	Talb		
550	167.7	6	None	5 YR 3/3 Dark Reddish Brown	Talb		

Depth (feet)	Depth (meters)	Drill Rate (ft/hr)	HCl Rxn	Munsell Color	Sample Description	Secondary Features	Remarks
550-560	167.7- 170.8	6	None	5 YR 3/3 Dark Reddish Brown	<u>Apache Leap Tuff-Brown Unit (Talb).</u> Well indurated, phaneritic to porphoritic tuff, 50% Phenocrysts of anhedral plagioclase (sanidine), quartz, biotite magnetite, lithic inclusions of brown siltstone. Ground mass is cryptocrystalline Si-rich.	Fe-oxide in ground mass.	Cuttings returned are mostly sand sized
570	173.8	6	None	5 YR 3/3 Dark Reddish Brown	Talb		
580	176.9	6	None	5 YR 3/3 Dark Reddish Brown	Talb		
590	17.9	6	None	5 YR 3/3 Dark Reddish Brown	Talb		Driller reports unstable borehole @~587 ft, Collapsing onto drill string- Fractures?
600	183	6	None	5 YR 3/3 Dark Reddish Brown	Talb		
610	186	11	None	5 YR 3/3 Dark Reddish Brown	Talb		
620	189.1	11	None	5 YR 3/3 Dark Reddish Brown	Talb		
630	192.1	13	None	5 YR 3/3 Dark Reddish Brown	Talb		

Depth (feet)	Depth (meters)	Drill Rate (ft/hr)	HCI Rxn	Munsell Color	Sample Description	Secondary Features	Remarks
630-640	192.1- 195.1	13	None	5 YR 3/3 Dark Reddish Brown	<u>Apache Leap Tuff-Brown Unit (Talb).</u> Well indurated, phaneritic to porphoritic tuff, 50% Phenocrysts of anhedral plagioclase (sanidine), quartz, biotite magnetite, lithic inclusions of brown siltstone. Ground mass is cryptocrystalline Si-rich.	Lintonite on blotte. Te-oxide in	Cuttings returned mostly sand sized.
650	198.2	7	None	5 YR 3/3 Dark Reddish Brown	Talb		
660	201.2	7	None	5 YR 3/3 Dark Reddish Brown	Talb		
670	204.3	9	None	5 YR 3/3 Dark Reddish Brown	Talb		
680	207.3	9	None	5 YR 3/3 Dark Reddish Brown	Talb	Chips with slicken sides on them.	Surge of large cuttings up to ~5cm.
690	210.4	10	None	5 YR 3/3 Dark Reddish Brown	Talb		Driller reports unstable borehole. Difficulty cleaning.
700	213.4	10	None	5 YR 3/3 Dark Reddish Brown	Talb		Deviation For 700' bls = 1 ⁰
710	216.5	6	None	5 YR 3/3 Dark Reddish Brown	Talb		

Depth (feet)	Depth (meters)	Drill Rate (ft/hr)	HCI Rxn	Munsell Color	Sample Description	Secondary Features	Remarks
710-720	216.5- 219.6	6	None	5 YR 3/3 Dark Reddish Brown	<u>Apache Leap Tuff-Brown Unit (Talb).</u> Well indurated, phaneritic to porphoritic tuff, 50-60% Phenocrysts of anhedral plagioclase (sanidine), quartz, biotite magnetite, lithic inclusions of brown siltstone. Ground mass is cryptocrystalline Si-rich.	ground mass. Weathered plagioclase holes.	Cuttings returned are mostly sand sized. 718' (Per driller) Fracture zone contains large chips up to 10cm.
730	222.6	6	None	5 YR 3/3 Dark Reddish Brown	Increase in lithic inclusions siltstone Quartzite, possibly baked limestone.		Weight on bit = 23K lbs
740	225.7	6	None	5 YR 3/3 Dark Reddish Brown	Talb		
750	228.7	6	None	5 YR 3/3 Dark Reddish Brown	Talb		
760	231.8	5	None	5 YR 3/3 Dark Reddish Brown	Talb		Decrease in drill rate
770	234.8	8	None	5 YR 3/3 Dark Reddish Brown	Talb		Increase in drill rate
780	237.9	8	None	5 YR 3/3 Dark Reddish Brown	Talb		large fragments in cuttings, up to ~5cm
790	240.9	6	None	5 YR 3/3 Dark Reddish Brown	Talb		

Depth (feet)	Depth (meters)	Drill Rate (ft/hr)	HCI Rxn	Munsell Color	Sample Description	Secondary Features	Remarks
790-800	240.9- 243.9	6	None	5 YR 3/3 Dark Reddish Brown	The second secon	Limonite in ground mass and biotite. Local calcite. Fe-oxide stain, red to brown on the groundmass.	Chips are mostly sand sized with tones of large chips up to 10cm.
810	247	4	None (Strong on calcite)	5 YR 3/3 Dark Reddish Brown	Talb	Subhedral CaCo ₃	
820	250	4	None (Strong on calcite)	5 YR 3/3 Dark Reddish Brown	Talb		
830	253	4	None (Strong on calcite)	5 YR 3/3 Dark Reddish Brown	Talb		
840	256.1	4	None (Strong on calcite)	5 YR 3/3 Dark Reddish Brown	Talb		
850	259.1	6	None (Strong on calcite)	5 YR 3/3 Dark Reddish Brown	Talb	Euhedral Calcite	
860	262.2	7	None (Strong on calcite)	5 YR 3/3 Dark Reddish Brown	Talb	Euhedral Calcite	Borehole taking fluid rapidly @ ~853ft.
870	265.2	5	None (Strong on calcite)	5 YR 3/3 Dark Reddish Brown	Talb- few fragments of light green-yellow claystone	Ehuhedral Calcite	

Depth (feet)	Depth (meters)	Drill Rate (ft/hr)	HCI Rxn	Munsell Color	Sample Description	Secondary Features	Remarks
870-880	265.2- 268.3	5	On calcite frags only	5 YR 3/3 Dark Reddish Brown	<u>Apache Leap Tuff-Brown Unit (</u> Talb). Well indurated, phaneritic to porphoritic tuff, dacitic composition, plagioclase (sandine), quartz, biotite, magnetite. Dark reddish brown crystalline ground mass, few fragments or calcite crystals.	Coloite, groop vallow alow (Foult	To 956.4ft (291.6m)
890	271.3	5	On calcite frags only	5 YR 3/3 Dark Reddish Brown	Talb	Calcite, green-yellow clay (Fault scour?)	
900	274.4	5	On calcite frags only	5 YR 3/3 Dark Reddish Brown	Talb	Traces of rust-orange clay	
910	277.4	4	On calcite frags only	5 YR 3/3 Dark Reddish Brown	Talb		Transition into Vitrophyre
920	280.5	4	On calcite frags only	5YR 6/8 reddish yellow GLEY 13/13	Basal Tuff (Talbt)/Vitrophyre(Talv)- fragments of black glass, dark gray porphyritic-phaneritic tuff. Pinkish orange porphyritic-phaneritic poorly to moderately indurated tuff.		
930	283.5	23	None	5YR 6/8 reddish yellow GLEY 13/14	Talbt (30%)/Talv (70%)		
940	286.6	23	None	5YR 6/8 reddish yellow GLEY 13/15	Talbt (30%) /Talv (70%)		
950	289.6	14	None	7.5 YR 5/2 Brown 5YR 6/8 Reddish Yellow	<u>Basal Tuff (Talbt)-</u> Well indurated porphyritic-phaneritic tuff. Sandine, quartz, biotite. Also fragments of vitrophyle and pinckish orange tuff previously described. Crystalline ground mass.	Talv fragments contain Fe-oxide statining	
950-960	289.6- 292.7	14	None		White Tail Conglomerate (Tw)/ Basal Tuff (Talbt)/ Vitrophyre (Talv)- locally expressed as consolidated dark sand and white tuffaceous sand. Tw cuttings returned appear to have been weakly altered from contact metamorphism, giving a crsyalline texture.	and magnitite.	Hole TD ~956FT Talbt and Talv are likely mixed in sample due to drilling method.

Project No.: 313001	Well/Boring Name: HRES-20
Project Name: Resolution Copper Well Install	Date/Time Started: 11/20/2012
55-914790	Date/Time Completed: 12/02/2012
Cadastral: T1S, R13E, Sec 27 D(1-13)27 CBD	Drilling Equipment: Drill Tech D 80
NAD 83:	Drilling Method(s): Direct Air, flooded reverse
Drill Company: Boart Longyear	Bit Size(s)/Type(s): 15" Hammer Bit, 14.75" Tri-Cone
Driller(s): Chris, Mike , Josh	Conductor Casing (type; diameter; depth): 16" Steel to 39'bls
Logged By: RM/ RT	Total Well/Borehole Depth: 1057' bis

Depth (feet)	Depth (meters)	Drill Rate (ft/hr)	HCI Rxn	Munsell Color	Sample Description	Secondary Features	Remarks
0-10	0-3	5	None	5 YR 5/3 Reddish Brown	<u>Apache Leap Tuff- White unit</u> (Talw) <u>.</u> Well indurated, phaneritic to porphoritic textured tuff, ~40% phenocrysts of plagioclase (sanidine), quart, and biotite. Traces of lithic fragments	Fe-Oxide on biotite and groundamss.	Munsell color determined from wet cuttings. 20-inch tri cone drill bit used to set 16- inch surace casing to 40 feet.
20	6.1	5	None	5 YR 5/3 Reddish Brown	Talw		Mostly sand sized cutings.
30	9.1	5	None	5 YR 5/3 Reddish Brown	Talw		
40	12.2	5	None	5 YR 5/3 Reddish Brown	Taiw		Begin drilling with hammer bit. (14 ^{7/8} *)
50	15.2	26	None	5 YR 5/3 Reddish Brown	Talw		
60	18.3	26	None	5 YR 5/3 Reddish Brown	Talw		
70	21.3	24	None	5 YR 5/3 Reddish Brown	Taiw		

Depth (feet)	Depth (meters)	Drill Rate (ft/hr)	HCI Rxn	Munsell Color	Sample Description	Secondary Features	Remarks
70-80	21.3-24.4	24	None	Reddish	<u>Apache Leap Tuff- White unit (Talw).</u> Well indurated, phaneritic textured tuff, with 60% cryptocrystallin/aphanitic groundmass. ~40% phenocrysts of euhedral biotite, anhedral quartz and plagioclase. Lithic inclusions of red-brown siltstone.	Limonite on biotite.	Increase in chip size, up to 1 cm.
90	27.4	24	None	5 YR 5/3 Reddish Brown	Talw		
100	30.5	24	None	5 YR 5/3 Reddish Brown	Talw		
110	33.5	20	None	5 YR 5/3 Reddish Brown	Talw		
120	36.6	20	None	5 YR 5/3 Reddish Brown	Talw		
130	39.6	20	None	5 YR 5/3 Reddish Brown	Talw	Fe-Oxide in groundmass.	
140	42.7	20	None	5 YR 5/3 Reddish Brown	Talw		
150	45.7	20	None	5 YR 5/3 Reddish Brown	Talw		Increase in chip size, up to 2 cm.

Depth (feet)	Depth (meters)	Drill Rate (ft/hr)	HCI Rxn	Munsell Color	Sample Description	Secondary Features	Remarks
150-160	45.7-48.8	20	None	Reddish		Limonite on biotite. Fe-Oxide stains on ground mass.	Chips mostly sand sized with chips up to 1.5 cm.
170	51.8	20	None	5 YR 5/3 Reddish Brown	Taiw		
180	54.9	20	None	5 YR 5/3 Reddish Brown	Taiw		
190	57.9	15	None	5 YR 5/3 Reddish Brown	Taiw		
200	61	15	None	5 YR 5/3 Reddish Brown	Talw		Deviation survey taken =0.75°
210	64	12	None	5 YR 5/3 Reddish Brown	Talw		
220	67.1	12	None	5 YR 5/3 Reddish Brown	Talw		
230	70.1	11	None	5 YR 5/3 Reddish Brown	Talw		

Depth (feet)	Depth (meters)	Drill Rate (ft/hr)	HCI Rxn	Munsell Color	Sample Description	Secondary Features	Remarks
230-240	70.1-73.2	11	None	Reddish	Apache Leap Tuff- White unit (Talw). Well indurated, phaneritic textured tuff, with ~65% Pinkish gray to white pumice, and aphanitic groundmass. ~35% phenocrysts of euhedral biotite, anhedral quartz and plagioclase. Lithic inclusions of red-brown siltstone.	Limonite on biotite. Fe-Oxide stains on ground mass.	Chips mostly sand sized with chips up to 2 cm.
250	76.2	15	None	5 YR 5/3 Reddish Brown	Talw		
260	79.3	15	None	5 YR 5/3 Reddish Brown	Talw		
270	82.3	15	None	5 YR 5/3 Reddish Brown	Talw		
280	85.3	15	None	5 YR 5/3 Reddish Brown	Talw		RT logging.
290	88.4	15	None	5 YR 5/3 Reddish Brown	Talw		Decrease in chip size to less than 1 cm.
300	91.4	15	None	5 YR 5/3 Reddish Brown	Talw		
310	94.5	20	None	5 YR 5/3 Reddish Brown	Talw		

Depth (feet)	Depth (meters)	Drill Rate (ft/hr)	HCI Rxn	Munsell Color	Sample Description	Secondary Features	Remarks
310-320	94.5-97.5	20	None	5 YR 5/2	<u>Apache Leap Tuff- White unit (Talw)</u> . Well indurated, phaneritic textured tuff, with ~60% Pinkish gray to white pumice, and aphanitic groundmass. ~40% phenocrysts of euhedral to subhedral bronze biotite, anhedral quartz and plagioclase. Lithic inclusions of red-brown siltstone.	Hematite and Limonite.	Cuttings are dominately coarse-medium grained sand. Minor subangular chips to 1 cm in diameter.
330	100.6	40	None	5 YR 5/2	Talw		
340	103.6	40	None	5 YR 5/2	Talw		Increase in size and number of large chips (up to 2cm)
350	106.7	20	None	5 YR 5/2	Talw		
360	109.7	20	None	5 YR 5/2	Talw- Trace of dark gray-brown (5yr 3/2) fragments of pumice up to 3mm.		Return to less than 1 cm chip size
370	112.8	30	None	5 YR 5/2	Talw		
380	115.8	30	None	5 YR 5/2	Talw		
390	118.9	40	None	2.5 YR 4/3	<u>Apache Leap Tuff- Gray unit (Talg)</u> . Well indurated, phaneritic textured tuff, with ~70% dark red-gray aphanitic groundmass. ~30% phenocrysts of subhedral biotite, anhedral quartz and plagioclase. Traces of yellow-brown lithic fragments. Pumice is partally flattened.	Traces of hematite in groundmass. Biotite is nearly altered to limonite.	Cuttings dominately coarse sand sized chips up to 1 cm.

Depth (feet)	Depth (meters)	Drill Rate (ft/hr)	HCI Rxn	Munsell Color	Sample Description	Secondary Features	Remarks
390-400	118.9- 121.9	40	None		<u>Apache Leap Tuff- Gray unit (Talg)</u> , Well indurated, phaneritic textured tuff, with ~75% dark red-gray aphanitic groundmass. ~25% phenocrysts of subhedral biotite, anhedral quartz and plagioclase. Traces of yellow-brown lithic fragments. Pumice is partally flattened, slight foliation.	Hematite and Limonite.	Cuttings are coarse sand sized up to .5 cm.
410	125	40	None	2.5 YR 4/3	Talg		Deviation survey taken =0.75 ⁰
420	128	40	None	2.5 YR 4/3	Talg		
430	131.1	30	None	2.5 YR 4/3	Talg - Traces of red-brown siltstone lithic fragments		Increase in chip size to more than 2.2 cm.
440	134.1	30	None	2.5 YR 4/3	Talg		Return to less than 1 cm chip size.
450	137.2	30	None	2.5 YR 4/3	Talg		
460	140.2	30	None	2.5 YR 4/3	Talg		
470	143.3	22	None	2.5 YR 4/3	Talg		

Depth (feet)	Depth (meters)	Drill Rate	HCI Rxn	Munsell Color	Sample Description	Secondary Features	Remarks
470-480	143.3- 146.3	22	None	2.5 11(4/5	<u>Apache Leap Tuff- Gray unit (Talg)</u> . Well indurated, phaneritic textured tuff, with ~75% dark red-gray aphanitic groundmass. ~25% phenocrysts of subhedral biotite, anhedral quartz and plagioclase. Traces of lithic fragments of siltstone and quartzite.	Limonite on biotite. Fe-Oxide	RM logging- Cuttings are mostly sand sized, some larger chips up to ~ 2 cm
490	149.4	22	None	2.5 YR 4/3 Reddish Brown	Talg		
500	152.4	16	None	2.5 YR 4/3 Reddish Brown	Talg		(Deveation survey = 1.5°) Switch to flooded reverse drilling
510	155.4	15	None	2.5 YR 4/3 Reddish Brown	Talg		
520	158.5	15			Lost Circulation. No cuttings returned.		Switch from hammer bit to tricone.
530	161.5	7					
540	164.6	7					
550	167.6	10					

Depth (feet)	Depth (meters)	Drill Rate (ft/hr)	HCI Rxn	Munsell Color	Sample Description	Secondary Features	Remarks
550-560	167.6- 170.7	10			Lost Circulation. No cuttings returned.		
570	173.3	5					
580	176.8	5					
590	178.8	4					
600	182.9	3					
610	185.9	3					
620	189	2.5					
630	192	2.5					

Depth (feet)	Depth (meters)	Drill Rate (ft/hr)	HCI Rxn	Munsell Color	Sample Description	Secondary Features	Remarks
630-640	192-195.1	2.5			Lost Circulation. No cuttings returned.	Limonite on biotite. Fe-oxide in groundmass. Weathered plagioclase holes.	Cuttings returned mostly sand sized.
650	198.1	3.5					
660	201.2	5					
670	204.2	5					
680	207.3	7					
690	210.3	7					
700	213.4	4					
710	216.4	4					Circulation returned.

Depth (feet)	Depth (meters)	Drill Rate (ft/hr)	HCI Rxn	Munsell Color	Sample Description	Secondary Features	Remarks
710-720	216.4- 219.5	4	None	Reddish		Limonite on biotite. Fe-oxide in groundmass.	Cuttings returned are mostly sand sized with chips up to 2 cm.
730	222.5	5	None	2.5 YR 3/4 Reddish Brown	Talg		Drilling flooded reverse with 14 ^{3/4} " tricone.
740	225.6	7	None	2.5 YR 3/4 Reddish Brown	Talg		
750	228.6	7	None	2.5 YR 3/4 Reddish Brown	Talg		
760	231.6	10	None	2.5 YR 3/4 Reddish Brown	Talg		
770	234.7	10	None	2.5 YR 3/4 Reddish Brown	Talg		
780	237.7	7	None	2.5 YR 3/4 Reddish Brown	Talg		
790	240.8	7	None	2.5 YR 3/4 Reddish Brown	Talg		

Depth (feet)	Depth (meters)	Drill Rate (ft/hr)	HCI Rxn	Munsell Color	Sample Description	Secondary Features	Remarks
790-800	240.8-243	7	None	Reddish	<u>Apache Leap Tuff- Gray unit (Talq)</u> , Well indurated, porphyritic to phaneritic textured tuff, with ~70% pink/gray/brown groundmass. ~30% phenocrysts of subhedral to euhedral biotite, anhedral to subhedral quartz and plagioclase. Traces of lithic fragments of red brown siltstone.	Limonite on biotite. Fe-oxide in groundmass.	Some of the sand sized cuttings are up to 2.5 cm.
810	246.9	8	None	2.5 YR 4/4 Reddish Brown	Talg		
820	249.9	5	None	2.5 YR 4/4 Reddish Brown	Talg		Dramatic decrease in cuttings size to med-fine
830	253	5	None	5 YR 4/4 Reddish Brown	Talg		
840	256	5	None	Ducky Rod	Apache Leap Tuff- Browm unit (Talb). Well indurated, porphyritic textured tuff, with ~60% pink/brown groundmass. ~40% phenocrysts of biotite, quartz, plagioclase, and magnetite. Traces of lithic imclusions.	Limonite on biotite. Fe-oxide in groundmass.	Conact with brown unit.
850	259.1	5	None	10 R 3/2 Dusky Red	Talb		
860	262.1	7	None	10 R 3/2 Dusky Red	Talb		
870	265.2	7	None	10 R 3/2 Dusky Red	Talb		

Depth (feet)	Depth (meters)	Drill Rate	HCI Rxn	Munsell Color	Sample Description	Secondary Features	Remarks
870-880	265.2- 268.2	7	None	Ducky Pod	Apache Leap Tuff- Browm unit (Talb). Well indurated, porphyritic textured tuff, with ~70% pink/brown groundmass. ~30% phenocrysts of biotite, quartz, plagioclase, and magnetite. Traces of lithic imclusions.	Limonite on biotite. Fe-oxide in groundmass.	Cuttings returned are fine sand sized.
890	271.3	8	None	10 R 3/2 Dusky Red	Talb		
900	274.3	2.5	None	10 R 3/2 Dusky Red	Talb		
910	277.4	2.5	None	10 R 3/2 Dusky Red	Talb		
920	280.4	5	None	10 R 3/2 Dusky Red	Talb		
930	283.5	5	None	10 R 3/2 Dusky Red	Talb		
940	286.5	3.5	None	10 R 3/2 Dusky Red	Talb		
950	289.6	3.5	None	10 R 3/2 Dusky Red	Talb		

Depth (feet)	Depth (meters)	Drill Rate (ft/hr)	HCI Rxn	Munsell Color	Sample Description	Secondary Features	Remarks
950-960	289.6- 292.6	3.5	None		<u>Apache Leap Tuff- Browm unit (Talb)</u> . Well indurated, porphyritic textured tuff, with ~65% pink/gray/brown groundmass. ~35% phenocrysts of biotite, quartz, plagioclase, and magnetite. Traces of lithic imclusions.	Limonite on biotite. Fe-oxide in groundmass.	Cuttings returned are fine sand sized.
970	295.7	3.5	None	10 R 3/2 Dusky Red	Talb		
980	298.7	5	None	10 R 3/2 Dusky Red	Talb		
990	301.8	5	None	10 R 3/2 Dusky Red	Talb		
1000	304.8	7	None	10 R 3/2 Dusky Red	Talb		
1010	307.8	7	None	10 R 3/2 Dusky Red	Talb		
1020	310.9	7	None	10 R 3/2 Dusky Red	Talb		
1030	313.9	7	None	10 R 3/2 Dusky Red	Talb		

Depth (feet)	Depth (meters)	Drill Rate (ft/hr)	HCI Rxn	Munsell Color	Sample Description	Secondary Features	Remarks
1030- 1040	313.9-317	6	None	IU K 3/2 Ducky Rod			Cuttings returned are fine sand sized.
1050	320	6	None	10 R 3/2 Dusky Red	Talb		Dramatic increase in chip size up to 5cm.
1060	323.1	6	None	10 R 3/2 Dusky Red	Taib		Total depth 1057 (12/2/12)

		40000					1		
	.: 313001/3		w Well Inc.	4-11	Well/Boring Name: QV-5				
55-221850	me: Resolu	ition Coppe	er weil ins	tall	Date/Time Started: 12/06/2012				
	, D(1-10) 34	odd				Date/Time Completed: 12/13/2012			
	3.294458				Drilling Method(s): Rotary	Drilling Equipment: Drill Tech D 40			
	any: Boart				Bit Size(s)/Type(s): 15" Hammer, 1	4 ^{3/4} " Tri-Cone			
	Jesee, Ben				Conductor Casing (type; diameter;				
	/: BWH, JC.				Total Well/Borehole Depth: 568' bis				
Depth (feet)	Depth (meters)	Drill Rate (ft/hr)	HCI Rxn	Munsell Color	Sample Description	Secondary Features	Remarks		
0-10	0-3	4	Mod. in fines	5 YR 4/3	Poorly sorted gravel and sand, traces of silt. Gravel to ~2cm. Angular to subangular , felsic dominated- quartz, tuff, feldspar, sandstone, siltstone, schist fragments.		Stream channel sediments drilled wth 22" surface casing reamer- tricone bit		
20	6.1	4	Mod. in fines	5 YR 4/3	Sample description is same as above.		Cuttings logged wet.		
30	9.1	6	None	2.5 YR 4/3	<u>Apache Leap Tuff (Tal)</u> , crystal-rich, moderately lithified, pink aphanitic groundmass, approximately 40% phenocryst content including quartz, feldspar (sanadine), biotite, white pumice, trace magnetite, trace lithics.	Fe-Oxide stains on Biotite (limonite)	Very similar to Tal unit moderate flattening of pumice.		
40	12.2	8	None	10 R 4/3	Sample description is same as above with a more reddish groundmass and slightly smaller biotite grains.		Formation gets harder 30-33ft		
50	15.2	9	None	2.5 YR 4/3	Таі				
60	18.3	4	None	2.5 YR 4/3	Таі				
70	21.3	45	None	2.5 YR 4/3	Tal		Drilled with 15" hammer bit. Direct air.		

Depth (feet)	Depth (meters)	Drill Rate (ft/hr)	HCI Rxn	Munsell Color	Sample Description	Secondary Features	Remarks
70-80	21.3-24.4	45	None	2.5 YR 4/4	Apache Leap Tuff, crystal-rich, moderately to well lithified, dark pink/red/brown aphanitic groundmass, approximately 40% phenocryst content including quartz, feldspar (sanadine), biotite, white pumice, trace magnetite, trace lithics.	Fe-Oxide stains on Biotite (limonite)	
90	27.4	45	None	10 R 3/3	Tal		
100	30.5	12	None	10 R 3/3	Tal		Reverse circulation. Fresh water assist 15" hammer.
110	33.5	12	None	10 R 3/3	Tal		
120	36.6	13	None	10 R 3/3	Tal		
130	39.6	13	None	10 R 3/3	Tal		
140	42.7	15	None	10 R 3/3	Tal		
150	45.7	15	None	10 R 3/3	Tai		

Depth (feet)	Depth (meters)	Drill Rate (ft/hr)	HCI Rxn	Munsell Color	Sample Description	Secondary Features	Remarks
150-160	45.7-18.8	22	None	10 R 3/3	Apache Leap Tuff, crystal-rich, moderately to well lithified, dark pink/red/brown aphanitic groundmass, approximately 40% phenocryst content including quartz, feldspar (sanadine), biotite, white pumice, trace magnetite, trace lithics.	Fe-Oxide stains on Biotite (limonite)	
170	51.8	22	None	10 R 3/3	Tal		Deviation survey @162 ft = 2°
180	54.9	17.9	None	10 R 3/3	Tal		
190	57.9	17.9	None	10 R 3/3	Tal		Driller notes fracture @ ∼183 ft
200	61	20	None	2.5 YR 3/4	Tal		
210	64	19.3	None	10 R 3/3	Tal		30 ft/hr drill rate.
220	67.1	19.3	None	10 R 3/3	Tal		Deviation survey @200 ft = 1 ⁰
230	70.1	27.9	None	10 R 3/3	Tal		

Depth (feet)	Depth (meters)	Drill Rate (ft/hr)	HCI Rxn	Munsell Color	Sample Description	Secondary Features	Remarks
230-240	70.1-73.2	27.9	None	10 R 3/3	<u>Apache Leap Tuff</u> , crystal-rich, moderately to well lithified, dark pink/red/brown aphanitic groundmass, approximately 40% phenocryst content including quartz, feldspar (sanadine), biotite, white pumice, trace magnetite, trace lithics.	Fe-Oxide stains on Biotite (limonite)	Drillers reports fracture @~233 ft
250	76.2	18.1	None	10 R 3/3	Tal		
260	79.3	18.1	None	10 R 3/3	Tal		
270	82.3	13.3	None	10 R 3/3	Tal		
280	85.4	13.3	None	10 R 3/3	Tal		
290	88.4	14	None	10 R 3/3	Tal		
300	91.5	14	None	10 R 3/3	Tal		
310	94.5	14	None	10 R 3/3	Tal		

Depth (feet)	Depth (meters)	Drill Rate (ft/hr)	HCI Rxn	Munsell Color	Sample Description	Secondary Features	Remarks
310-320	94.5-97.6	8	None	10 R 3/3	Apache Leap Tuff, crystal-rich, moderately to well lithified, dark pink/red/brown aphanitic groundmass, approximately 40% phenocryst content including quartz, feldspar (sanadine), biotite, white pumice, trace magnetite, trace lithics.	Fe-Oxide stains on Biotite (limonite)	Deviation survey @ 312 ft = 1°
330	100.6	8	None	10 R 3/3	Tal		
340	103.7	5	None	10 R 3/3	Tal		
350	106.7	5	None	10 R 3/3	Tal		Driller notes fracture @ ∼340 ft
360	109.8	4.4	None	10 R 3/3	Tal		
370	112.8	4.4	None	10 R 3/3	Tal		
380	115.9	1.6	None	10 R 3/3	Tal		
390	118.9	1.6	None	10 R 3/3	Tal		

Depth (feet)	Depth (meters)	Drill Rate (ft/hr)	HCI Rxn	Munsell Color	Sample Description	Secondary Features	Remarks
390-400	118.9-1222	2.3	None	10 R 3/3	Apache Leap Tuff, crystal-rich, moderately to well lithified, dark pink/red/brown aphanitic groundmass, approximately 40% phenocryst content including quartz, feldspar (sanadine), biotite, white pumice, trace magnetite, trace lithics.	re-Oxide stains on biotile	At 388 ft - start drilling with tricone rotary 14 ^{3/4n} , Reverse flooded.
410	125	4	None	10 R 3/3	Tal		
420	128	5	None	10 R 3/3	Tal		
430	131.1	5	None	10 R 3/3	Tal		
440	134.1	3.6	None	10 R 3/3	Tal		Driller reports fracture @ ∼440ft
450	137.2	3.6	None	5 YR 3/4	Tal		
460	140.2	3.6	None	10 R 3/3	Tal		
470	143.3	5.3	None	10 R 3/3	Tal		

Depth (feet)	Depth (meters)	Drill Rate (ft/hr)	HCI Rxn	Munsell Color	Sample Description	Secondary Features	Remarks
470-480	143.3- 146.3	5.3	None	10 R 3/3	Apache Leap Tuff, crystal-rich, moderately to well lithified, dark pink/red/brown aphanitic groundmass, approximately 40% phenocryst content including quartz, feldspar (sanadine), biotite, white pumice, trace magnetite, trace lithics.	Limonite on biotite. Calcite crystals, trace cream-white material, soft, crumbly.	
490	149.4	4.5	None	10 R 3/3	Tal	No calcite observed.	
500	152.4	4.5	None	10 R 3/3	Tal		
510	155.5	3.4	None	10 R 3/3	Tal		Harder formation? Drilling rate slows. Deviation survey @500 ft 1.5°
520	158.5	3.4	None	10 R 3/3	Tal		
530	161.6	3	None	2.5 YR 3/3	Tal		Moderate rig chatter
540	164.6	3	None	2.5 YR 4/4	Tal		
550	167.7	3	None	2.5 YR 4/4	Tal		

Depth (feet)	Depth (meters)	Drill Rate (ft/hr)	HCI Rxn	Munsell Color	Sample Description	Secondary Features	Remarks
550-560	167.7- 170.7	3	None	2.5 YR 4/4		Limonite on biotite. Calcite crystals, trace cream-white material, soft, crumbly.	
570	173.8	2.2	None	2.5 YR 4/4		Limonite on biotite. Calcite crystals, trace cream-white material, soft, crumbly.	Borehole TD ~568 ft bls.

APPENDIX D

WELL CONSTRUCTION FORMS

December, 2012 Clear Creek Associates Job No. 313001

PIPE TALLY

Project Name :: Resolution Copper Woll No :: HRES - 19						Project No.: 3130001					
Woll No		865-	19								
Locatio					Pipe Talloy for: Well Casing (Blank & Screen) Goologist: RTT /						
		55 Ft 5							23	<u> </u>	
				(T+C 🚨 Flush		Other					
Type of	Weldin	g: 🗖 ARC	(Stick) 🗖 🛛	ilux Coro Wiro 🗐 🛛 🛛	lther		Stick Cod	e or Wiro Typo	r.		
Pipe	1	Length	Length <u>Y</u>	Ріре Туре	Pipe	<u></u>	Langth	Length 2	Dias Trees	_	
Liha	1	(ft)	(fl)	Гіра Тура	1- the	1	Length (ft)	(1)	Ріре Турс		
- T	1	0.84		End Cap	36	6	31.04	78.86	Bunk		
2	1	31.01	31.65	6" Binnk	1:37	~	21.04	734.90	Blank	-	
3	11	31.02	42.87	8" Screen	38	1-	80.51	755.44	Blank		
ţt	/	21.07	63.94	1 Screen	34	12	21.15	476.59	Blank		
5	V	21.08	85.02	Sureen	40	V	21.07		BLANK		
6	1	81.10	106.12	Screen	41	1	area		BISNE		
-7	1	21.10	122.22	Suscen	42	1		831.71	Black	86	
8	V	21.04	148.26	Screen	47	V	21,03		BLARE	180	
ŧ	1	21.59	161.85	Binnk	44	2.1	21,06	S	Blank	900	
10	V	21.12	179.77	Blank	45	10		924.61	, Blunk	92	
11	1	21.05	7.12.27	Secen			. 20 Kite		1		
13	1	21.06	33.08	SUSERA	<u>.</u>						
13	1	10 16	77.54.17	SCREEN	<u></u>	0					
14	1	30 50	374.67	Steen				a sate			
14	1	21 10	2:25,77	Sureen	342	8 6		3 303	555		
ić	1	31.01	316.78	Suren	985	8 8				-	
ነት	1	24.11	337 81	Schern	88						
18 1	14	21.05	358 14	STERN	88			1975. N			
j9 1	V	20.45	374.81	Screen		2 893 1					
30	ir	21.16	400.99	Sincer	3 S.						
37	1	31.08	422.0+	Screen							
22	V			Sursen							
33	مر ا م		463.67	Screen			14				
સં	1000	A1.00	484.73	Screen		_				_{	
35	1		505.29	Section	-					_	
<u>,</u> ,	V		535.84	Screen							
C April X			546.81	Sircer		8		97			
38		20 47	567.86	Sureen	5	25 - 23					
19		31.69	588 95	Blank				RY OF TALLY		33	
ri i	V	30.54	604-49	Black			ing/screen l	CO 2002200 07	924,01		
51	5	31.05	630.54	Bignk	Length of casing cut off after landing (ft.);/(,						
12	V	2.61	651.15	Rhoh	- 1000 Vel			and surface): _	208	-	
3	V	21.12	672.25	Blank	Screened		101.00 CH100	1952 (
14	V	20.53	692.82	Blank	Total feet of	of blank	casing in he	ole (ft.):			

Notes: CH = certificalizer installed 8" ID. 8-75" - 00- 8.605" 00 0.D. of couplings = 9.465"

8

Pege _____ of _____

1

Page⊥_of<u></u>2

Project Name: Resolution Copper	As-B.1+
Project No.: 313001 Date: 11/5/12	
well No.: HRES-19 Geologist: BWH, RM	
ANNULAR VOLUME CALCULATIONS	
Total Depth of Borehole (ft) [T]: 956 ++	
Length of Interval to be filled (ft) [L]: 252	
Borehole Diameter (in.) [D]: 14:75	
Total Cased Depth (ft): <u>908</u>	
Casing Diameter (in.) [d]: 8,75-0,0, 8,625-0, D,	
Rat Hole Volume (ft ³) [R]:	
Annular Volume [A]: (D ² -d ²) 0.00545 <u>4 = (D,)</u> Ft ³ /Lin. Ft	
Expected Calculated Volume = (AxL)+R= 758 769 Ft ³	
	265
NOTES:	300 00 00
	000, 000
	000 100
	631' / 03
	720 00 000
	24.0
	751 030 603
	000 1 000
	000 1 000
	000 0000
	333 1 1 6 6 6
	860
	6666) 1 666
	600 600 600 600 1 600 600 1 600 600 1 600 600 1 600 600 1 600 600 600 600 600 600 600 600 600 600
	600 6000 1 600 6000 1 600 6000
	894.3' 60 Sump
	920 00000000000000000000000000000000000
ASSOCIATES	137 202 000 000 000 156
	12 •

ESTIMATED ANNULAR MATERIAL RECORD

ESTIMATED ANNULAR MATERIAL RECORD (Continued) Project Number: ス1ろの1 Geologist: WHIRM Date: 115/12 EQUATIONS Bentonite bag = $.69ft^3$ /bag (hydrated) Pea gravel: $1yd^3 = \sim 2700$ lbs.

о.	~	Weight installed	Volume installed (v) ¹	Total Vol. installed	Calculated Depth ²	Tagged Depth	Type of Annular Material	Type/Size of Container	Measurement Method	Comments
		(lbs.)	(ft³)	(ft³)	(ft bls)	(ft bls)				
<u>_1</u>	レ		19.2	19.2	940	937	Bentonite Pellets	5-gal bicket	Whe line	32 buckets
_	V	2,000	20.0	39.2	920.1	910	Pen Gravel	<u>\$.5.</u>	wire line	2/3 S.S.
	\checkmark		13.2	52.4	908.8	913	Be now nite lellet	5 galbre	the live	22 butots
$\left[\right]$	V	600	0.0	58.4	908.1	901	3/8" Bostinite (4p.		whe line.	12 bays
5	~	350	3.5	61.9	896.5	894.35		1	τ,	Fbers
و	\checkmark	7,000	70	141.9	804.4	799	Per Gravel	<u>s.s.</u>	Wire line	Z1/8 S.S.
7	V	3,000	30	171.9	700	360(78	2 Pea Grand	<u>S.S.</u>	Wire the frence	1 S.S. 6nly (2f+?)
3	V	3000	30	201.9		754,63		5 .5,	Tremie	155.
	\checkmark	~ 500	5	206.9		752)	Pla Gravel	5-gal buck	Tremie	85-gal buckets
-	-	~		20Ce.9	(755.9			Wiretire trente	Swab Cycle
)	V.		4.68	211.5	750	751	Pen Braval	5-gal. buckt	trense	7x 5 guil. Buskets
~	\checkmark		4.68	214.18	745	740	SilicaSand	5-gal buckle		7x5 gel. BudeAs
2	V		8.69	224.8	735	737	Hoke Plug	Holepiun	hirelike	Br5gyl. Beters
5	~		2.0	226.8	734.5	730	11 ' 17	5-gail lon let		3x75771. Bickets
1	レ		4.68	231.48	731.0	733	Silica Sand	5-gal. buck	+ ashelling	7x5gal Boulat
>	V		2,02	234.15	750	727	11 11	ι 1	wire the Aren's	4×5gal. Buckty
	,	~~	-	234.15	-	726				Tay after StA Develo
)	\checkmark	27000	270	504.15	~380(Voil)3)	538	Pea Gravel	5.5.	wireline.	9×3,000 161 5.5.
								-		C(A offsite
es:		5. = 5.00	- bankonite pe	ellets is	~ 0.6 43	buckets.	an full to~4g	al mark) s	e hydrated	······

Project Name: Resolution Confer

Well Number: HRES-19

PIPE TALLY

Project	Name.: (Resolutio	~ Coper		Project N			, ,		
			5-914790)		Date: 12/3/12 - 12/4/12					
Locatio	n: QU	Superio	TAB 1		Pipe Talle	y for: L	tell Cash	~`		
Total D		•	· .		Geologist	:: 8m		0		
Type of	Connec	tions: 🛛	Welded 🗹	T+C 🔲 Flush Th	nread 🛛	Other			、	
Type of Welding: ARC (Stick) Flux Core Wire O Othe						er Stick Code or Wire Type:				
Pipe	√	Length (ft)	Length ∑ (ft)	Pipe Type	Pipe	✓	Length (ft)	Length ∑ (ft)	Pipe Type	
1		2.83	0.83	Bull Nose	-36	V	21.14	733,38	Bkuk	
7	V	21.01	21.84	BLANK 8 5/8"	37	V	21.09	754.43	- phil	
3.	V	20.50	42.40	Screen \$5/8"	38	V	20.77	775.24		
4	1 v	21.05	63.45	1	39	V	20.74	795.98		
5		20.50	83.95		40	V	20.40	816.46		
6	V	21.04	104.99		41	V	21.02	837.48		
7	~	20.51	125.50		42	V	21.07	858.55		
8	V	21.14	146.04		43	V	21.00	8 79.61		
9	V	21.02	107.60		44		71.04	900.05		
p	V	21.03	188.69		45	レ	72.54	921.19		
н	1/-	00,00	209.75		44	V	20.56	941.75		
12	~	21.14	230.89		47		20.81	962.50		
13	1	21.12	252.01		48	V	20:50	983.06		
14	V	20.70			49		2080	1003.86		
15	V	20.98	293.69		50		21.03	1024.89		
16	V	21.02	314.71		51		21.03	1045.92		
17	V,	20.54	335.25		52		21.00	(1066.97)		
18	V	21-03	35628							
19	V	20.54	376.87							
20	V	21.02	397.89							
15	V	21.06	418.95							
22	V	20.53	439.48							
73	V	20.59	460.07	<u> </u>						
24	V	Z1.10	6181.17	BLANK BYS"						
25	$\overline{\mathbf{v}}$	21.02	502.19							
26	V	21.05	523.24							
27	1	21.03	544.2.7							
28	$\overline{\mathbf{v}}$	21.00	565.27				CUBARA			
27		21.03 21.00	586.30		Total long	h of one				
30			628.59		-		ing/screen	anding (ft.):		
32	1 1 1 1	21.09	649.14		-	•		anding (it.): land surface):		
32	Ž	20.75	670.13			-	s) (ft.bls):			
361	$\overline{\mathbf{v}}$	21.02	691.15				casing in h			
35		21.09	712.24		i utar ieel (N DIALIK	casing in h			

Notes:

_

Notes:
8 5kg" casily (0.0.)
E = Centrall Lot.
T.D. = 1057 bis

Page ____

of

PIPE TALLY

E	Project I	Name.:	lero luti	on Copper		Project N					
	Project Name .: Kerolution Copper Well No.: 55-221850 (QU-5)						Date: 12/13/12 Pipe Talley for: Lell Cas, by				
	Location	1: Q-	reen Vall	m Az		Pipe Tall	ey for: /	sell as	ч <u>у</u>	••••••••••••••••••••••••••••••••••••••	
	Total De	pth: 🔨	08'								
٦	Type of	Connec	tions: 📮	Welded 🔏	T+C 🔲 Flush Ti	hread 🛛	Other				
٦	Type of '	Welding	j: 🔲 ARC	(Stick) 🔲 Fl	ux Core Wire 🛛 🛛 Otl	her		Stick Cod	e or Wire Type:		
F	Pipe Length Length ∑ Pipe Type					Pipe Length Length Σ Pipe Type					
	Fipe	✓	(ft)	(ft)	Fibe i she	Pipe	✓	Length (ft)	(ft)	Libe Libe	
┢	1	V	21.00	71.00	Screen			(19	(14)		
╊	2	V	21.03	42.03	50.00.						
┠	2	V	20.99	63.02							
ŀ	ŭ	$\overline{\mathbf{V}}$	21.10	84,12		1	<u> </u>		· · ·		
┢	5	V	20.00	104.18							
╀	, 6	v	21,04								
┢	Ť	$\overline{\mathbf{v}}$	21.03	140.25							
┢	8	レ	20.56	160.81			<u> </u>			- 14	
╞	9	レ	20.55	187.36		1	<u> </u>				
╉	10	V	21.0	208.46							
┢	11	V	21.10	729.67							
	12	V	20.99	250.61							
┢	13	2	10.55	271.14		1					
╢	14	v	21.05	292.21							
╉	15	V	21.04	313.25							
	10	1	21.06	334.31							
F	17	V	72.58	354.84							
	18	V	21.00	375.89							
┦	19	V	20.58	396.47							
۲	20	V	21.05	419.52	V						
╢	21	V	21.10	L138.62	Blank						
	72	レ	20.92	LLS9.54	1						
╢	23	V	10.57	U/80.11							
ſ	24	レ	21.12	501.23							
	25	レ	21.06	522.29							
	24	V	10.25	543.04						-	
	22	\checkmark	21.04	564.08							
	is	\checkmark	21.03	585.11	¥						
								SUMMA	RY OF TALLY		
						Total lengt	th of cas	ing/screen t	tallied (ft.):		
						Length of	casing c	ut off after la	anding (ft.):		
						Bottom of	Casing	(feet below l	and surface):		
						Screened	Interval(s) (ft.bls):			
						Total feet of blank casing in hole (ft.):					

Notes:

00tes: 8 ~ J.J. J.J. C 8.615"D.D. (8.54) E = Contra liger O C= Dasket 3.55 cusin. Screen is 0.030' contral slot up rand

APPENDIX E

WELL DEVELOPMENT FORMS

December, 2012 Clear Creek Associates Job No. 313001

Page _ _ _ of ____

AIR-LIFT DEVELOPMENT FIELD DATA LOG

Project Name: Russlution Corpor	Project No.: 31300 /
Well No.: HRES-20	Date: 12/7/12 -12/8/12
Location: Superior / REM	Geologist: VNH + CAM
Total Depth of Well (ft bls): 1057	Measuring Point (M. P.): Casing + Pipe
Screen Interval (ft bls): 10371-5821	Distance from ground level to M. P.: 4, 35'
	SWL= 647.32'bmp SWL= 642.97' bis

Time	Depth Interval (ft)	Color	Odor	Sand Content (m //)	рН	Sp. Cond. (µs/cm)	Temp. (°F)	Comments
0720	Bottom (~1040)			/		-		Compressor On, N75ppm
0728		Muddy Brawn	Dirty (Sirt)	6				Too dirty for parameters
0758		a l ii	v / µ	.75	· · ·	-		··· · · · · · · · · · · · · · · · · ·
0815		Stightly HEAN Sucrat muddy brown	re 11	+30	8.39	605.3	23.1	
0830		Slightly transitiont	NA	,25	8.39	569.5	22.6	~ 72gpm
0845		u <i>' #</i>	NA	•/	8.36	536,4	22.5	
0900		u 11	ti.	TR	8,32	518,5	23,3	
0920		same as above, getting lighter	r)	TR	8,27	492.6	23,6	
0940		Translicent light	<u>,</u> (TR	8,26	472.5	24.0	·
1000		cloudy , slight yellow fint	NA	TR	8.26	461.7	24.0	~ 56
1026		÷ C	NA	t)	8,22	448.4	23.7	
1040_		1 ² (1		11	8,25	437.4	23,4	
1100		Cloudy	4	15	8.25	4260,1	24,1	
1120		Slightly (lady	14	Nore	8.22	420,0	24.1	
1140			11	11	8.25	419.1	23,8	
1200		u 17	(f .	11	8,241	411.2	23.9	
	- VNH OF	site 1	00st - 5	Te /creu	1 chai	rije for	· pliory	e call
1300		Clear	NA	None	8.24	398.6	24,0	
1320	Bottom (~1040)	ic	<i>ر</i> د	<u>u</u>	8.24	394,3	23,9	
1325								OFF for recharge
\sim	- Perharge,	check	519	oil, a	nd a	diest	Kelly ,	use
1355	Bottom (~1040)	-	1				-	ON, ~
1358		Cloudy light Vellow	NA	6	8.13	389.10	25,1	
1401		opaque brown muddy water	NA	4.5		_	~	Too dirty for parameters
1410		in a	NA	2.5		-		··· · · · · · · · · · · · · · · · · ·
1420		Eight Brown traislucent water	1	.4	8.27	409.5	24,2	~leOgpm
14/30		Sume t Mare clear	i.	• 3	8.28	401.1	24.3	
1445		Same + More (19W	it	.2	8.21	397. Í	24.0	
	ا معدد: I Comments: ر			•	<u>. </u>	• <u> </u>		

Julional

omments: Field Parameters stable when: pH w/in Ø.2. s.u. 7 Field Parameters stable when: pH w/in Ø.2. s.u. 7 Ec. w/in 2008 Million (in 3 or more consecutive readings Twin 2°C

Page <u>2</u> of <u>4</u>

1

AIR-LIFT DEVELOPMENT FIELD DATA LOG

Project Name: Resolution Copper	Project No.: 313001
Well No.: HRES - 20	Date: 12/7/12~
Location: Superior / RCM	Geologist: VルH ォ
Total Depth of Well (ft bls): ノクラマ	Measuring Point (M. P.): Casing TPipe
Screen Interval (ft bls): 10371-5821	Distance from ground level to M. P.: 4/35'
	5WL=647

Time	Depth Interval (ft)	Color	Odor	Sand Content (m i t)	рН	Sp. Cond. (μs/cm)	Temp.	Comments		
1500	Bottom (~1040)	translucent light yellow	NA	.1	8.24	387.0	24.0	Q~60gpm		
1520		Cloudy		TR	8.24	388.2	23.7	- 0/		
1540		a v	~1	TR	8.2Z	384.5	23.9			
1600		Sightly Cloudy	4	11	8.23	381, I	23.9			
1620		Clear	6	None	8.24	376,9	24.0			
1640		Shightly Cloudy	14	TR	8:23	379.0	23, 2			
1643			-	_	<u> </u>			OFF Trip Out 40'		
~~~	Trip Oct	40' ar	nd u	verit	for	recharg	e —			
POC	BoHom (~ 1000')		)		_			ON		
170A	Bottom (~1000')	Transicent Light brown	NA	TR	8,28	381.5	23,3	Q~ Gogpm		
1720		Faintly yellow	L'	None	8,30	341.6	23.8	,		
1940		Fairtly Cloudy	14	11	8,25	376.9	23.4			
1800		Clear	i.	٤.	8.27	375.7	23, 7			
1820		11	(i	<i>(1</i>	8.30	373.9	23,1			
1823		-	1					071=		
~~~	Trip Out	40' an	el w	$a_i +$	for	recha	rje —			
1840	Bottom (~960')	•		-				CN		
1845	Bottom (~960')	Cloudy	NA	TR	8.23	374,2	23,6			
18419		Transfucetort Goudy, mud Brown	NA	2	8.28	382,8	23.60	an 50gm		
1900		Transicient Cloudy light bin	NA	15	8.25	383.3	23,1)/		
1945	980-960	rea-h clear	Abre	trace	у v	0.40	61.6	New equipment (Hana)		
Co 200	920-960	. d	~ ~ ~	Vrace	8.3	0.36	65.4	CISEd for monitoring Borons		
Toes	· · ·)]	rearly clac-	2012	None	8.42	0.37	65.8	T=F (and = Ms ~ '		
Zice	920-960	nearlyclear	None	None	8.42	C.38	65.2	Q - 5090m		
2125	920-960	clear	None.	None	æ.42	0.38	65.1	Q-2 Sogan		
2130	Tripourt	40'E	Kaw	far	rech	a. 20.				
2152	380-920					7-	/	oN		
2156	p 4	Whow	Non	0.2	8.44	0.39	67.2	Q ~ 509pm		
Additional	Additional Comments: Field Parameters Stable when: pH w/in Ø.2.5.0. FC w/in LOO ^{wis} con F in 3 or more T w/in 2°C Consecutive readings									

Page _____ of _____

SWAB AND AIR-LIFT DEVELOPMENT FIELD DATA LOG

D

Project Name: Resolution Copper	Project No.: 3300
Well No .: HRES-20	Date: 12/7-12/8
Location: Superior/RCM	Geologist: Grt m
Total Depth of Well (ft bls): / 057	Measuring Point (M. P.): Casing (Pipe Arrans- Baff)2
Screen Interval (ft bls): 562-1037	Distance from ground level to M. P.: 4.33
	SWL-647'

Time	Depth	Color	Odor	Sand	рН	Sp. Cond.	Temp.	Comments
em	interval			Content		(µs/om) -	(°F)	
22	(ft)			(m <i>ll</i>)		MS		
X0 04	380-920	Albrain (cloty	Nor	Vrace	8.42	0.39	69.1	Q-2 43,9pm
2212	11	4 brown	Nane	Vrace	8:44	030	69.1	N I
2230	880-920	clouchy-41 brow	None	0.2	8.46	0.35	67.5	
22-45	11	slightly dad	1 None	5.0	8.43	0.37	67.2	Q- 439pm
2300	039-028	N ()	None	Vince	8.46	0.34	67.8	
2315	L v	St. Why clady	None	Ince	8.45	0.34	6 8.6	Q~ sogp
230	880-920	clear	None	None	8.49	0.35	67.6	N/
235	()	clear	None	None	S.A	0.35	68-5	
లెస్తే	Trip ool	Zioix	5 8	allan) rec	large		340-380 OFF
0010	840-380					<u> </u>		01
020	840-380	61 brown	None	0 T	8.52	0.35	67.2	an Sogan
0030	11 14	rearry de	None	Vrace	8.49	035	68.5	· ·
2045	840-320	51 of yetal	None	Vrace	8.49	0.35	68.6	47 Am
0100	310-380	clear	None	None	8.50	0.34	68.5	Q~369pm
0115	N 11	clear	None	None	8.50	0.34	67.9	N
8510	× 11	Clear	Nne	None	8.49	0.34	68.4	Q2419pm
0130	THIPOON	ZYON	JJ E	allow	reel	name.		800-840 OFF
0140	2000-840				-	X		$\circ \sim$
0145	800-840	Let brown	None	0.3	8.50	0.34	66.8	- 389pm
an	pr 27	61 brows	None	0.2	8.50	0.34	F.20	
bus	300-340	cloudy	None	race	8.49	0.35	66.7	fm
0220	e 22	neerbych		trace	8.49	0,32	66.5	293900
0245	300-80	clear	Nane	Trace	8.41	0.33	66.5	- 1
<u>C3,5</u>	800-80	nearlyclest	Nore	None	8,5	0.33	55.8	33,92~
0325	Tracal	Zijon	SE	allow	_recl	are		OFF 760-800
0340		<u>۲</u>		. 		-7		Resure qirliff
03415	700-200	4 brown	None	0.4	56.54	0.34	64.2	30 gpm est
0400	an	A brown	Non	0.2	8,53	0.34	65.3	2490~
	<u> </u>					· · · · · · · · · · · · · · · · · · ·		

Additional Comments:

IClearcreek01\Production\CCA FORMS ANALYSIS\Forms\CCA WELL DOCs SWAB&AIRLIFT

Page ______ of _____

Ĩ~

SWAB AND AIR-LIFT DEVELOPMENT FIELD DATA LOG

Project Name: Resolution Copper	Project No.: 3/300/
Well No .: HRES-20	Date: /こ/ &//こ
Location: Superior RCM	Geologist: Grt M
Total Depth of Well (ft bls): 1のムイ	Measuring Point (M. P.): Casing/Pipe, Parameters - Battle
Screen Interval (ft bls): 582-1037	Distance from ground level to M. P.: 4.35
	SWL-647'

Time	Depth Interval (ft)	Color	Odor	Sand Content (m#l)	рН	Sp. Cond. . (µa/cm)- M.S	Temp. (°F)	Comments
0415	760-800	Clear	None	Trace	8.52	0.33	65,3	
0430	760-800	nearly char	None	none	8.53	0.33	65.4	
9445	Q 11	clear	None	None	8.53	0.33	6s. 3	
0500	TEP OU		nts E	allow	red	0.34		077-720-760
0500 0520	720-760	LY bonon		0.2	8.64	01.34	59.4	* Mining/ discharge
0540	720-760	rearly clear		None	8.65	0.34	59.7	Q-frace Y
0600	720-760	nearlyclas	None	Vace	8.63	0.33	59.3	
0608	THIPM	40'					<u></u>	OFF
Pris	700-800			-	-		-	Resame dirliff.
0520								
			<u> </u>			1		
	····							
†								
l			····		<u> </u>			
[†	······································		—~~					<u> </u>
Additional	Comments:	al disc	change	noted	dun	ne aint	ity of	720-760. 5005

haltenay today tower (740-760)

Page

___ of __

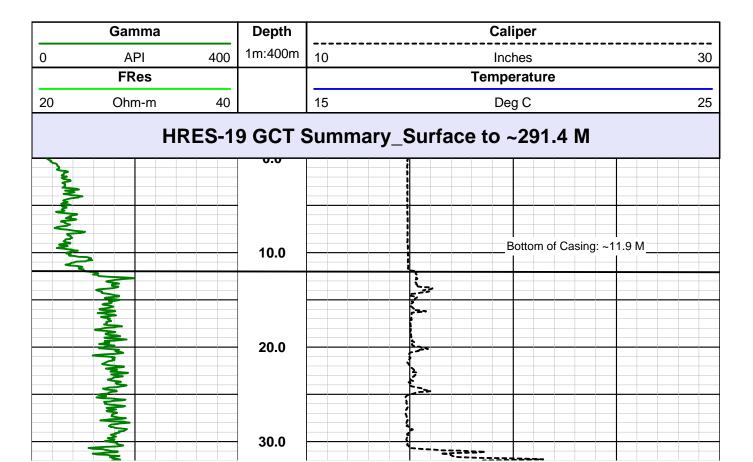
╣

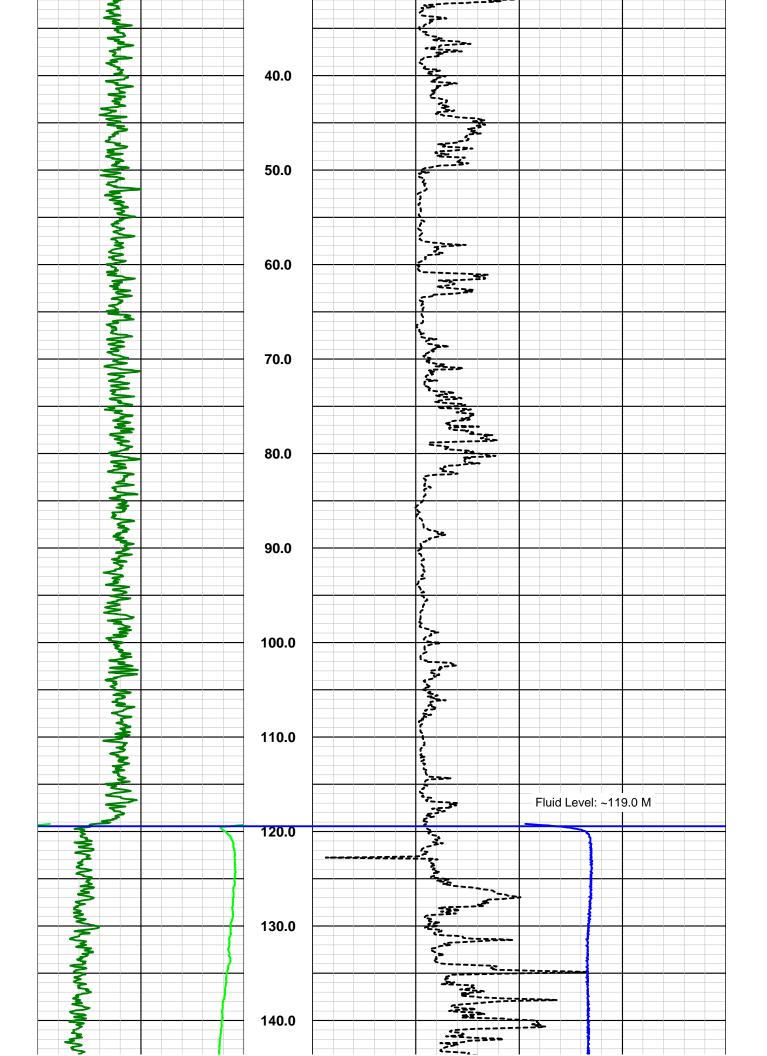
WELL DEVELOPMENT FIELD DATA LOG

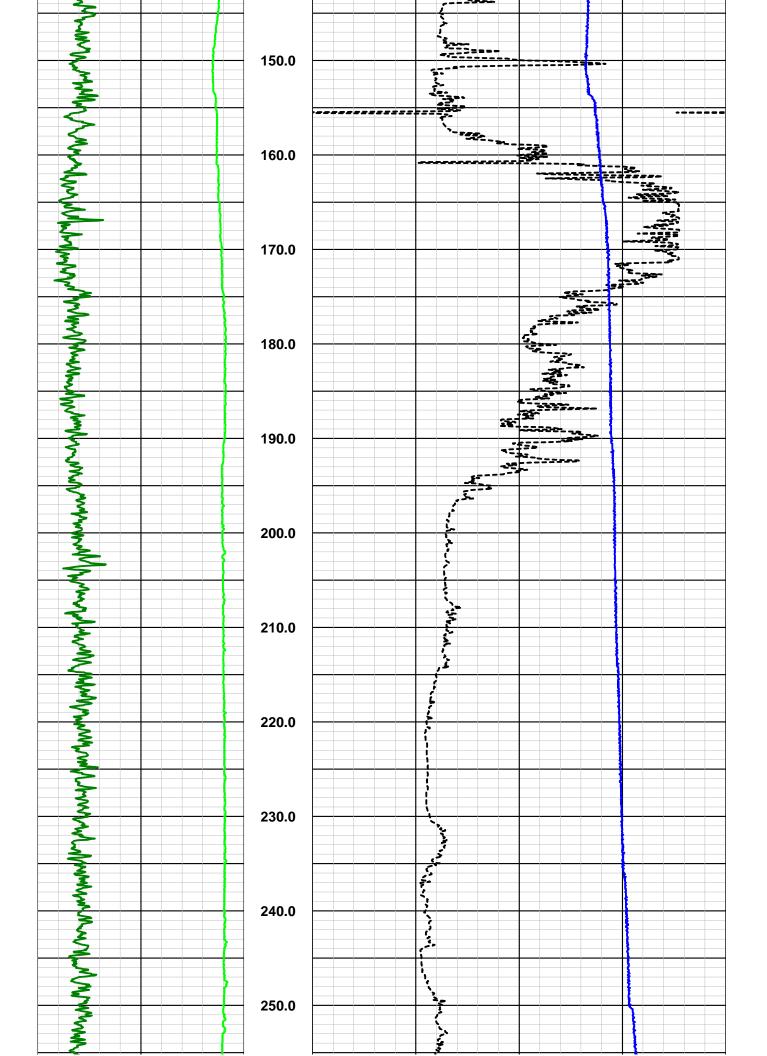
	Project No.: 31300
	Date: 12/4/12
Location: Queen Vallen AZ	Measuring Point:
	Screen Interval (ft bls): 145-565
Pump Type/Setting (ft bls): Qual will drill give multiple set	Development Type: A:rlift
How Q Measured: Estimate	Geologist: Crr

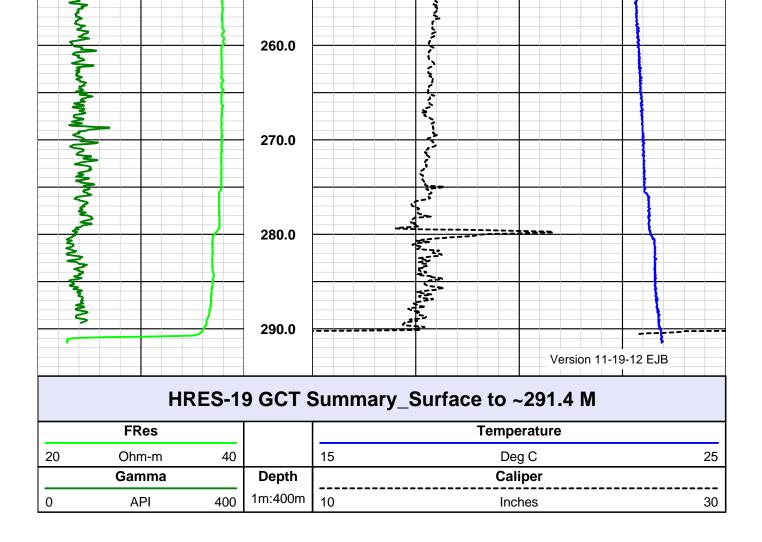
Time	Discharge	Pumping	Specific	Sand	рН	Sp. Cond.	Temp.	Comments	
	(gpm)	Water Level	Capacity	Content		(µs/cm)	5FT		
		(ft)	(gpm/ft)	(m <i>lit</i>)		mister	-		
1420						a 76		Ainiffing at 180, lole evaluated	setting lo
1500	40			A	7.89	1.088	18.71	Ainifting at 180, ble evaluated	yot ta
	~40			Ø	8.07	741	19.70		
H520	~ 40			Ð	8.07	747	19.88	colorless, claudy (A:m)	
1545	~100			や	8.06	740	19.79	Set at 320' 615	
1600	-100			Θ	8.08	744	20.15	cloudy caloriess	
415	~100			Ð	8.08	752	20.17	12 61	
630	~125			Ð	8.06	736	19.83	- Intake get at 400' Us.	
wels_	~125			ಅ	8.07	741	19.88		
700	-180		·	0	800	731	19.34	-Intake at a SOU' 6/5	
1715	~180		х. ¹ му	Ø	8.07	735	19.81		
730	-180			Ð	8.00	733	19.22		
745	2210			Ð	8.05	732	1.27	-Intaka set at 555'Ss.	
803	~210			۵	8.00	732	19.28		
8:5	~210			Ð	8.06	735	19.34		
1830	210			Ð	8.04	740	19.58	Colorless, cloudy	
1845	~210			Q	5.05	757	19.39	•	
					1				
									1
dditiona	I Comments:				: :				
		<u></u>							-

∥Clearcreekਗ਼ੑੑੑ¹/brodiction/CCA ŁOKWS ANATASISIŁOTWS/CCA METT DOC? ŁIDATYŁW II Clearcreekਗ਼{builden contact and the second structure of the second s

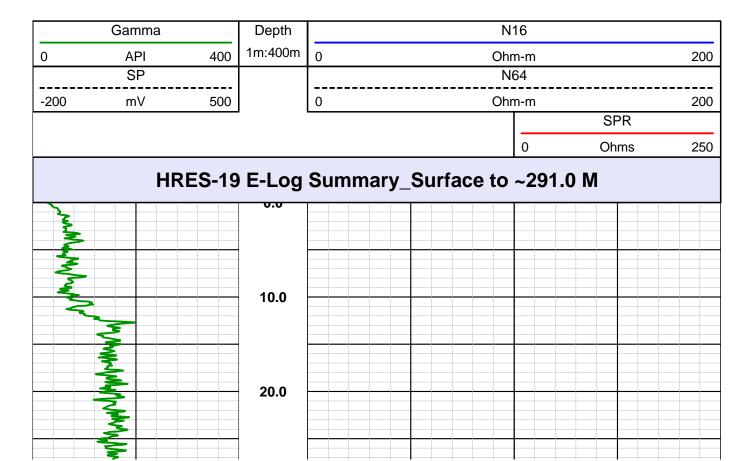

PLATE 1

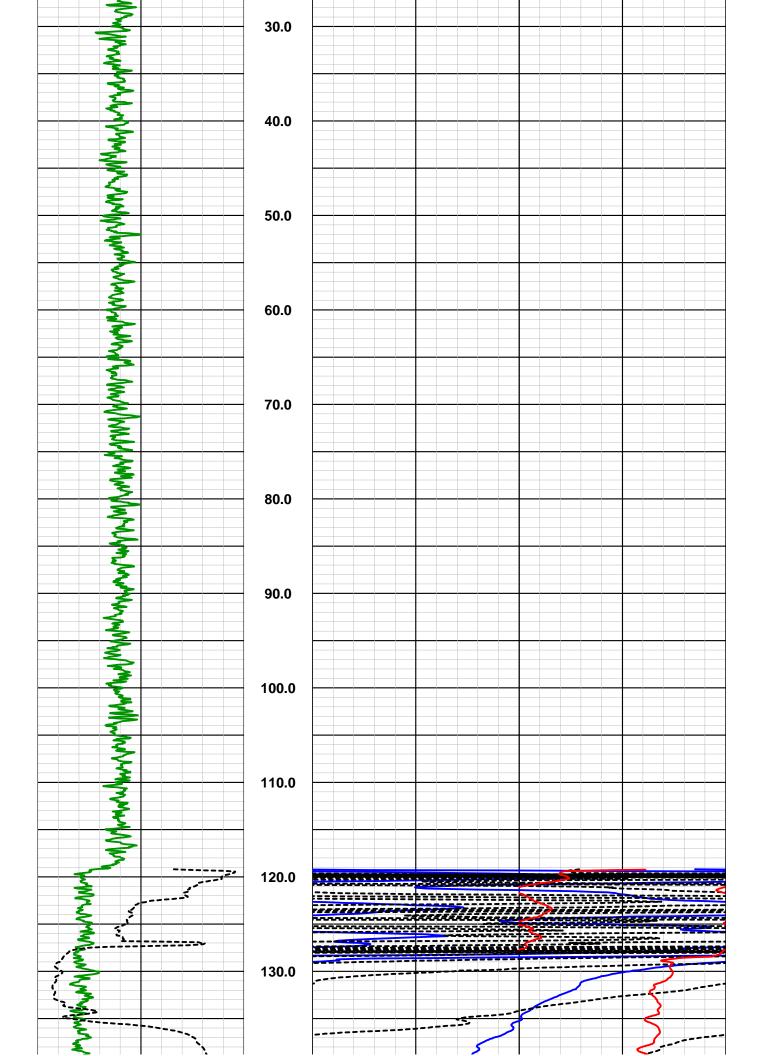

HRES-19 GEOPHYSICAL LOGS

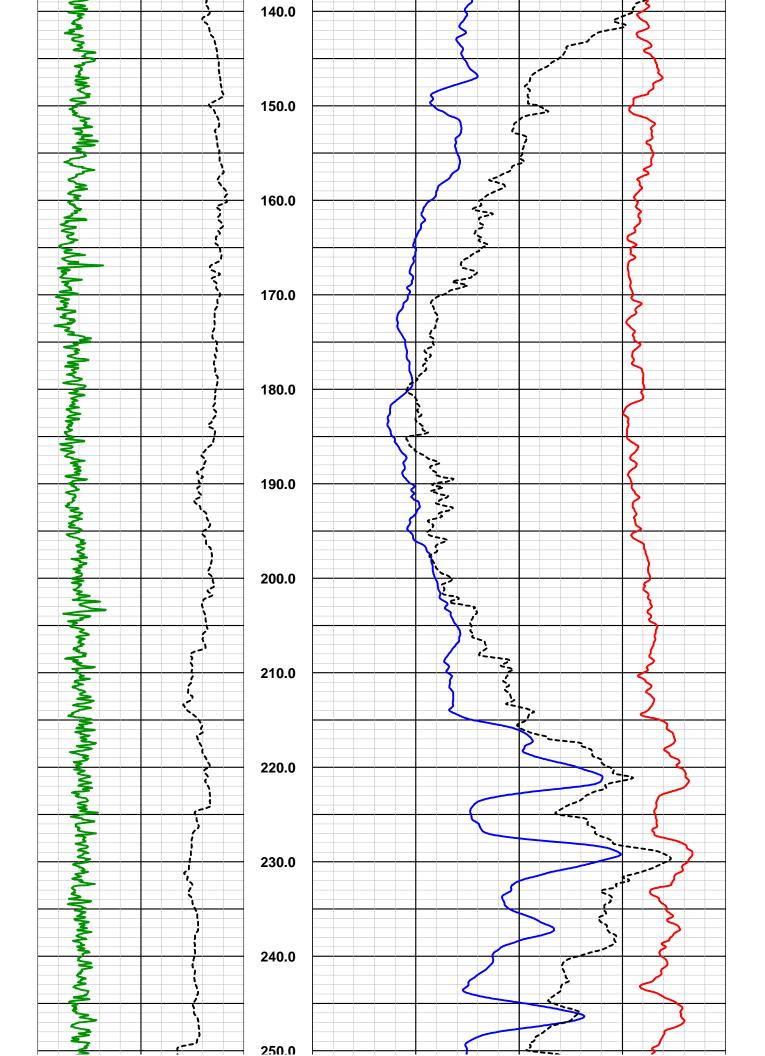


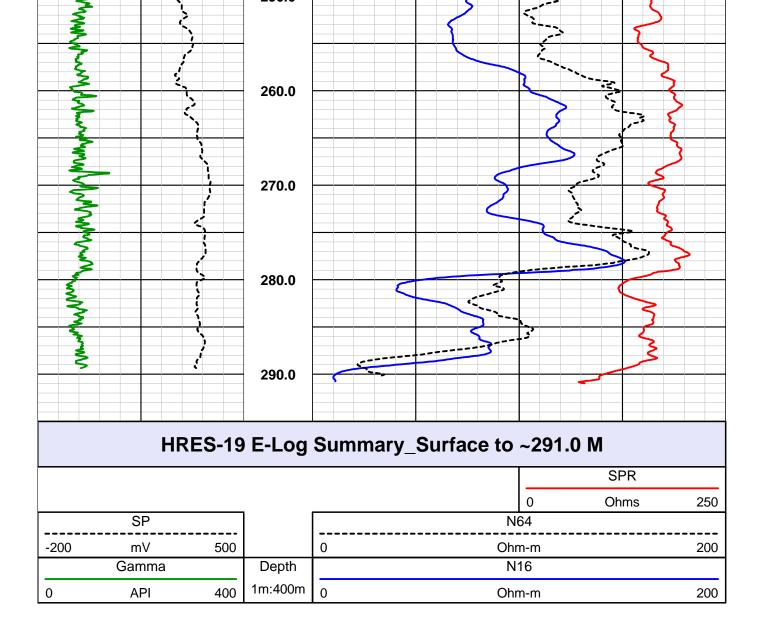

December, 2012 Clear Creek Associates Job No. 313001

		Sou	Southwest Exploration Services, LLC		Cxplo	Ĩa	tion	
	b	oreho	borehole geophysics & video services	/sics 8	, video	servi	ices	
	COM	Y	RESOLUTION COPPER CO	I COPPER	(CO (4789)			
	FIELD	Đ	HRES-19 (ADWR 55-914789) RESOLUTION	WK 22-91.	4789)			
	COUNTY		PINAL		STATE		ARIZONA	
	TYF	TYPE OF LOGS:		PER-GA	CALIPER-GAMMA RAY		OTHER SERVICES	SE
	MORE:	RE:	FLUI	FLUID TEMP/RESIS	/RESIS		OBI ABI	
	LOCATION D(2-13)8AAA	ITON)8AAA					E-LOGS SONIC	
	SEC	8	TWP 2S	RGE	13E			
PERMANENT DATUM	2			ELEVATION		Ŧ	K.B.	
LOG MEAS. FROM	GROU	GROUND LEVEL	ABOVE	ABOVE PERM. DATUM	JM		D.F.	
DRILLING MEAS. FROM GROUND LEVEL	OM GROU	ND LEVEL					G.L.	
DATE		11-4-12		TYPE FLU	TYPE FLUID IN HOLE	H	FRESH WATER	
RUN No				SALINITY	TY		N/A	
TYPE LOG		JAMMA-CA	GAMMA-CALIPER-TEMP	DENSITY	Y		N/A	
DEPTH-LOGGER		291.5 M		MAX. REC. TEMP.	. TEMP.	2 -	23.5 DEG C	
BTM LOGGED INTERVAL		291.5 M		IMAGE OF	IMAGE ORIENTED TO:	7	N/A	
TOP LOGGED INTERVAL		SURFACE		SAMPLE INTERVAL	VTERVAL		.2 FT	
DRILLER / RIG#	-	BOART LONGYEAR	NGYEAR	LOGGING TRUCK	TRUCK	T	TRUCK -300	
RECORDED BY / Logging Eng.		K. MITCHEI	K. MITCHELL/E. BEAM	TOOL STRING/SN	ING/SN	-	MSI 2PCA-PGA-F SN4953	F SN4953
WITNESSED BY		JLEAR CRE	CLEAR CREEK-BARRY	LOG TIME	LOG TIME: ON SITE/OFF SITE		7:30 AM	
RUN BOREHOLE RECORD	E RECORD			CASING RECORD	ECORD			
NO. BIT	FROM		TO	SIZE	WGT.	FROM	ТО	
1 20"	SURFACE	Ħ	11.9 M	15 3/4"	HWT	SURFACE		11.9 M
2 14 3/4" 3	11.9 M		TD					
COMMENTS:								

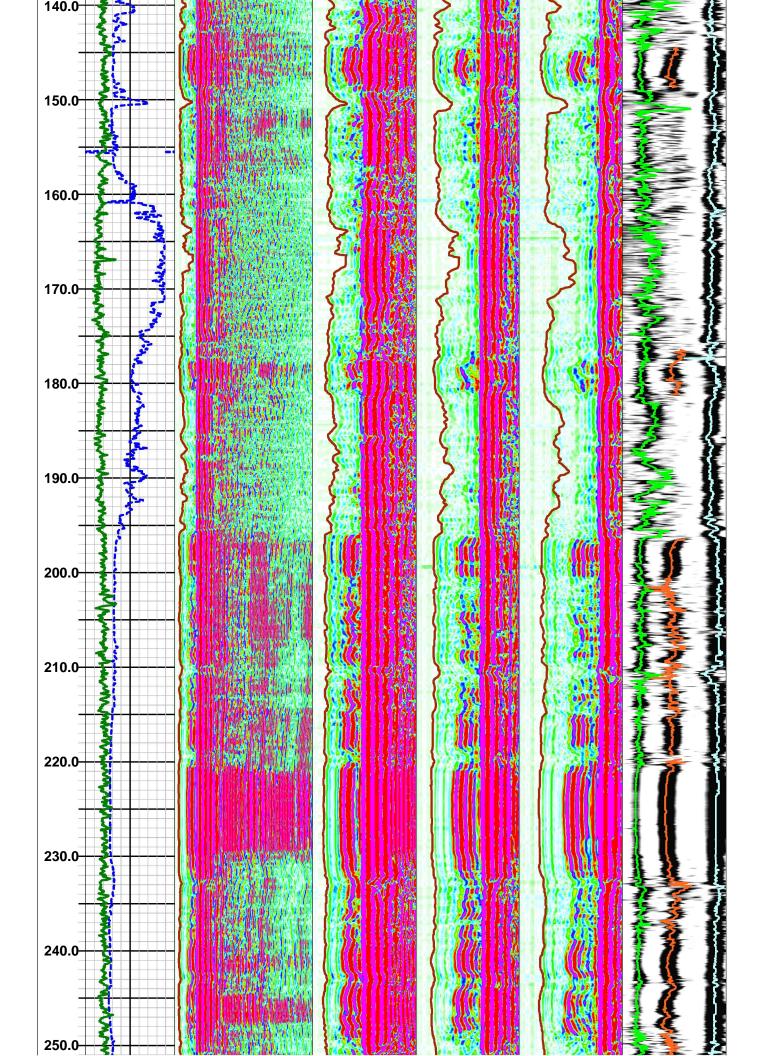








								NTS:	COMMENTS:
					TD		11.9 M	14 3/4"	3
11.9 M	ACE	SURFACE	HWT	15 3/4"	11.9 M	CE	SURFACE	20"	
TO		FROM	WGT.	SIZE	ТО		FROM	BIT	NO.
-			ECORD	CASING RECORD			RECORD	BOREHOLE RECORD	RUN
	7:30 AM		LOG TIME: ON SITE/OFF SITE	LOG TIME	CLEAR CREEK-BARRY	CLEAR CRI		SED BY	WITNESSED BY
N 5019	40 GRP SN 5019		ING/SN	TOOL STRING/SN	K. MITCHELL/E. BEAM	K. MITCHE	ng Eng.	RECORDED BY / Logging Eng.	RECORD
300	TRUCK -300		TRUCK	LOGGING TRUCK	NGYEAR	BOART LONGYEAR		/ RIG#	DRILLER / RIG#
	.2 FT		VTERVAL	SAMPLE INTERVAL		119.2 M	AL	TOP LOGGED INTERVAL	TOP LOG
	N/A		IMAGE ORIENTED TO:	IMAGE OR		291.5 M	AL	BTM LOGGED INTERVAL	BTM LOC
τC	23.5 DEG C		. TEMP.	MAX. REC. TEMP.		291.5 M		OGGER	DEPTH-LOGGER
	119.2 M			LEVEL		291.5 M		RILLER	DEPTH-DRILLER
	N/A		Y	DENSITY		ELOGS		G	TYPE LOG
	N/A		TY	SALINITY		1			RUN No
VATER	FRESH WATER		TYPE FLUID IN HOLE	TYPE FLUI		11-4-12			DATE
	G.L.					UND LEVEL	M GRO	DRILLING MEAS. FROM GROUND LEVEL	DRILLIN
	D.F.		JM	ABOVE PERM. DATUM	ABOVE	GROUND LEVEL	GRO	LOG MEAS. FROM	LOG ME/
	K.B.		_	ELEVATION				PERMANENT DATUM	PERMAN
			3 13E	RGE	TWP 2S	8	SEC		
	ABI SONIC					LOCATION D(2-13)8AAA	LOC, D(2-1		
UID RES	TEMP/FLUID RES					MORE:	M		
OTHER SERVICES	OTHER S)GS	JOGS: E-LOGS	TYPE OF LOGS:	TY		
NA	ARIZONA	STATE	ST		PINAL	COUNTY	COI		
				4	RESOLUTION	LD	FIELD		
			4789)	WR 55-91-	HRES-19 (ADWR 55-914789)	WELL ID	WE		
			CO	V COPPER	RESOLUTION COPPER CO	COMPANY	COI		
	rices	sen	videc	ysics &	borehole geophysics & video services	borehc			
	·		ן ר		SELVICES, LLC				
Ž	itio	ora	N dx	st E	Southwest Exploration	Sou	7		



								•
							NTS:	COMMENTS:
				T		11.9 M	14 3/4"	2 3
ACE 11.9 M	SURFACE	HWT	15 3/4"	11.9 M	NCE	SURFACE	20"	1
TO	FROM	WGT.	SIZE	TO		FROM	BIT	NO.
		ECORD	CASING RECORD			RECORI	BOREHOLE RECORD	RUN
7:30 AM		LOG TIME: ON SITE/OFF SITE	LOG TIMI	CLEAR CREEK-BARRY	CLEAR CRI		SED BY	WITNESSED BY
ALT SONIC 4RX SN 4572		UNG/SN	TOOL STRING/SN	K. MITCHELL/E. BEAM	K. MITCHE	ng Eng.	RECORDED BY / Logging Eng.	RECORD
TRUCK -300		TRUCK	LOGGING TRUCK	NGYEAR	BOART LONGYEAR		R/RIG#	DRILLER / RIG#
.25 FT		SAMPLE INTERVAL	SAMPLE I		119.2 M	AL	TOP LOGGED INTERVAL	TOP LOC
N/A		IMAGE ORIENTED TO:	IMAGE O		291.5	'AL	BTM LOGGED INTERVAL	BTM LO
23.5 DEG C		C. TEMP.	MAX. REC. TEMP.		291.5		,OGGER	DEPTH-LOGGER
119.2 M					291.5 M		ORILLER	DEPTH-DRILLER
N/A		ΤY	DENSITY	SONIC 4RX-GAMMA-CALIPER	SONIC 4RX		Ω Ω	TYPE LOG
N/A		ITY	SALINITY		1			RUN No
FRESH WATER		TYPE FLUID IN HOLE	TYPE FLU		11-4-12			DATE
G.L.					UND LEVEL	M GRO	DRILLING MEAS. FROM GROUND LEVEL	DRILLIN
D.F.		UM.	ABOVE PERM. DATUM	ABOVE I	GROUND LEVEL	GRO	LOG MEAS. FROM	LOG ME.
K.B.		Z	ELEVATION	Ι			PERMANENT DATUM	PERMAN
		E 13E	RGE	TWP 2S	∞	SEC		
ABI E-LOGS					LOCATION D(2-13)8AAA	D(2-		
OBI		LIPER	GAMMA-CALIPER	GAMI	MORE:	M		
OTHER SERVICES			SONIC 4 RX		TYPE OF LOGS:	ΤY		
ARIZONA		STATE		PINAL	COUNTY	СО		
				RESOLUTION	LD	FIELD		
		[4789]	NR 55-91	HRES-19 (ADWR 55-914789)	WELL ID	WE		
		R CO	COPPEI	RESOLUTION COPPER CO	COMPANY	СО		
nces			/SICS 0	טטרפרוטופ טפטערזאַצוניצ מי אומפט צפראוניפא	DOLETIC	V		
			icine S					
tion	ra	Exploration LC	Fm	Southwest Ex Services, LLC	Sou)	YTT	

Depth 1:400		HRES-19 Soni	c Summary	/_ ~119.1 M	to ~290.5	M
	Caliper	RX1 - VDL	RX2 - VDL	RX3 - VDL	RX4 - VDL	Velocity Analysis
	10 Inches 30	-200 200	-100 100	-100 100	-80 80	0 40
	Gamma	RX1 - dt	RX2 - dt	RX3 - dt	RX4 - dt	P-Wave Cond
	0 API 400	100 uSec 2040	100 uSec 1020	100 uSec 1020	100 uSec 1020	32 uSec/ft 232
						S-Wave Cond
						32 uSec/ft 232
						St-Wave Cond
						32 uSec/ft 232
120.0						

						A
260.0-						
270.0-						
280.0-						
						St-Wave Cond 32 uSec/ft 232 S-Wave Cond 32 uSec/ft 232
	Gamma	RX1 - dt	RX2 - dt	RX3 - dt	RX4 - dt	P-Wave Cond
	0 API 400	100 uSec 2040	100 uSec 1020	100 uSec 1020	100 uSec 1020	32 uSec/ft 232
	Caliper 10 Inches 30	RX1 - VDL -200 200	RX2 - VDL -100 100	RX3 - VDL -100 100	RX4 - VDL -80 80	Velocity Analysis
Depth 1:400		HRES-19 Soni	c Summary	∕_ ~119.1 M	to ~290.5	M

Full Waveform Sonic Summary Legend Mnemonics and Comments

- **Gamma** = Natural gamma ray log plotted from 0 to 400 API units (green line).
- **Caliper** = 3-arm mechanical caliper of hole diameter plotted from 10-30 inches (blue line).
- **RX1 VDL** = Color variable density display of 0.6m Rx waveform; stacked over 5 waveforms, and plotted from 100 to 2040 uSec.
- **RX1 dt** = P-wave travel time pick. Plotted 100 to 2040 uSec (brown line).
- **RX2 VDL** = Color variable density display of 0.8m Rx waveform; stacked over 5 waveforms, and plotted from 100 to 1020 uSec.
- **RX2 dt** = P-wave travel time pick. Plotted 100 to 1020 uSec (brown line).
- **RX3 VDL** = Color variable density display of 1.0m Rx waveform; stacked over 5 waveforms, and plotted from 100 to 1020 uSec.
- **RX3 dt** = P-wave travel time pick if determined. Plotted 100 to 1020 uSec (brown line).
- RX4 VDL = Color variable density display of 1.2m Rx waveform; stacked over 5 waveforms, and

	plotted from 100 to 1020 uSec.
RX4 - dt	= P-wave travel time pick - if determined. Plotted 100 to 1020 uSec (brown line).
Velocity Anal	sis = Gray scale variable density display of velocity semblence waveform of the stacked waveforms; plotted from 32 to 232 uSec/ft.
P-Wave-Conc	= Apparent P-wave transit time or slowness from maximum energy peak on semblence velocity waveform in uSec/ft (green line).
S-Wave-Conc	= Apparent S-wave transit time or slowness from maximum energy peak on semblence velocity waveform in uSec/ft - with conditional testing to remove invalid values (orange line).
St-Wave-Con	= Apparent Stoneley-wave transit time or slowness from maximum energy peak on semblence velocity waveform in uSec/ft with conditional testing to remove invalid values (light blue line).
Prepared by Er Version 11-19-	
version 11-19-	4

								NTS:	COMMENTS:
					IJ		11.9 M	14 3/4"	3
11.9 M	ACE	SURFACE	HWT	15 3/4"	11.9 M	Œ	SURFACE	20"	, 1
TO		FROM	WGT.	SIZE	ТО		FROM	BIT	NO.
			ECORD	CASING RECORD			RECORL	BOREHOLE RECORD	RUN
M	7:30 AM	OFF SITE	LOG TIME: ON SITE/OFF SITE	LOG TIME	CLEAR CREEK-BARRY	CLEAR CRI		SED BY	WITNESSED BY
ALT OBI40 MK 4 080903	ALT O		ING/SN	TOOL STRING/SN	K. MITCHELL/E. BEAM	K. MITCHE	ng Eng.	RECORDED BY / Logging Eng.	RECORD
K -300	TRUCK -300		TRUCK	LOGGING TRUCK	NGYEAR	BOART LONGYEAR		R/RIG#	DRILLER / RIG#
FT	.0096 FT		NTERVAL	SAMPLE INTERVAL		11 M	AL	TOP LOGGED INTERVAL	TOP LOC
MAG NORTH	MAG I	Ö	IMAGE ORIENTED TO:	IMAGE OF		141 M	'AL	BTM LOGGED INTERVAL	BTM LOC
EG C	23.5 DEG C		TEMP.	MAX. REC. TEMP.		291.5 M		OGGER	DEPTH-LOGGER
M	119.2 M			LEVEL		291.5 M		DRILLER	DEPTH-DRILLER
	N/A		ΓY	DENSITY	LIPER	OBI-40 - CALIPER		ā	TYPE LOG
	N/A		TY	SALINITY		1			RUN No
FRESH WATER	FRESH	(1)	TYPE FLUID IN HOLE	TYPE FLU		11-4-12			DATE
	G.L.					UND LEVEL	M GRO	DRILLING MEAS. FROM GROUND LEVEL	DRILLIN
	D.F.		UM	ABOVE PERM. DATUM	ABOVE	GROUND LEVEL	GRO	LOG MEAS. FROM	LOG ME.
	K.B.		-	ELEVATION				PERMANENT DATUM	PERMAN
			E 13E	RGE	TWP 2S	8	SEC		
SE	ABI E-LOGS SONIC					LOCATION D(2-13)8AAA	LOC. D(2-1		
TEMP/FLUID RES.	TEMP/FL		PER	3- ARM CALIPER	3- AR	MORE:	M		
OTHER SERVICES	OTHE			MK 4	JOGS: OBI MK 4	TYPE OF LOGS:	ΥT		
ONA	ARIZONA	STATE	S		PINAL	COUNTY	CO		
				Z	RESOLUTION	LD	FIELD		
			4789)	WR 55-91	HRES-19 (ADWR 55-914789)	WELL ID	WE		
			CO	N COPPER	RESOLUTION COPPER CO	COMPANY	CO		
ŭ		u ser		ysics o	porenoie geophysics & video services	DOLELIC	V		
)						1			
on	Ē	ora	C X D		Southwest Exploration Services, LLC	Ser	7	TTT	

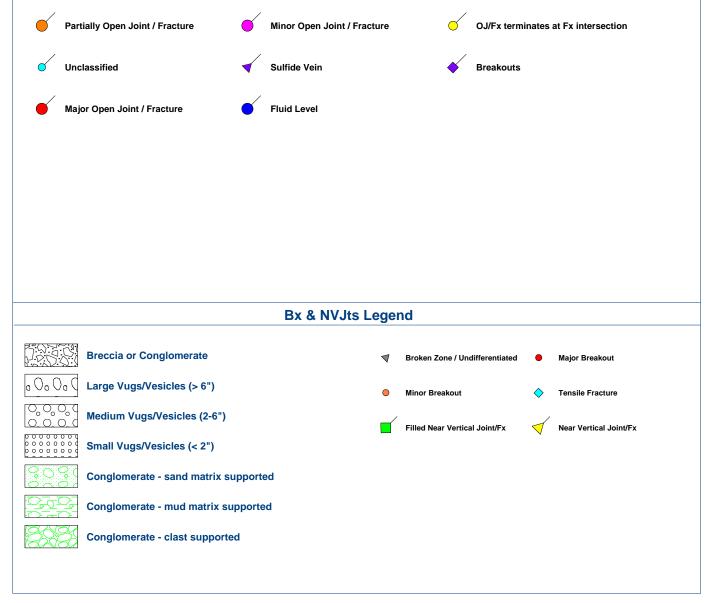
Major Lithology

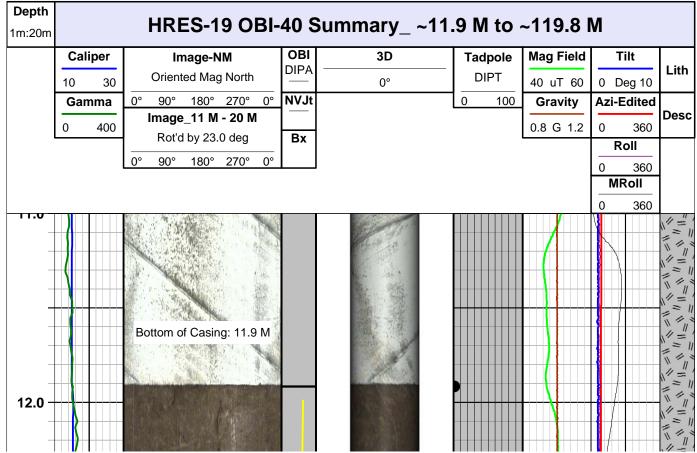
Apache Leap Tuff - Gray Unit

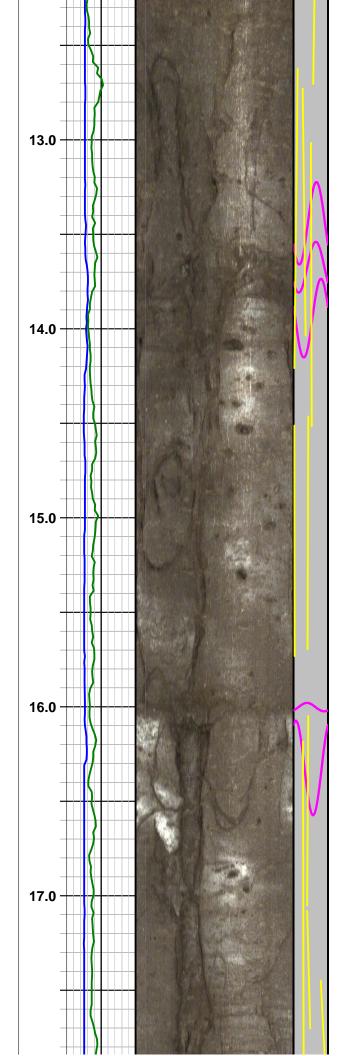
Apache Leap Tuff - Brown Unit

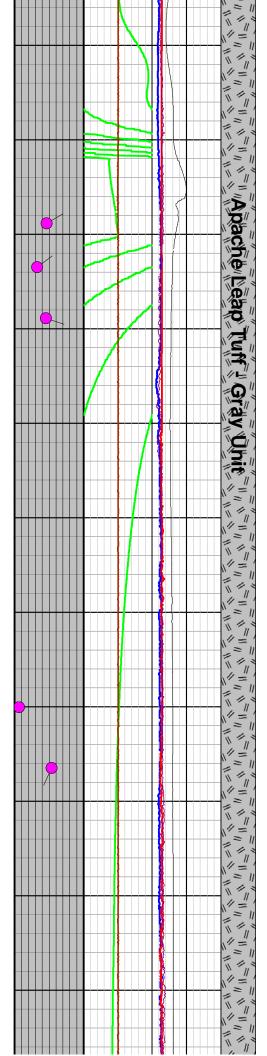
Basal Tuff - Vitrophyre

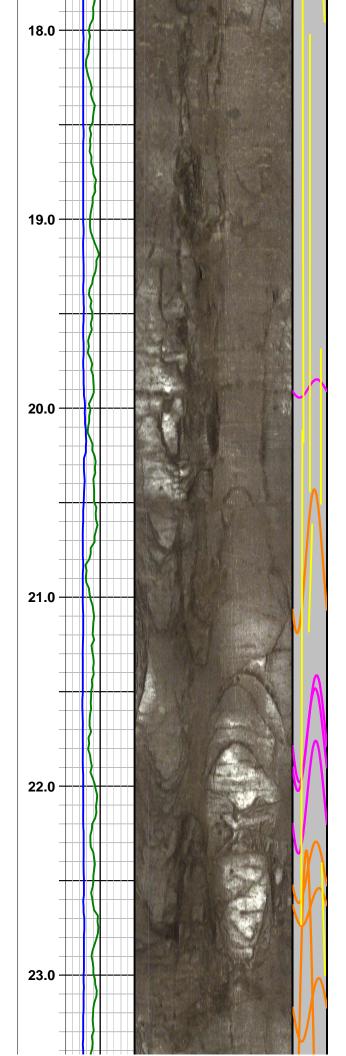
Basal Tuff

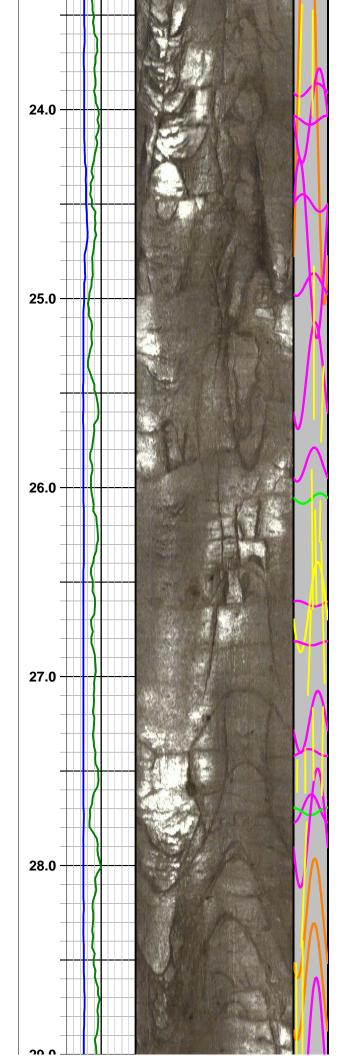

Transition Zone

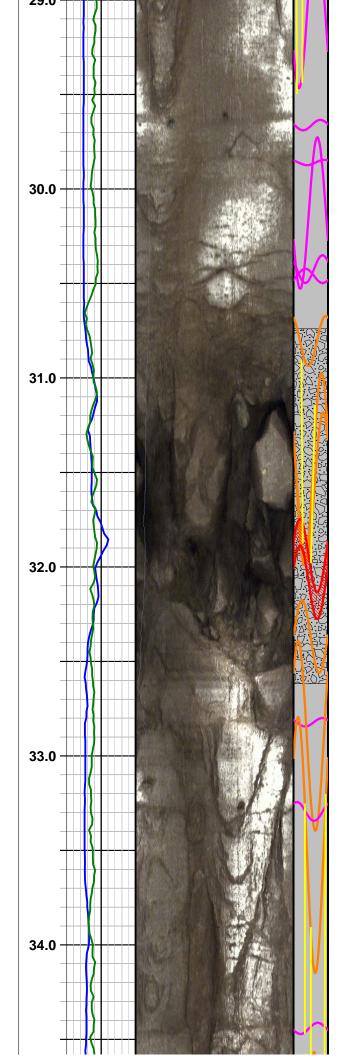

Optical Image Features Legend


ø

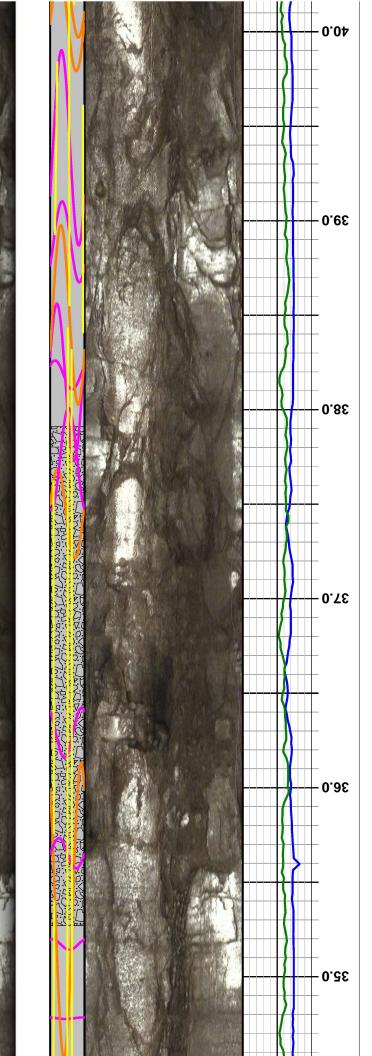

 \mathcal{O}



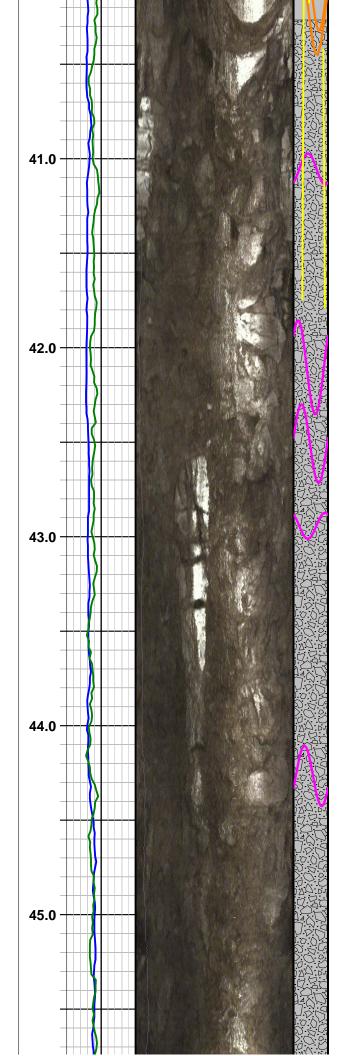




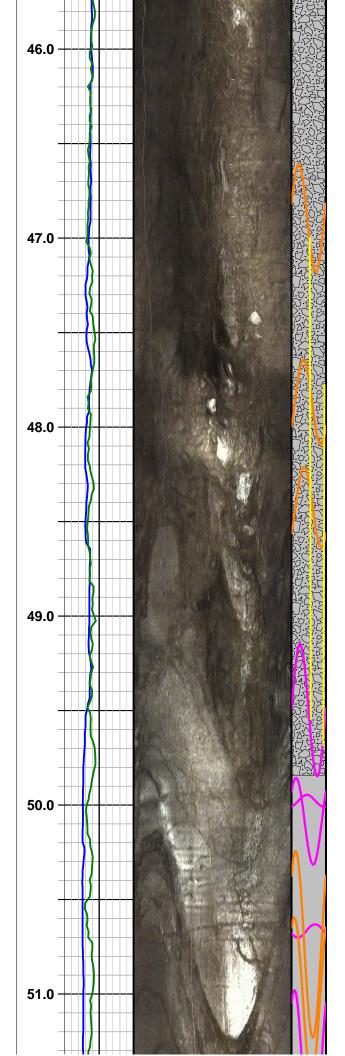
				\″ = //
		· · · · · · · · · · · · · · · · · · ·		
			+	
				\/
				\ <u>`</u> =''
			3	
			1	\// =//
				\/
-				
	┝───┨╴┨			
				``@
		1		
		3		
				ĸ∕ŧ″
			+	
				av "
				Č,
				\/
	┝╌╌╢╴╏	╺╼╼╼╼╋╋	╫╂╷╷╷	
		1		\//
				\/

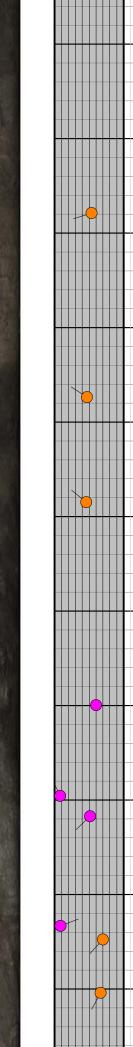

			\/'
			\[
			Ī.
\mathbf{P}			
	_		
		_ ₿	
╺ <mark>╺</mark> ┝┼┼┼┼╋╶╴			
	_		
	1 2 1		
		┞╋┊┼╂╌╌╌	
			\// =//
		\$ {}	
		5	
		<u>}</u>	
•		<u>}</u>	\[
		{ }	
		§	
	_		
		<u> </u>	
	-	<u>}</u>	
		8	5
		<u> </u>	

			\$\$\$
	┦┦┼┼┼		
= =			
			~~ <u>/</u> /
		∙ <u>≖≉</u> ≱▲	

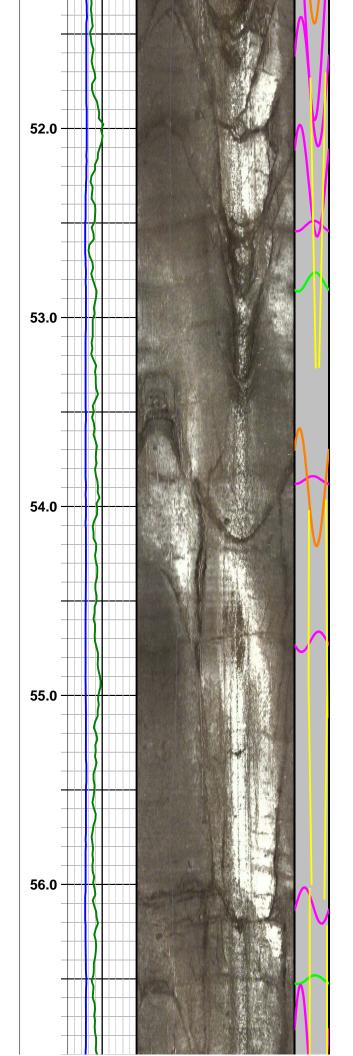


						Y				? }	√/ =″ '
						╞	$\left \right $		_		
					+	╞				8	
						t	$\left \right $				
						t					<i>// =/</i>
						t				 -	
						t					\"='
)	ſ	1				T					
	þ					T					
)	١										
											\ <i>″</i> = `
						Y					
										<u> </u>	\//
	2			,							
											N =
							\parallel				
				1							
								\vdash			
					+	╞					
-					+	╞					
					+	╞	$\left \right $			2	
					$\frac{1}{2}$	\int	H				
						╞	$\left \right $			some -	\"='
						T				8	
										<u>}</u>	
											1
	-										
										8	
					_	+				Ţ.	
	-		-(+					N "
					+	╞	\square			 8 -	
					+	╞			_	%	
	$\frac{1}{2}$					\downarrow				8	
					1						
										X	\/_='
										2	
		5								*	v 🎾 🕺
2										8	
						¢					١ . ٤
					1					1 🔰	
										§	
										¥.	
								++			
					+			\vdash			
						f		++			
					+	f		++	+		
					Ŧ	ſ		++			
þ	>	-	-								
											Ĩ, Ç


) ()		
$f = h^{N}$		
(<i>= //</i>)		
$f = \eta^{N}$		
(<i>F</i> /)		
(<i>= 1</i>)		
(= //	}{	
(= /)	3	
	∛ .	
(<i>F</i> /)		
(= //		
(<i>= //</i>		
	8	
$= \eta^{N}$		
$f = \eta^{N}$		
	{ 👔	
$f = \eta^{N}$		
$f = \eta^{N}$		
$f = \eta^{N}$	4	
*"# \\ = "		
(<i>= 1</i> /1		
= 1		
(<i>= 1</i> /1		
(= // W		
, <i>= 1</i> /		
, <i>= 1</i> /		0-
	2	
	l l l	
	2	

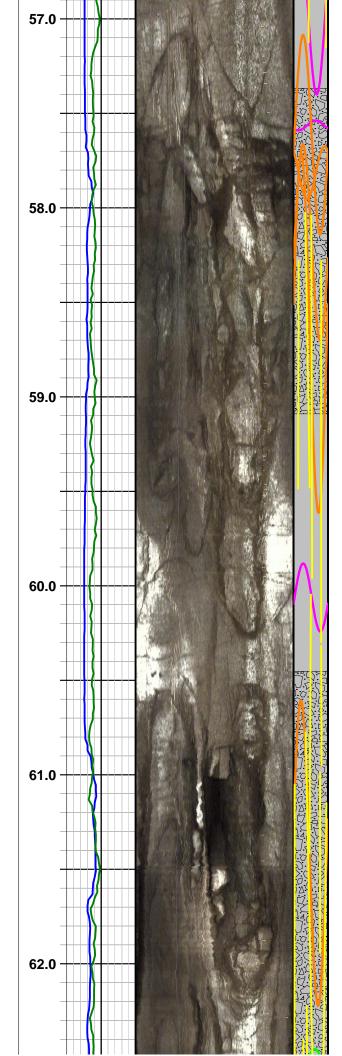


			.
		🚦	······································
		∛	
		<u> </u>	
			Ň.
		Š {	
		Se l	N// = /
			/ // _/ _/ _/ _/ _/ _/ _/ _/ _/
		§	
			T = "
			\// =" /
		1	
	┠┼┼╊┼╋	╧╧╧╋	<u> </u>
	┞┼┼┠┼╉		
			N = "
			\/
┥╪╋	┝╼╍╋		
			N = 1
		1	
		<u> </u>	<i>∠</i> ~ <i>∥</i>
\mathbb{R}			

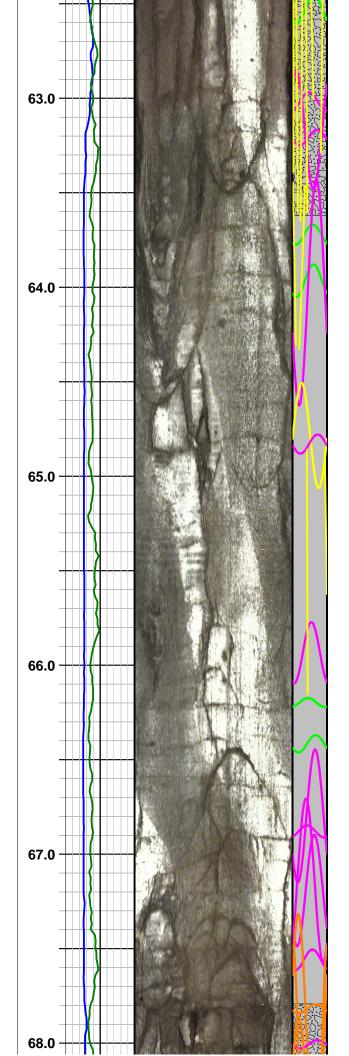


+						
					\$ }	$\sqrt{\frac{2}{2}}$
					<u> </u>	1
+				 	X	$(\underline{\mu} \underline{\mu})$
+				<u> </u>	}	N = 11
						1
T						1 = 1
+				1	- <u> </u>	<i>™=∥</i>
						N = "
						\// =" /
t					╞╋	<u> </u>
+					2	
					X	
					š	d "
+					∦	
	Ы				~ }	N OF II
1	M				%	T - "
t				1	👷 (– – – – – – – – – – – – – – – – – –	
+						M.σ."
					X	```O ''''''
						\/ / /
╉				1		" //
1					<u> </u>	
					82	\/ =
T						~
+					%	
					87	
J	1			1	8	
	┦╢			!	\$ {}	<u>)</u>]]
					<mark>2</mark> 21	~,×
				1	12	\" =" '
t						" <u></u> ≡_∥
+				•	₹\$	N M
					* }	\
T						
Y	┥┤					× 11)
	1			1	25	N = n
				1		111
t				1	\$ }\	~ <u>"</u>
+				<u> </u>	221	\`= <i>"</i> ∥
					5	1 1
					? }	1 = 1
╉				<u> </u>		
						N Put
					25	\ <i>\" = '</i>
t				1	<u>}</u> }	
+				1	₹ {	
					5	
					Į Ę	
Ŧ				<u>{</u>		" <u>"</u> "
1	\mathbf{O}		┝┷┿╋	$\{ \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot $		
						N = "
I					12 1	\/="/
				}		
					₿ ₿₽₽₽₽₽	11 1
					₹ }	
I					3 8	1. 1.
+	H			<u></u>		× 11)
9	\diamond]		
1						
					7	
			┝┼┼┞		₹ - 4	<i>"</i> = <i>∥</i>
						N = "
						\// = /
T					<mark>努</mark> む	
			┝┼┼┡┼			1
Ţ					<u> </u>	1. 1.
	1					(1)
				<u>↓</u>	Χ ξ	
				j	% {	
T		7		1		1 =
	1			_		
					ζ ξ	
I						\/'
-11	- 1 - C - L					

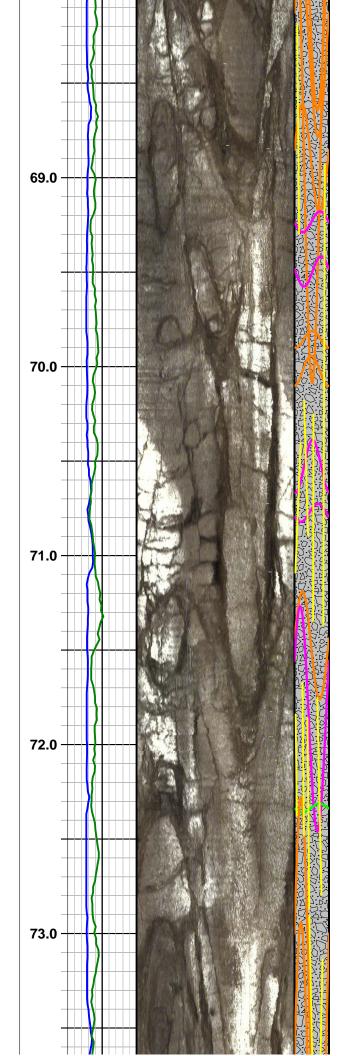
+


🕻 🧎

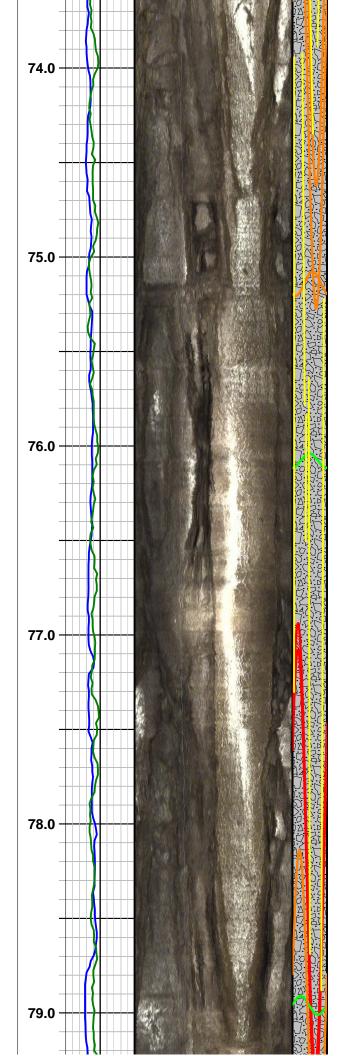
> 11

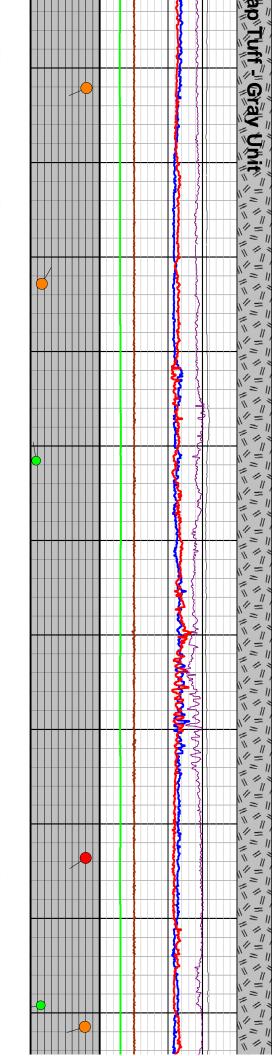


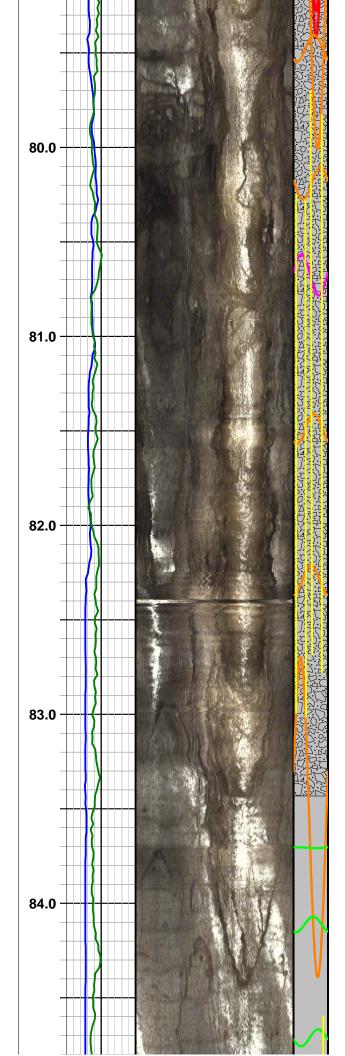
	\\ 	
	! 	
	<u>{</u>	
	<u>}</u>	
	\$ {	
	↓	
		N = "
		T = "
		\/
		\" = '
<u></u>		
	↓	G
		\/'
		\/'
		\// = /
	<u>}</u>	\// =//
		\ <u>`</u>

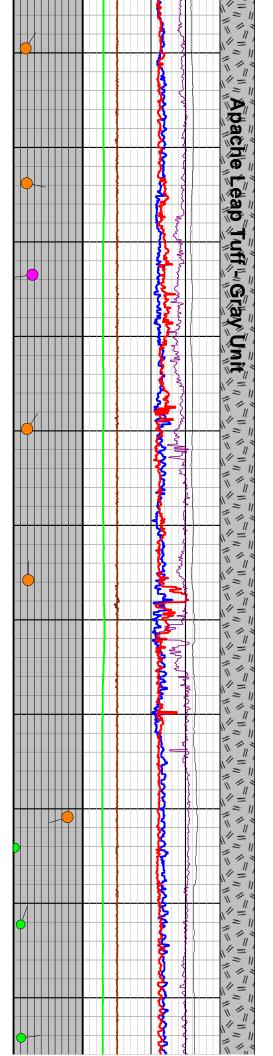


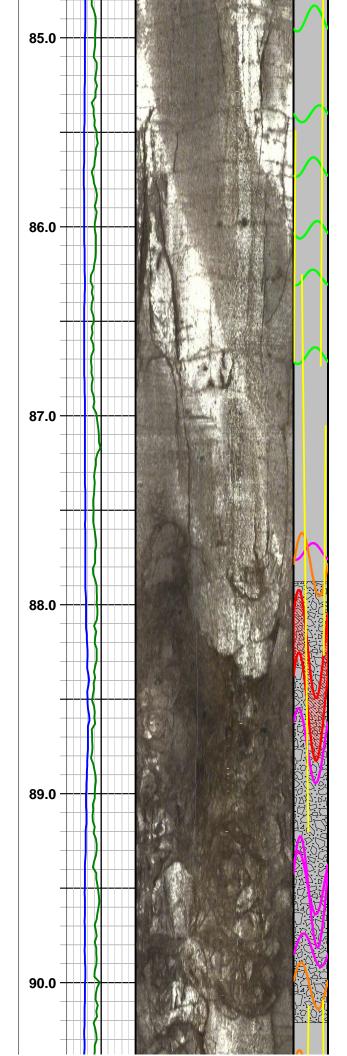
		5	
		}	
		<u> </u>	
	{		
		{	
		\$ {	
		Ş	
		2 37	
		7	
		} - <u></u> }	
			\ ~= " /
		Į	
		{	\// = /
		2	
		3	
		Ş	
			11-1
		23	\ <i>\</i> / = '

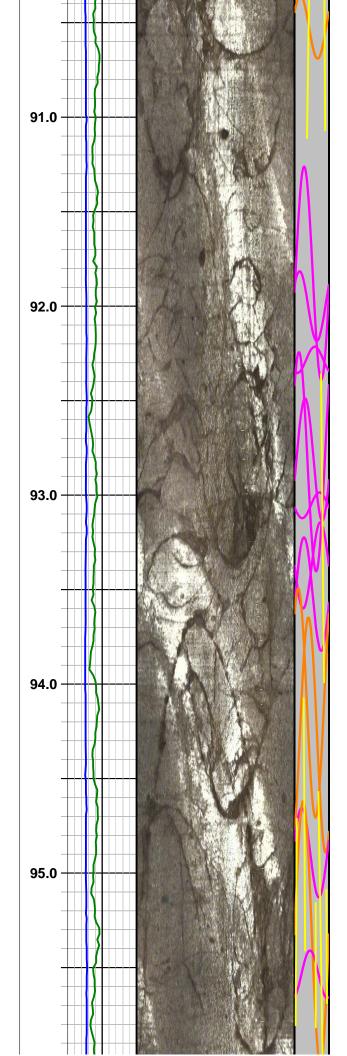


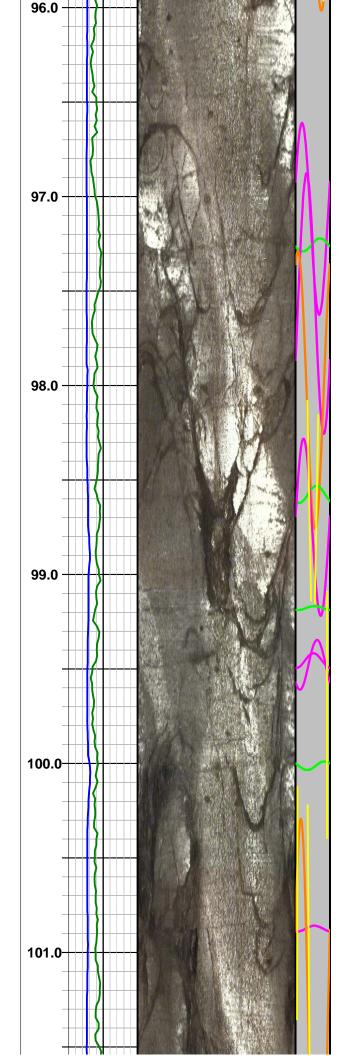

	~~~~	
	S S	
	\$ 5	
	\$ \$	
<u> </u>		\// =' /
	5	
	65	\// =' /
	23	
		\//_='_'
		\[]
		\{\
		N =
		11
	┠──── ┤┦ ┓───┤	
		\/'
		\[
	}	
	& _{	
P		P #)
Y		
		``@ ''
	1 	\// == '



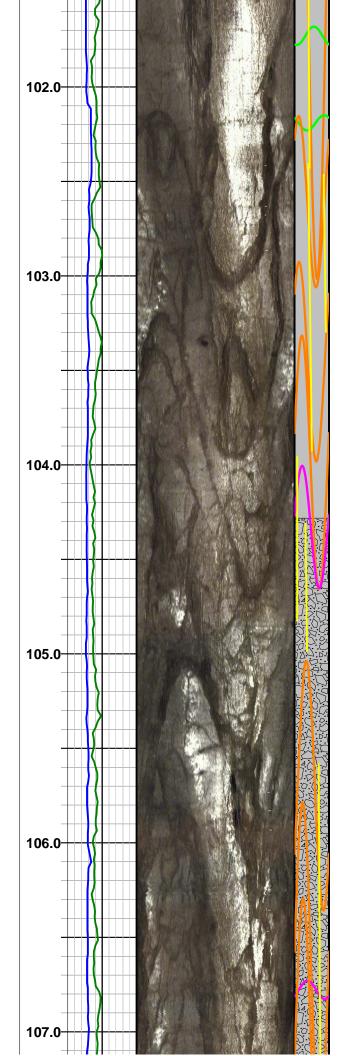

₩	
	N = 1
§ }	
	- <u>``</u> = #
	· //
 	× 1/1
 	· //
 2	<u> </u>
	- N. 11
• • • • • • • • • • • • • • • • • • •	



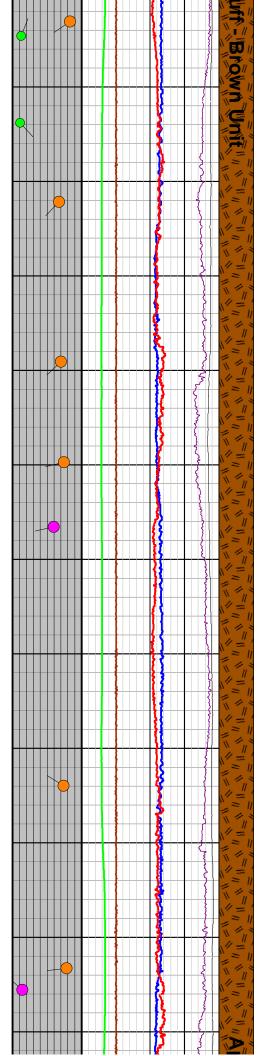


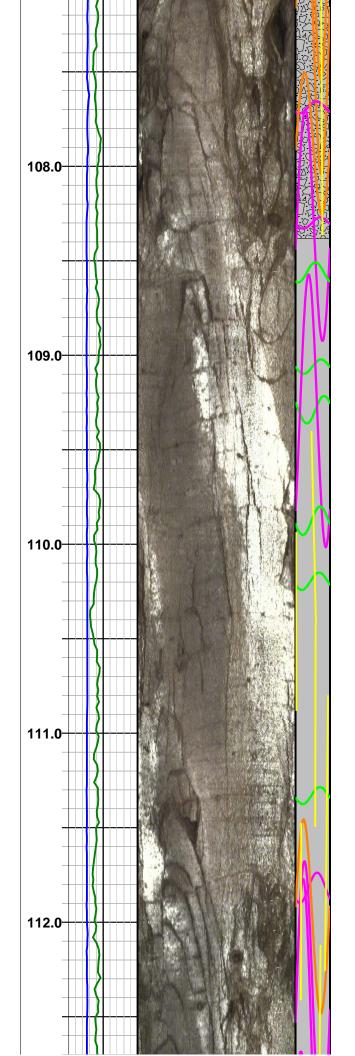


			/				I							ł	Ş	4			1/1 :	<i>"</i>
	C)- 		t	t	1	İ							Ź		~ ~ ~	7			: ≠_\$
														Į	}		2		11 :	//) =
														4		000			1	· // //
					1	_	ļ		_					1						≝″í
-(>		_	+	+	+	ł		_							4			1	""
				+	+	+	╉		-	_	-		_	-		-				=
		1		+	+	╡	ł	-	-		\vdash					1	-{		* » : 4/	///))
_(t	1	ľ						_			mont	1			= ≠ =
				Ī	t	T	I												1	<u> </u>
7	~		_											_					1	· // //
						_			_								4			<i>"</i> ,
	/			-	+	_		_						_			+		11 :	-)
					+	+	ł	-	_							~				=
					+	+	ł	-	_		\vdash		_	1	-	1				
				t	+	1	t							t	-				" G	11
(Y		1		t	t	I							ţ	Į				چ»)// / F
														1	Į					, "
						_								1	[E C	; "
				_	_	_	ł		_					ţ	\		ł			
					+	+	ł	_	_		-		_	ł	Ł					Ξ.j
					+	+	ł	-	_			-	_	ł	ł		{	1		Į)
				t	╞	+	t						_	t	ł				Ť	: <
				Ì	t	t	Ì							1	?		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Ľ) /
							I							Ş			ł			> // >//
C	K				+				_					ļ	}				¢ C	" / "
	_	_	¢		+	+	ł		_				_	ļ	{		{			×, *,
				+	+	+	ł	-	_	_	+	-		┤	-					=
				+	+	+	ł		-							-			ء » - 4/)
					t	1	Ì													: ∥ ≶*
																			1	, , , , , , , , , , , , , , , , , , ,
							l													- // -//
				_	_	_	ł		_	_			_	_						≓́∥
						-			_		\parallel		-	_	4				11 -	
			(+	+	ł	-	_		\vdash	-	_							-
		1	Î	1		1	ł				\mid		+							//) =)
																				: ≠,,*
				Ţ			Į		_							~				//////////////////////////////////////
									_		\mid									
				1											\square					<i>≕ (</i> =
					-	-	ł	+		+	$\left \right $	+	+	1	1	4			11 -	
			ł	4	þ	+	╉		_		┝			t	\vdash	5	H			:
					T	1	Ì			+	╞			Ş	\vdash	2				// / =_/
							I									3				: ≤
	M						Į		_							~	Į			, , , , , , , , , , , , , , , , , , ,
			_	1	1	1			_	Ц	H				\square	3			1	-
			1			-									\vdash	dered and my and a second				= / = //
										+				}	5		-		11 -	//////////////////////////////////////
					ł	-	ł	+	_	+	$\left \right $	+	+	{	}	2				
1	- 48	- 10	- 40	- 61	-	 E	-		_		1									

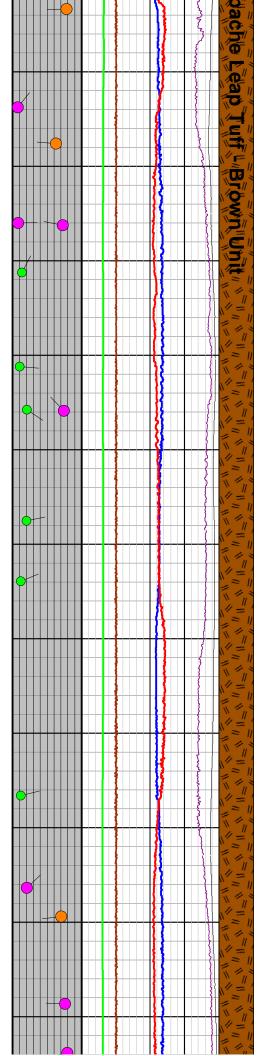


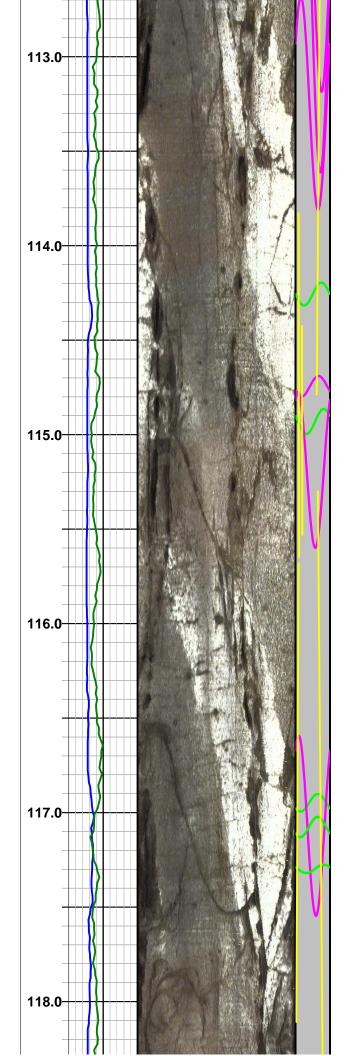
		× 11
		N
┝───┼{╡		N =
		N'
		\[
		\ <u>`</u> =''
		\ <u>`</u> =''
		\/'
	{	\// = /
		1
		``_ = <i>∥</i>
		~ 11
		5
<mark></mark>		
 -1 -		
		N Æ.
		Apa¢h
		Apache Leap Tuff Bro
		Apache Leap Tuff & Brown
		Apache Lead Tutt Brown

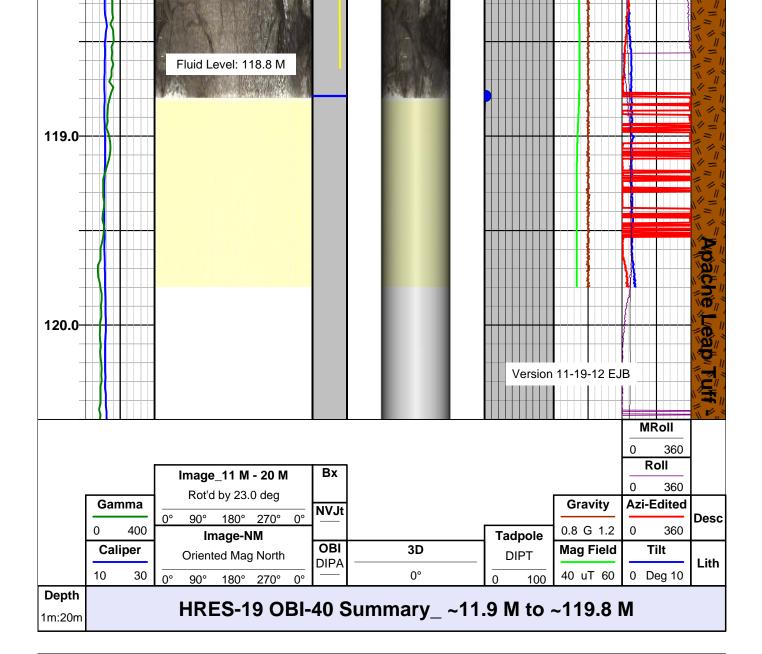




	 	<u>}</u>
	 {{	
	 · · · · · · · · · · · · · · · · · · ·	
	\	
	 <u> </u>	
	 Į	
	 \	
, , , , , , , , , , , , , , , , , , , ,		
1		







		1 11 - 1
		{+\
	1	
	<u>}</u>	s to
	12	
	<u>₽</u>	
╞╴╏┋╴		{ `_0 "
		
┝──┠╏		{ \?
		{ <i>\\// =</i> /
	31	
	¥	
		// = /
	├ <u>}</u> 	
┠──┠╏╌		
		\$ N/ = /
	l S	
	╵╵┤╏╵┼╴	{ // = /
	┼┼┼╢┋┼┼┼	
		\// = '

Optical Image Summary Legend

Mnemonics and Comments

Caliper Gamma Image-NM	 = 3-arm mechanical caliper of hole diameter plotted from 10-30 inches (blue line). = Natural gamma ray log plotted from 0 to 400 API units (green line). = 2D plot of optical image oriented to magnetic north. Plotted from left to right N-E-S-W-N. 						
Image_11.	0M - 20.0M = 2D plot of optical image non-oriented and rotated by 99.5 deg to correct for magnetic affect in proximity of steel casing. Plotted from left to Right N-E-S-W-N.						
OBI	= Planar features picked on optical borehole image shown as colored sinusoid (color designation shown on header). DIPA = dip apparent hole axis.						
Bx	= Apparent Breccia or Congomerate zones and Vugs/Vesicles/Cavities.						
NVJt	= Near Vertical (near parallel to hole axis) joint/fracture features picked on acoustic borehole image shown as colored sinusoid (color designation shown on header).						
3D	= 3D cylindrical projection of OBI image viewed from north.						
Tadpole	 Tadpole plot of the image feature picks (fractures and bedding planes); plotted from 0 to 90 dip see legend above. DIPT = True orientation; features corrected for hole deviation. 						
Mag Field	= Total magnetic field strength as measured by fluxgate magnetometer in OBI deviation sensor						

	- plotted 40-60 uT (green line).
Gravity	= Tool accelleration or gravity as measured by 3-axis accellerometers in OBI deviation sensor - plotted 0.8 - 1.2 G (brown line).
Azi-Edited	= Direction of tool tilt plotted 0 to 360 deg; edited for anomalous magnetic influence - represents borehole deviation direction (red line).
Roll	= Roll or gravity tool face angle is plotted 0 to 360 degrees. Roll is 90 degree if the y-axis of the probe (reference mark on the housing) points to the high side of the borehole. (purple line)
MRoll	= MRoll or Magnetic Roll angle is plotted 0 to 360 degrees. MRoll is used when Tool Tilt is < 1 deg from vertical and two components of accelerometer are close to zero. At vertical, MRoll is 90 degree if the projection of the y-axis of the probe (reference mark on the housing) into a horizontal plane points to Magnetic North. (black line)
Tilt	= Tool tilt (vertical = 0 and horizontal = 90) plotted 0 to 10 deg; represents borehole deviation tilt from vertical (blue line).
Lith	= Major/principal lithology based on field geologic descriptions provided by Clear Creek staff.
Desc	= Major/principal field geologic descriptions provided by Clear Creek staff.
Prepared by E Version 11-20	

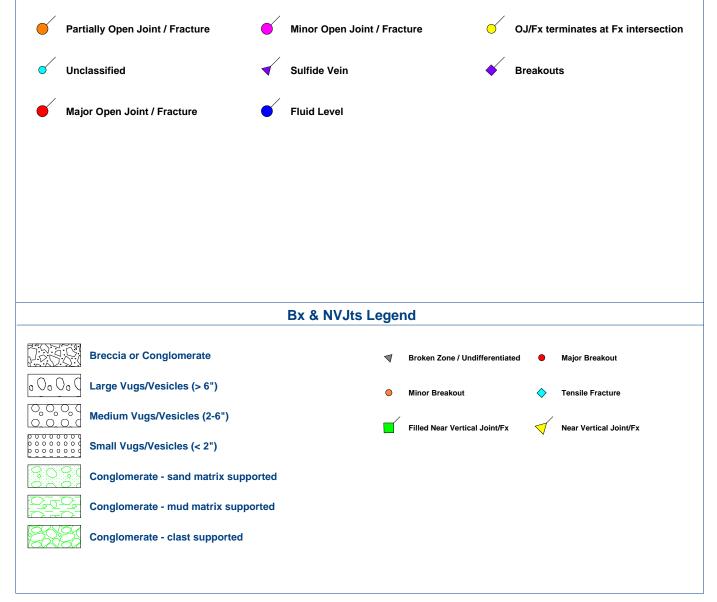
Kint	Sou	Southwest Exploration Services, LLC	, LE	Cxplo	ra	tion	
	boreh	borehole geophysics & video services	ysics &	t video	servi	ices	
	COMPANY WELL ID	RESOLUTION COPPER CO HRES-19 (ADWR 55-914789)	V COPPER WR 55-91	, CO 4789)			
	WELL ID FIELD	HRES-19 (ADA RESOLUTION	WR 55-91. V	4789)			
	COUNTY	PINAL		STATE		ARIZONA	
	TYPE OF LOGS:	LOGS: ABI-43	43			OTHER SERVICES	CES
	MORE:		3-ARM CALIPER	ER		OBI GAMMA-CALIPER-	PER-
	LOCATION D(2-13)8AAA					FLUID TEMP-RES E-LOGS SONIC	RES
	SEC 8	TWP 2S	RGE	13E			
PERMANENT DATUM			ELEVATION		H	K.B.	
LOG MEAS. FROM	GROUND LEVEL		ABOVE PERM. DATUM	JM		D.F.	
DRILLING MEAS. FROM GROUND LEVEL	GROUND LEVE	Ľ				G.L.	
DATE	11-4-12		TYPE FLUID IN HOLE	D IN HOLE	F	FRESH WATER	~
RUN No	1		SALINITY	TY	7	N/A	
TYPE LOG	ABI-43 3	ABI-43 3 ARM CALIPER	DENSITY	Y	7	N/A	
DEPTH-DRILLER	291.5 M		LEVEL			119.2 M	
DEPTH-LOGGER			MAX. REC. TEMP.	. TEMP.	- 12	23.5 DEG C	
BTM LOGGED INTERVAL TOP LOGGED INTERVAL	L 291.5 M L 119.2 M		IMAGE ORIENTED T SAMPLE INTERVAL	IMAGE ORIENTED TO: SAMPLE INTERVAL	0	0.0096FT	
DRILLER / RIG#	BOART LONGYEAR	ONGYEAR	LOGGING TRUCK	TRUCK	L	TRUCK -300	
RECORDED BY / Logging Eng.		K. MITCHELL/E. BEAM	TOOL STRING/SN	ING/SN	1	ALT ABI-43 S	SN-91601
WITNESSED BY		CLEAR CREEK-BARRY	LOG TIME	LOG TIME: ON SITE/OFF SITE		7:30 AM	5:00 PM
RUN BOREHOLE RECORD	ECORD		CASING RECORD	ECORD			
NO. BIT]	FROM	TO	SIZE	WGT.	FROM		ТО
1 20"	SURFACE	11.9 M	15 3/4"	HWT	SURFACE		11.9 M
2 14 3/4" 3	11.9 M	TD					
COMMENTS:							

Major Lithology

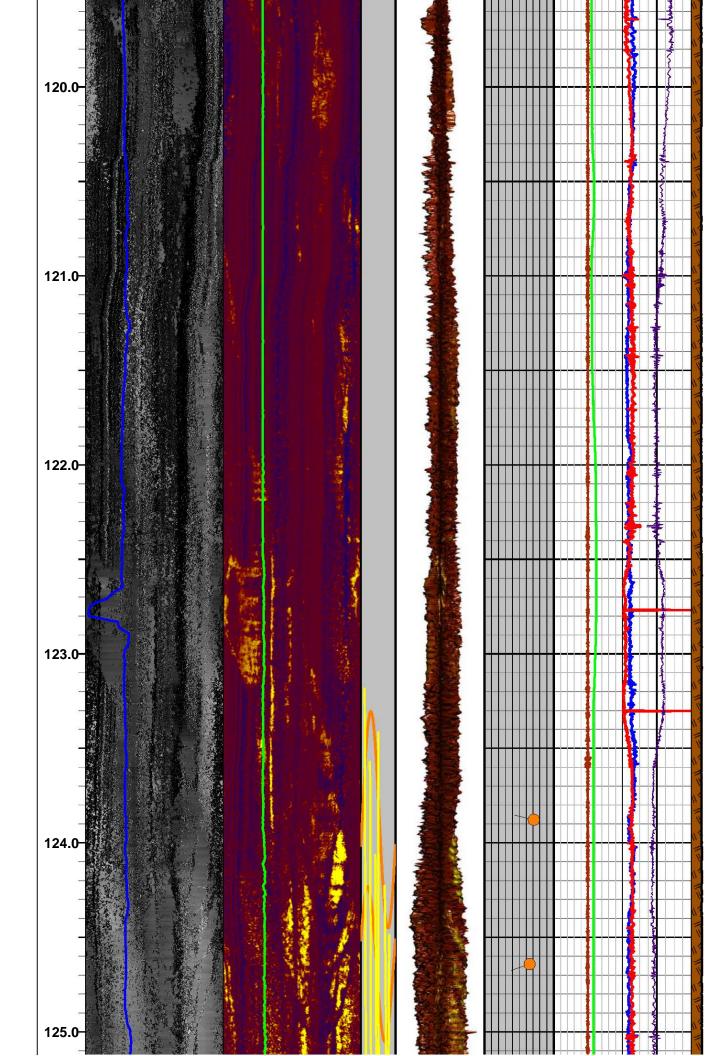
Apache Leap Tuff - Gray Unit

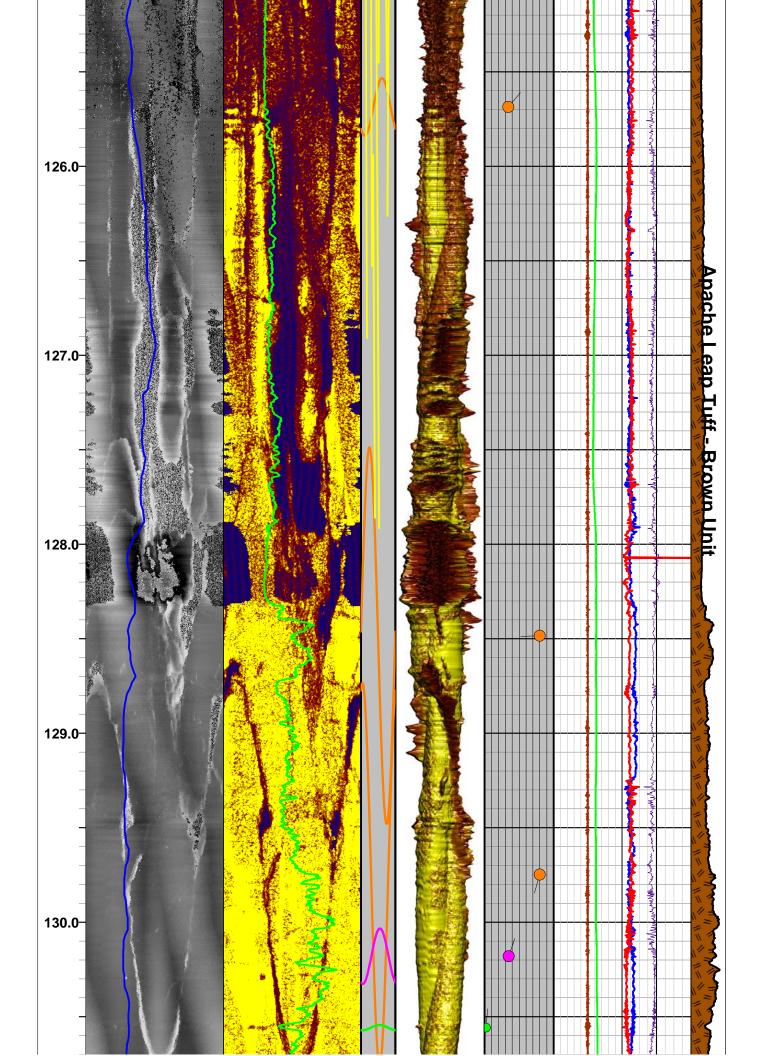
Apache Leap Tuff - Brown Unit

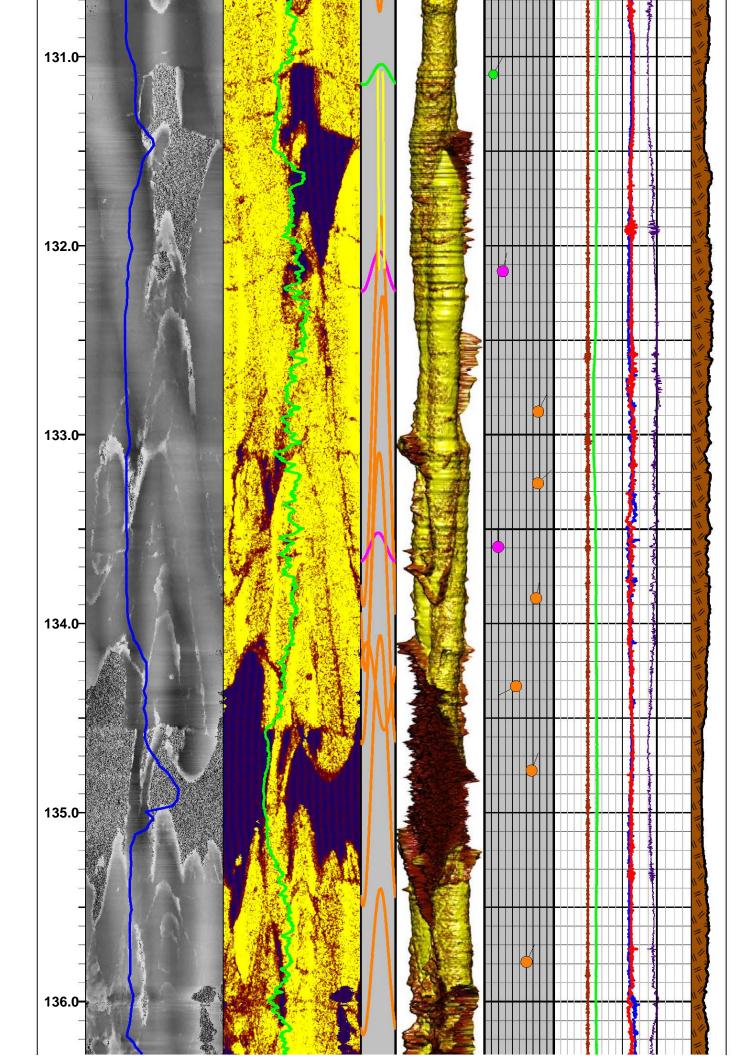
Basal Tuff - Vitrophyre

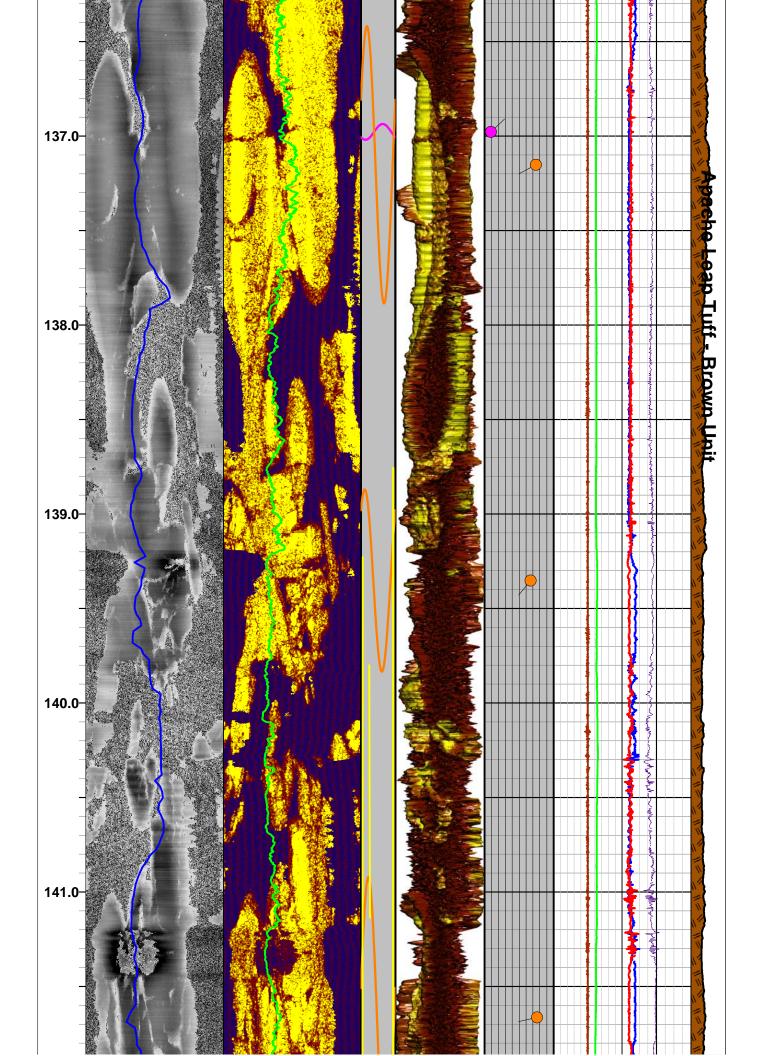


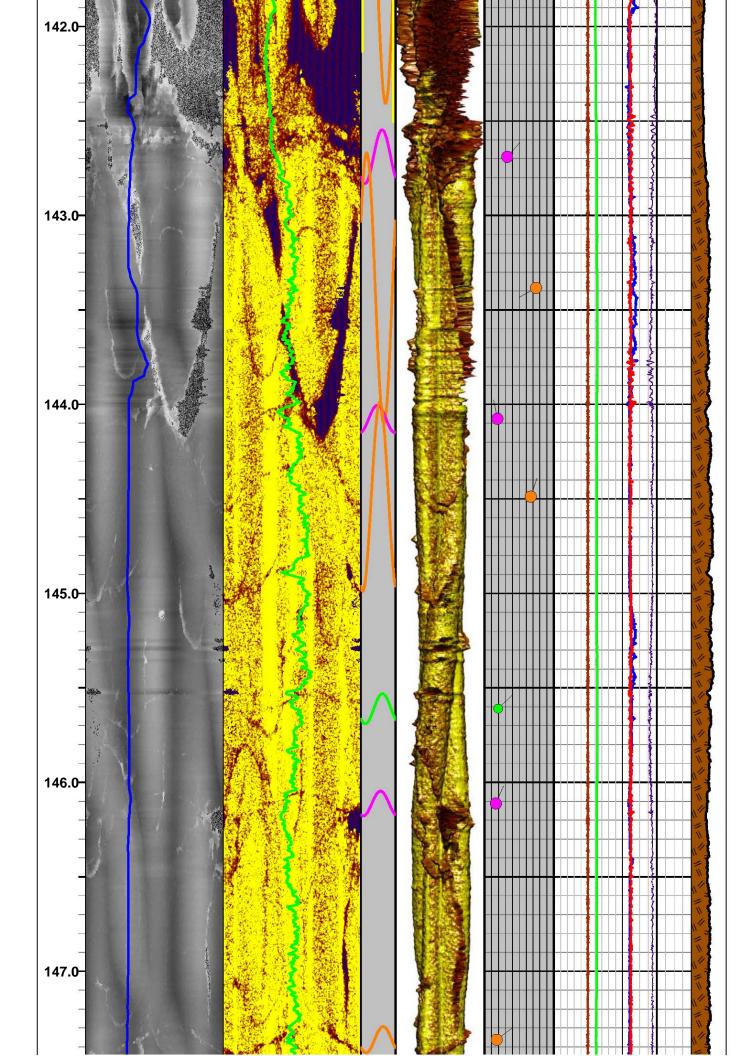
Basal Tuff

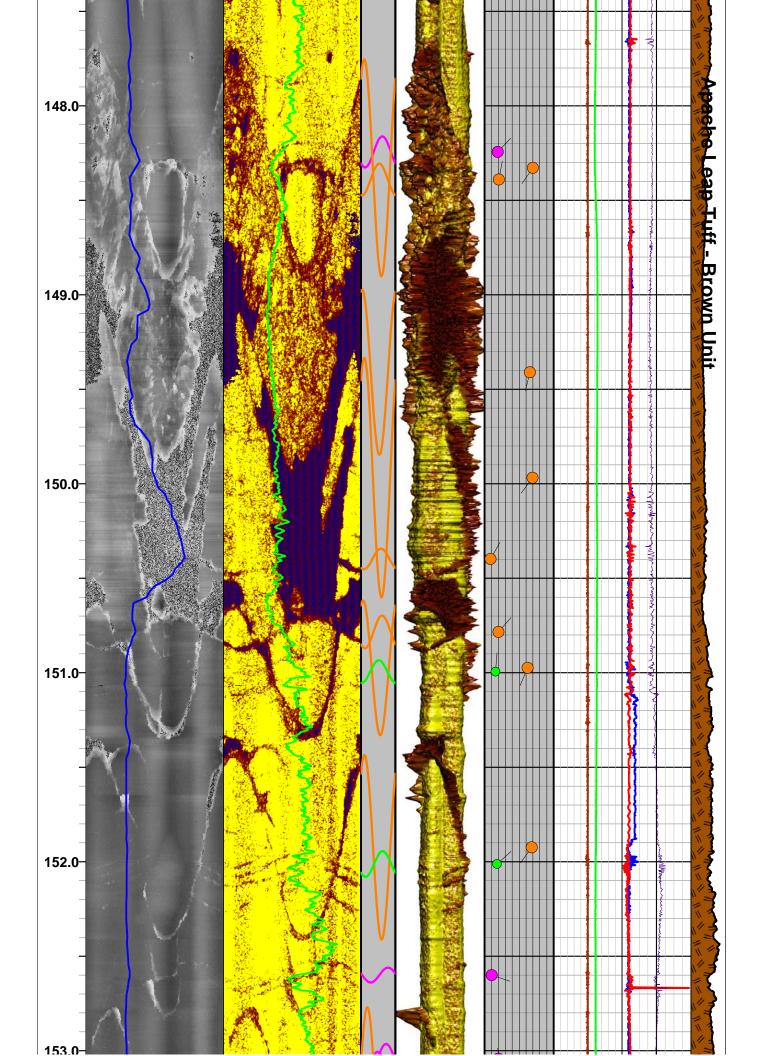

Transition Zone

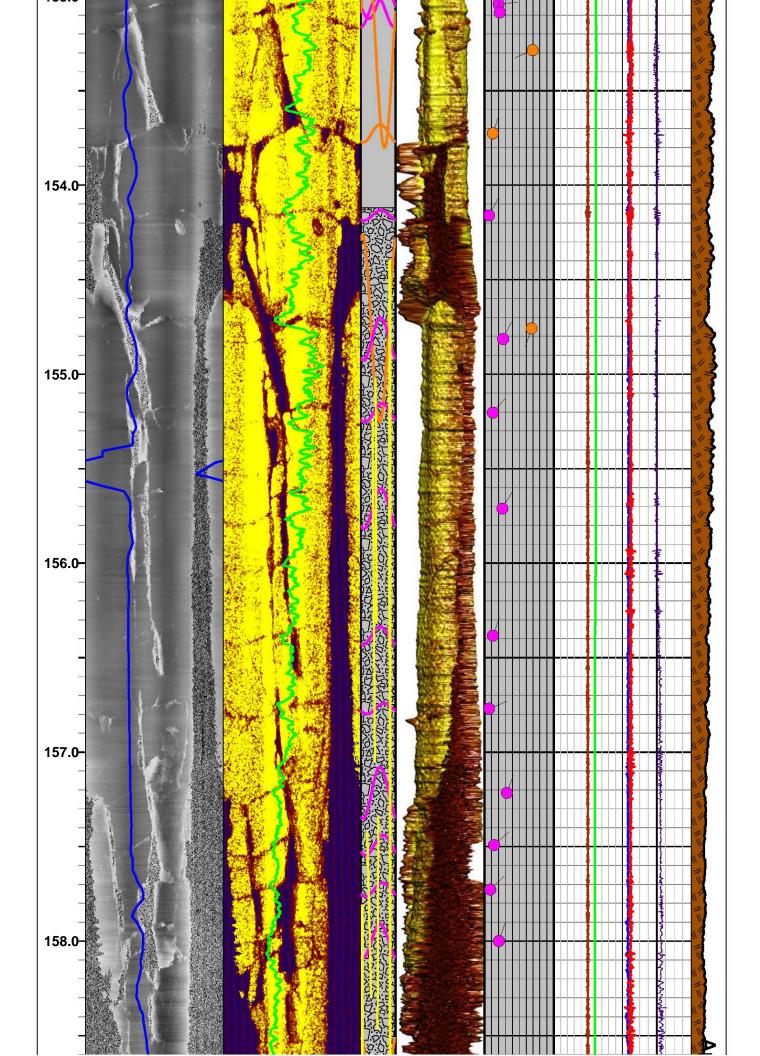

Acoustic Image Features Legend

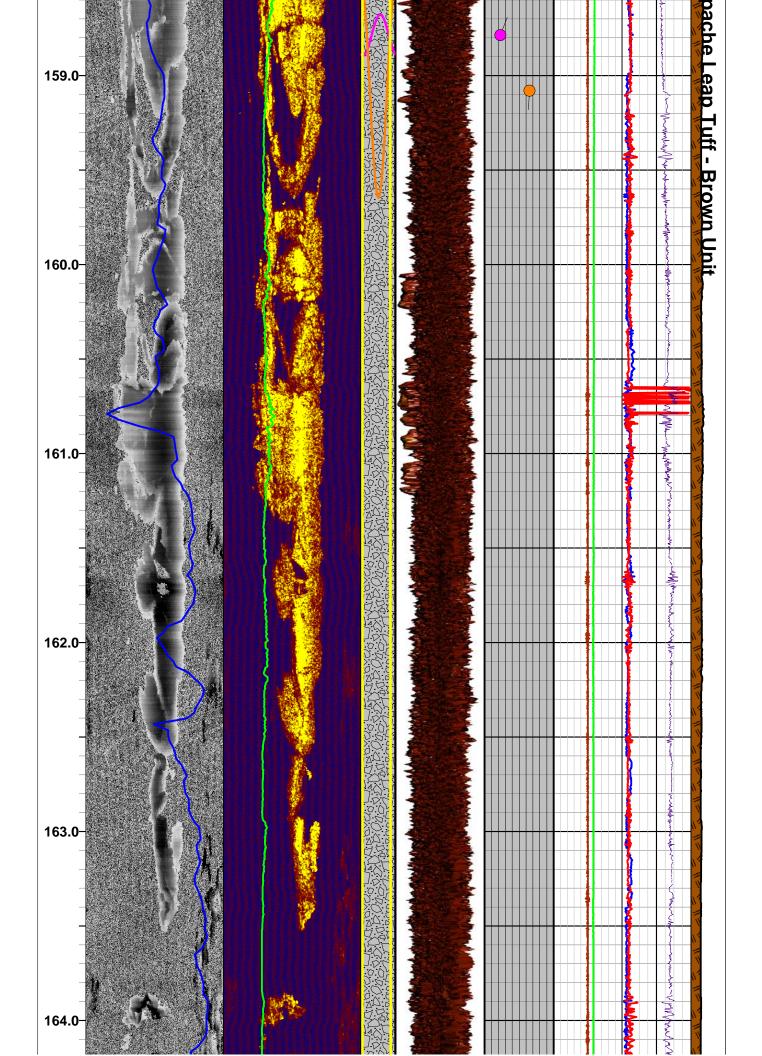


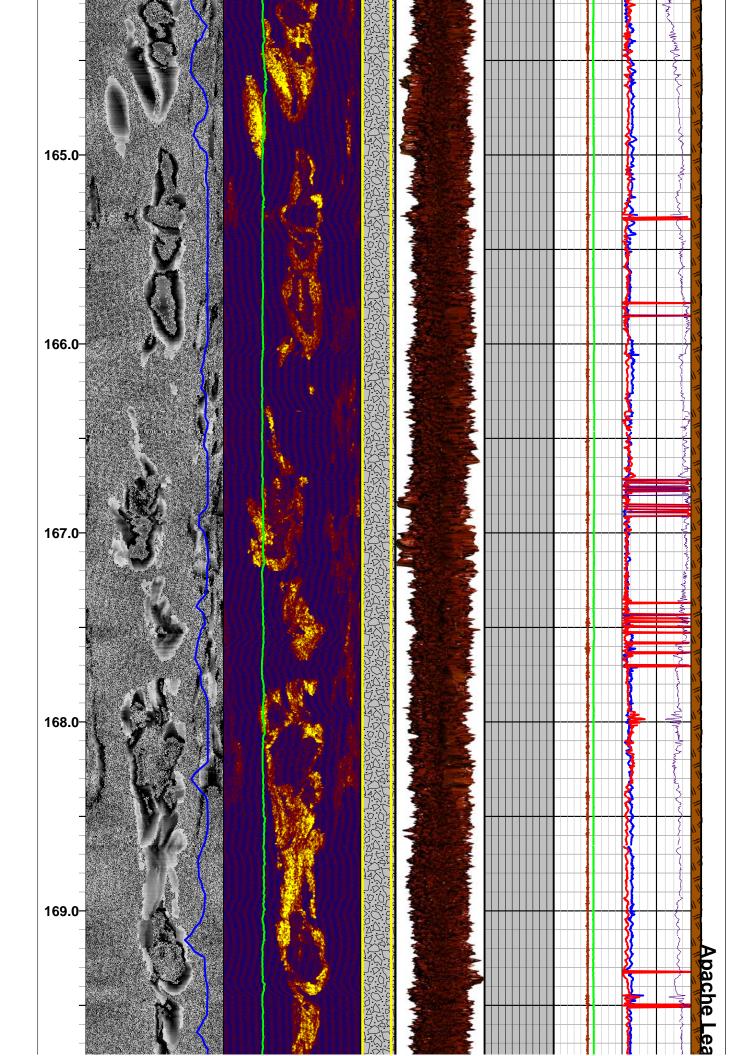


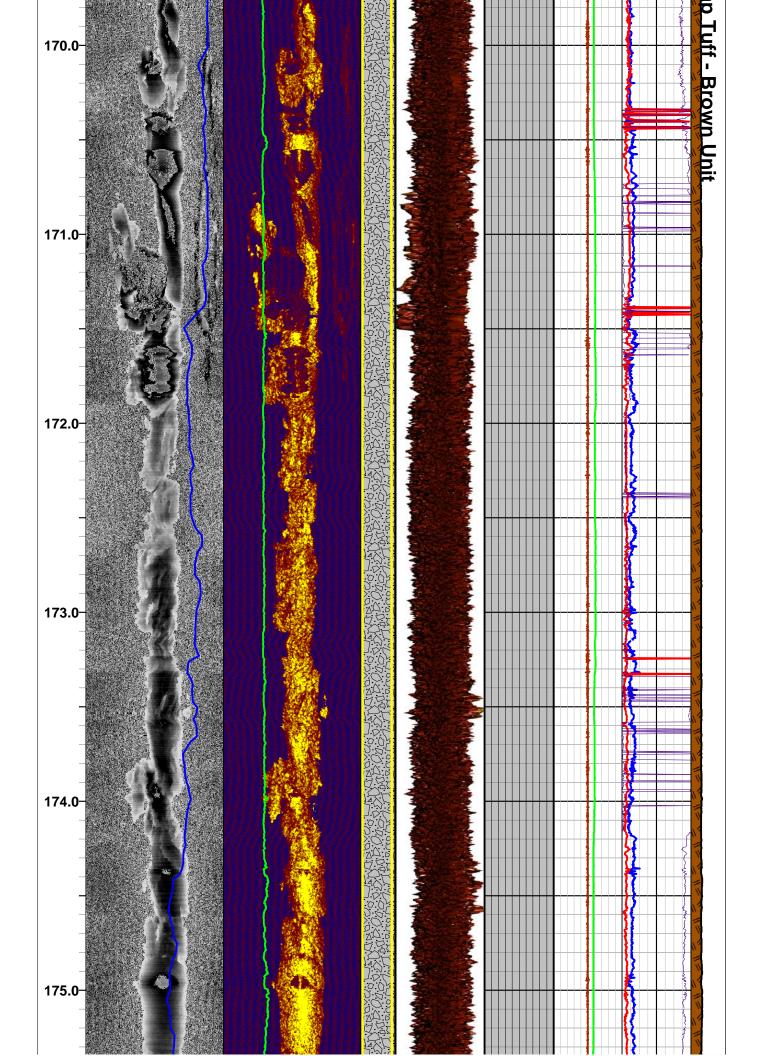

HRES	6-19 ABI-43 Su	mm	ary_ ~119	0.0 M to	~289.6	М	
Centralized TT	Amplitude-NM	ABI	3D	Tadpole	Mag Field	Tilt	Lith
Oriented Mag North	Oriented Mag North	DIPA		DIPT	40 uT 60	0 deg 10	Lith
0° 90° 180° 270° 0°	0° 90° 180° 270° 0°		0°	0 100	Gravity	Azimuth	Hard
Caliper	Amp-Static	NVJt		0 100	0.8 g 1.2	0 360	паги
10 Inches 30	Oriented Mag North					RBR	Desc
	0° 90° 180° 270° 0°	Bx				-90 270	Desc
	Amp-High Pass						
	Oriented Mag North						
	0° 90° 180° 270° 0°						
	ARI						
	0 400						
							\$\$\#
	** 1		3		1	ट र	W
			1				N2
							1
							N ²
							11
	Centralized TT Oriented Mag North 0° 90° 180° 270° 0° Caliper	Centralized TT Amplitude-NM Oriented Mag North Oriented Mag North 0° 90° 180° 270° 0° 0° 90° 180° 270° 0° Caliper Amp-Static 10 Inches 30 0° 90° 180° 270° 0° 0° 90° 180° 270° 0° Amp-Static Oriented Mag North 0° 90° 180° 270° 0° 0° Amp-High Pass Oriented Mag North 0° 90° 180° 270° 0° Amp-High Pass Oriented Mag North 0° 90° 180° 270° 0°	Centralized TT Amplitude-NM ABI Oriented Mag North Oriented Mag North DIPA 0° 90° 180° 270° 0° 0° 90° 180° 270° 0° DIPA Caliper Amp-Static NVJt 10 Inches 30 Oriented Mag North Bx Amp-High Pass Oriented Mag North Bx Amp-High Pass Oriented Mag North Amp-High Pass	Centralized TT Amplitude-NM ABI 3D Oriented Mag North Oriented Mag North 0° 90° 180° 270° 0° DIPA 0° Caliper Amp-Static NVJt 0° 0° 0° 10 Inches 30 Oriented Mag North Bx 0° 90° 180° 270° 0° Amp-High Pass Bx Oriented Mag North 0° 90° 180° 270° 0° ARI	Centralized TT Amplitude-NM ABI 3D Tadpole Oriented Mag North Oriented Mag North 0° 90° 180° 270° 0° DIPA 0° DIPT 0° 90° 180° 270° 0° O° 90° 180° 270° 0° NVJt 0° 100 Caliper Amp-Static NVJt Bx 10 Inches 0° 90° 180° 270° 0° Bx Oriented Mag North 0° 90° 180° 270° 0° Amp-High Pass Oriented Mag North 0° 90° 180° 270° 0° ARI ARI Ang	Centralized TT Amplitude-NM ABI 3D Tadpole Mag Field Oriented Mag North Oriented Mag North 0° 90° 180° 270° 0° 0° </th <th>Oriented Mag North Oriented Mag North DIPA O° DIPT 40 uT 60 0 deg 10 0° 90° 180° 270° 0° Amp-Static NVJt 0° 100 Gravity Azimuth 10 Inches 30 Oriented Mag North Bx Amp-High Pass Oriented Mag North -90 270 0° 90° 180° 270° 0° Bx Amp-High Pass Oriented Mag North -90 270 0° 90° 180° 270° 0° ARI ARI - - - - - - - - - - - - 0 360 - - - 0 360 - - - 0 360 - - - 0 360 - - 0 270 270 - - - - 0 360 - - 0 270 - - - - 0 270 - - - 0 270</th>	Oriented Mag North Oriented Mag North DIPA O° DIPT 40 uT 60 0 deg 10 0° 90° 180° 270° 0° Amp-Static NVJt 0° 100 Gravity Azimuth 10 Inches 30 Oriented Mag North Bx Amp-High Pass Oriented Mag North -90 270 0° 90° 180° 270° 0° Bx Amp-High Pass Oriented Mag North -90 270 0° 90° 180° 270° 0° ARI ARI - - - - - - - - - - - - 0 360 - - - 0 360 - - - 0 360 - - - 0 360 - - 0 270 270 - - - - 0 360 - - 0 270 - - - - 0 270 - - - 0 270

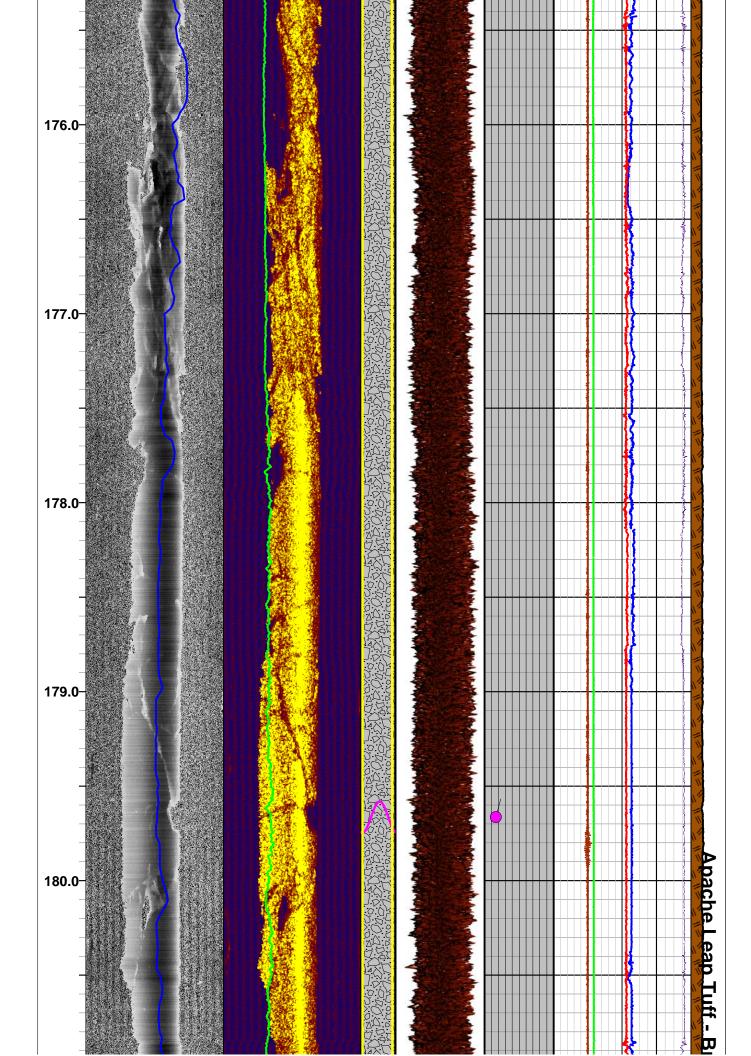


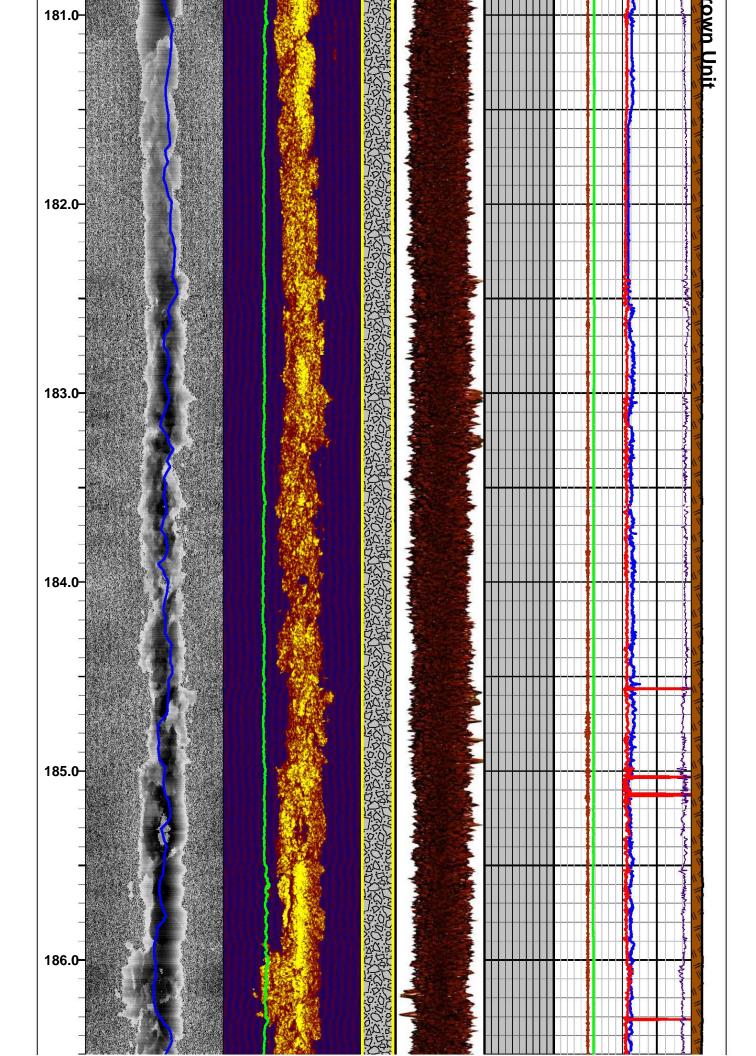


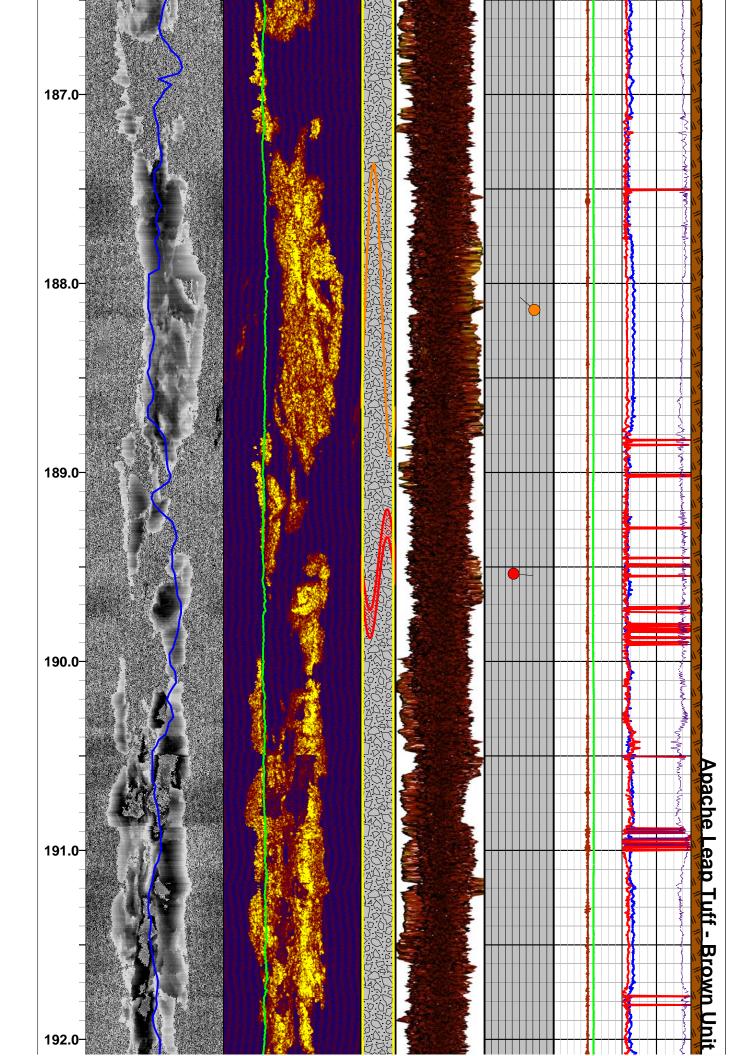


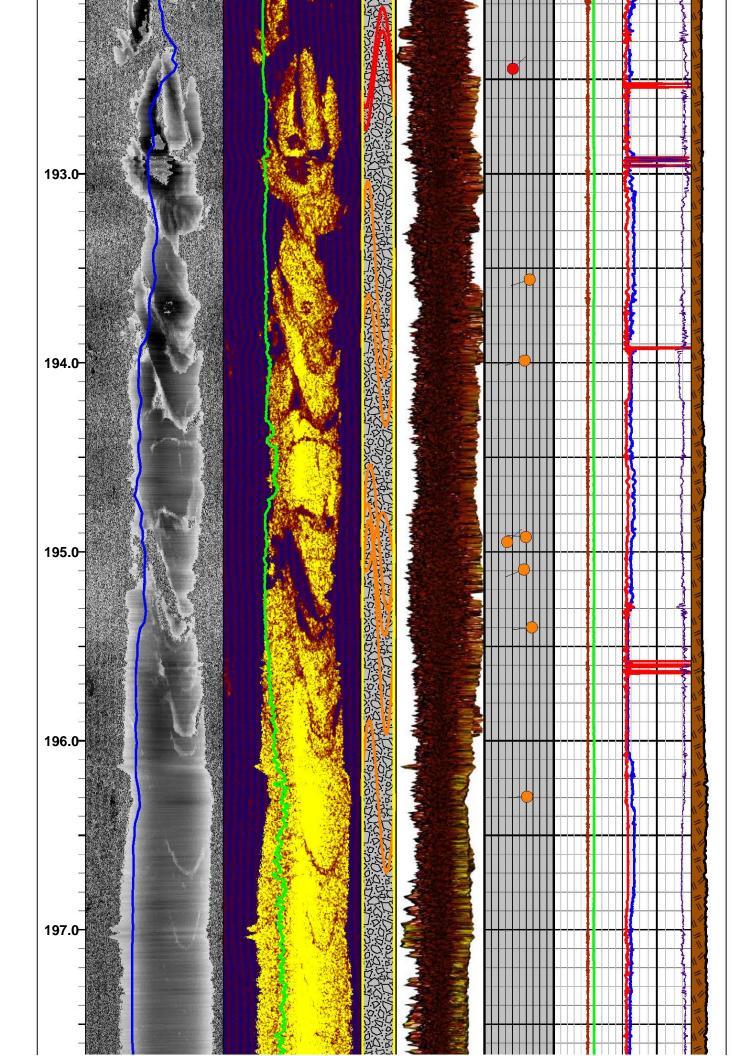


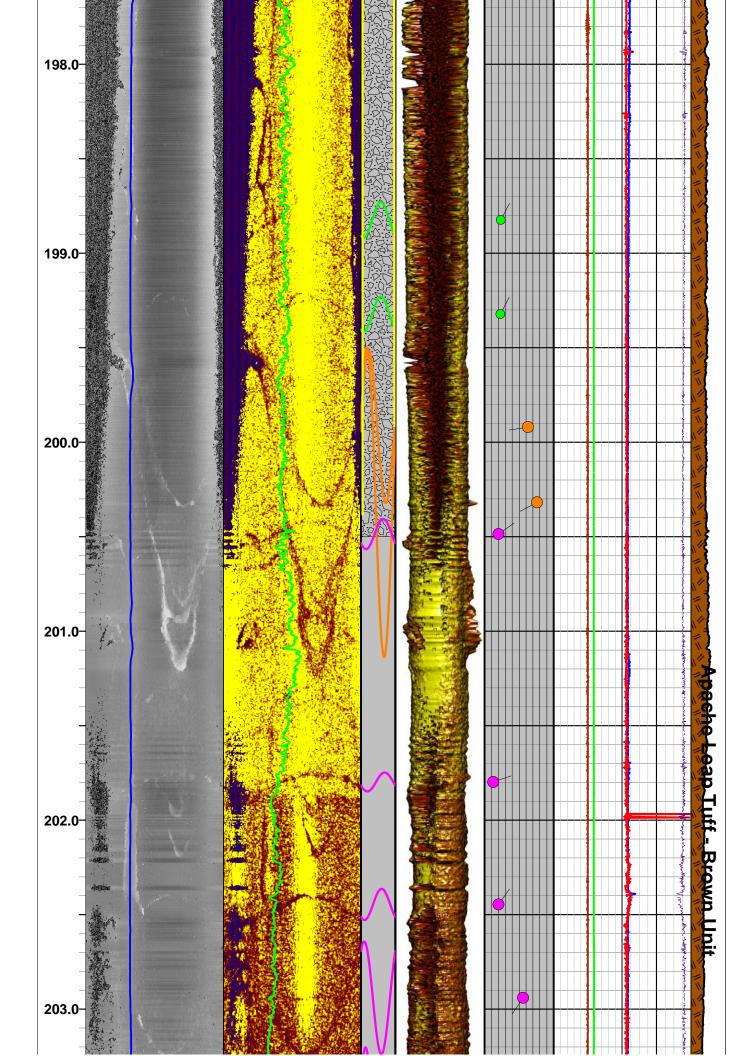


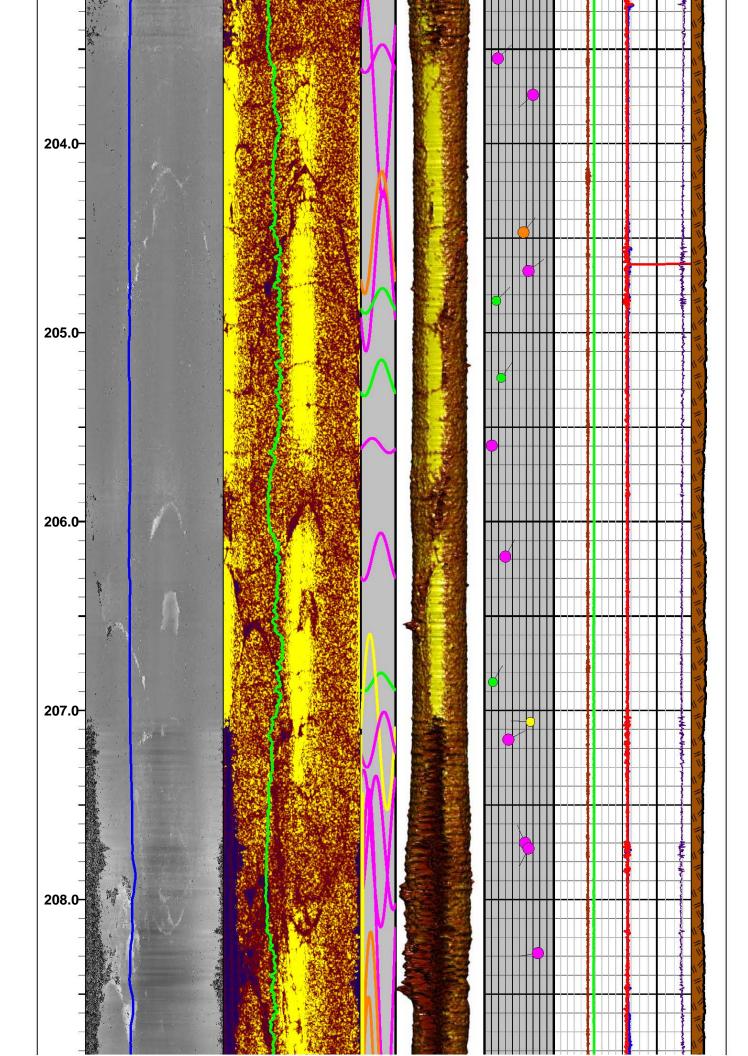


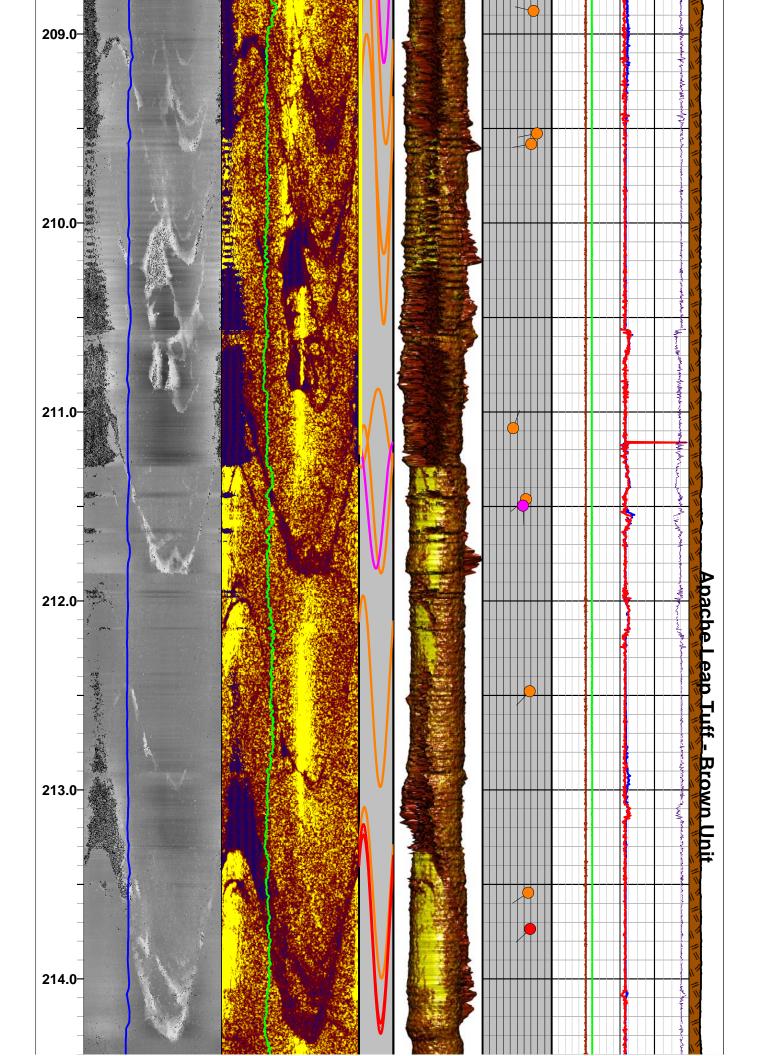


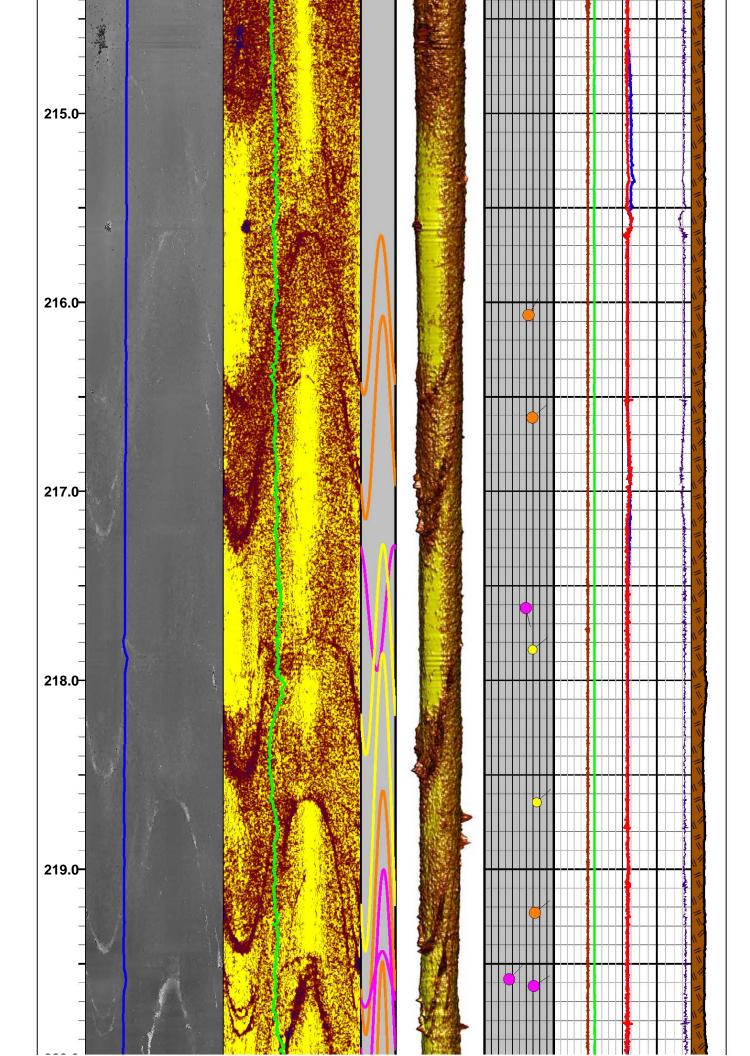


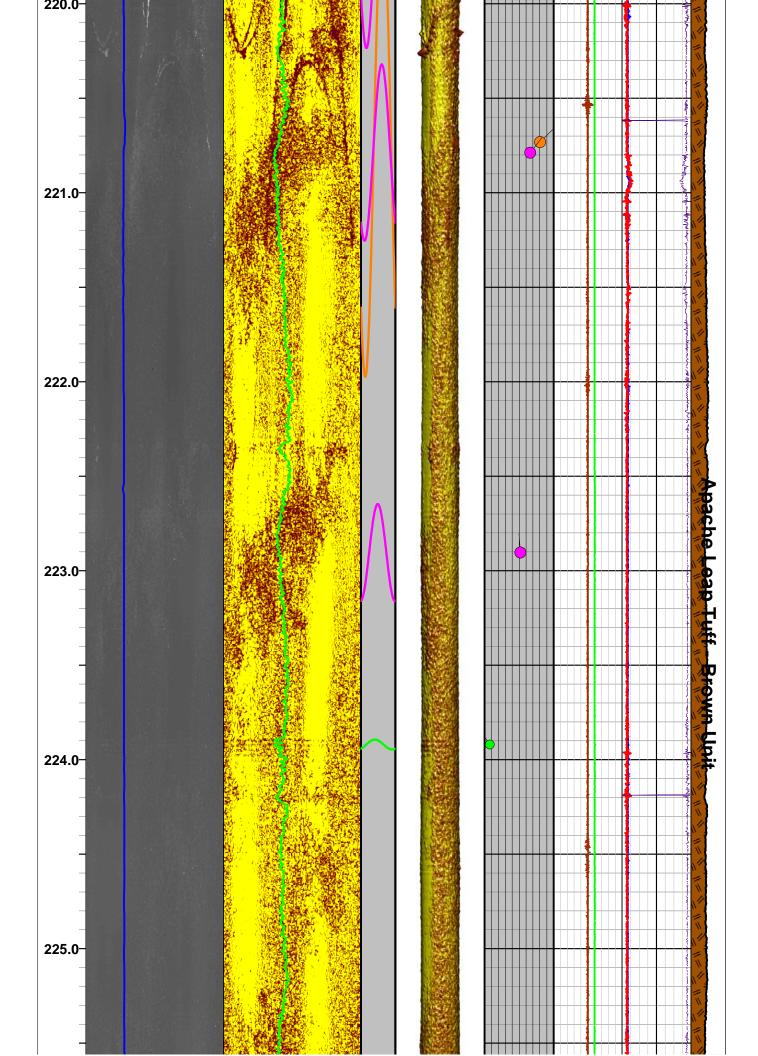


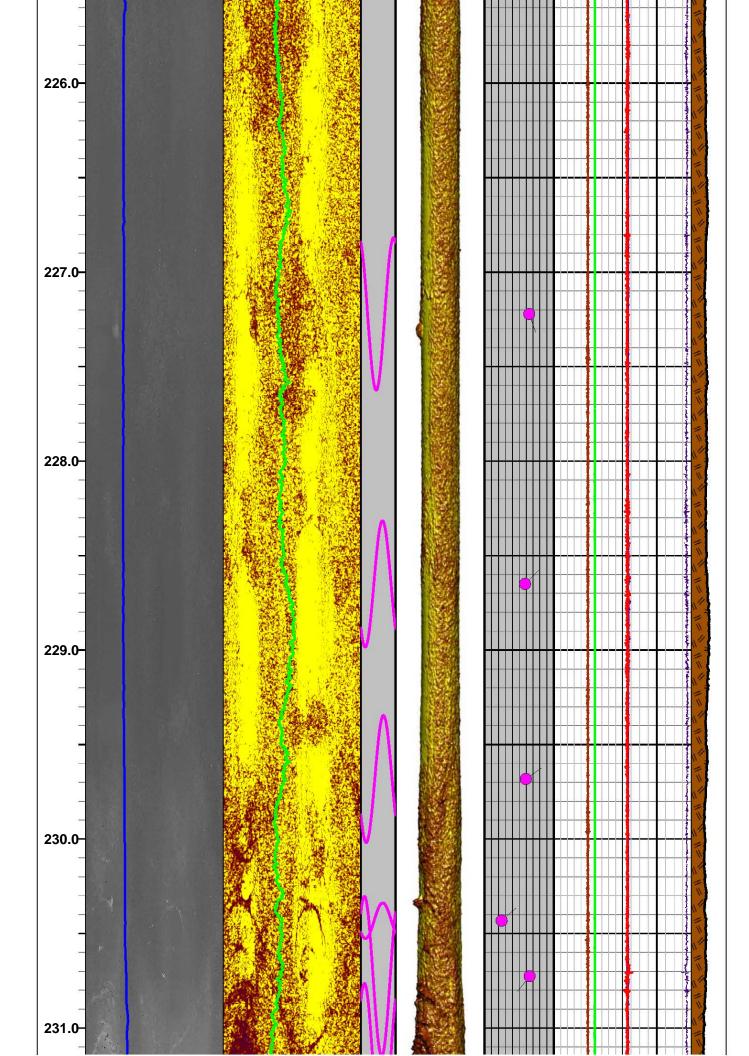


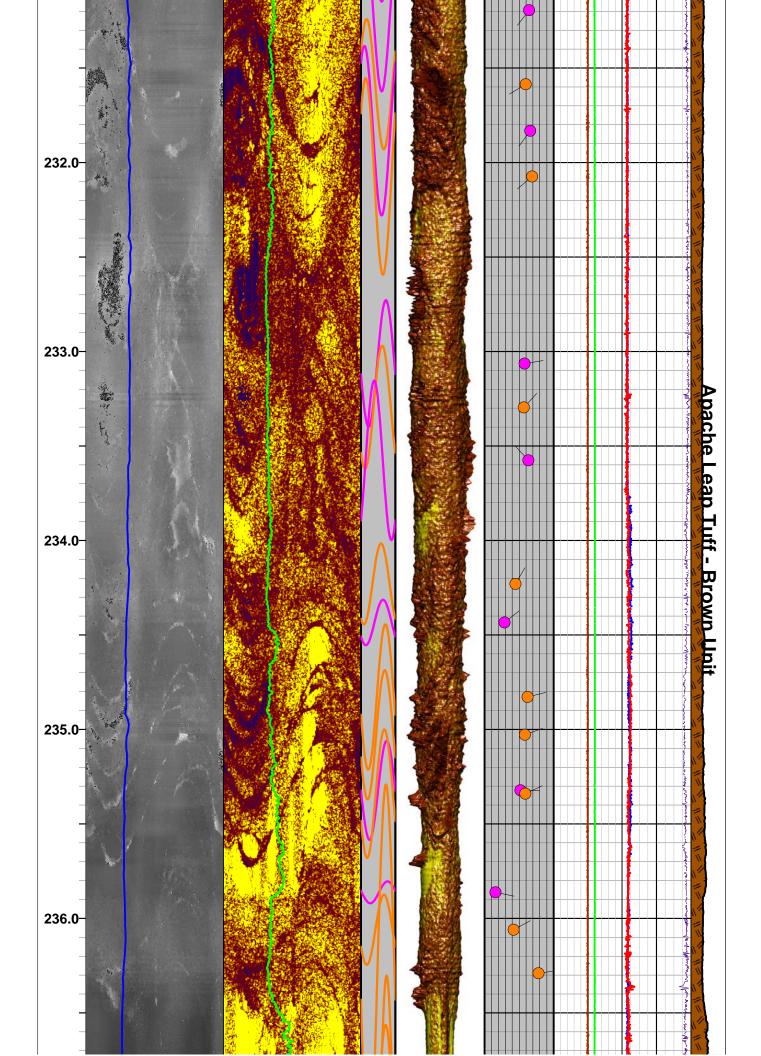


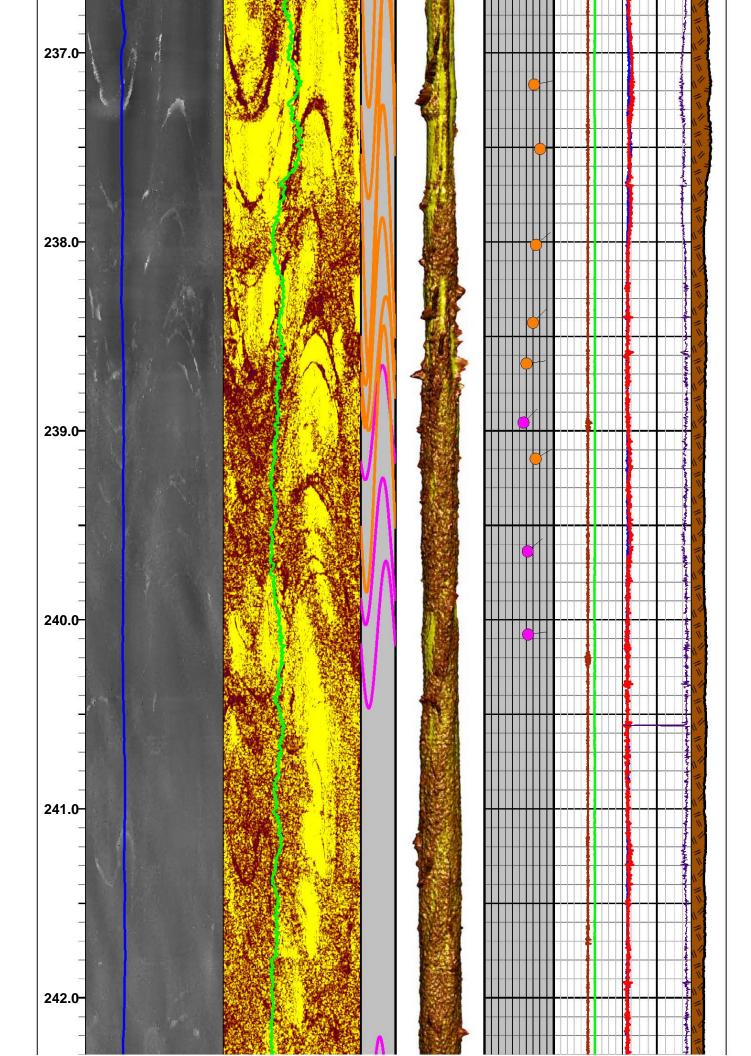


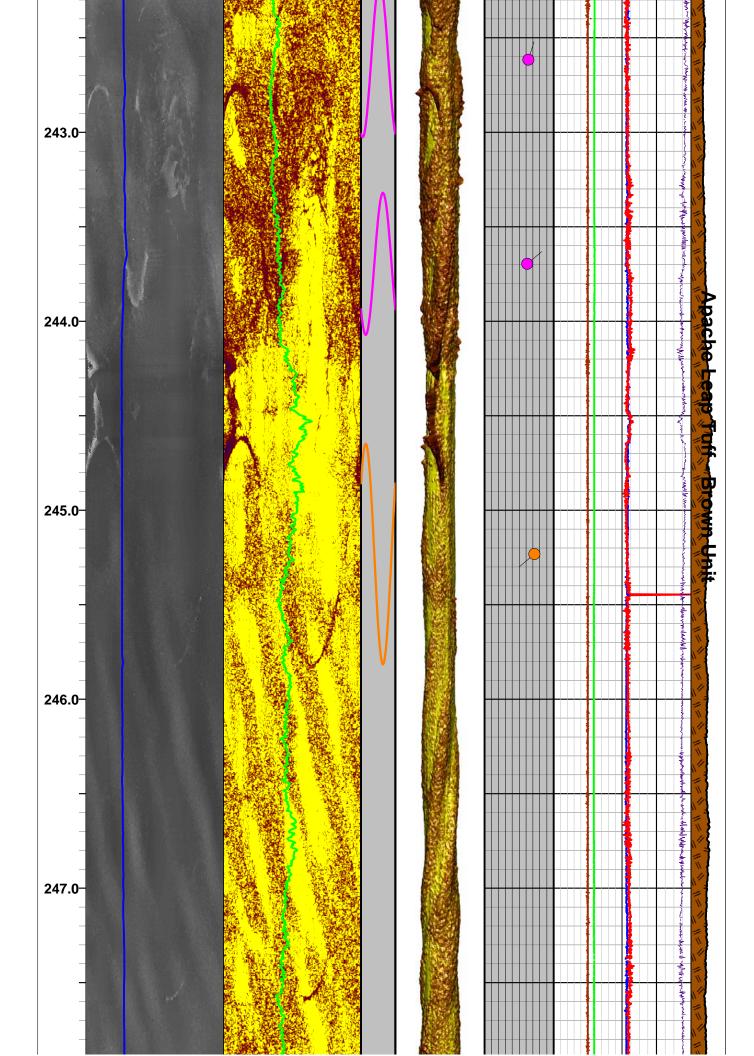


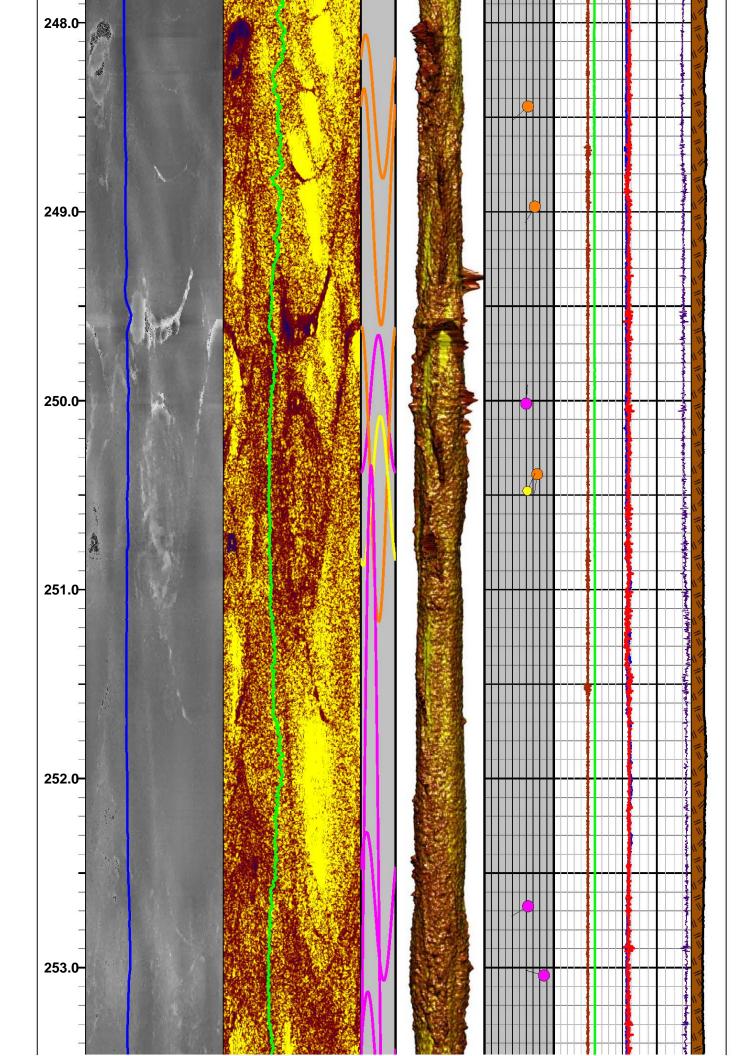


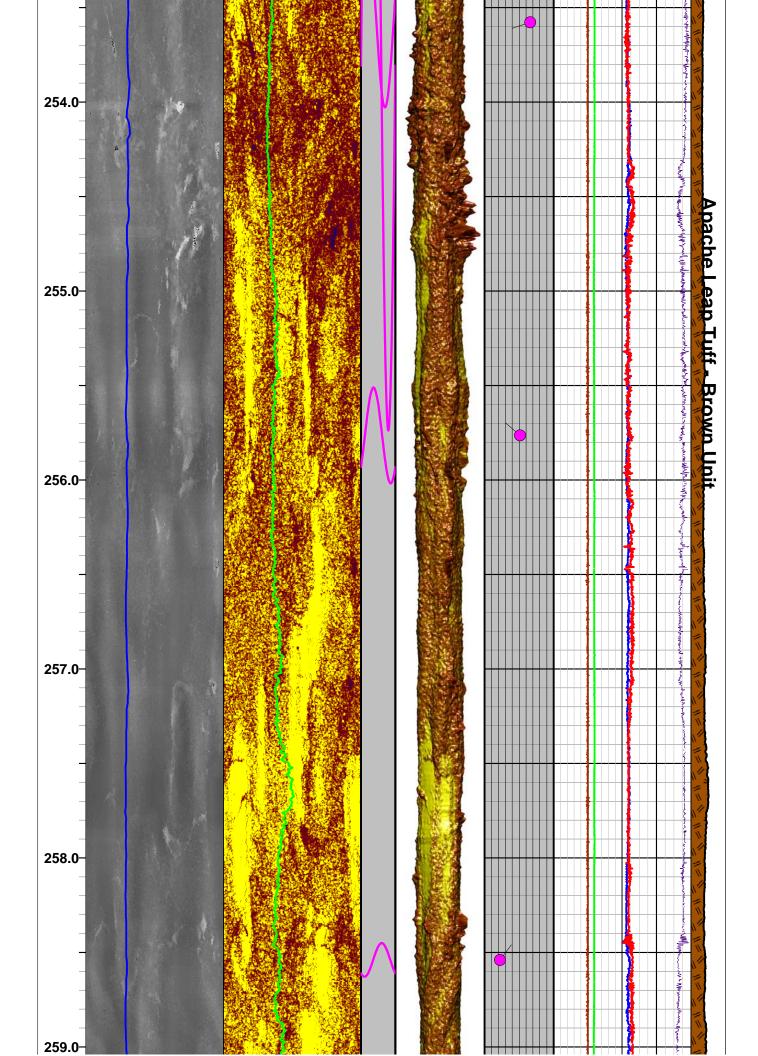


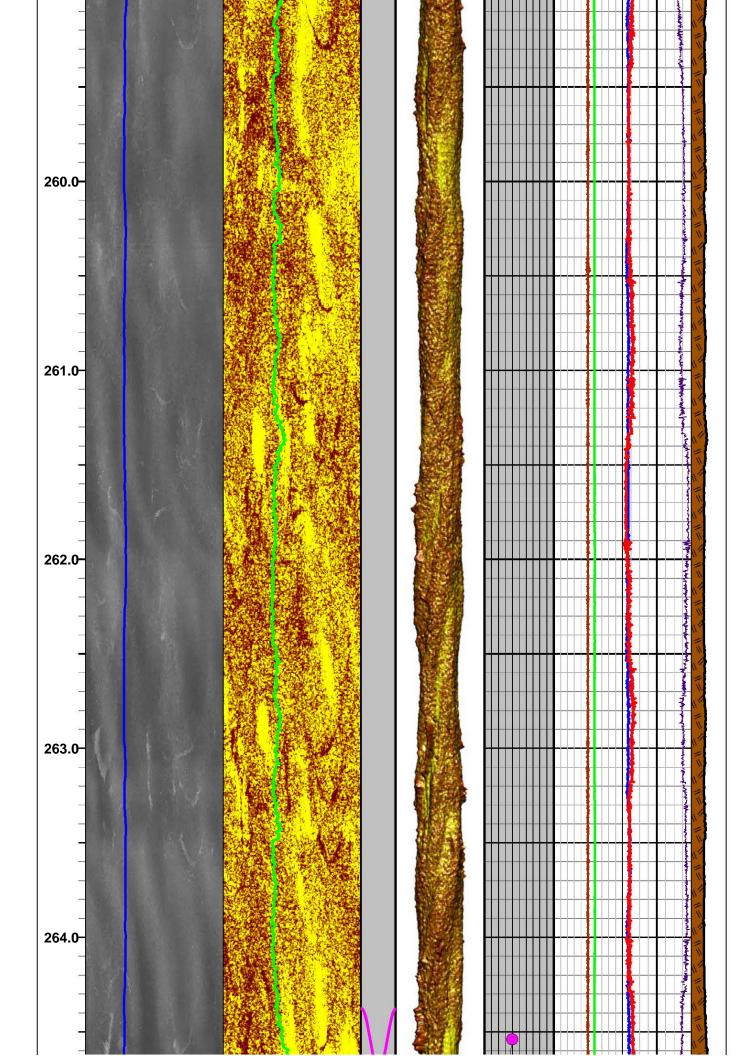


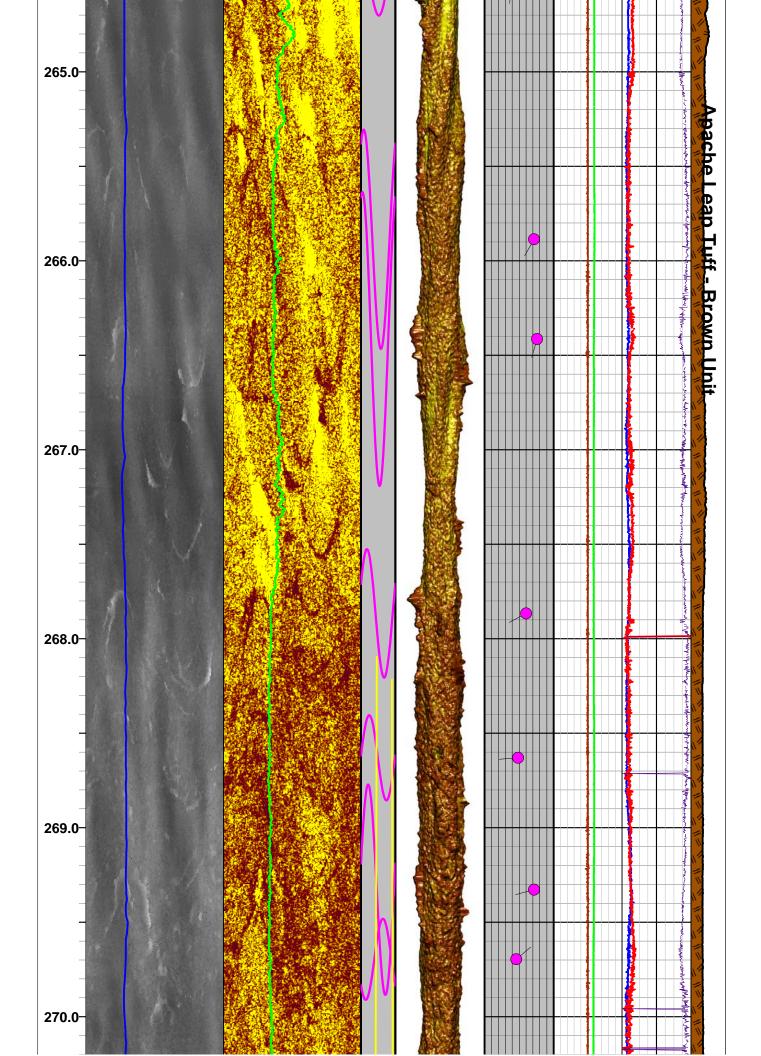


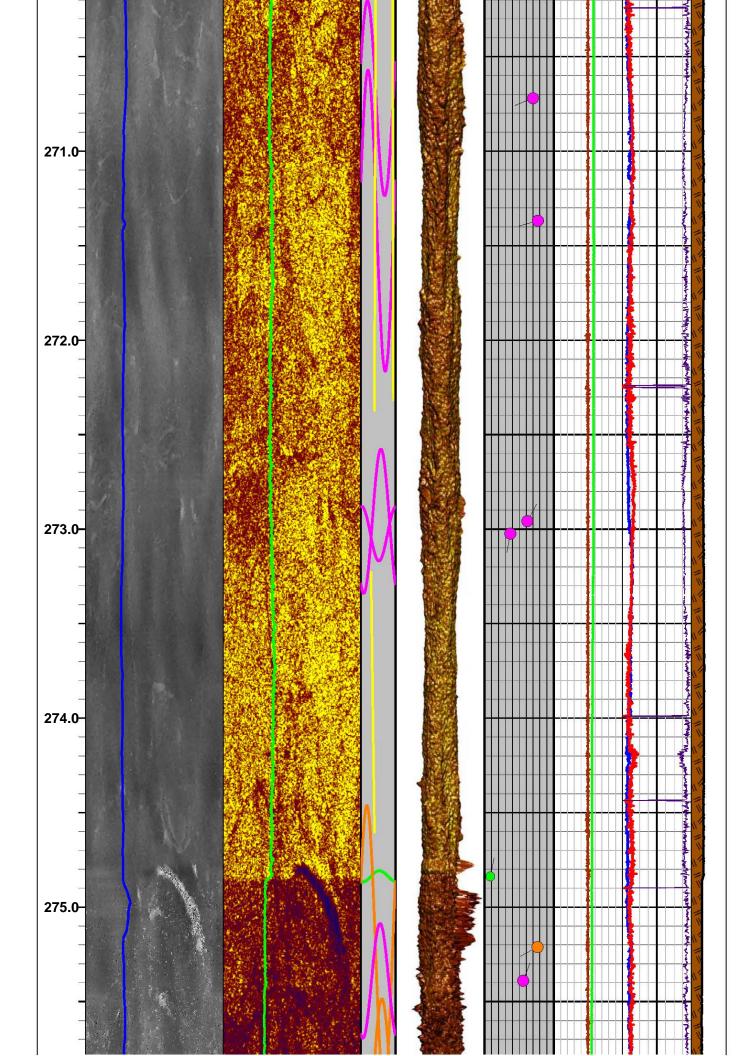


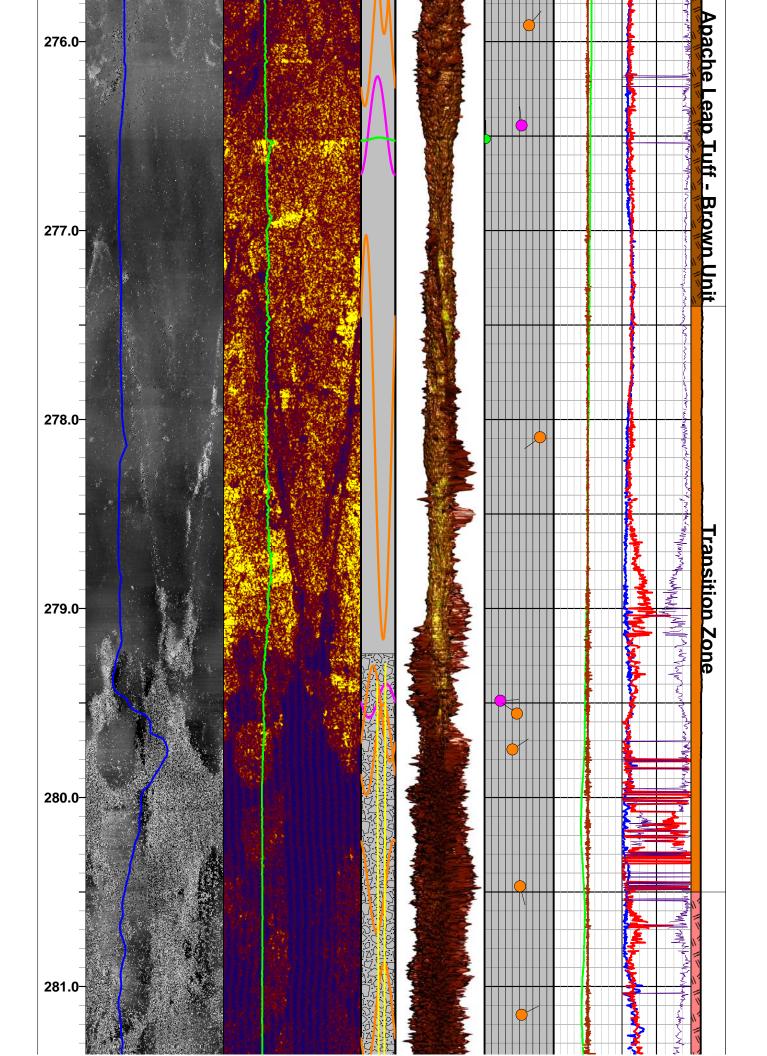


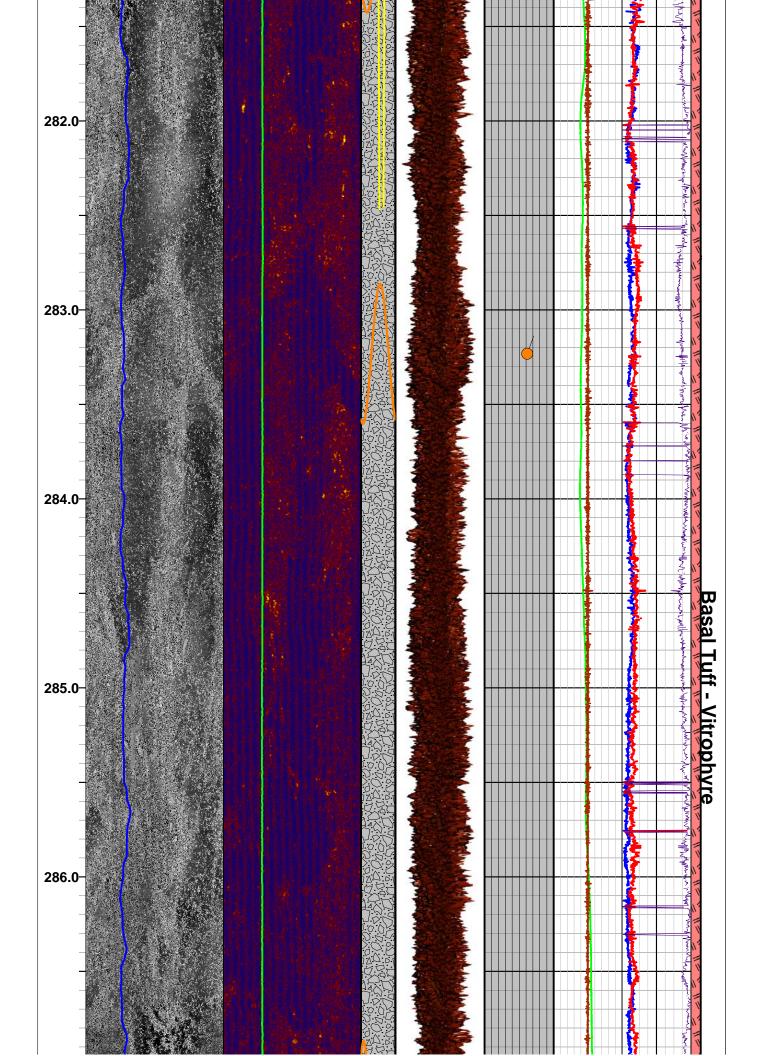


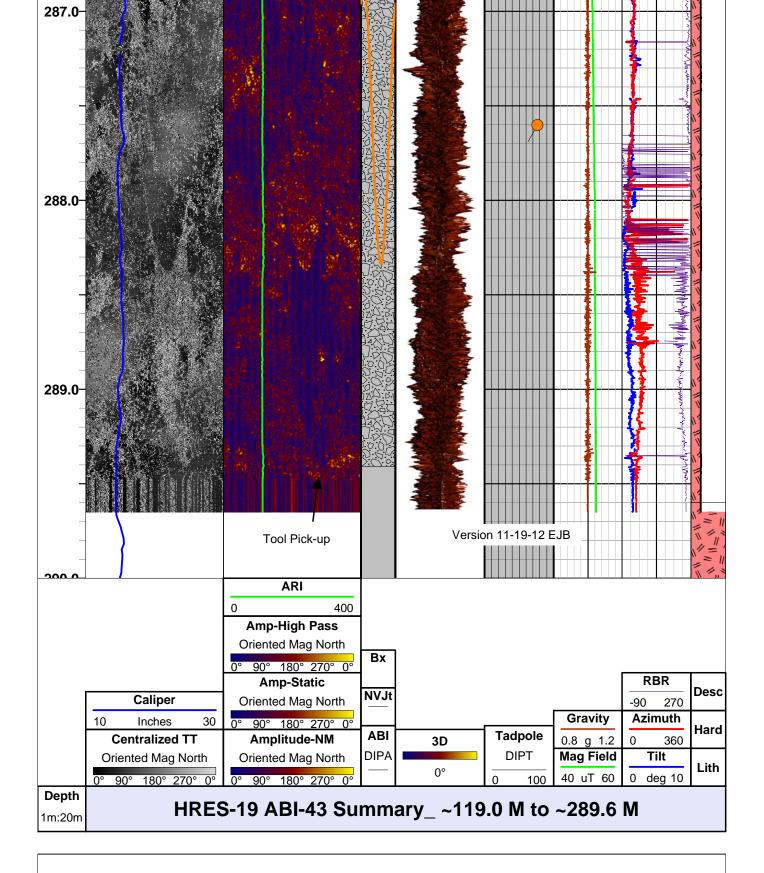




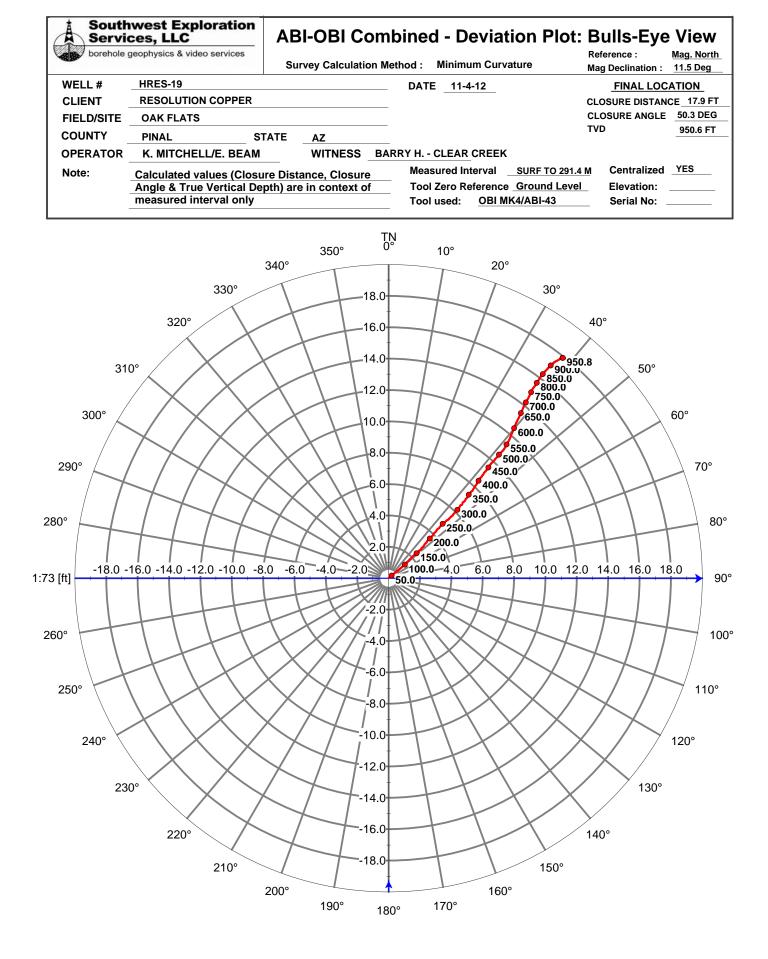








ABI Image Summary Legend


Mnemonics and Comments

Centralized TT = 2D plot of acoustic image travel time with probe position centralized. Oriented to magnetic north and plotted from left to right N-E-S-W-N

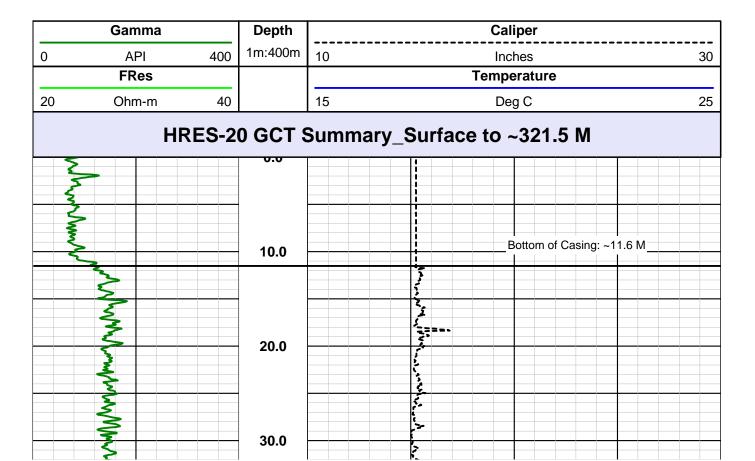
Caliper = 3-arm mechanical caliper of hole diameter plotted from 10 to 30 inches (blue line).

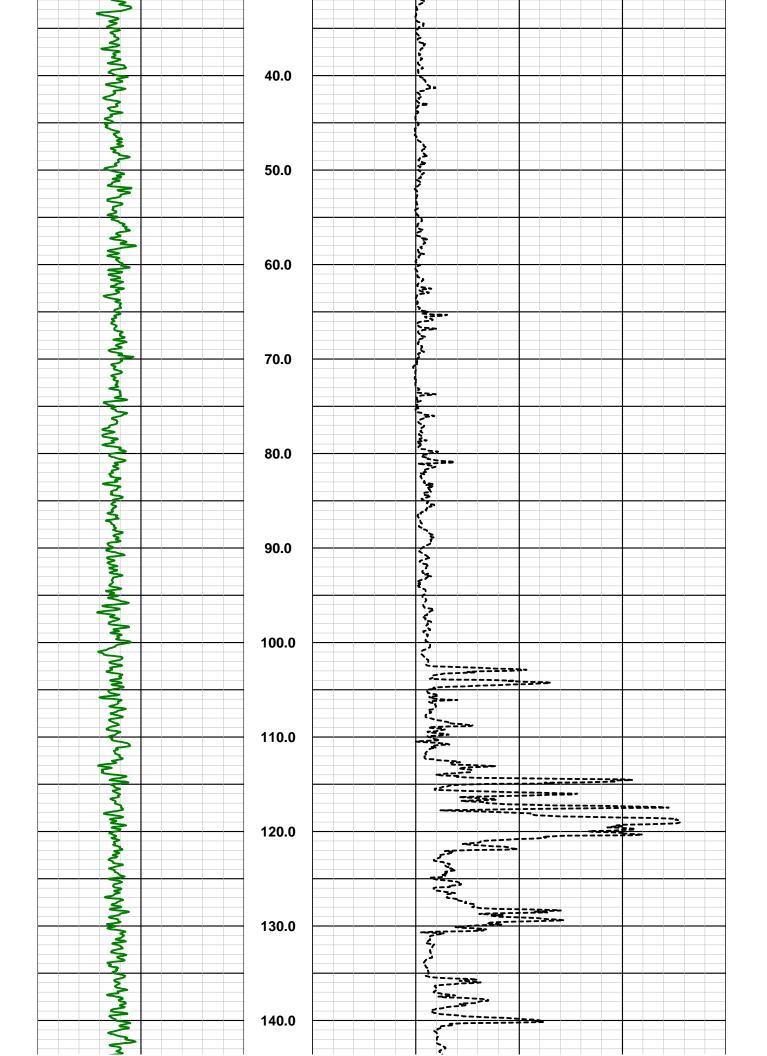
An Annual Collinse - Maximum accustic caliner of hole diameter calculated from Travel Time data

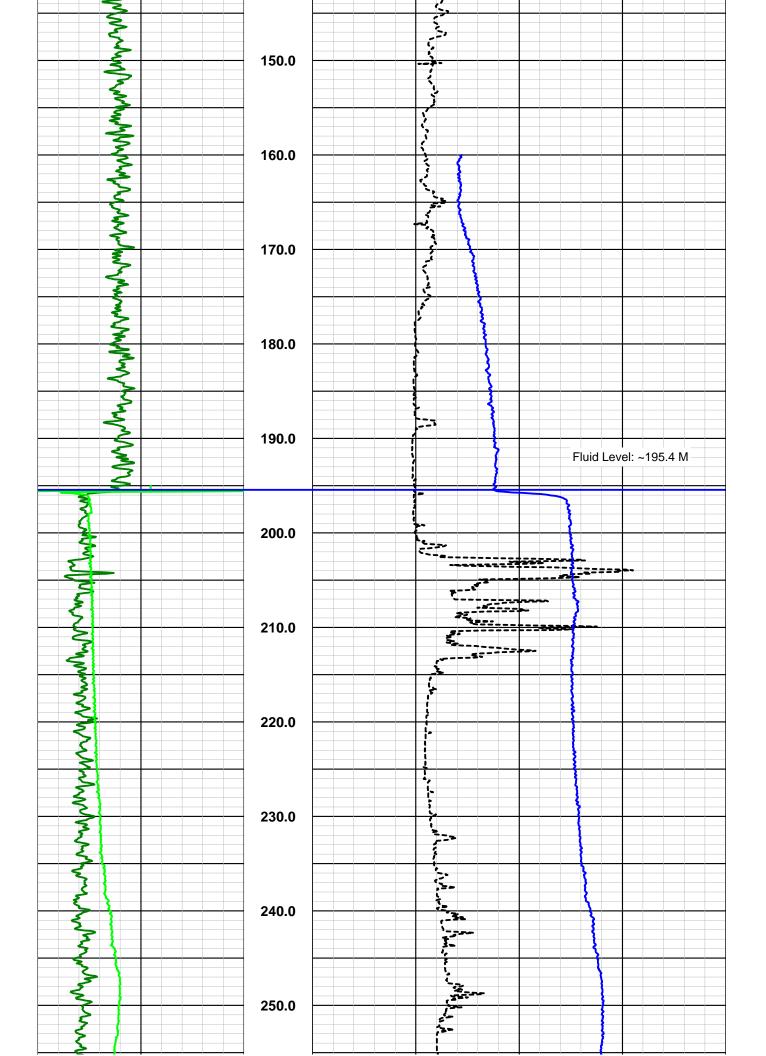
wax-Acous	stic Caliper	and plotted as orange line from 10 to 30 inches. Turned off due to elongation of hole diameter.					
Ave-Acous	tic Caliper	= Average acoustic caliper of hole diameter calculated from Travel Time data and plotted as bright green line from 10 to 30 inches. Turned off due to elongation of hole diameter					
Enlargeme	from	k shaded zone between Avg-Acoustic Caliper and Max-Acoustic Caliper calculated Travel Time data showing borehole enlargment. Turned off due to elongation of diameter.					
Amplitude-		plot of unfiltered acoustic image amplitude oriented to magnetic north. Plotted left to right N-E-S-W-N. Image toggled off.					
Amp-Static		plot of acoustic image amplitude with Static normalization filter oriented to gnetic north. Plotted from left to Right N-E-S-W-N. Image toggled on.					
Amp-High		plot of acoustic image amplitude with High Pass normalization filter oriented to gnetic north. Plotted from left to Right N-E-S-W-N. Image toggled on.					
ARI	= Acoustic Reflectance Index or relative rock hardness from ABI Amplitude log. Plotted 0 (soft) to 400 (harder) as green line.						
ABI	= Planar strucutral features picked on acoustic borehole image shown as colored sinusoid (color designation shown on header) DIPA = dip apparent hole axis.						
NVJt = Near Vertical (near parallel to hole axis) joint/fracture features picked on acoustic boreho image shown as colored sinusoid (color designation shown on header).							
Bx	= Apparent	parent Breccia or Congomerate zones and Vugs/Vesicles/Cavities.					
3-D	= 3D cylindr North.	rical projection of ABI image using Centralized TT log for hole shape looking from					
Tadpole							
Mag Field		tal magnetic field strength as measured by fluxgate magnetometer in OBI or ABI deviation sor - plotted 40-60 uT (green line).					
Gravity		Total gravity (probe acceleration) as measured by 3-axis accelerometers in ABI deviation ensor - plotted 0.8-1.2 g (brown line).					
Azimuth							
Tilt	= Tool tilt (vertical = 0 and horizontal = 90) plotted 0 to 10 deg ; represents borehole deviation tilt from vertical (blue line).						
RBR	= Relative b (thin purple	e bearing - azimuth of the probe marker position to Magnetic North measured clockwise ple line).					
Lith	= Major/prin	or/principal lithology based on field geologic descriptions provided by Clear Creek staff.					
Desc	= Major/prin	Major/principal field geologic descriptions provided by Clear Creek staff.					
Hard	= Apparent	rock harness from ARI used to silhouette lithology.					
Prepared by I <u>Rev 11-19-12</u>		1					
	-						

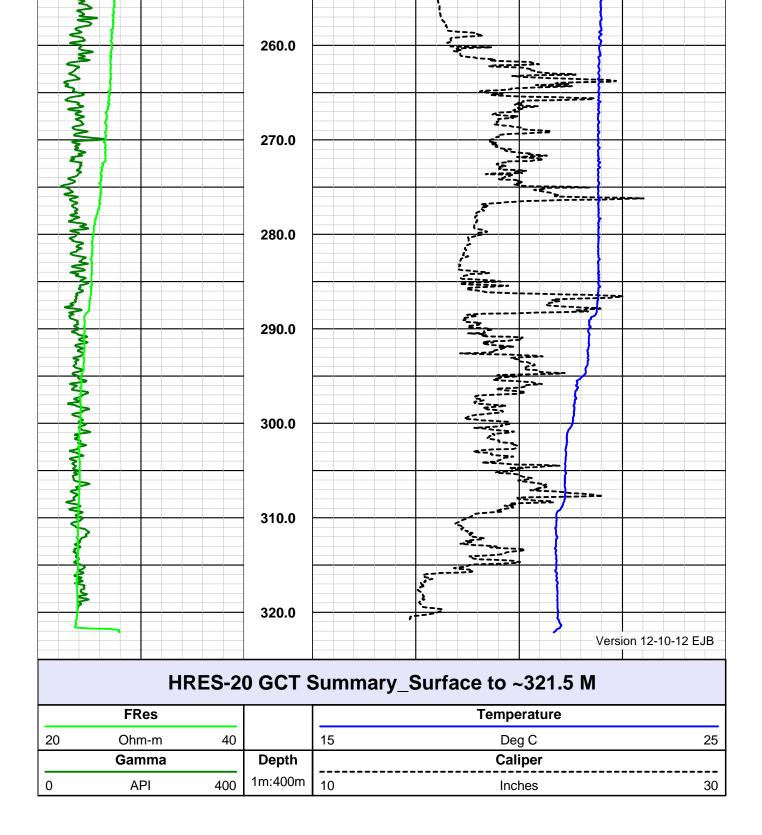
	geophysics & video servi		rvey Calculatio	n Method : Minim	um Curvature		erence : g Declination :	Mag. No 11.5 Deg
WELL #	HRES-19			DATE 11-	4-12		FINAL LOC	
CLIENT	RESOLUTION COP	PER				CLO	SURE DISTAN	CE_17.9
FIELD/SITE	OAK FLATS						OSURE ANGLE	
COUNTY	PINAL	STATE	AZ			TVI)	950.6 F
OPERATOR	K. MITCHELL/E. I	BEAM	WITNESS	BARRY H CLEAR	CREEK			
Note:	Calculated values Angle & True Verti				nterval <u>SURF TO</u> eference <u>Ground</u>	<u>) 291.4 M</u>	Centralized Elevation:	YES
	of measured interv	al only.		Tool used:	OBI MK4/ABI-43		Serial No:	
								90.00°
0.0	2.0	4.0	6.0	8.0	10.0	12	2.0	[ft] 1:27
0.2 (5	0.0)					•50	.0ft • HRES-1	9
50.0								
100.0	1.0 (100.0)							
+								
150.0	1.8 (150.0)							
+	2.6 (2	200.0						
200.0	2.0 (2							
Ŧ		3.5 (250.0)						
250.0	_	0.0 (200.0)						
Ť		4.4 /	300.0)					
300.0			· · ·					
t			5.1 (350.0)					
350.0								
400.0			5.7 (40	0.0)				
400.0								
450.0			6.	.4 (450.0)				
450.0								
				7.0 (500.0)				
500 0								
500.0				7.5 (550.0)				
-				_				
500.0								
550.0				8.0 (60	0.0)			
-				8.0 (60				
550.0				8.0 (60	0.0) 4 (650.0)			
550.0 600.0				8.0 (60	l (650.0)			
550.0 600.0				8.0 (60				
550.0 600.0 650.0 700.0				8.0 (60	8.8 (700.0)			
550.0 600.0 650.0				8.0 (60	l (650.0)			
550.0 600.0 650.0 700.0 750.0				8.0 (60	8.8 (700.0) 9.1 (750.0)			
550.0 600.0 650.0 700.0				8.0 (60	8.8 (700.0)			
550.0 600.0 650.0 700.0 750.0 800.0				8.0 (60	4 (650.0) 8.8 (700.0) 9.1 (750.0) 9.4 (800.0)	0)		
550.0 600.0 650.0 700.0 750.0				8.0 (60	8.8 (700.0) 9.1 (750.0)	0)		
550.0 600.0 650.0 700.0 750.0 800.0 850.0				8.0 (60	4 (650.0) 8.8 (700.0) 9.1 (750.0) 9.4 (800.0) 9.8 (850.	0) 3 (900.0)		
550.0 600.0 650.0 700.0 750.0 800.0				8.0 (60	4 (650.0) 8.8 (700.0) 9.1 (750.0) 9.4 (800.0) 9.8 (850.			
550.0 600.0 650.0 700.0 750.0 800.0 850.0				8.0 (60	4 (650.0) 8.8 (700.0) 9.1 (750.0) 9.4 (800.0) 9.8 (850.		50.8)	

and David	ices, I geophysi		services								Refere	DSURE	Mag. Nort
				Su	rvey C	alculation N	lethod	: Mir	nimum Curv	ature		eclination :	11.5 Deg
WELL #	HRES						_ D	ATE _	11-4-12		1	INAL LOC	ATION
CLIENT		DLUTION					_					IRE DISTAN	-
FIELD/SITE	OAK	FLATS					_				CLOSI TVD	JRE ANGLE	255.2 DE 950.6 F
COUNTY	PINA			STATE	AZ		_				110		330.0 1
OPERATOR	K. M	ITCHEL	L/E. BEAN	l	WI	NESS B			AR CREEK				
Note:	Calcu	lated va	lues (Clos	ure Dist	ance,	Closure			d Interval	SURF TO 29		entralized	YES
	Angle	& True	Vertical D nterval on	epth) are	e in co	ontexted		ool Zer		Ground Le K4/ABI-43		levation: erial No:	
0.0	2.0	4	.0	6.0	8	.0 1	0.0	12	.0 14	I.O 16	6.0	18.0	[ft] 1:38
	50.0)							-	1		- 50 Off	• HRES-1	
50.0											- 50.01		
100.0	1.4 (10	0.0)											
+													
150.0		2.4 (150.0) 										
ł			.7 (200.0)										
200.0			(200.0)										
+			4.9	(249.9)									
250.0													
				6.2 (2	299.9)								
300.0													
350.0					7.4	(349.9)							
350.0					$\overline{\}$								
400.0						8.5 (399	.9)						
-													
450.0						9.	.5 (449	.9)					
-								0 6 (400					
500.0								0.6 (499	1.9)				
ł								11 4	l (549.9)				
550.0									(040.0)				
t									12.5 (599).8)			
600.0													
050 0 [†]									13	.5 (649.8)			
650.0													
700.0										14.2 (699.	B)		
750.0										14.9 (749.8)		
ł											5.6 (799.8)		
800.0											J.J (1 JJ.O)	_	
ł											16.3 (84	19.8)	
850.0												,	
											17	.1 (899.8)	
900.0												· ·	
050 0												17.9 (95	0.6)
950.0												•	
+			1	1			1					1	1

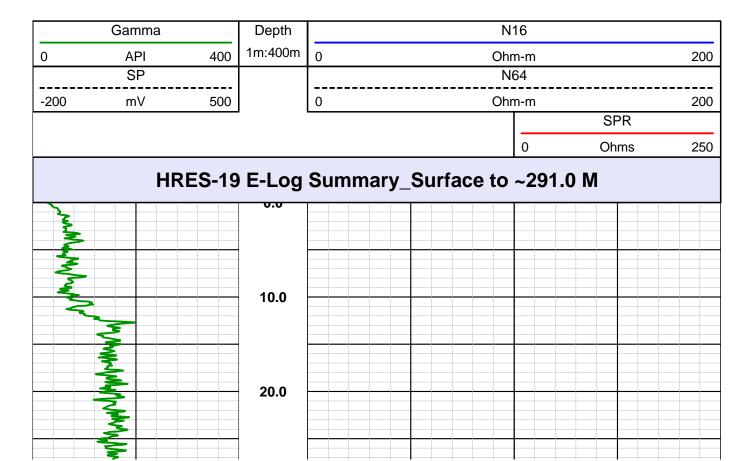

PLATE 2

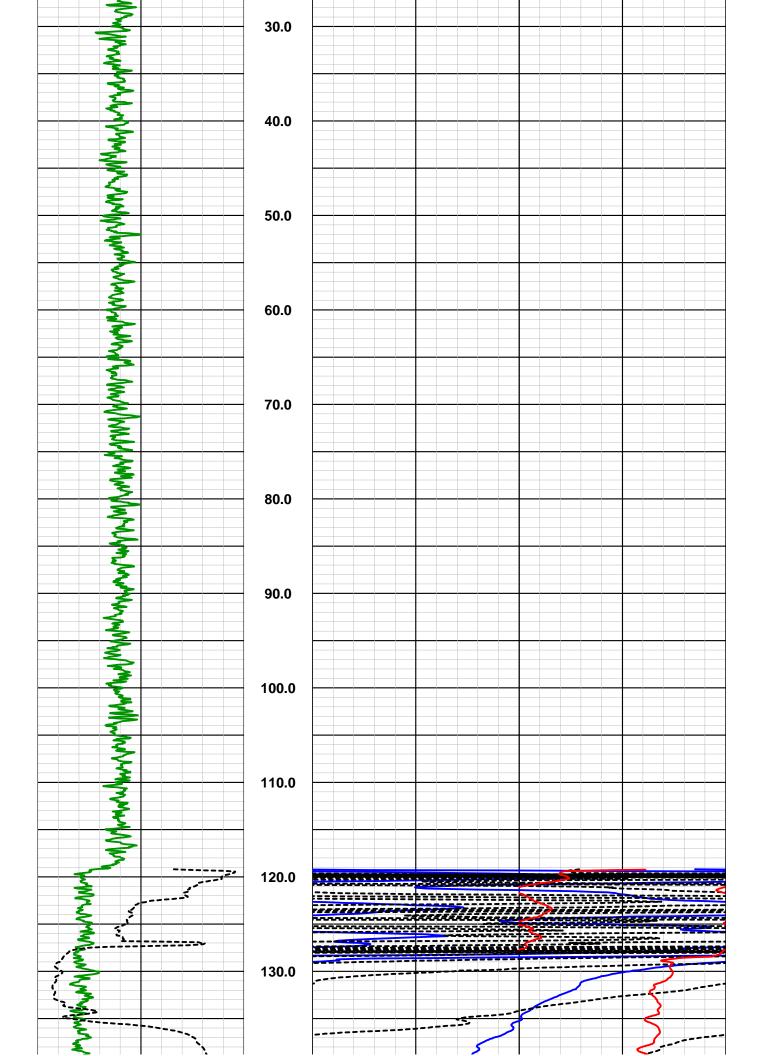

HRES-20 GEOPHYSICAL LOGS

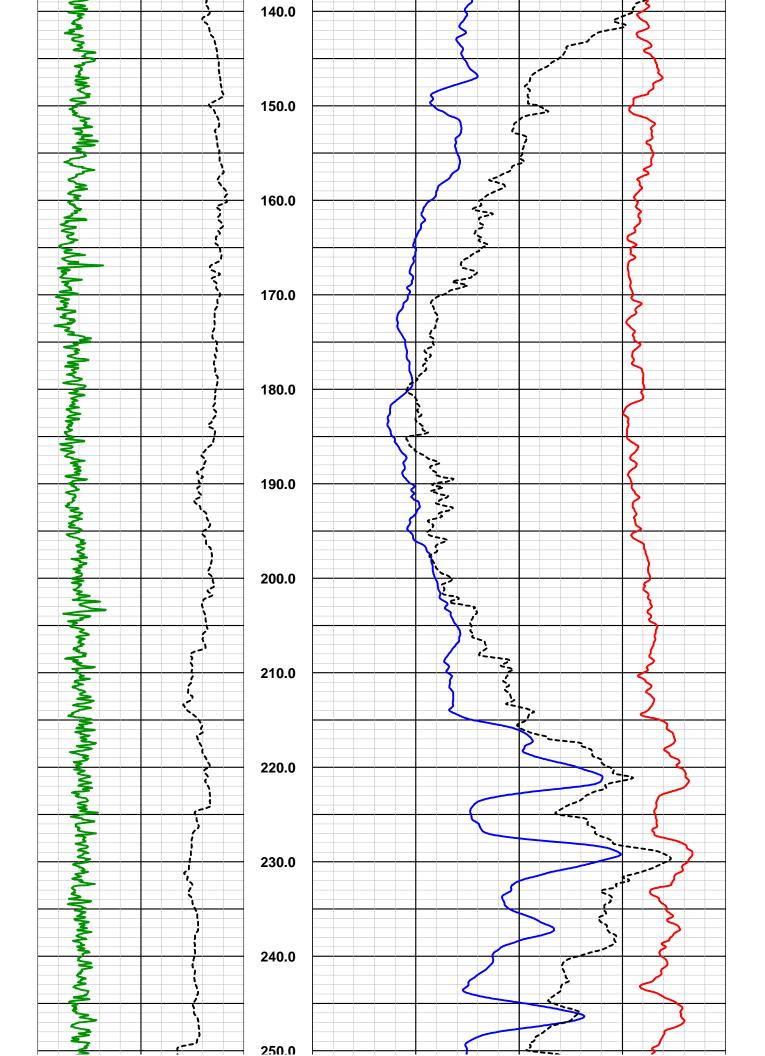


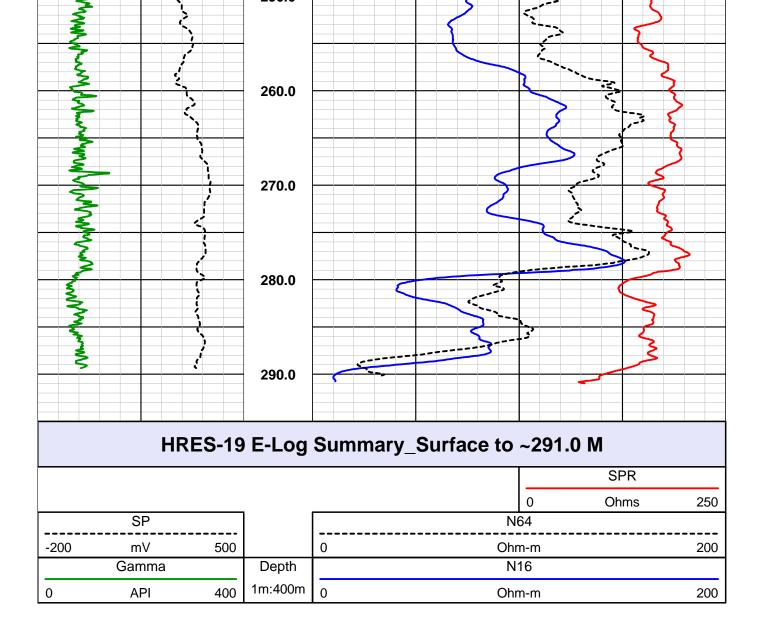

December, 2012 Clear Creek Associates Job No. 313001

X Int	Sou	Southwest Exploration Services, LLC		Cxplo	ra	tion
	boreho	borehole geophysics & video services	/sics &	video	servi	ices
	COMPANY	RESOLUTION COPPER CO	COPPER	CO		
	WELL ID FIELD	HRES-20 (ADWR 55-914790) RESOLUTION	WR 55-91	4790)		
	COUNTY	PINAL		STATE		ARIZONA
	TYPE OF LOGS:		PER-GA	CALIPER-GAMMA RAY		OTHER SERVICES
	MORE:	FLUII	FLUID TEMP/RESIS	RESIS		ABI
	LOCATION D(1-13)27CBD				SE	E-LOGS SONIC
	SEC 27	TWP 1S	RGE	13E		
PERMANENT DATUM		Ι	ELEVATION		K	K.B.
LOG MEAS. FROM	GROUND LEVEL		ABOVE PERM. DATUM	M		D.F.
DRILLING MEAS. FROM GROUND LEVEL	GROUND LEVEI	ſ			0	G.L.
DATE	12-03-12		TYPE FLUID IN HOLE	D IN HOLE	т	FRESH WATER
RUN No	-		SALINITY	ГY	z	N/A
TYPE LOG	GAMMA-C	GAMMA-CALIPER-TEMP	DENSITY	Y	- Z	N/A
DEPTH-LOGGER	321 M		MAX. REC. TEMP.	TEMP.	2	196 M 22.2 DEG C
BTM LOGGED INTERVAL	321 M		IMAGE OR	IMAGE ORIENTED TO:	z	N/A
TOP LOGGED INTERVAL	SURFACE		SAMPLE INTERVAL	VTERVAL	.1	.1 FT
DRILLER / RIG#	BOART LY		LOGGING TRUCK	FRUCK	T	TRUCK -300
RECORDED BY / Logging Eng.		K. MITCHELL/M.QUINONES	TOOL STRING/SN	NG/SN	7	MSI 2PCA-PGA-F SN4953
WITNESSED BY	CLEAR CR	CLEAR CREEK-R. MITCHELL	LOG TIME	LOG TIME: ON SITE/OFF SITE		7:00 AM
RUN BOREHOLE RECORD	ORD		CASING RECORD	CORD		
NO. BIT FR	FROM	ТО	SIZE	WGT.	FROM	TO
1 22" SU	SURFACE	39 FT	16"	HWT	SURFACE	CE 39 FT
	39 FT	570 FT				
3/4"	570 FT	TD				
COMMENTS:						
·						

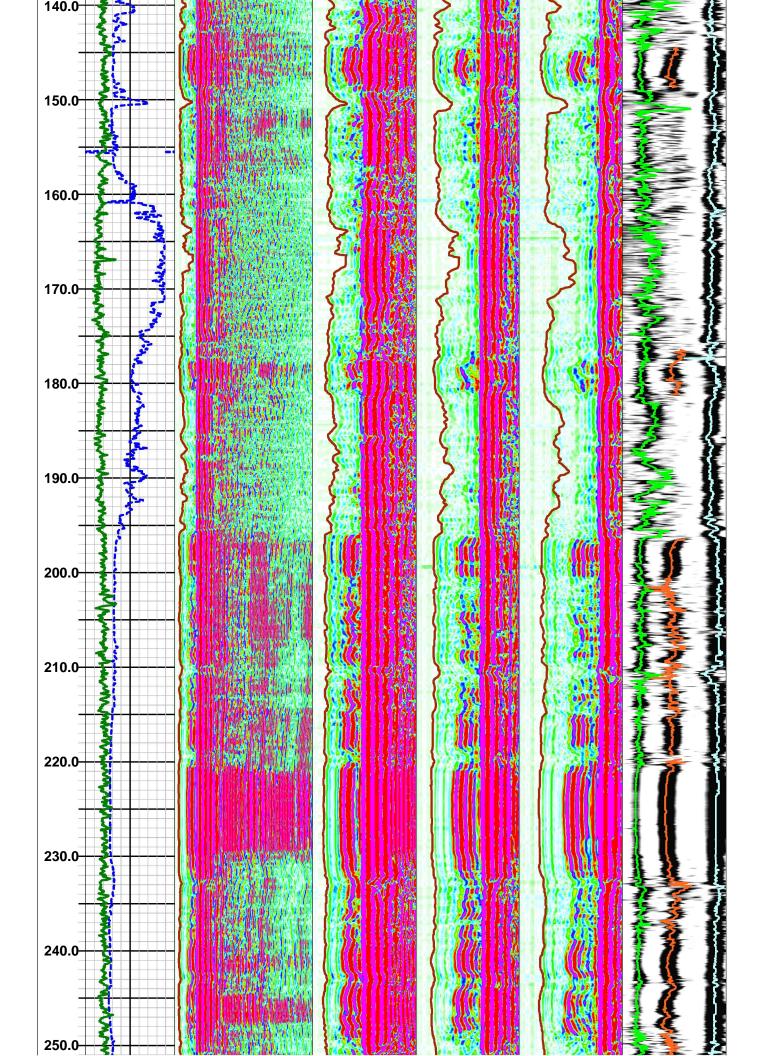








								NTS:	COMMENTS:
					TD		11.9 M	14 3/4"	3
11.9 M	ACE	SURFACE	HWT	15 3/4"	11.9 M	CE	SURFACE	20"	
TO		FROM	WGT.	SIZE	ТО		FROM	BIT	NO.
-			ECORD	CASING RECORD			RECORD	BOREHOLE RECORD	RUN
	7:30 AM		LOG TIME: ON SITE/OFF SITE	LOG TIME	CLEAR CREEK-BARRY	CLEAR CRI		SED BY	WITNESSED BY
N 5019	40 GRP SN 5019		ING/SN	TOOL STRING/SN	K. MITCHELL/E. BEAM	K. MITCHE	ng Eng.	RECORDED BY / Logging Eng.	RECORD
300	TRUCK -300		TRUCK	LOGGING TRUCK	NGYEAR	BOART LONGYEAR		/ RIG#	DRILLER / RIG#
	.2 FT		VTERVAL	SAMPLE INTERVAL		119.2 M	AL	TOP LOGGED INTERVAL	TOP LOG
	N/A		IMAGE ORIENTED TO:	IMAGE OR		291.5 M	AL	BTM LOGGED INTERVAL	BTM LOC
τC	23.5 DEG C		. TEMP.	MAX. REC. TEMP.		291.5 M		OGGER	DEPTH-LOGGER
	119.2 M			LEVEL		291.5 M		RILLER	DEPTH-DRILLER
	N/A		Y	DENSITY		ELOGS		G	TYPE LOG
	N/A		TY	SALINITY		1			RUN No
VATER	FRESH WATER		TYPE FLUID IN HOLE	TYPE FLUI		11-4-12			DATE
	G.L.					UND LEVEL	M GRO	DRILLING MEAS. FROM GROUND LEVEL	DRILLIN
	D.F.		JM	ABOVE PERM. DATUM	ABOVE	GROUND LEVEL	GRO	LOG MEAS. FROM	LOG ME/
	K.B.		_	ELEVATION				PERMANENT DATUM	PERMAN
			3 13E	RGE	TWP 2S	8	SEC		
	ABI SONIC					LOCATION D(2-13)8AAA	LOC, D(2-1		
UID RES	TEMP/FLUID RES					MORE:	M		
OTHER SERVICES	OTHER S)GS	JOGS: E-LOGS	TYPE OF LOGS:	TY		
NA	ARIZONA	STATE	ST		PINAL	COUNTY	COI		
				4	RESOLUTION	LD	FIELD		
			4789)	WR 55-91-	HRES-19 (ADWR 55-914789)	WELL ID	WE		
			CO	V COPPER	RESOLUTION COPPER CO	COMPANY	COI		
	rices	sen	videc	ysics &	borehole geophysics & video services	borehc			
	·		ן ר		SELVICES, LLC				
Ĵ	itio	ora	N dx	st E	Southwest Exploration	Sou	7		



								•
							NTS:	COMMENTS:
				T		11.9 M	14 3/4"	2 3
ACE 11.9 M	SURFACE	HWT	15 3/4"	11.9 M	NCE	SURFACE	20"	1
TO	FROM	WGT.	SIZE	TO		FROM	BIT	NO.
		ECORD	CASING RECORD			RECORI	BOREHOLE RECORD	RUN
7:30 AM		LOG TIME: ON SITE/OFF SITE	LOG TIMI	CLEAR CREEK-BARRY	CLEAR CRI		SED BY	WITNESSED BY
ALT SONIC 4RX SN 4572		UNG/SN	TOOL STRING/SN	K. MITCHELL/E. BEAM	K. MITCHE	ng Eng.	RECORDED BY / Logging Eng.	RECORD
TRUCK -300		TRUCK	LOGGING TRUCK	NGYEAR	BOART LONGYEAR		R/RIG#	DRILLER / RIG#
.25 FT		SAMPLE INTERVAL	SAMPLE I		119.2 M	AL	TOP LOGGED INTERVAL	TOP LOC
N/A		IMAGE ORIENTED TO:	IMAGE O		291.5	'AL	BTM LOGGED INTERVAL	BTM LO
23.5 DEG C		C. TEMP.	MAX. REC. TEMP.		291.5		,OGGER	DEPTH-LOGGER
119.2 M					291.5 M		ORILLER	DEPTH-DRILLER
N/A		ΤY	DENSITY	SONIC 4RX-GAMMA-CALIPER	SONIC 4RX		Ω Ω	TYPE LOG
N/A		ITY	SALINITY		1			RUN No
FRESH WATER		TYPE FLUID IN HOLE	TYPE FLU		11-4-12			DATE
G.L.					UND LEVEL	M GRO	DRILLING MEAS. FROM GROUND LEVEL	DRILLIN
D.F.		UM.	ABOVE PERM. DATUM	ABOVE I	GROUND LEVEL	GRO	LOG MEAS. FROM	LOG ME.
K.B.		Z	ELEVATION	Ι			PERMANENT DATUM	PERMAN
		E 13E	RGE	TWP 2S	∞	SEC		
ABI E-LOGS					LOCATION D(2-13)8AAA	D(2-		
OBI		LIPER	GAMMA-CALIPER	GAMI	MORE:	M		
OTHER SERVICES			SONIC 4 RX		TYPE OF LOGS:	ΤY		
ARIZONA		STATE		PINAL	COUNTY	СО		
				RESOLUTION	LD	FIELD		
		[4789]	NR 55-91	HRES-19 (ADWR 55-914789)	WELL ID	WE		
		R CO	COPPEI	RESOLUTION COPPER CO	COMPANY	СО		
nces			/SICS 0	טטרפרוטופ טפטערזאַצוניצ מי אומפט צפראוניפא	DOLETIC	V		
			ine s					
tion	ra	Exploration LC	Fm	Southwest Ex Services, LLC	Sou)	YTT	

Depth 1:400		HRES-19 Soni	c Summary	/_ ~119.1 M	to ~290.5	M
	Caliper	RX1 - VDL	RX2 - VDL	RX3 - VDL	RX4 - VDL	Velocity Analysis
	10 Inches 30	-200 200	-100 100	-100 100	-80 80	0 40
	Gamma	RX1 - dt	RX2 - dt	RX3 - dt	RX4 - dt	P-Wave Cond
	0 API 400	100 uSec 2040	100 uSec 1020	100 uSec 1020	100 uSec 1020	32 uSec/ft 232
						S-Wave Cond
						32 uSec/ft 232
						St-Wave Cond
						32 uSec/ft 232
120.0						

						A
260.0-						
270.0-						
280.0-						
						St-Wave Cond 32 uSec/ft 232 S-Wave Cond 32 uSec/ft 232
	Gamma	RX1 - dt	RX2 - dt	RX3 - dt	RX4 - dt	P-Wave Cond
	0 API 400	100 uSec 2040	100 uSec 1020	100 uSec 1020	100 uSec 1020	32 uSec/ft 232
	Caliper 10 Inches 30	RX1 - VDL -200 200	RX2 - VDL -100 100	RX3 - VDL -100 100	RX4 - VDL -80 80	Velocity Analysis
Depth 1:400		HRES-19 Soni	c Summary	∕_ ~119.1 M	to ~290.5	M

Full Waveform Sonic Summary Legend Mnemonics and Comments

- **Gamma** = Natural gamma ray log plotted from 0 to 400 API units (green line).
- **Caliper** = 3-arm mechanical caliper of hole diameter plotted from 10-30 inches (blue line).
- **RX1 VDL** = Color variable density display of 0.6m Rx waveform; stacked over 5 waveforms, and plotted from 100 to 2040 uSec.
- **RX1 dt** = P-wave travel time pick. Plotted 100 to 2040 uSec (brown line).
- **RX2 VDL** = Color variable density display of 0.8m Rx waveform; stacked over 5 waveforms, and plotted from 100 to 1020 uSec.
- **RX2 dt** = P-wave travel time pick. Plotted 100 to 1020 uSec (brown line).
- **RX3 VDL** = Color variable density display of 1.0m Rx waveform; stacked over 5 waveforms, and plotted from 100 to 1020 uSec.
- **RX3 dt** = P-wave travel time pick if determined. Plotted 100 to 1020 uSec (brown line).
- RX4 VDL = Color variable density display of 1.2m Rx waveform; stacked over 5 waveforms, and

	plotted from 100 to 1020 uSec.
RX4 - dt	= P-wave travel time pick - if determined. Plotted 100 to 1020 uSec (brown line).
Velocity Anal	sis = Gray scale variable density display of velocity semblence waveform of the stacked waveforms; plotted from 32 to 232 uSec/ft.
P-Wave-Conc	= Apparent P-wave transit time or slowness from maximum energy peak on semblence velocity waveform in uSec/ft (green line).
S-Wave-Conc	= Apparent S-wave transit time or slowness from maximum energy peak on semblence velocity waveform in uSec/ft - with conditional testing to remove invalid values (orange line).
St-Wave-Con	= Apparent Stoneley-wave transit time or slowness from maximum energy peak on semblence velocity waveform in uSec/ft with conditional testing to remove invalid values (light blue line).
Prepared by Er Version 11-19-	
version 11-19-	4

								NTS:	COMMENTS:
					IJ		11.9 M	14 3/4"	3
11.9 M	ACE	SURFACE	HWT	15 3/4"	11.9 M	Œ	SURFACE	20"	, 1
TO		FROM	WGT.	SIZE	ТО		FROM	BIT	NO.
			ECORD	CASING RECORD			RECORL	BOREHOLE RECORD	RUN
M	7:30 AM	OFF SITE	LOG TIME: ON SITE/OFF SITE	LOG TIME	CLEAR CREEK-BARRY	CLEAR CRI		SED BY	WITNESSED BY
ALT OBI40 MK 4 080903	ALT O		ING/SN	TOOL STRING/SN	K. MITCHELL/E. BEAM	K. MITCHE	ng Eng.	RECORDED BY / Logging Eng.	RECORD
K -300	TRUCK -300		TRUCK	LOGGING TRUCK	NGYEAR	BOART LONGYEAR		R/RIG#	DRILLER / RIG#
FT	.0096 FT		NTERVAL	SAMPLE INTERVAL		11 M	AL	TOP LOGGED INTERVAL	TOP LOC
MAG NORTH	MAG I	Ö	IMAGE ORIENTED TO:	IMAGE OF		141 M	'AL	BTM LOGGED INTERVAL	BTM LOC
EG C	23.5 DEG C		TEMP.	MAX. REC. TEMP.		291.5 M		OGGER	DEPTH-LOGGER
M	119.2 M			LEVEL		291.5 M		DRILLER	DEPTH-DRILLER
	N/A		ΓY	DENSITY	LIPER	OBI-40 - CALIPER		ā	TYPE LOG
	N/A		TY	SALINITY		1			RUN No
FRESH WATER	FRESH	(1)	TYPE FLUID IN HOLE	TYPE FLU		11-4-12			DATE
	G.L.					UND LEVEL	M GRO	DRILLING MEAS. FROM GROUND LEVEL	DRILLIN
	D.F.		UM	ABOVE PERM. DATUM	ABOVE	GROUND LEVEL	GRO	LOG MEAS. FROM	LOG ME.
	K.B.		-	ELEVATION				PERMANENT DATUM	PERMAN
			E 13E	RGE	TWP 2S	8	SEC		
SE	ABI E-LOGS SONIC					LOCATION D(2-13)8AAA	LOC. D(2-1		
TEMP/FLUID RES.	TEMP/FL		PER	3- ARM CALIPER	3- AR	MORE:	M		
OTHER SERVICES	OTHE			MK 4	JOGS: OBI MK 4	TYPE OF LOGS:	ΥT		
ONA	ARIZONA	STATE	S		PINAL	COUNTY	CO		
				Z	RESOLUTION	LD	FIELD		
			4789)	WR 55-91	HRES-19 (ADWR 55-914789)	WELL ID	WE		
			CO	N COPPER	RESOLUTION COPPER CO	COMPANY	CO		
ŭ		u ser		ysics o	porenoie geophysics & video services	DOLELIC	V		
)						1			
on	Ē	ora	C X D		Southwest Exploration Services, LLC	Ser	7	TTT	

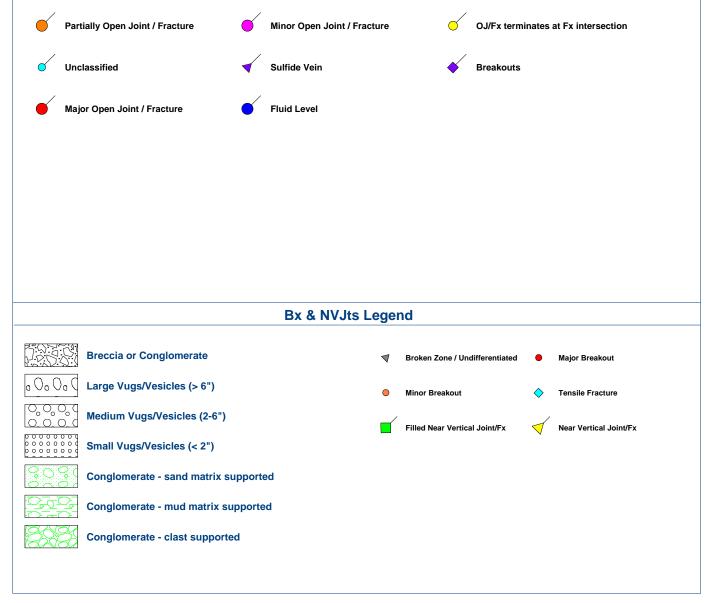
Major Lithology

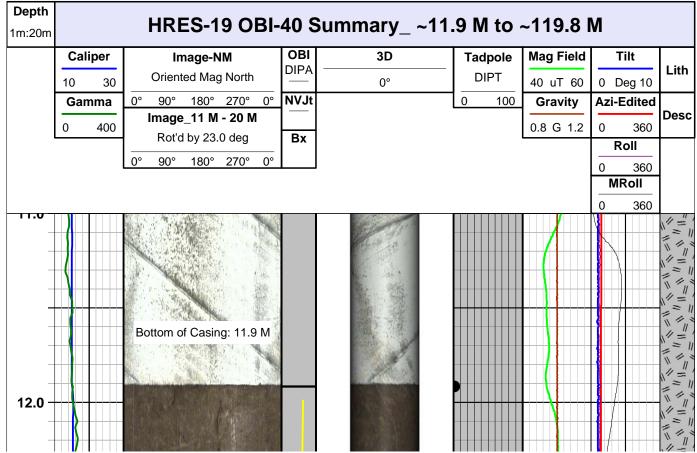
Apache Leap Tuff - Gray Unit

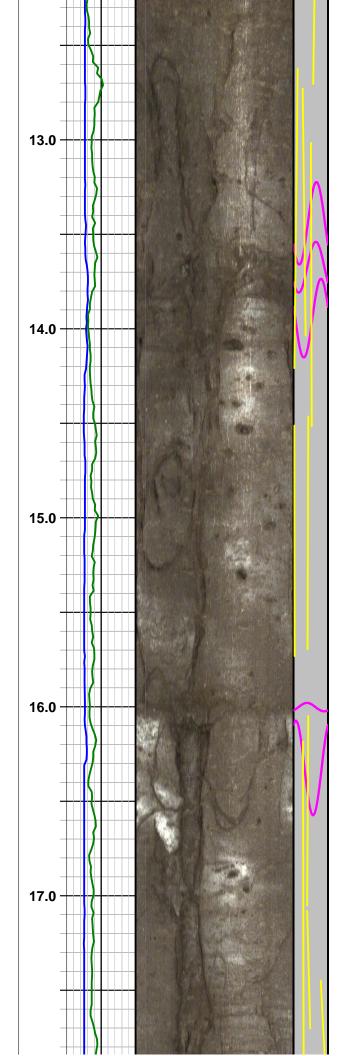
Apache Leap Tuff - Brown Unit

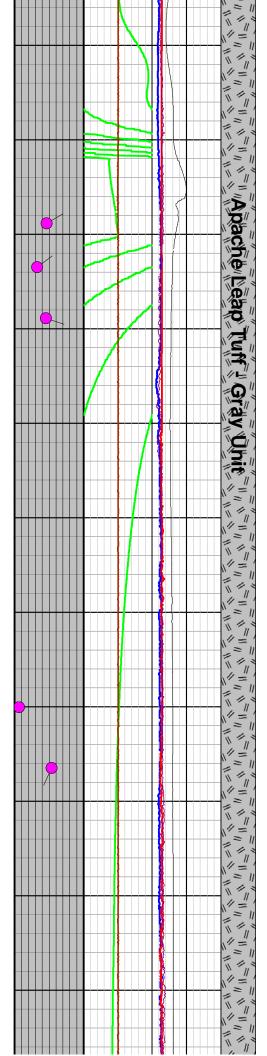
Basal Tuff - Vitrophyre

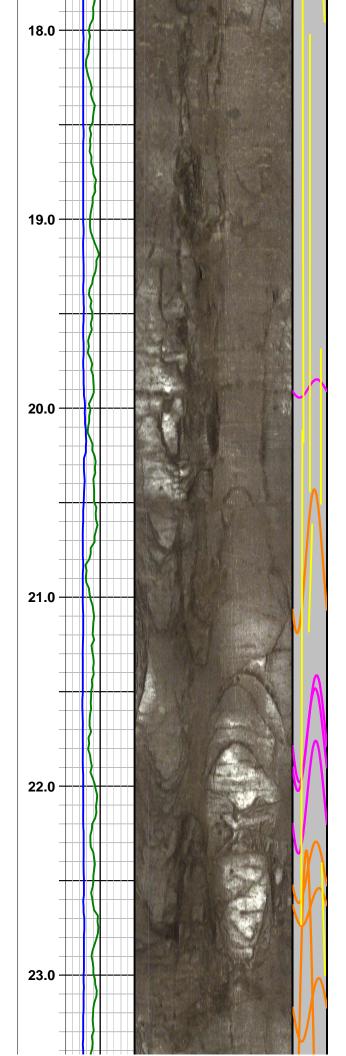
Basal Tuff

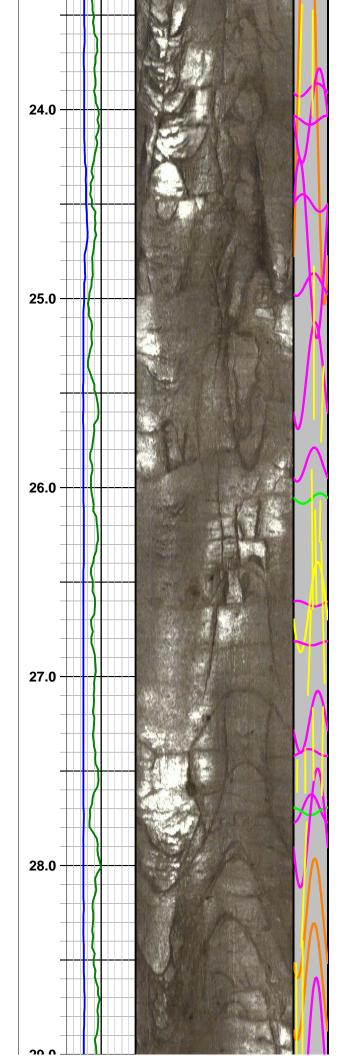

Transition Zone

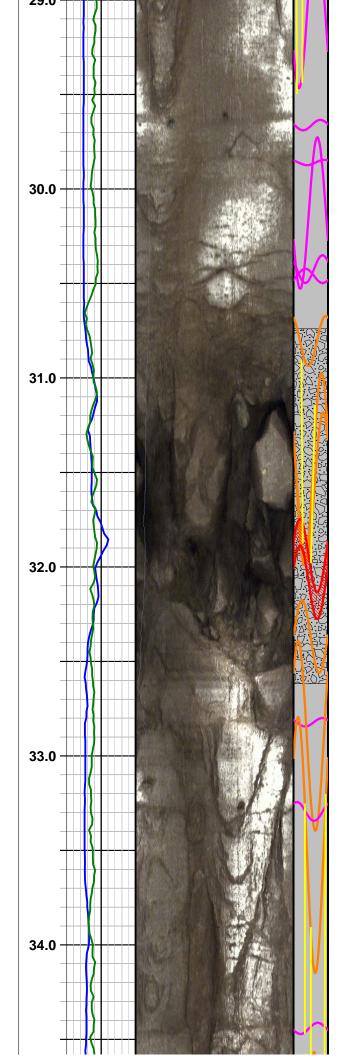

Optical Image Features Legend


ø

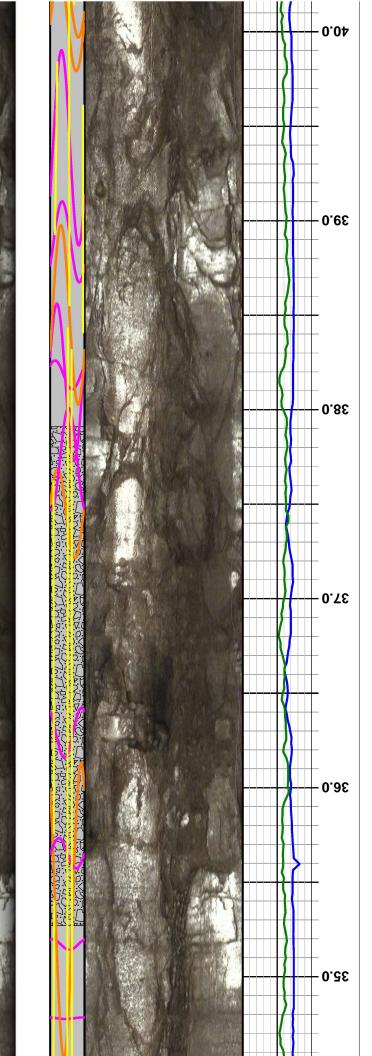

 \mathcal{O}

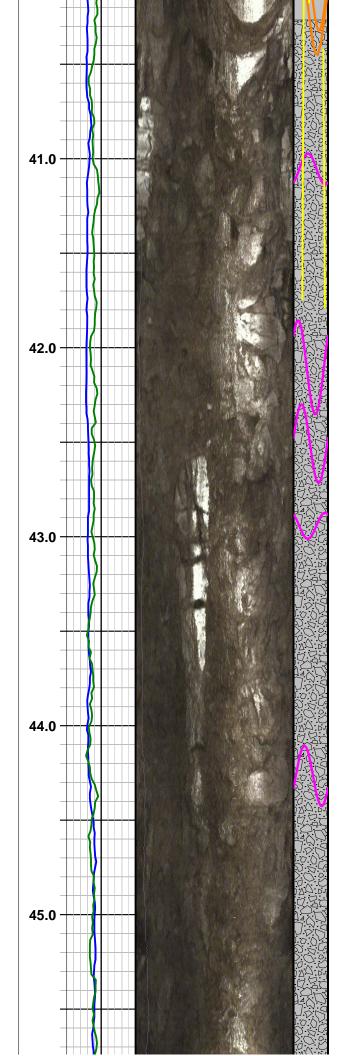




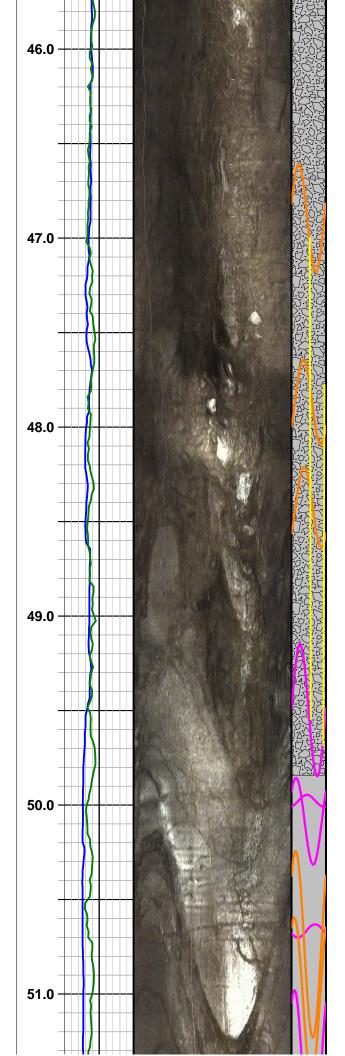


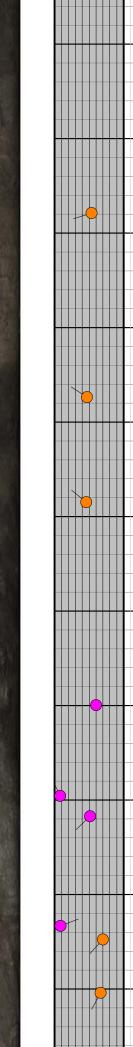
				\″ = //
		· · · · · · · · · · · · · · · · · · ·		
			+	
				\/
				\ <u>`</u> =''
			3	
			1	\// =//
				\/
-				
	┝───┠╴			
				``@
		1		
		3		
				ĸ∕ŧ″
			+	
				av "
				Č,
				\/
	┝╌╌╢╴╏	┿┥┥┥┥	╫╂╷╷╷	
		1		\//
				\/


			\/'
			\[
			Ī.
\mathbf{P}			
	_		
		_ ₿	
╺ <mark>╺</mark> ┝┼┼┼┼╋╶╴			
	_		
	1 2 1		
		┞╋┊┼╂╌╌╌	
			\// =//
		\$ {}	
		5	
		<u>}</u>	
•		<u>}</u>	\[
		{ }	
		§	
	_		
		<u> </u>	
	-	<u>}</u>	
		8	6
		<u> </u>	
			he
			\$\$\$
	┦┦┼┼┼		
= =			
			~~ <u>/</u> /
		∙ <u>≖≉</u> ≱▲	

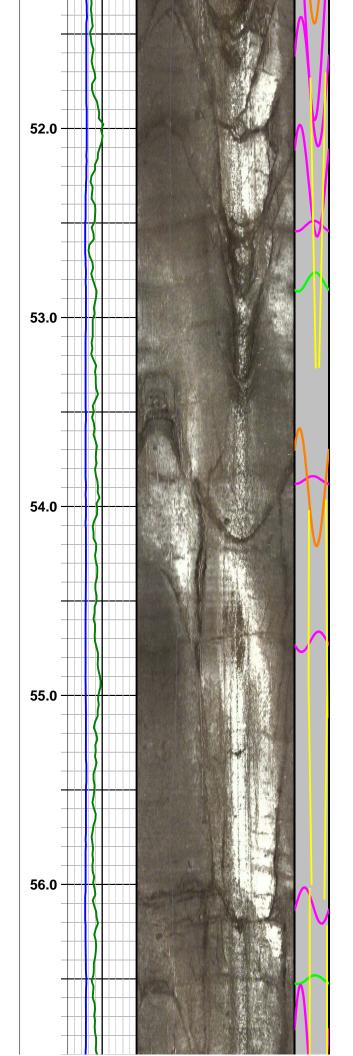


						Y				? }	√/ =″ '
						╞	$\left \right $				
					+	╞				8	
						t	$\left \right $				
						t					<i>// =/</i>
						t				 -	
						t					\"='
)	ſ	1				T					
	þ					T					
)	١										
											\ <i>″</i> = `
						Y					
										<u> </u>	\//
	2			,							
											N =
							$\left \right $				
				1							
								\vdash			
					+	╞					
-					+	╞					
					+	╞	$\left \right $			2	
					$\frac{1}{2}$	\int	H				
						╞	$\left \right $			some -	\"=''
						T				8	
										<u>}</u>	
											1
	-										
										8	
					_	+				Ţ.	
	-		-(+					N "
					+	╞	\square			 8 -	
					+	╞				%	
	$\frac{1}{2}$					\downarrow				8	
					1						
										X	\/_='
										2	
		5								*	v 🎾 🕺
2										8	
						¢					١ . ٤
					1					1 🔰	
										§	
										¥.	
								++			
					+			\vdash			
						f		++			
					+	f		++	+		
					Ŧ	ſ					
þ	>	-	-								
											Ĩ, Ç


) ()		
$f = h^{N}$		
(<i>= //</i>)		
$f = \eta^{N}$		
(<i>F</i> /)		
(<i>= 1</i>)		
(= //	}{	
(= /)	3	
	∛ .	
(<i>F</i> /)		
(= //		
(<i>= //</i>		
	8	
$= \eta^{N}$		
$f = \eta^{N}$		
	{ 👔	
$f = \eta^{N}$		
$f = \eta^{N}$		
$f = \eta^{N}$	4	
*"# \\ = "		
(<i>= 1</i> /1		
, <i>= 1</i> /		
(<i>= 1</i> /1		
(= // W		
, <i>= 1</i> /		
, <i>= 1</i> /		0 -
	2	
	2	

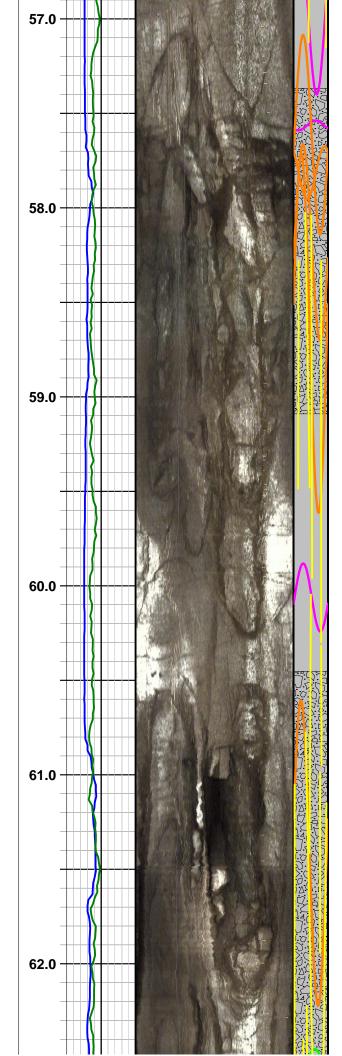


	N	. @ " /
		······································
	<u> </u>	
	Š {	
	- <u>8</u>	
	Se l	\// =" /
		(<i>"</i>
		T =
		\// =_ /
	┥┥╋┋	
		N = "
		\/'
	8	
+++0++++	 	<u> </u> =
		1
		≈ <i>∥</i>
	1	7 .
		Ī [[]]

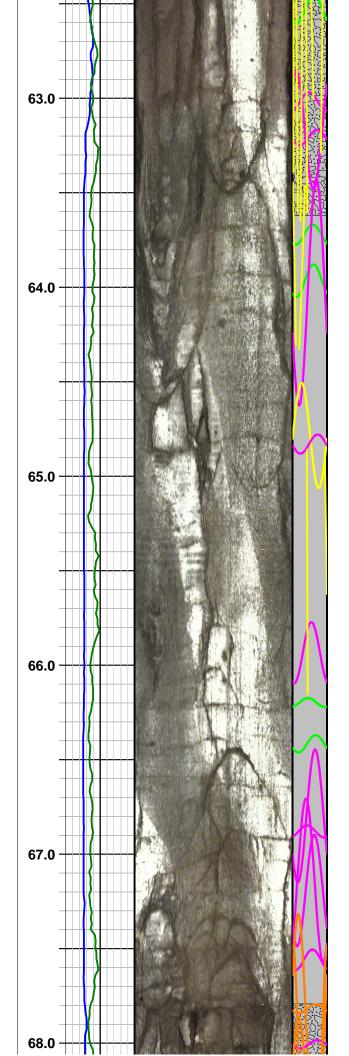


		N 11
		\″ <i>≡ '</i>
	4	1
	-++	× 11)
	}	N = 11
		1
		1 = 1
) = <i>1</i>
		N = "
		\"=" !
	╶╌┲╴╴╴╴╋╴╋╗╌┼╌╋╴╴╴╴╴╴	<u></u> "
	. } <u>%</u> []	
		d "
		N O II
	<pre> { \$ \$</pre>	Ĩ. - ⁽
		<u>ν</u> <u>α</u>
	X	```` ``
		\/ / /
		" _⊆ ∥
	% }	
		~
	8	
		<u>)</u>]]
	251	N. M.
	ι	\// =" /
	<u>}</u>	
		\″'
		× 11)
	<u> </u>	N = 1
		1
		~/
	<u> </u>	<i>"</i> = <i>∥</i>
	5	T =, *
	1 7 } 1	\" =" '
		·
	25	\ <u>`</u> ='
	- }	× 11)
	4	
		. <u>"</u>
┽┝┽┼╋╶╌┥		
		N = "
		\// =' /
		1 1
		<u> </u>
	<u> </u>	
	<u> </u>	
		\//="/
		" <u>_</u> = ∥
		N TH
		\″_=`
	X 2	
		× 11)
		4_1
		_=!!
	<u> </u>	
	🕰 \	M = 1

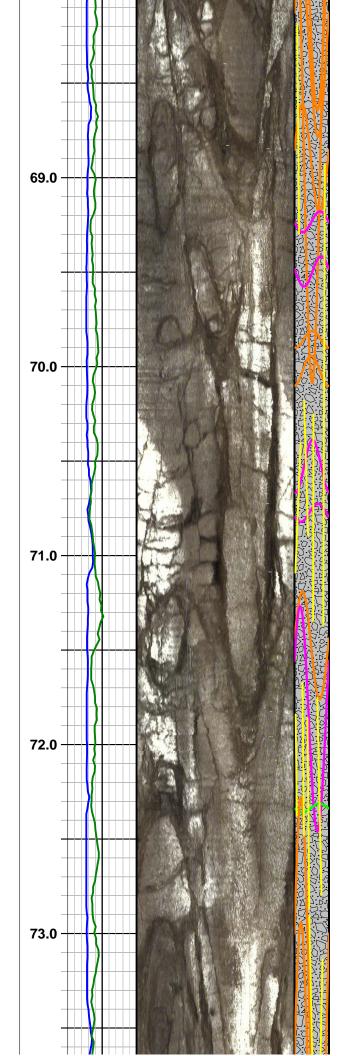
+


🕻 🧎

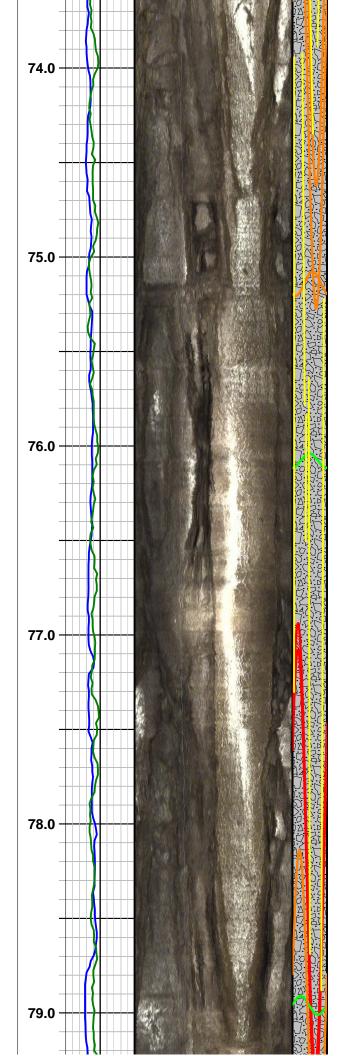
> 11

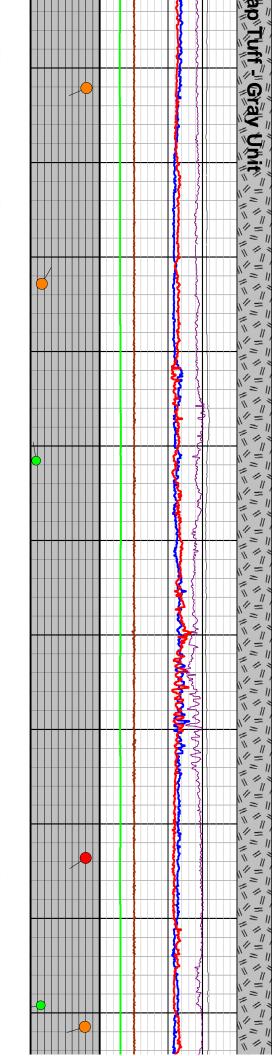


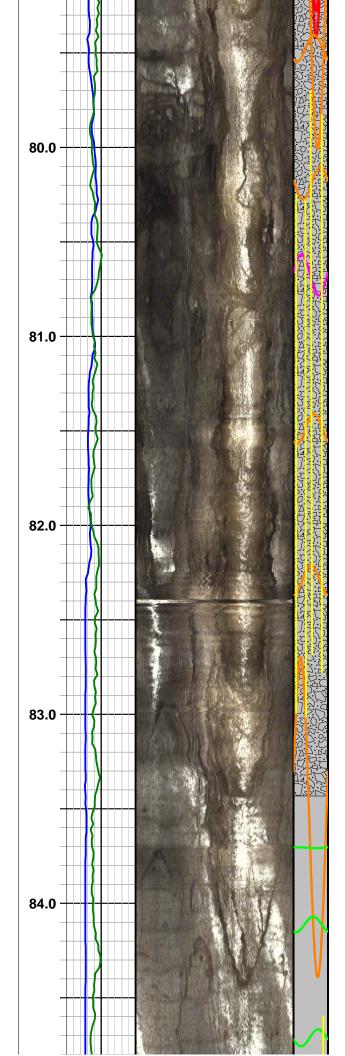
	2 (
	\ \	
	<u>}</u>	
	ξ	
	<u> </u>	
	<u>}</u>	
		N = "
		Ĩ =
		\/
	ξ.	\″_=_'
		\" = '
<u></u>		
		G
		\/'
	8 3	\/'
		\// = /
		\// =//
		N " "
		\ <u>`</u>

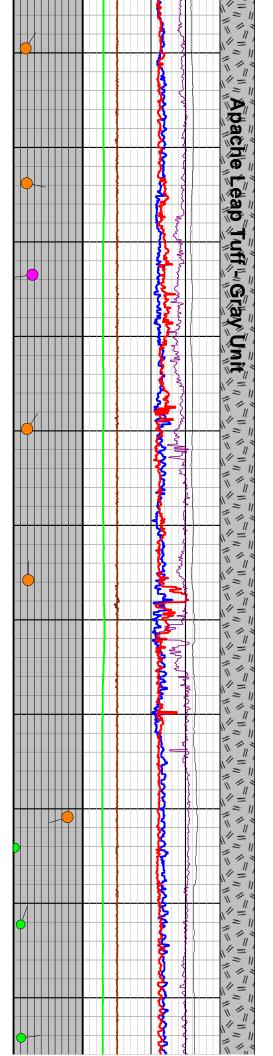


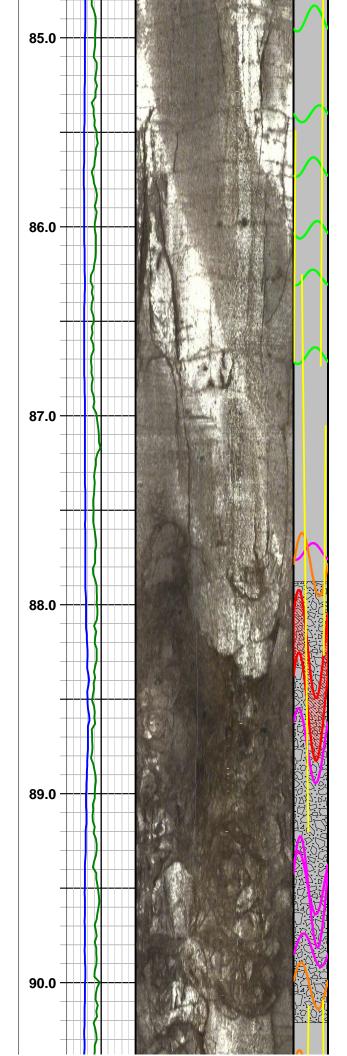
		{	
	{		
		{	
	{	<u>}</u>	
	{		
		< ∦	
		Š /	
		5	
	·		
		} {	
		har	
		}	
		<u>}</u>	
		Mu	
		7 (
		}	
	<u>}</u>		
			\ ````` ' '
		₹ {	N/ = /
		1	
		3 3	
			11-1
		8	
		23	\ <i>\\</i> // = '

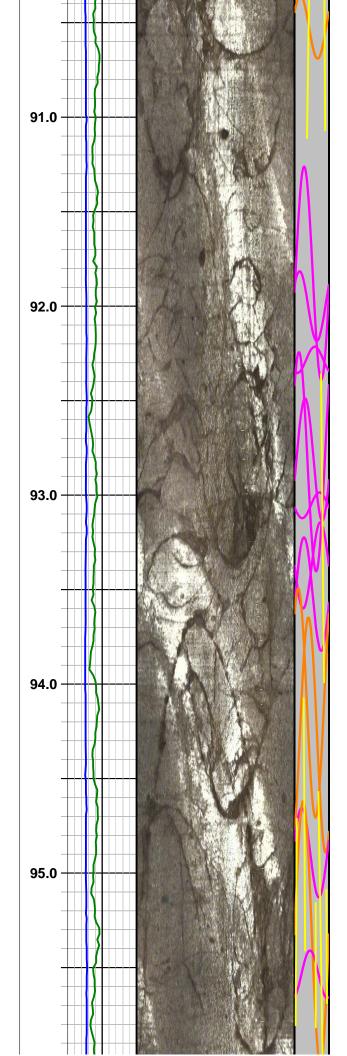


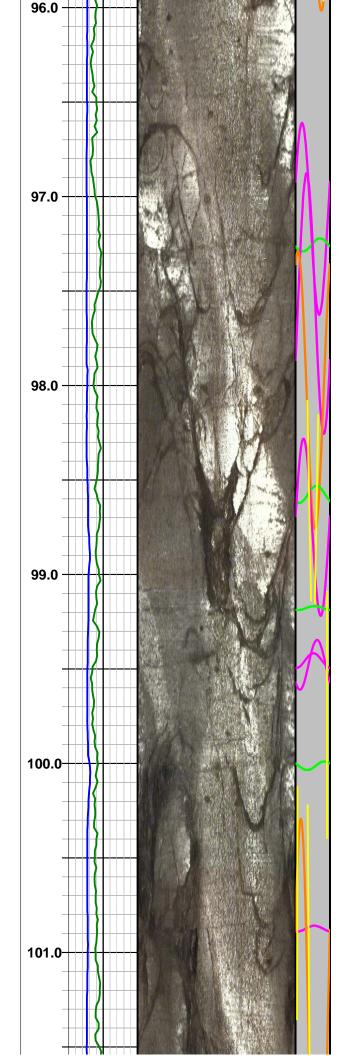

	₹	
	S	
	\$ 5	
		\// =' /
\mathcal{L}	83	
O	85	\/_=',
	2 5	
	<u> </u>	\//
	<u> </u>	
	\$_ }	
		\/_=',
		\[
	2	
	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
•		
		e a/
		N.
		1-1




₩	
<u> </u>	N = 1
§ <u></u>	
	- <u>``</u> = 11
	· //
	· //
₩	<u>``</u> //
 2	
	- <u> </u>
• • • • • • • • • • • • • • • • • • •	

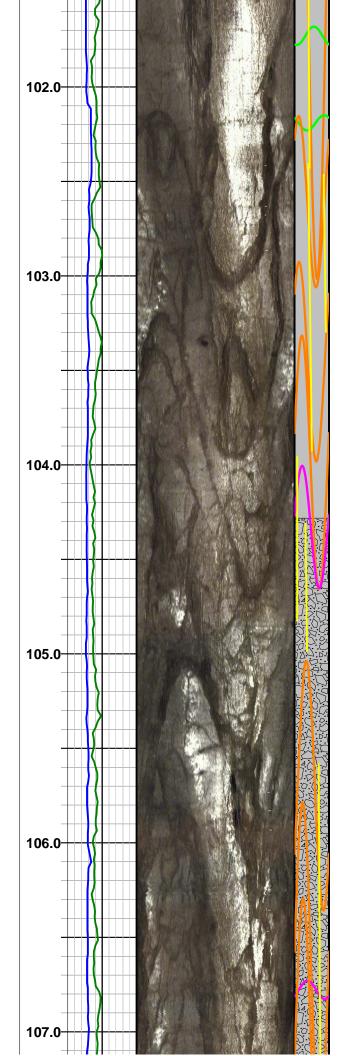




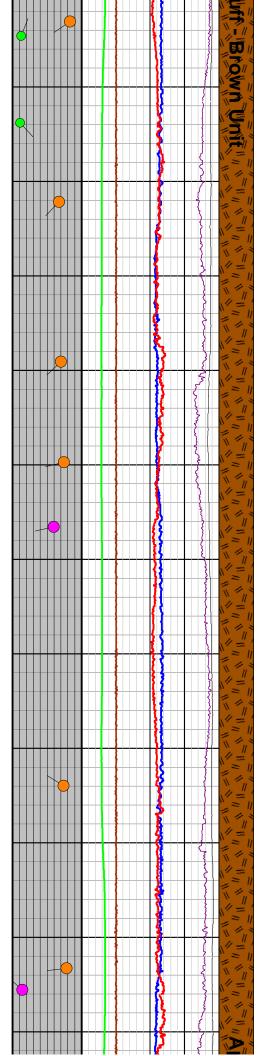


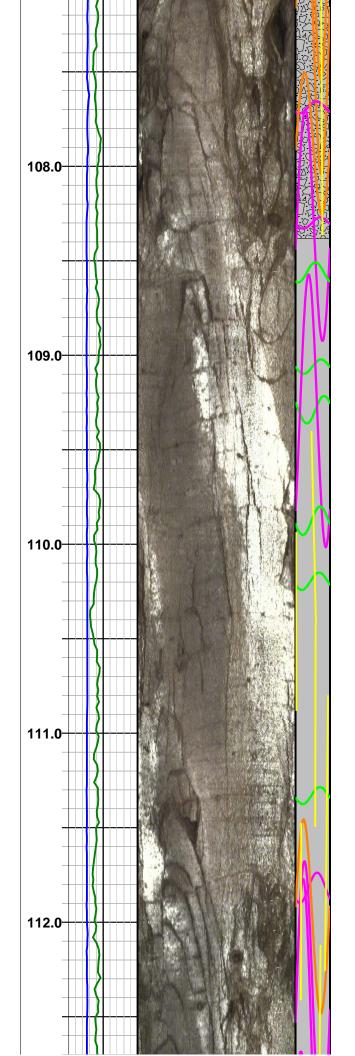
			1											Ş	{	4			\ <i>\</i> // =	<i>"</i>
					T						H			Ş		100				:
														Į		2				// , = //
											Ļ			\$		9	Í			*"
									_		\mid			1	\square					= /
(þ		_						_					-{					11	,
					+				 -	_	-	-	_	-1			f			- \$ \$
6	L	/					+									Į	1			//) =]
																				: \$_`\$
																~				≝′/ ≕∥
7	5	_	_		-			_	 _	_	_			_			_			"
									_	_				- 14		2	+			=
6	Ľ								_				_				┥		\\ ⁻	<i>"</i> ,
					T						H				$\left \right $		t			: *_*
																-			N Po	
											ļ			Į	\square	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			ac	
	5	ľ							_					ł						
					1				_		\parallel			ł	{	_				
					+				-		\parallel			$\left\{ \right.$	╢	_			Lea	
					T						H			t	t					//) = .
					I									ļ	{				10	
											ļ			ł	[5 /
									_		H			ł	<u>}</u>		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Ś	Ś/Ś
									_		\vdash	+		┦	$\left\{ +\right\}$					
	/				Ŧ						\parallel				+					"//)
	2										H			1						> // > //
				1																, , , , ,
											H					_				
					-				_		\vdash									- II
									-		$\left \right $									/// //
				6	5	f					\mid									: \$_\$
			1	1																<i>∥,</i> = <i>∥</i>
											ļ						ļļ			* "
									_		\mid						ļ			<i>≝ </i> : ∥
			$\left \right $	1					-	+	$\left \right $	+	+			_			11 -	"
									_	+	╞		+			_	}			:
					t		1				H			1		\$				//////////////////////////////////////
					I									ß						: *_*
																~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				///) = //
					1						H			ļ		4			11 1	
					$\frac{1}{2}$				_		+	+		+	$\vdash$	2005				-
											$\parallel$			ł		5	+			///
					T						H					3	Ħ			:    *,,*
	1															~				, , , , , , , , , , , , , , , , , , ,
									_	Ц					Ц	{				* " 
-			1													deeper manufacture and a second se				=" / 
										+	$\left  \right $	+		}	5	-	$\left  \right $		11 -	/// // // // // // // // // // // // //
					-				_	+	╞			{		2				- - 
al an			- 46	-46	- 10 M	- 10		- 10	_											



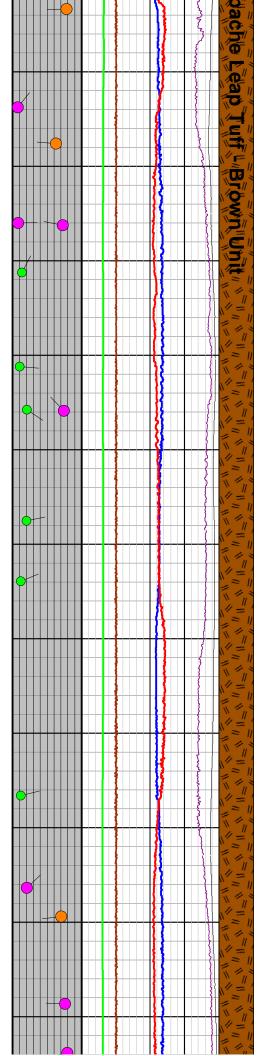


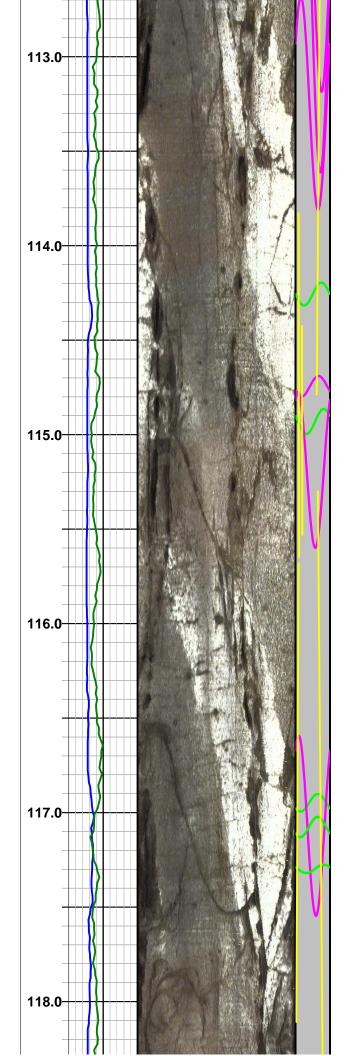

		/
<b>├</b> ── <b>┤<u></u><u></u><u></u></b>		11
		11
		,    =
		11
		/11
└───┤ <mark>{</mark> ╡──	<pre>[]</pre>	11
		, 
		11 =
		1
		11 =
		1
		*
	\//_=	1
		*
		1
		11
	\/_=	/
	{ // =/	/
		11
		/11 ==
		/
	· · · · = /	11
		)
		11
		1
	, Apa¢ne	
		1
	5	
		1
		11
		11
		ĥ
 ]		
		11
		1)
	Gra	11
	Gra	11
	Gra	11
	Ģrax Unit	11
	Gra	11
	Ģrav Unit Apa	11
	Ģrav Unit Apa¢	11
	Ģrav Unit Apa¢	11
	Ģray Unit Apache L	11
	Ģray Unit Apache L	11
	Ģray Unit Apache L	11
	Ģray Unit Apache L	11
	Ģray Unit Apache L	11
	Ģray Unit Apache Leap / Tutf	11
	Ģray Unit Apache Leap / Tutf	11
	Ģray Unit Apache Leap / Tutf	11
	Ģray Unit Apache Leap / Tutf	11
	Ģray Unit Apache L	11



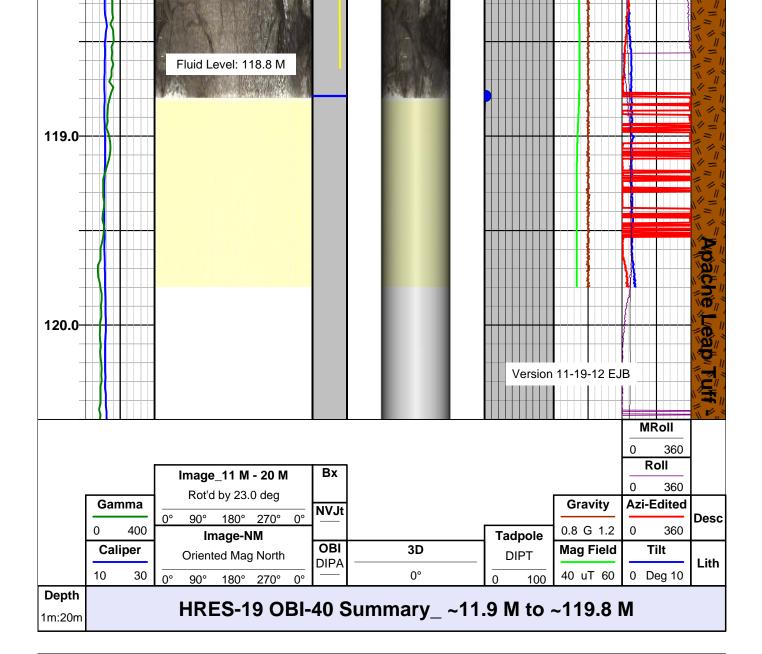

	{		<u> </u>
			₹ <u>\</u>
		<u>}</u>	
•			
		[	
		<u>}</u>	
		<b>                                 </b>	
			{// =/ /
1			
			Apao
		<u>}</u>	
		🦷 🕽 🗍 🗍	














		<u>}</u>	1-1
		( <u>)</u>	
		{{	{{}
	ļ ļ		
		5	
		8	
		12	
		<u> </u>	<b>B</b>
	╞┼┼┋		
			{\?
			{ (S)
			\// = //
		<b>\</b>	
		X	
			\ \ \ \ \ \ \ \
			// = /
			1
		1	{ // /
	• • •	<b>  <u> </u>                                   </b>	{
•			
•			
•			



## **Optical Image Summary Legend**

## **Mnemonics and Comments**

Caliper Gamma Image-NM	<ul> <li>= 3-arm mechanical caliper of hole diameter plotted from 10-30 inches (blue line).</li> <li>= Natural gamma ray log plotted from 0 to 400 API units (green line).</li> <li>= 2D plot of optical image oriented to magnetic north. Plotted from left to right N-E-S-W-N.</li> </ul>					
Image_11.	<b>DM - 20.0M</b> = 2D plot of optical image non-oriented and rotated by 99.5 deg to correct for magnetic affect in proximity of steel casing. Plotted from left to Right N-E-S-W-N.					
OBI	= Planar features picked on optical borehole image shown as colored sinusoid (color designation shown on header). DIPA = dip apparent hole axis.					
Bx	<ul> <li>Apparent Breccia or Congomerate zones and Vugs/Vesicles/Cavities.</li> </ul>					
NVJt	= Near Vertical (near parallel to hole axis) joint/fracture features picked on acoustic borehole image shown as colored sinusoid (color designation shown on header).					
3D	= 3D cylindrical projection of OBI image viewed from north.					
Tadpole	<ul> <li>Tadpole plot of the image feature picks (fractures and bedding planes); plotted from 0 to 90 dip</li> <li>see legend above. DIPT = True orientation; features corrected for hole deviation.</li> </ul>					
Mag Field	= Total magnetic field strength as measured by fluxgate magnetometer in OBI deviation sensor					

- plotted 40-60 uT (green line).						
<b>Gravity</b> = Tool accelleration or gravity as measured by 3-axis accellerometers in OBI deviation sens plotted 0.8 - 1.2 G (brown line).						
Azi-Edited	= Direction of tool tilt plotted 0 to 360 deg; edited for anomalous magnetic influence - represents borehole deviation direction (red line).					
<b>Roll</b> = Roll or gravity tool face angle is plotted 0 to 360 degrees. Roll is 90 degree if the y-axis of th probe (reference mark on the housing) points to the high side of the borehole. (purple line)						
MRoll	= MRoll or Magnetic Roll angle is plotted 0 to 360 degrees. MRoll is used when Tool Tilt is < 1 deg from vertical and two components of accelerometer are close to zero. At vertical, MRoll is 90 degree if the projection of the y-axis of the probe (reference mark on the housing) into a horizontal plane points to Magnetic North. (black line)					
<b>Tilt</b> = Tool tilt (vertical = 0 and horizontal = 90) plotted 0 to 10 deg; represents borehold from vertical (blue line).						
Lith	n = Major/principal lithology based on field geologic descriptions provided by Clear Creek staff.					
Desc	<b>sc</b> = Major/principal field geologic descriptions provided by Clear Creek staff.					
Prepared by Erika J. Beam Version 11-20-12						

Kint	Sou	Southwest Exploration Services, LLC	, LE	Cxplo	ra	tion	
	boreh	borehole geophysics & video services	ysics &	t video	servi	ices	
	COMPANY WELL ID	RESOLUTION COPPER CO HRES-19 (ADWR 55-914789)	V COPPER WR 55-91	, CO 4789)			
	WELL ID FIELD	HRES-19 (ADA RESOLUTION	WR 55-91. V	4789)			
	COUNTY	PINAL		STATE		ARIZONA	
	<b>TYPE OF LOGS:</b>	LOGS: ABI-43	43			OTHER SERVICES	CES
	<b>MORE:</b>		<b>3-ARM CALIPER</b>	ER		OBI GAMMA-CALIPER-	PER-
	LOCATION D(2-13)8AAA					FLUID TEMP-RES E-LOGS SONIC	RES
	SEC 8	TWP 2S	RGE	13E			
PERMANENT DATUM			ELEVATION		H	K.B.	
LOG MEAS. FROM	GROUND LEVEL		ABOVE PERM. DATUM	JM		D.F.	
DRILLING MEAS. FROM GROUND LEVEL	GROUND LEVE	Ľ				G.L.	
DATE	11-4-12		TYPE FLUID IN HOLE	D IN HOLE	F	FRESH WATER	~
RUN No	1		SALINITY	TY	7	N/A	
TYPE LOG	ABI-43 3	ABI-43 3 ARM CALIPER	DENSITY	Y	7	N/A	
DEPTH-DRILLER	291.5 M		LEVEL			119.2 M	
DEPTH-LOGGER			MAX. REC. TEMP.	. TEMP.	- 12	23.5 DEG C	
BTM LOGGED INTERVAL TOP LOGGED INTERVAL	L 291.5 M L 119.2 M		IMAGE ORIENTED T SAMPLE INTERVAL	IMAGE ORIENTED TO: SAMPLE INTERVAL	0	0.0096FT	
DRILLER / RIG#	BOART LONGYEAR	ONGYEAR	LOGGING TRUCK	TRUCK	L	TRUCK -300	
RECORDED BY / Logging Eng.		K. MITCHELL/E. BEAM	TOOL STRING/SN	ING/SN	1	ALT ABI-43 S	SN-91601
WITNESSED BY		CLEAR CREEK-BARRY	LOG TIME	LOG TIME: ON SITE/OFF SITE		7:30 AM	5:00 PM
RUN BOREHOLE RECORD	ECORD		CASING RECORD	ECORD			
NO. BIT ]	FROM	TO	SIZE	WGT.	FROM		ТО
1 20"	SURFACE	11.9 M	15 3/4"	HWT	SURFACE		11.9 M
2 14 3/4" 3	11.9 M	TD					
COMMENTS:							

### **Major Lithology**

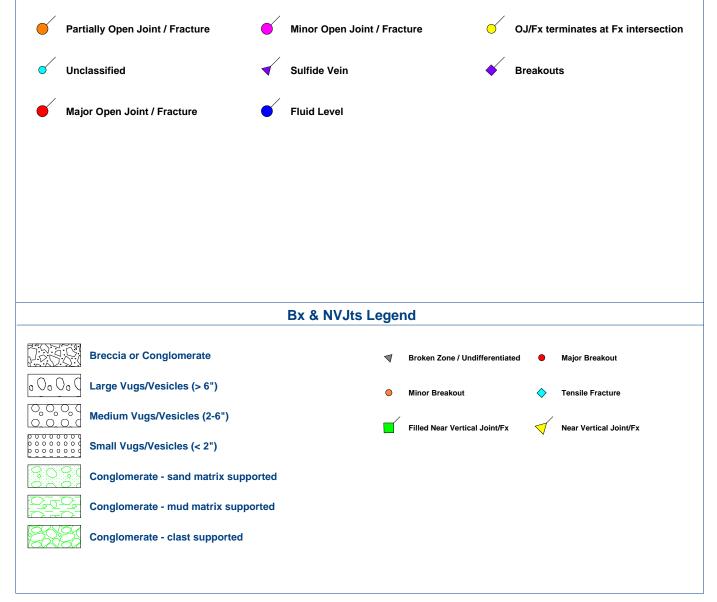


Apache Leap Tuff - Gray Unit

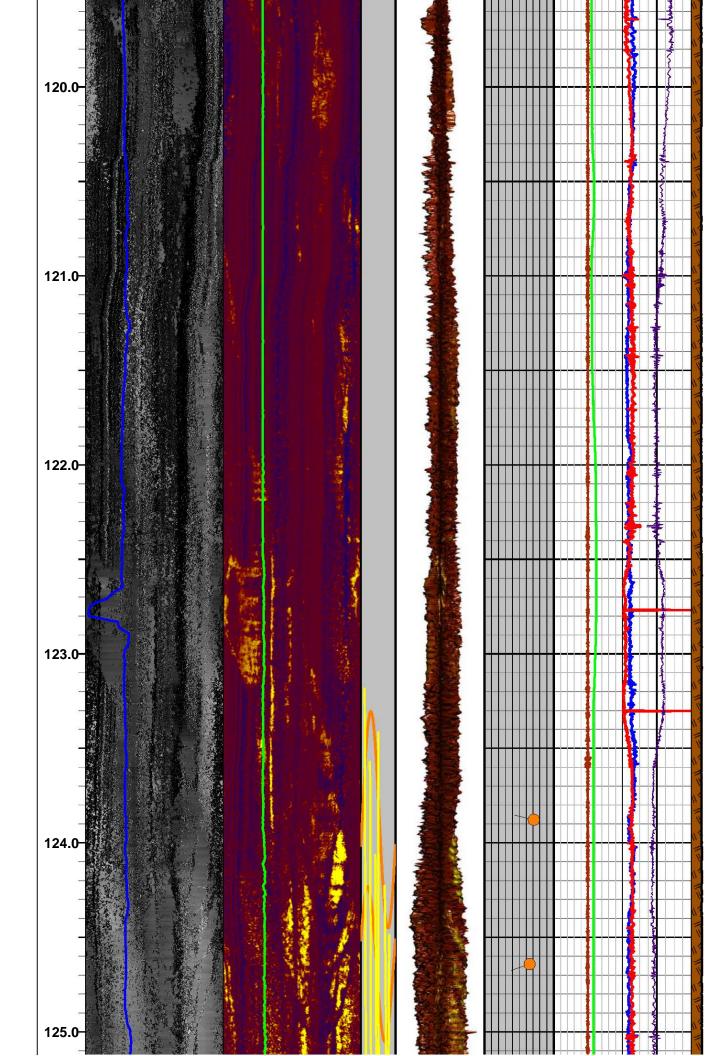
Apache Leap Tuff - Brown Unit

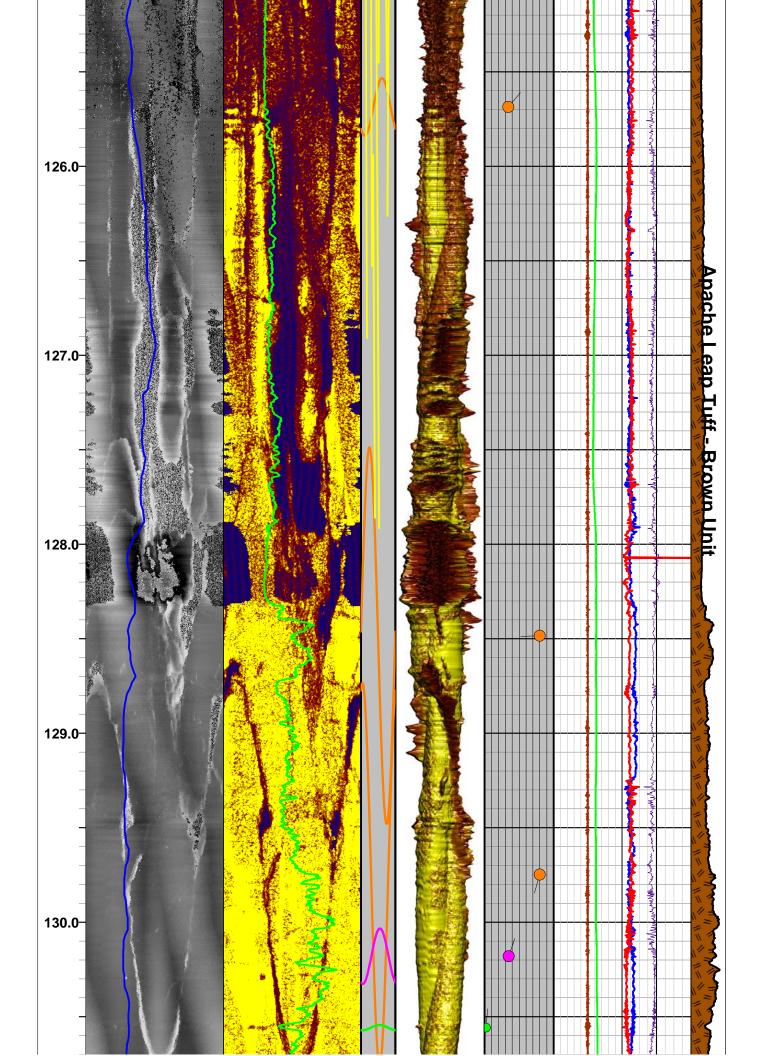


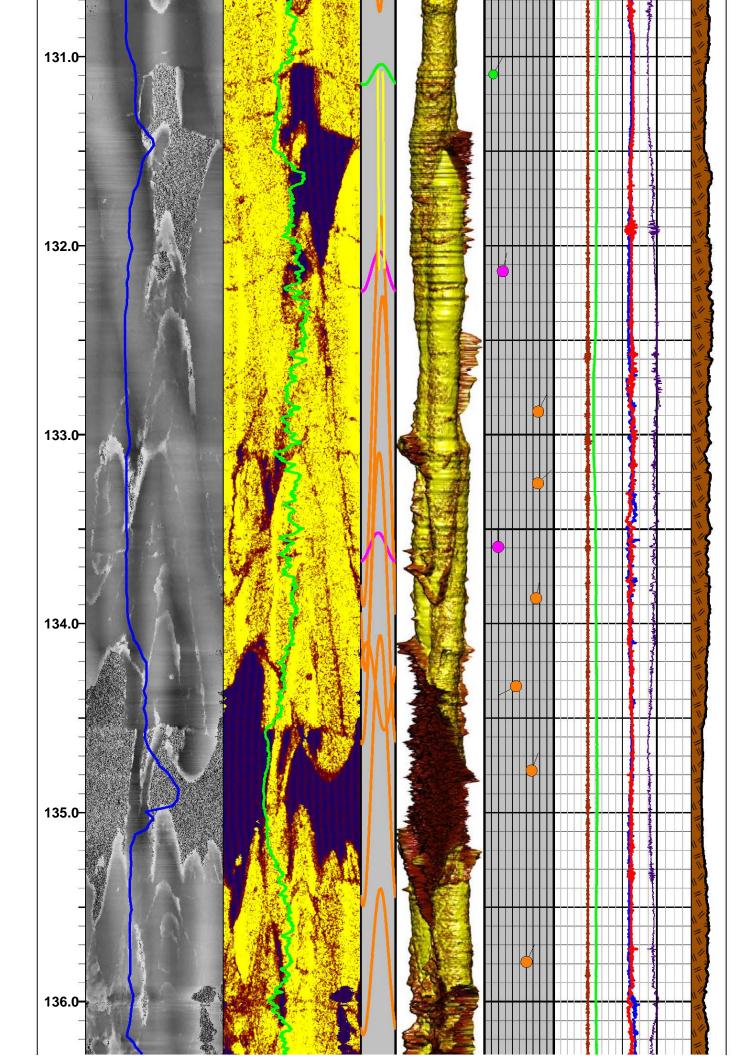
**Basal Tuff - Vitrophyre** 

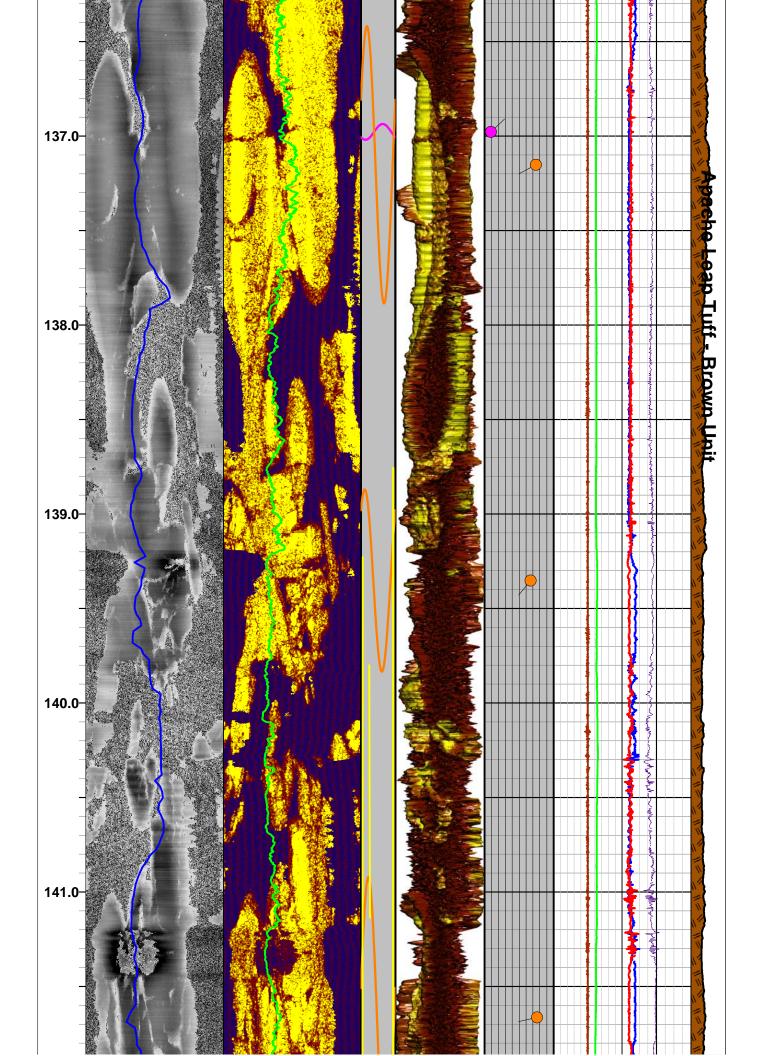


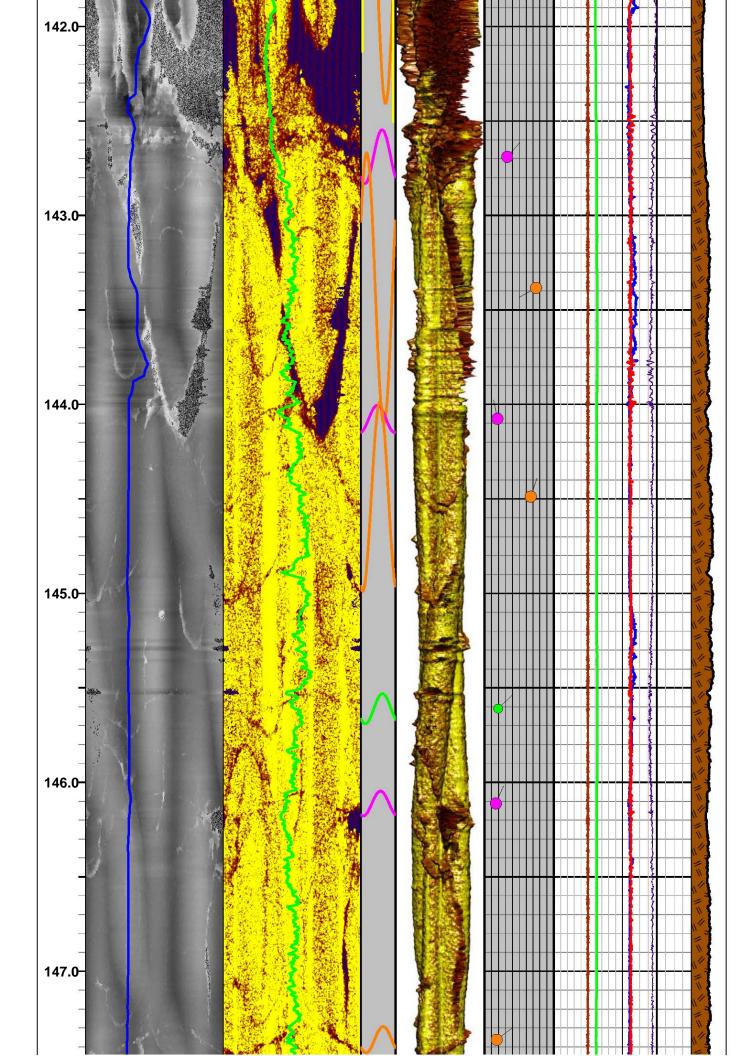

**Basal Tuff** 

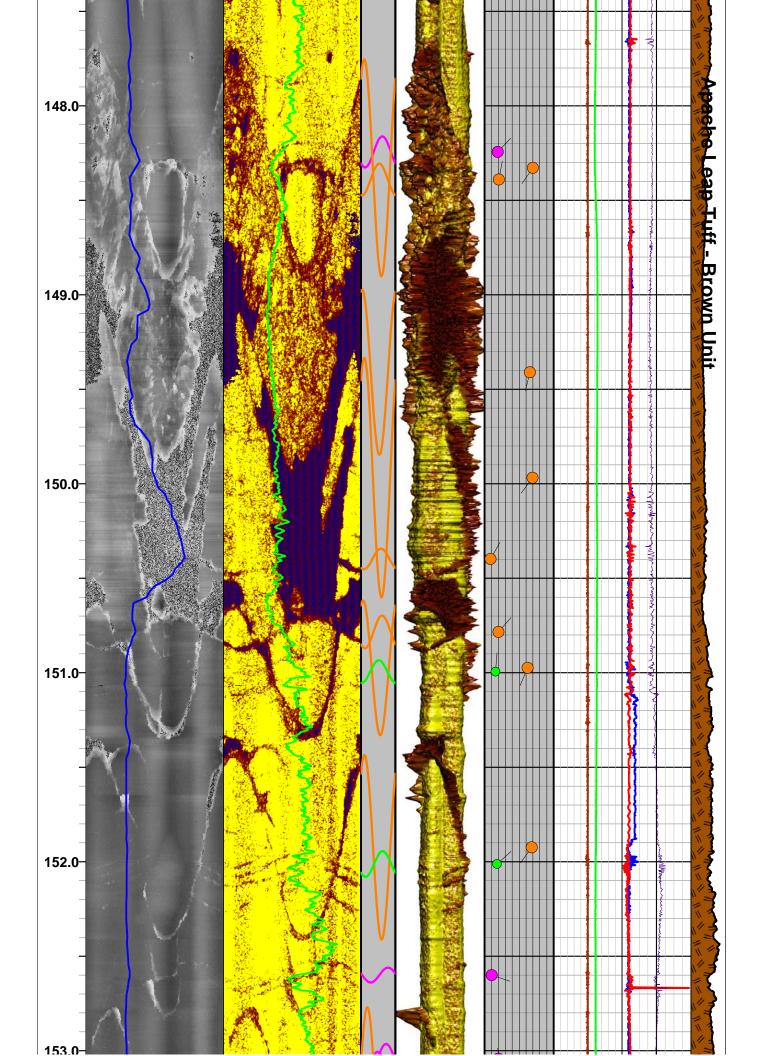

**Transition Zone** 

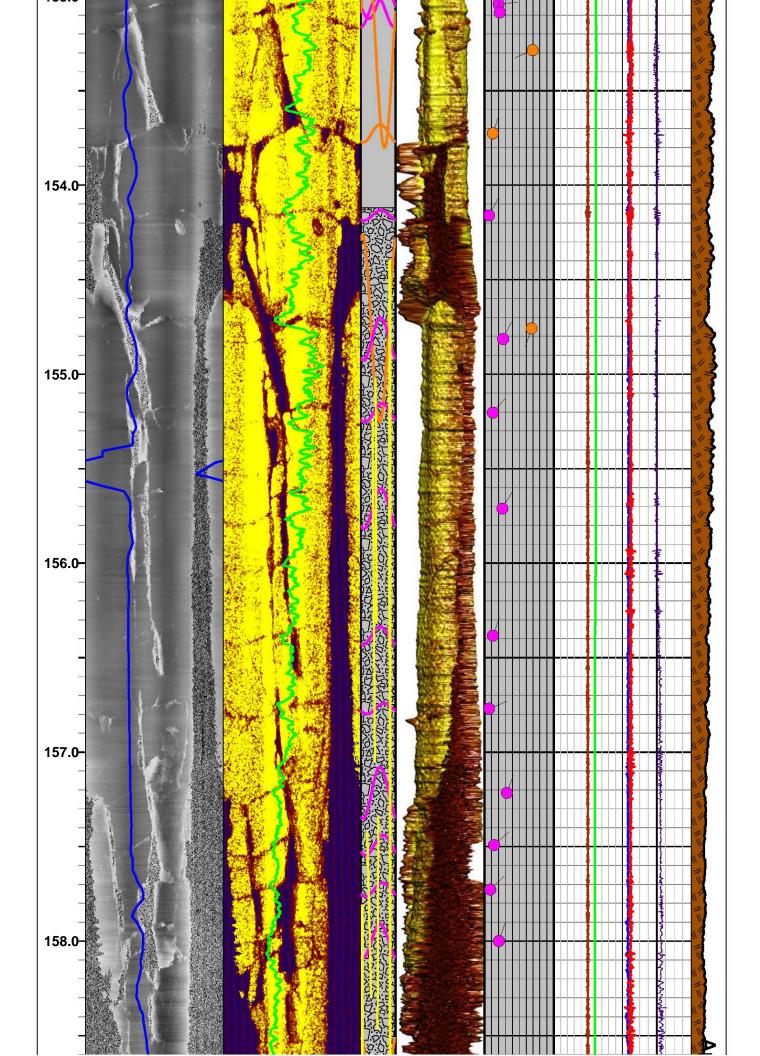

#### Acoustic Image Features Legend

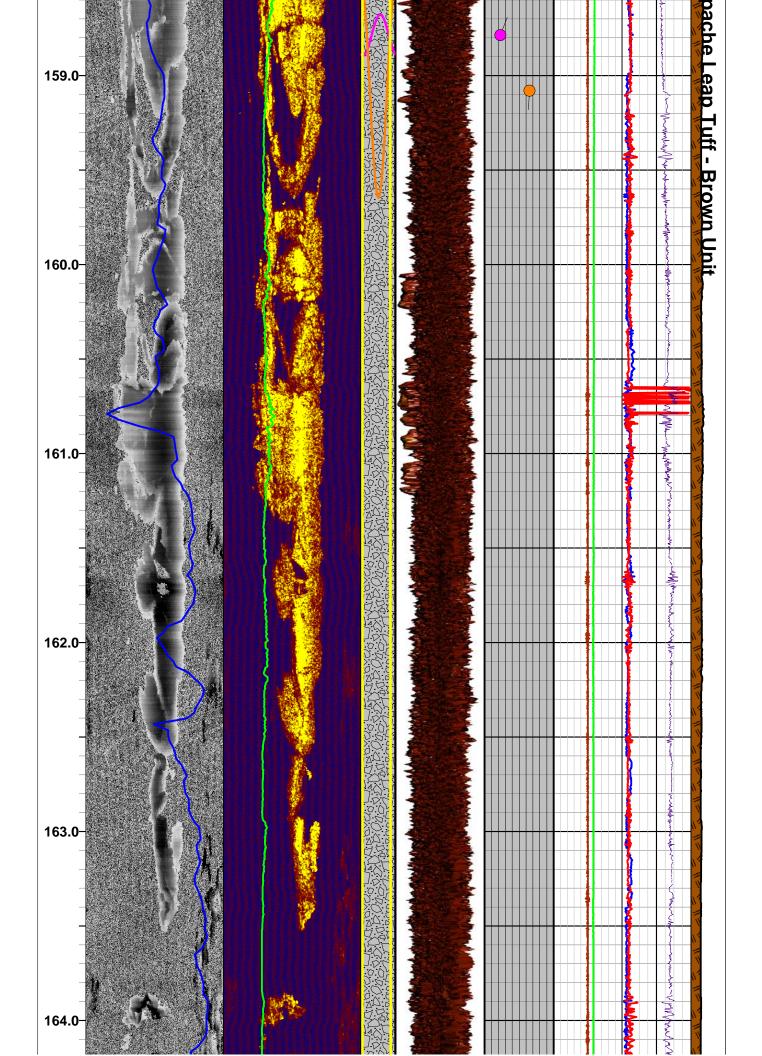


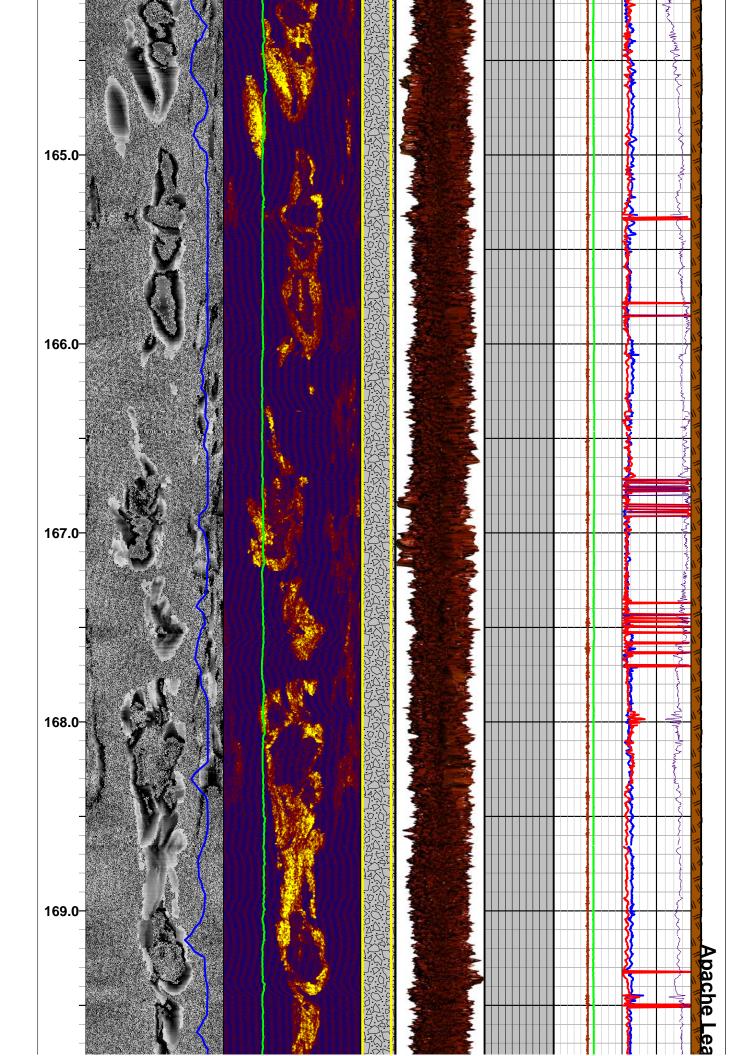



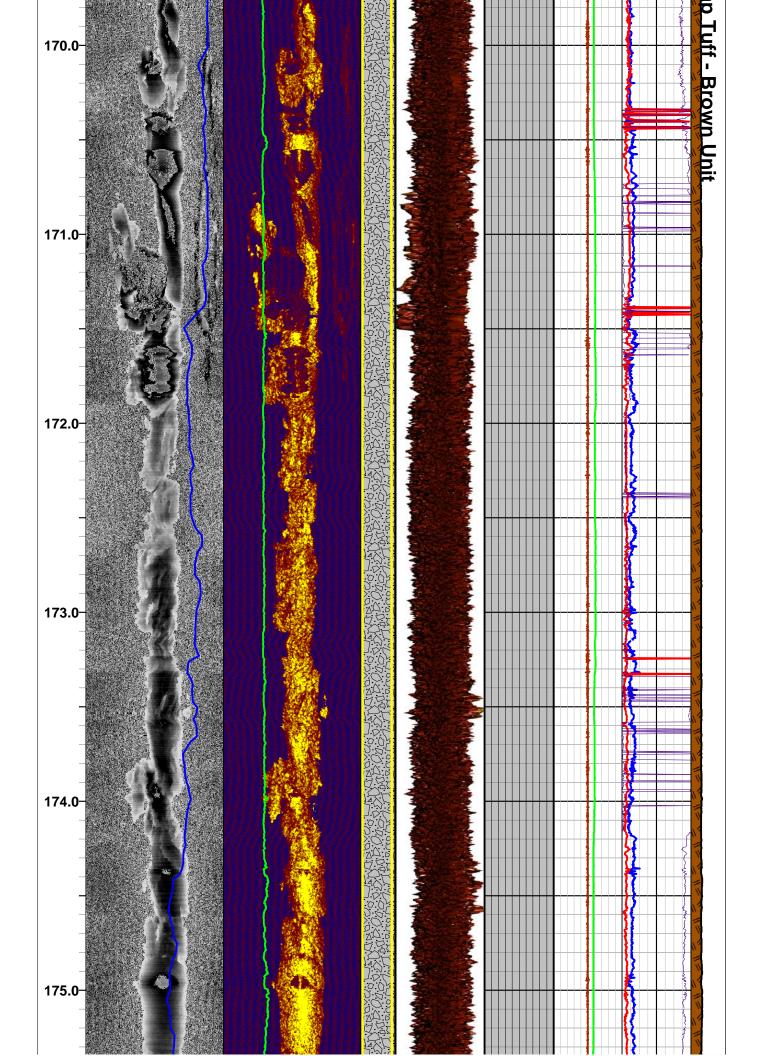


HRES	6-19 ABI-43 Su	mm	ary_ ~119	0.0 M to	~289.6	М	
Centralized TT	Amplitude-NM	ABI	3D	Tadpole	Mag Field	Tilt	Lith
Oriented Mag North	Oriented Mag North	DIPA		DIPT	40 uT 60	0 deg 10	Lith
0° 90° 180° 270° 0°	0° 90° 180° 270° 0°		0°	0 100	Gravity	Azimuth	Hard
Caliper	Amp-Static	NVJt		0 100	0.8 g 1.2	0 360	паги
10 Inches 30	Oriented Mag North					RBR	Desc
	0° 90° 180° 270° 0°	Bx				-90 270	Desc
	Amp-High Pass						
	Oriented Mag North						
	0° 90° 180° 270° 0°						
	ARI						
	0 400						
							\$\$\#
	** 1		3		1	ट र	W
			1				N2
							1
							N ²
							11
	Centralized TT Oriented Mag North 0° 90° 180° 270° 0° Caliper	Centralized TT       Amplitude-NM         Oriented Mag North       Oriented Mag North         0° 90° 180° 270° 0°       0° 90° 180° 270° 0°         Caliper       Amp-Static         10       Inches       30         0° 90° 180° 270° 0°       0° 90° 180° 270° 0°         Amp-Static       Oriented Mag North         0° 90° 180° 270° 0°       0°         Amp-High Pass       Oriented Mag North         0° 90° 180° 270° 0°       Amp-High Pass         Oriented Mag North       0° 90° 180° 270° 0°	Centralized TT         Amplitude-NM         ABI           Oriented Mag North         Oriented Mag North         DIPA           0° 90° 180° 270° 0°         0° 90° 180° 270° 0°         DIPA           Caliper         Amp-Static         NVJt           10         Inches 30         Oriented Mag North         Bx           Amp-High Pass         Oriented Mag North         Bx           Amp-High Pass         Oriented Mag North         Amp-High Pass	Centralized TT       Amplitude-NM       ABI       3D         Oriented Mag North       Oriented Mag North       0° 90° 180° 270° 0°       DIPA       0°         Caliper       Amp-Static       NVJt       0°       0°       0°         10       Inches       30       Oriented Mag North       Bx         0° 90° 180° 270° 0°       Amp-High Pass       Bx         Oriented Mag North       0° 90° 180° 270° 0°       ARI	Centralized TT       Amplitude-NM       ABI       3D       Tadpole         Oriented Mag North       Oriented Mag North       0° 90° 180° 270° 0°       DIPA       0°       DIPT         0° 90° 180° 270° 0°       O° 90° 180° 270° 0°       NVJt       0°       100         Caliper       Amp-Static       NVJt       Bx         10       Inches       0° 90° 180° 270° 0°       Bx         Oriented Mag North       0° 90° 180° 270° 0°       Amp-High Pass       Oriented Mag North         0° 90° 180° 270° 0°       ARI       ARI       Ang	Centralized TT       Amplitude-NM       ABI       3D       Tadpole       Mag Field         Oriented Mag North       Oriented Mag North       0° 90° 180° 270° 0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0°       0° </th <th>Oriented Mag North         Oriented Mag North         DIPA         O°         DIPT         40 uT 60         0 deg 10           0°         90° 180° 270° 0°         Amp-Static         NVJt         0°         100         Gravity         Azimuth           10         Inches         30         Oriented Mag North         Bx         Amp-High Pass         Oriented Mag North         -90         270           0°         90° 180° 270° 0°         Bx         Amp-High Pass         Oriented Mag North         -90         270           0°         90° 180° 270° 0°         ARI         ARI         -         -         -         -         -         -         -         -         -         -         -         -         0         360         -         -         -         0         360         -         -         -         0         360         -         -         -         0         360         -         -         0         270         270         -         -         -         -         0         360         -         -         0         270         -         -         -         -         0         270         -         -         -         0         270</th>	Oriented Mag North         Oriented Mag North         DIPA         O°         DIPT         40 uT 60         0 deg 10           0°         90° 180° 270° 0°         Amp-Static         NVJt         0°         100         Gravity         Azimuth           10         Inches         30         Oriented Mag North         Bx         Amp-High Pass         Oriented Mag North         -90         270           0°         90° 180° 270° 0°         Bx         Amp-High Pass         Oriented Mag North         -90         270           0°         90° 180° 270° 0°         ARI         ARI         -         -         -         -         -         -         -         -         -         -         -         -         0         360         -         -         -         0         360         -         -         -         0         360         -         -         -         0         360         -         -         0         270         270         -         -         -         -         0         360         -         -         0         270         -         -         -         -         0         270         -         -         -         0         270

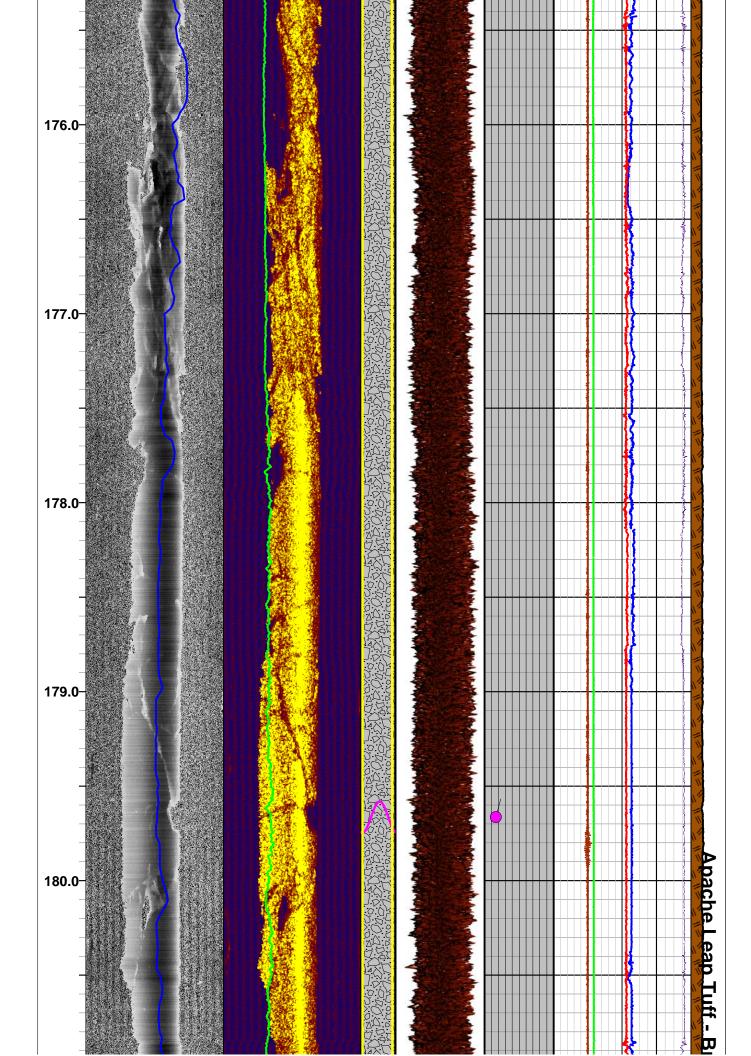


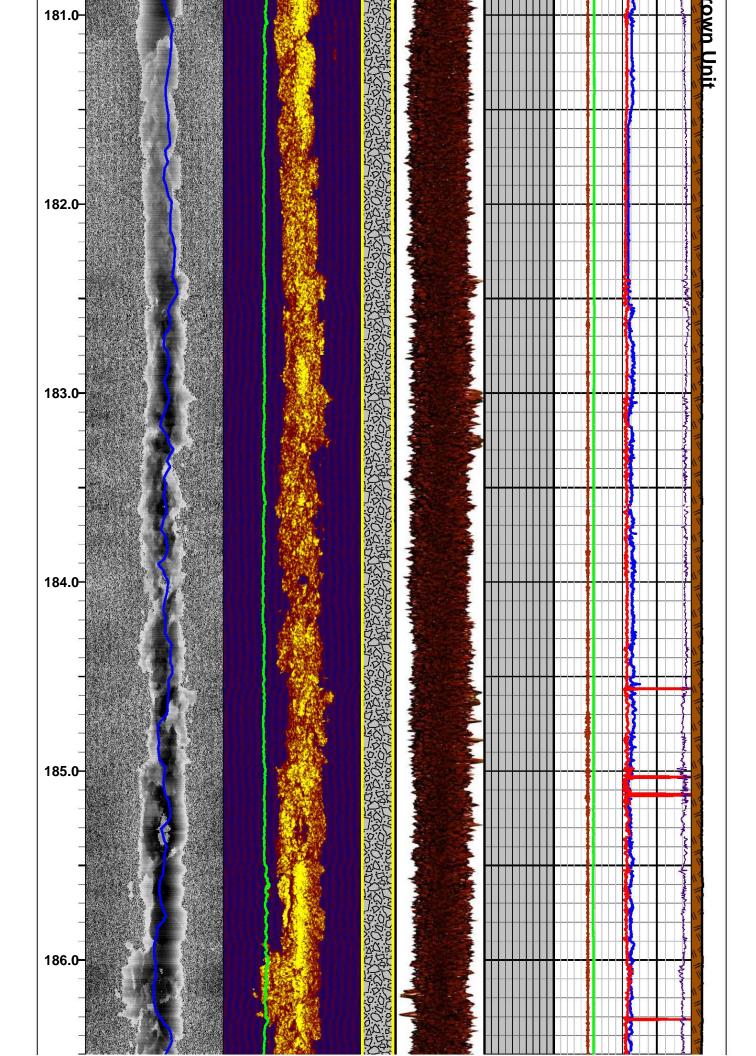



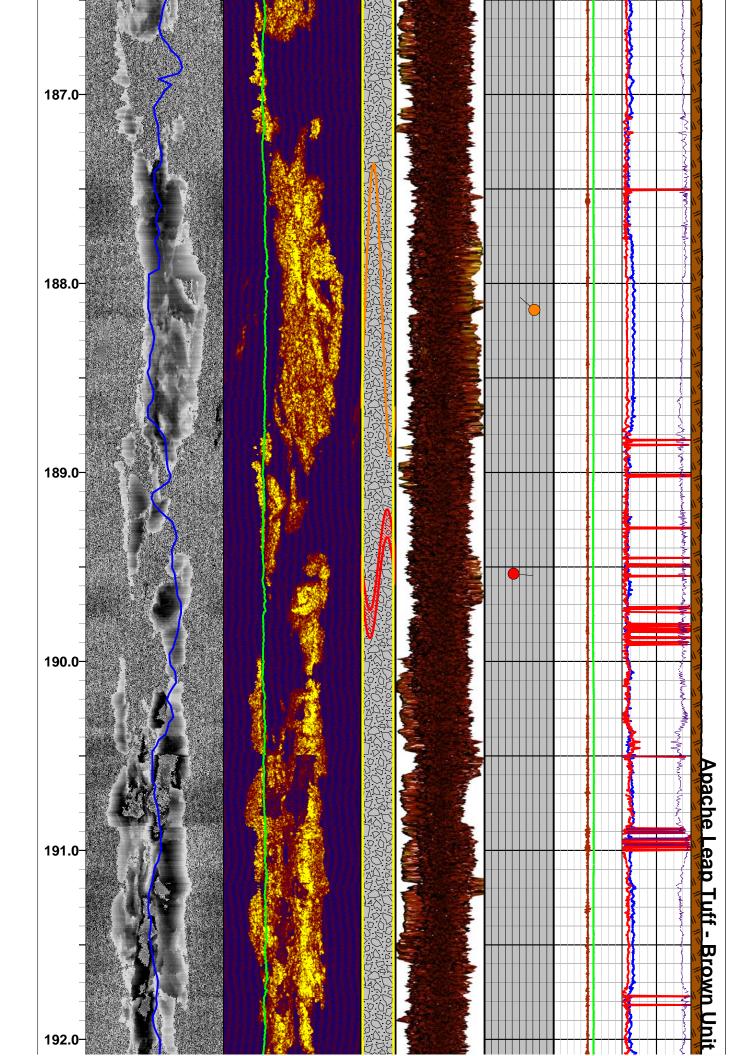



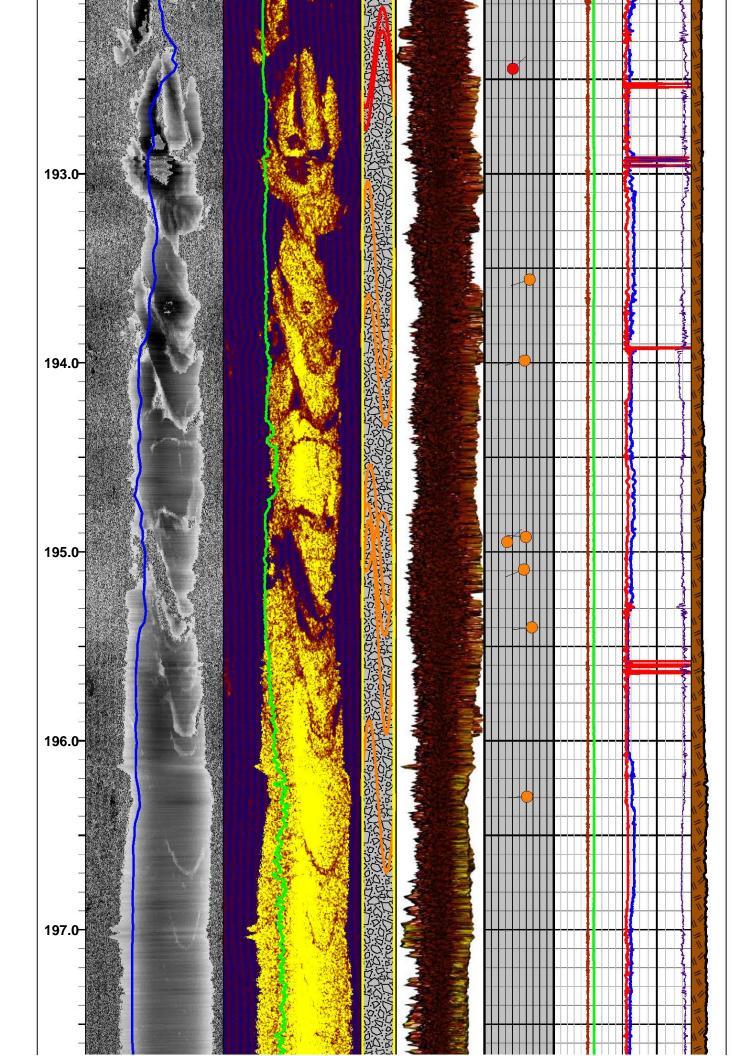



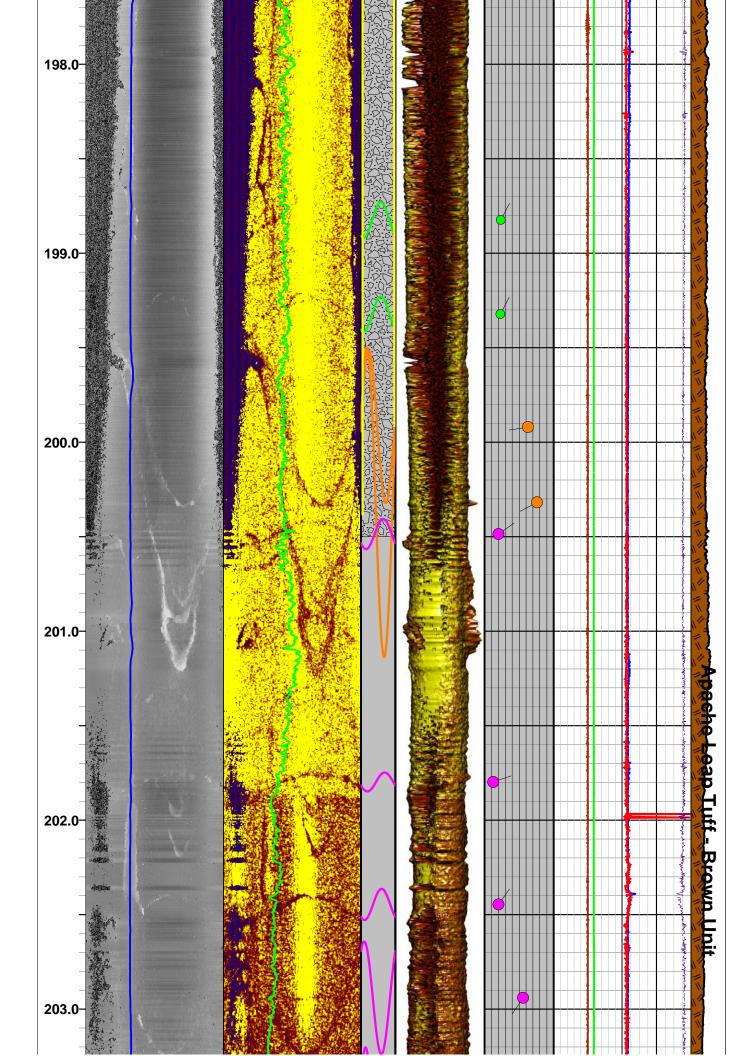



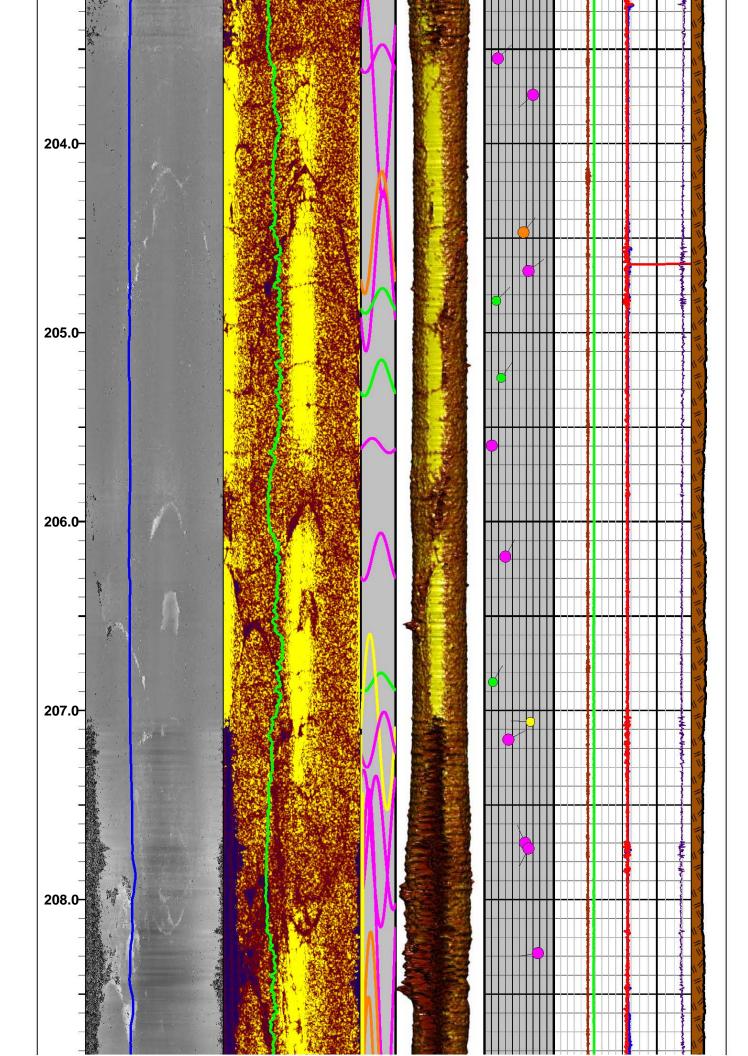



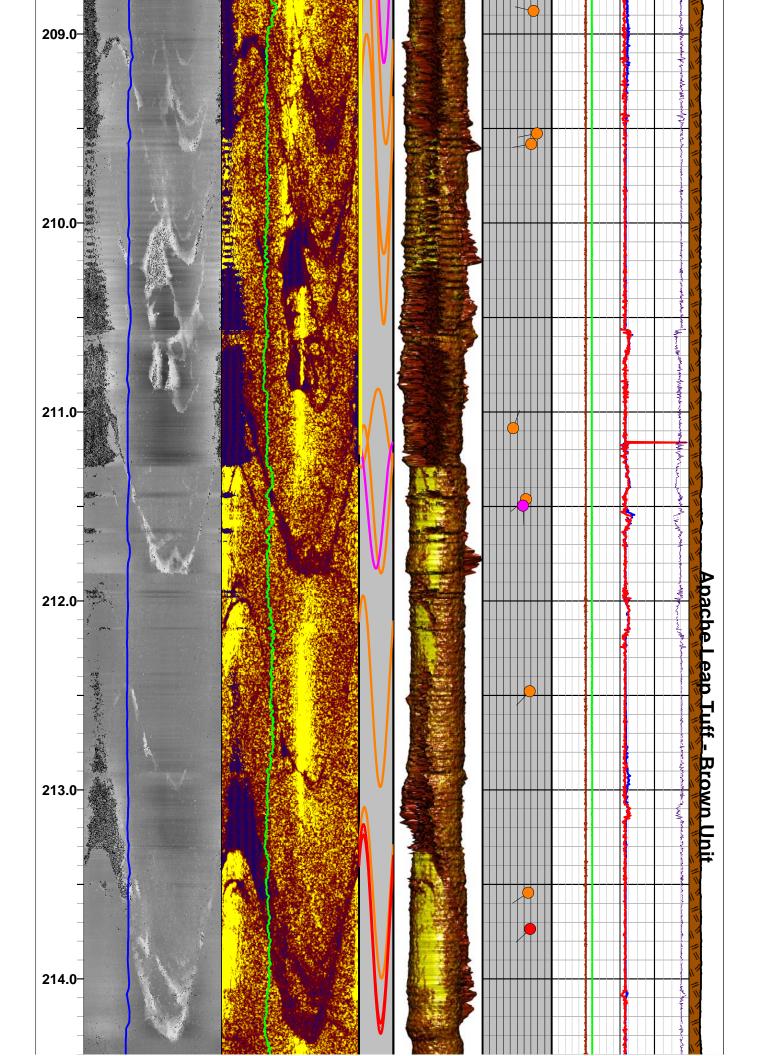



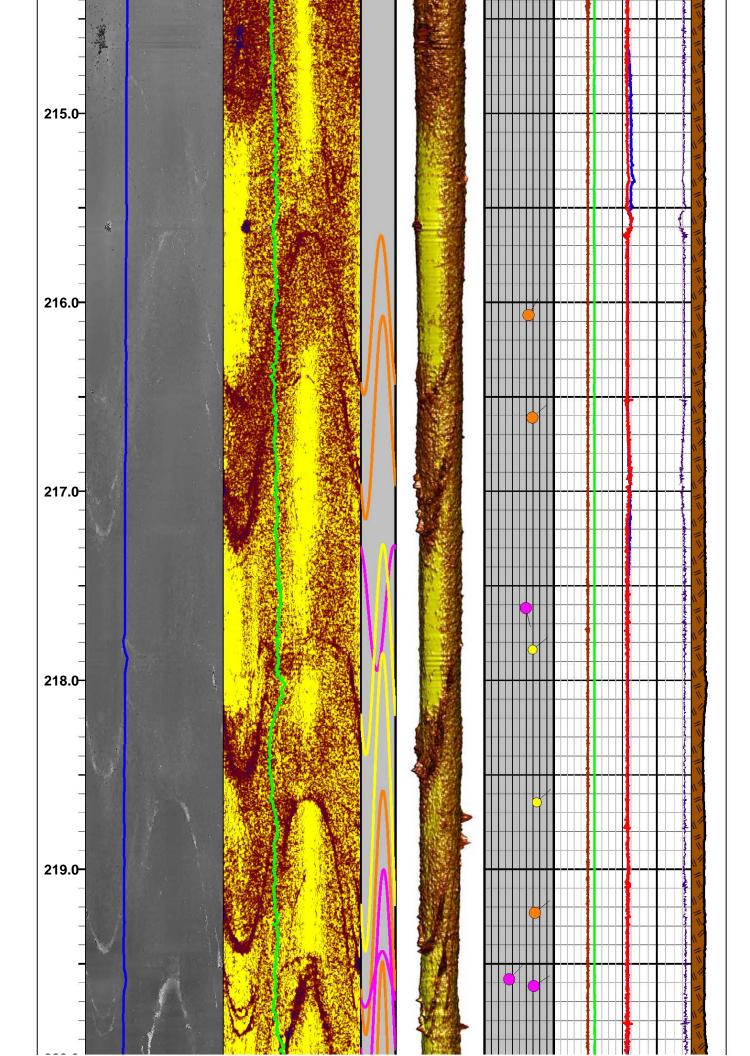



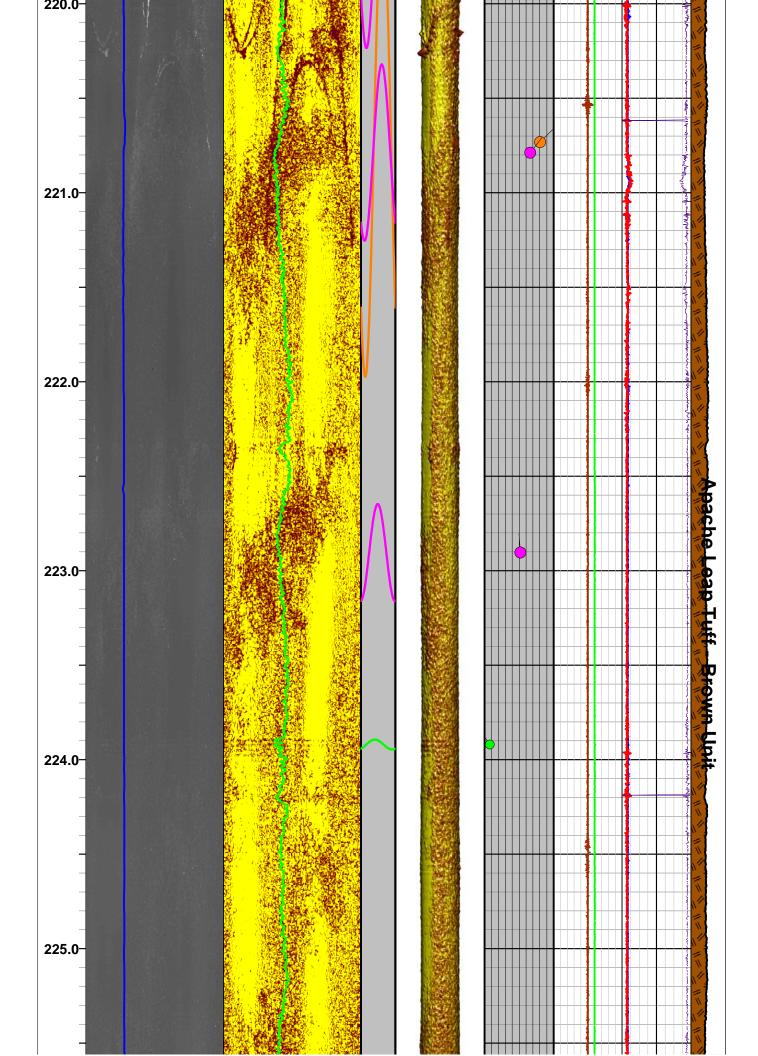



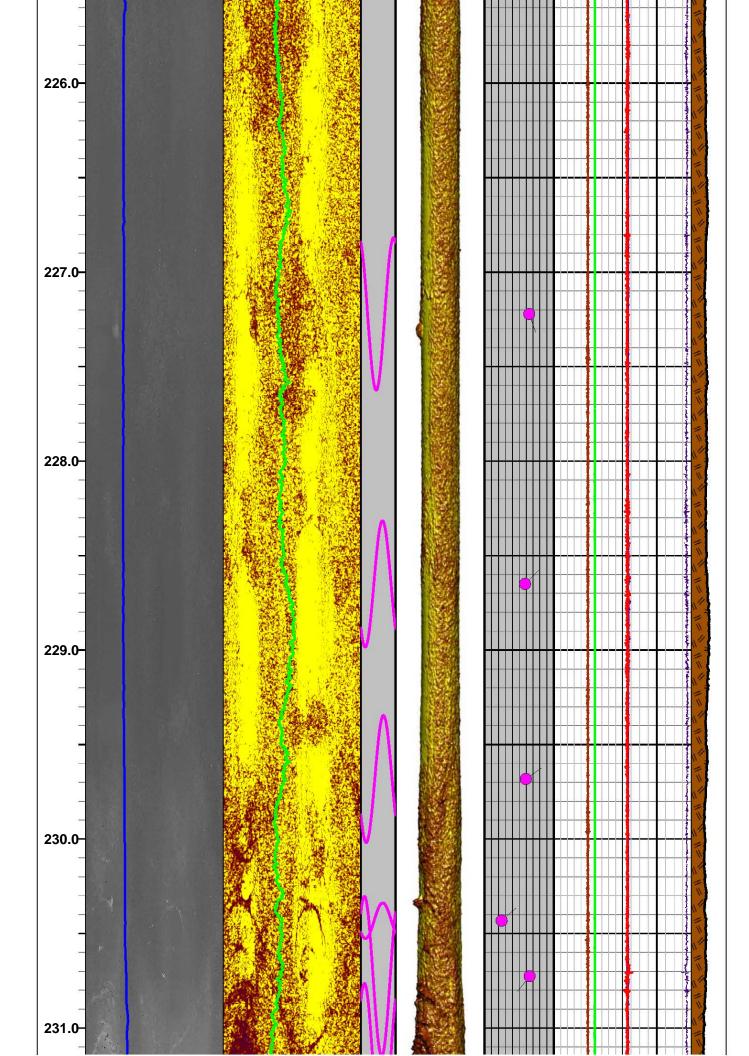



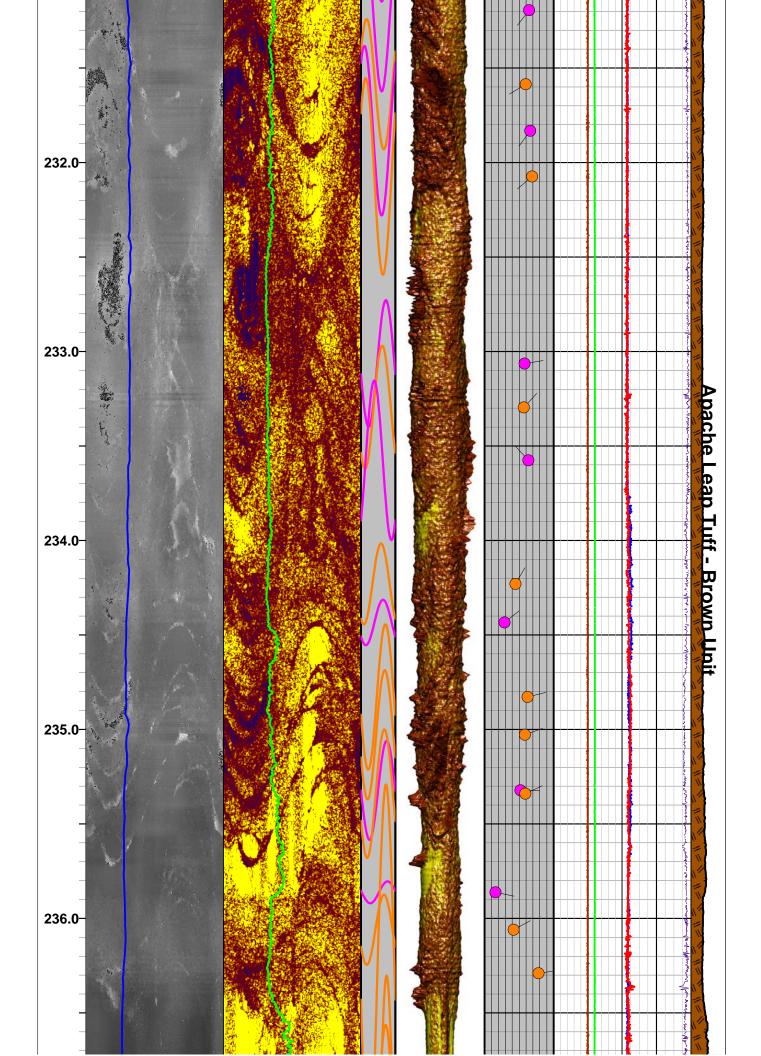



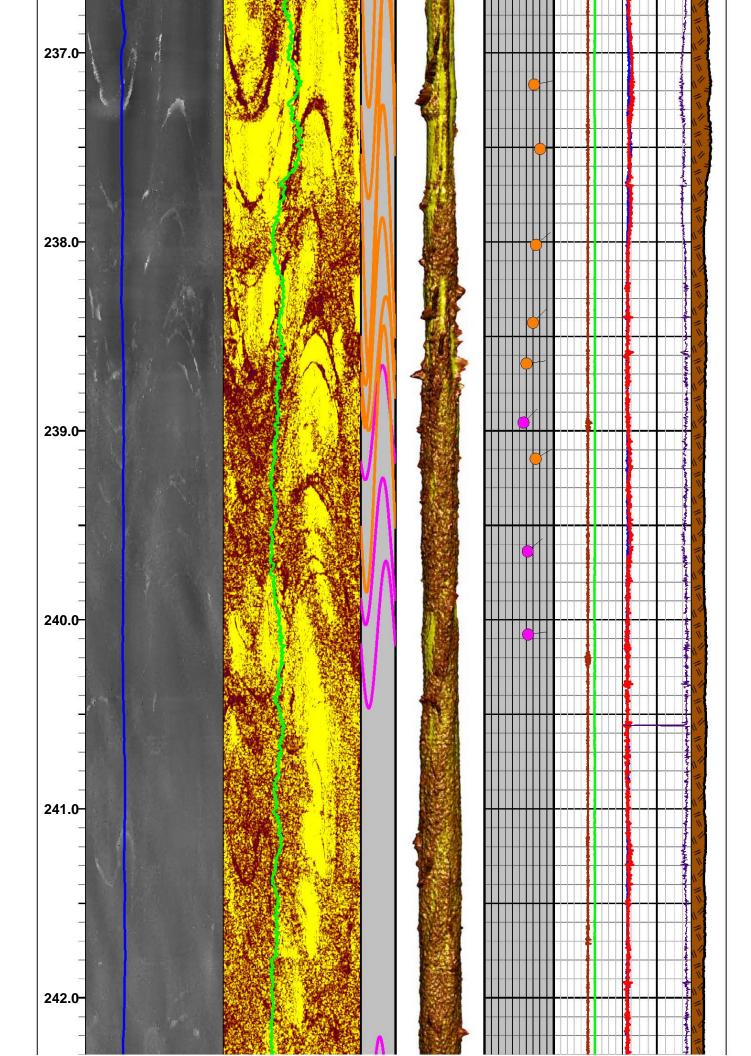



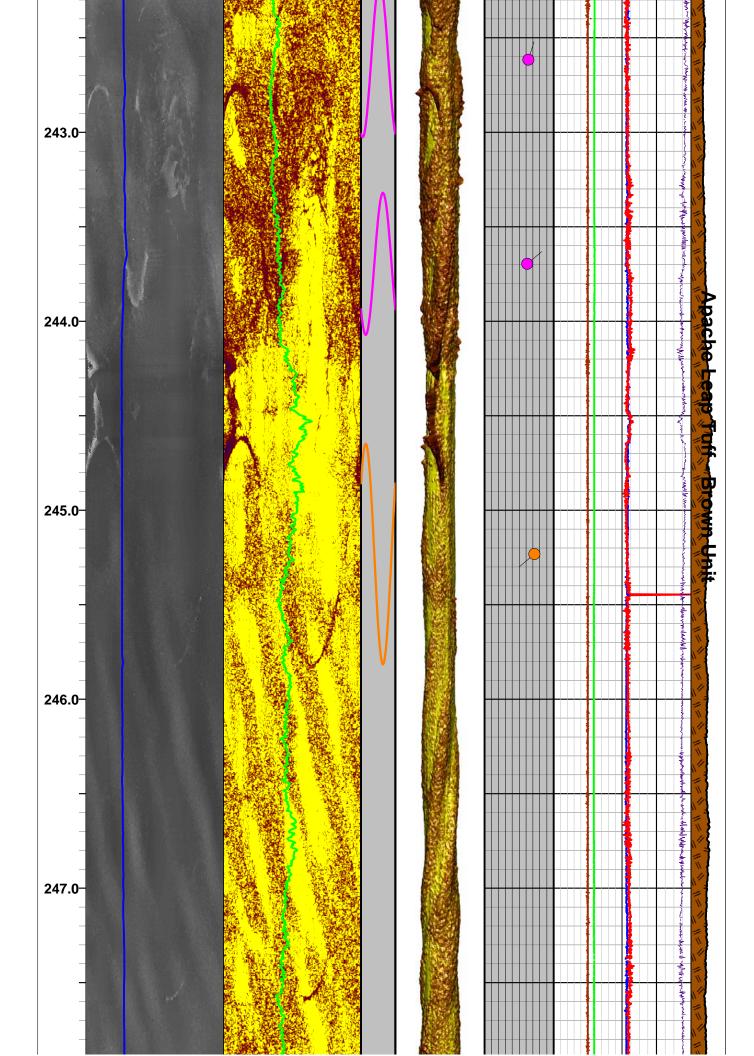



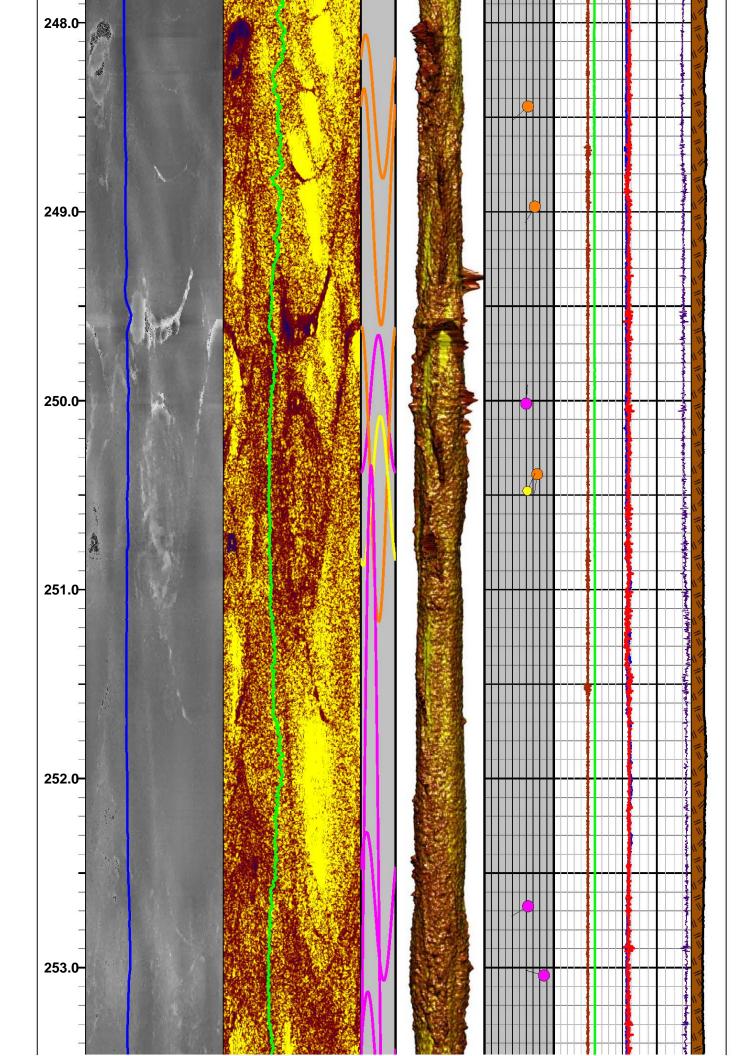



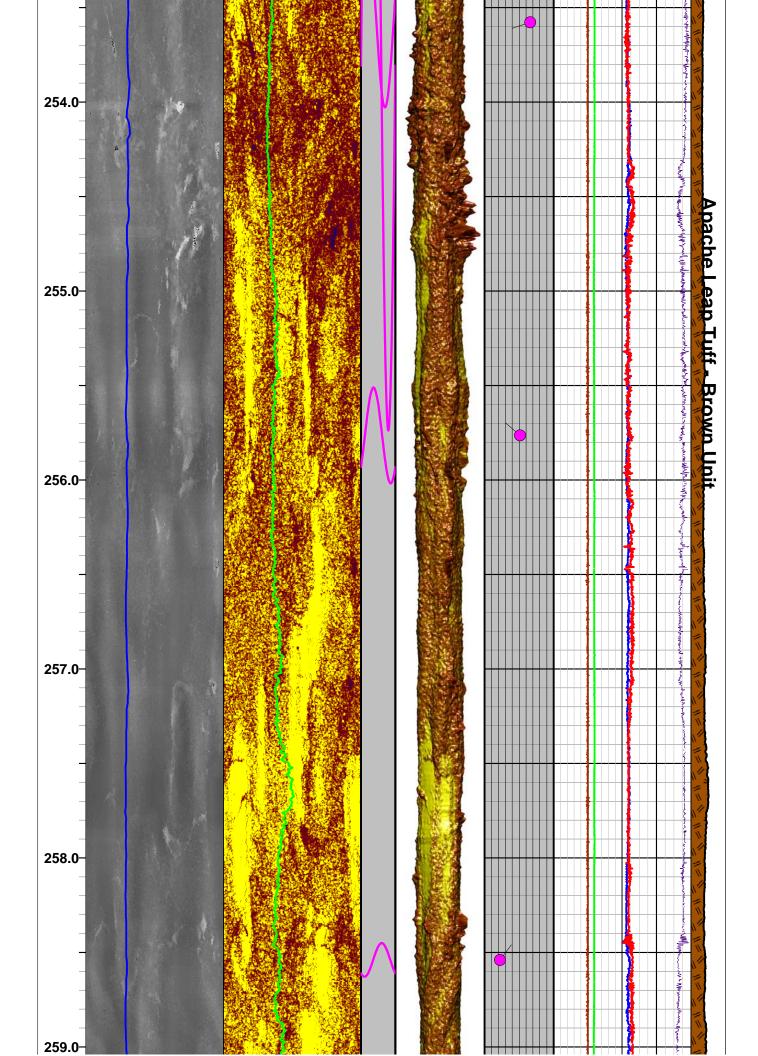



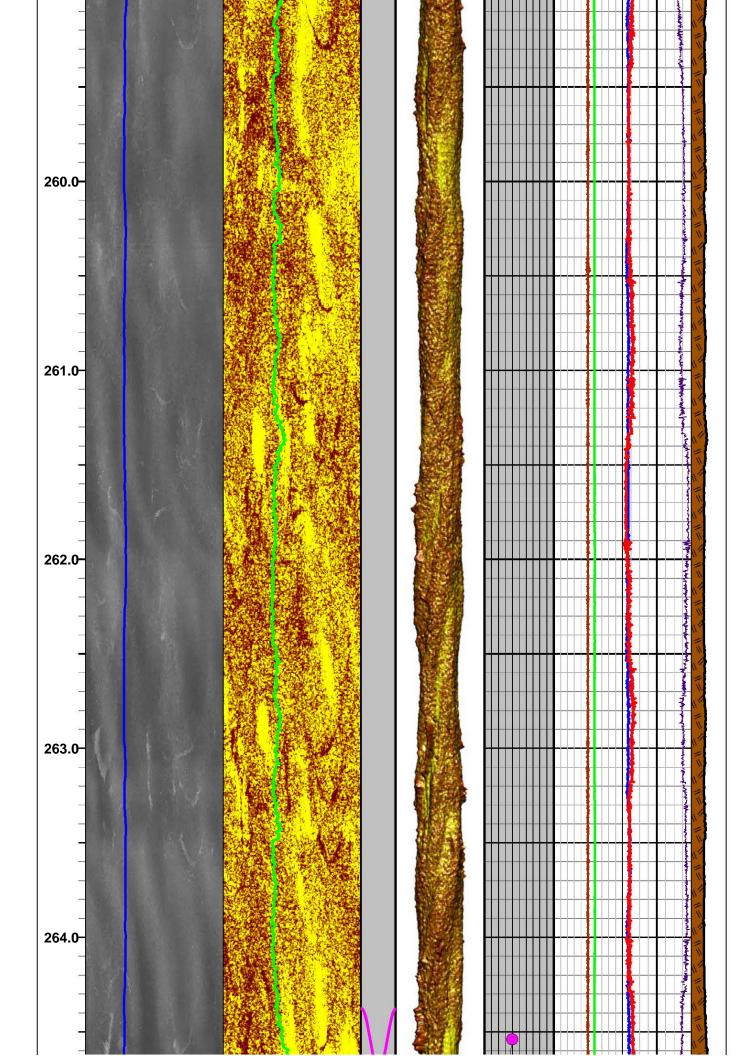



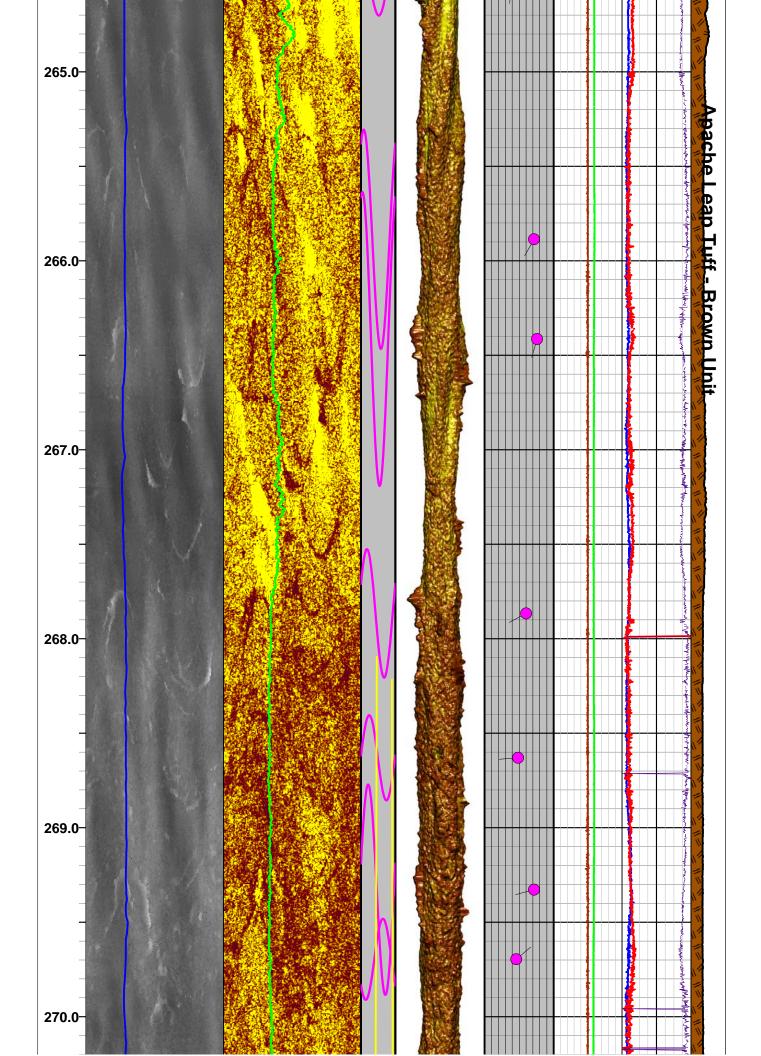



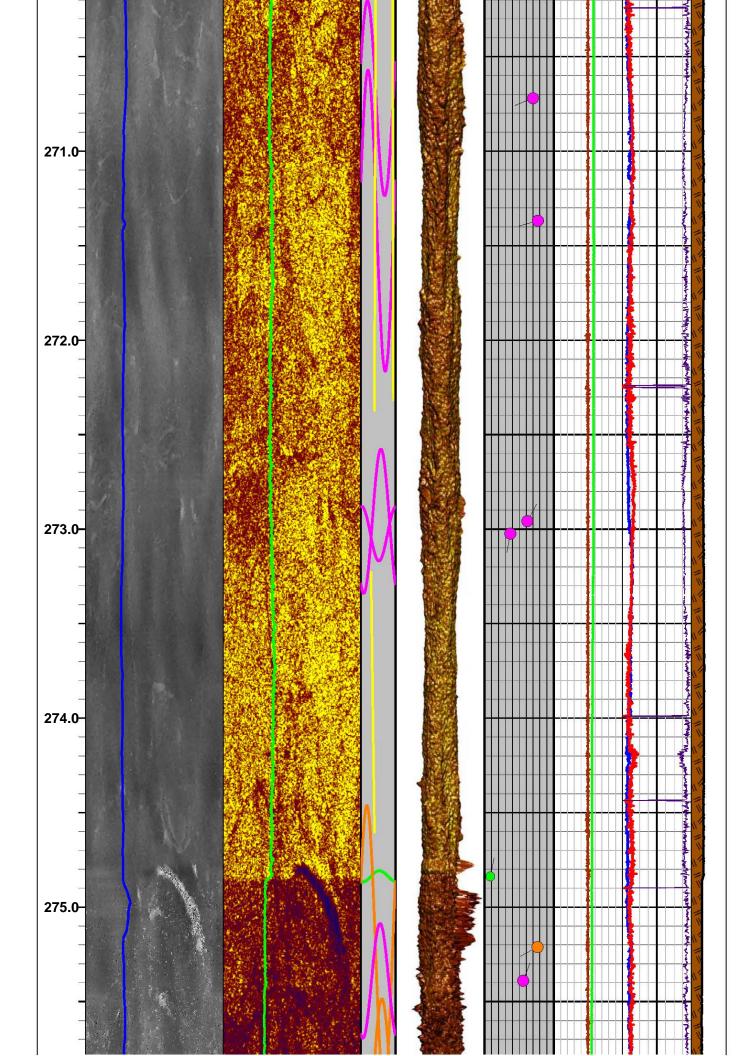



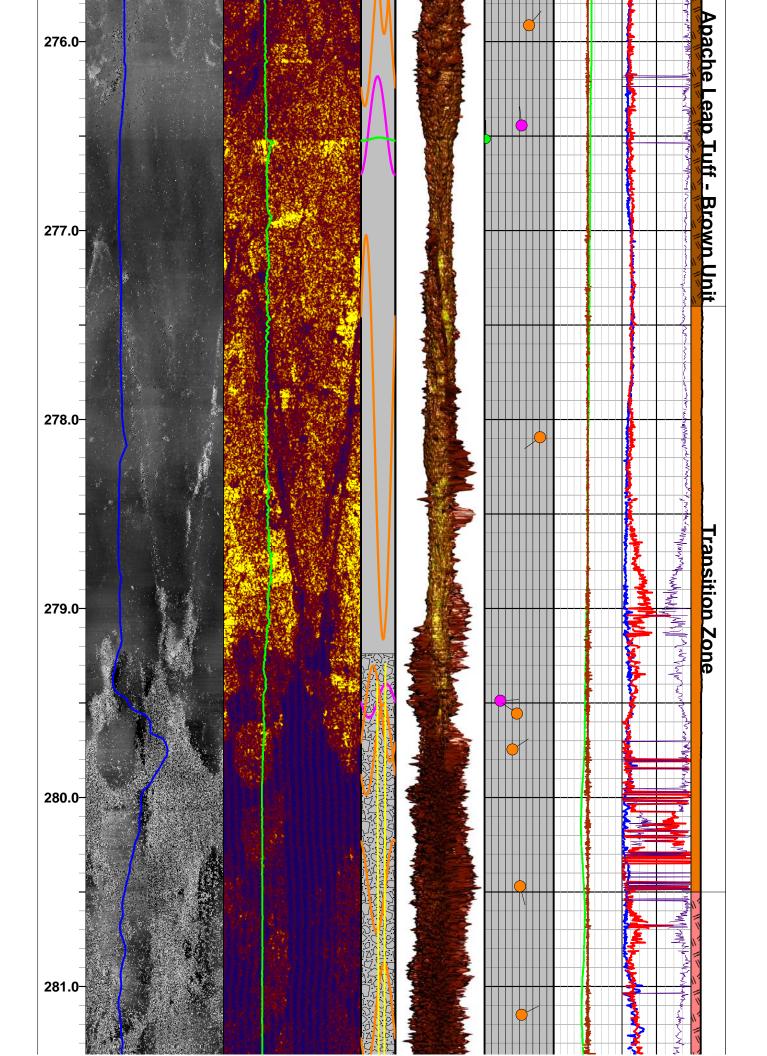



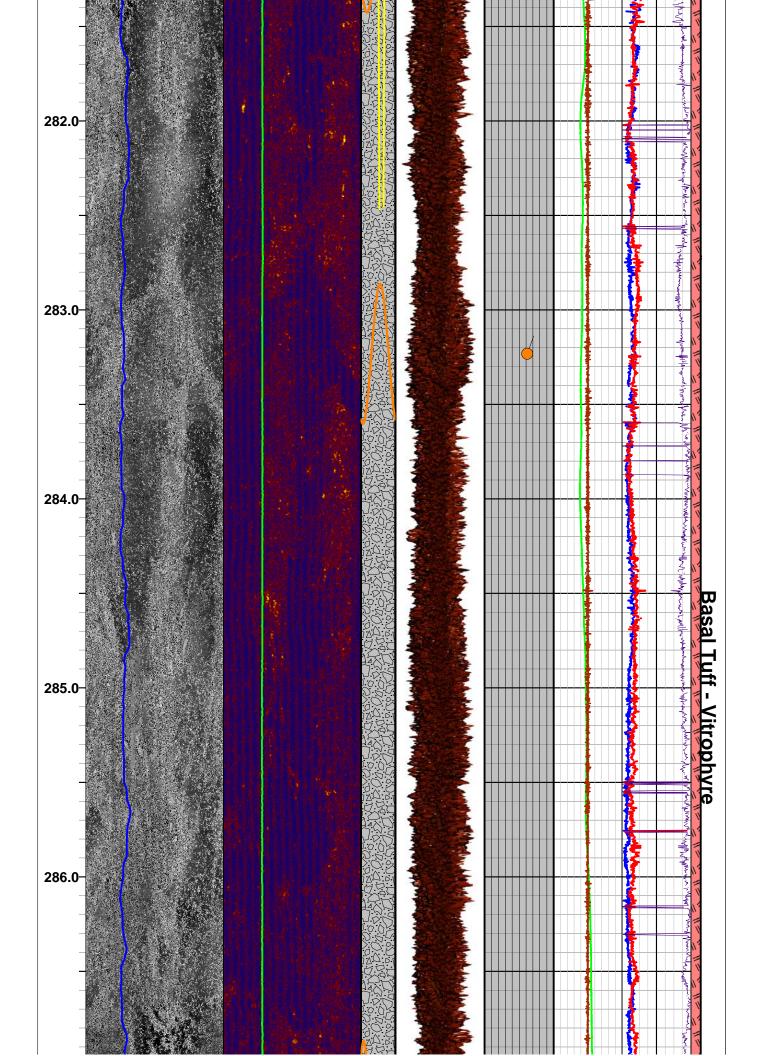



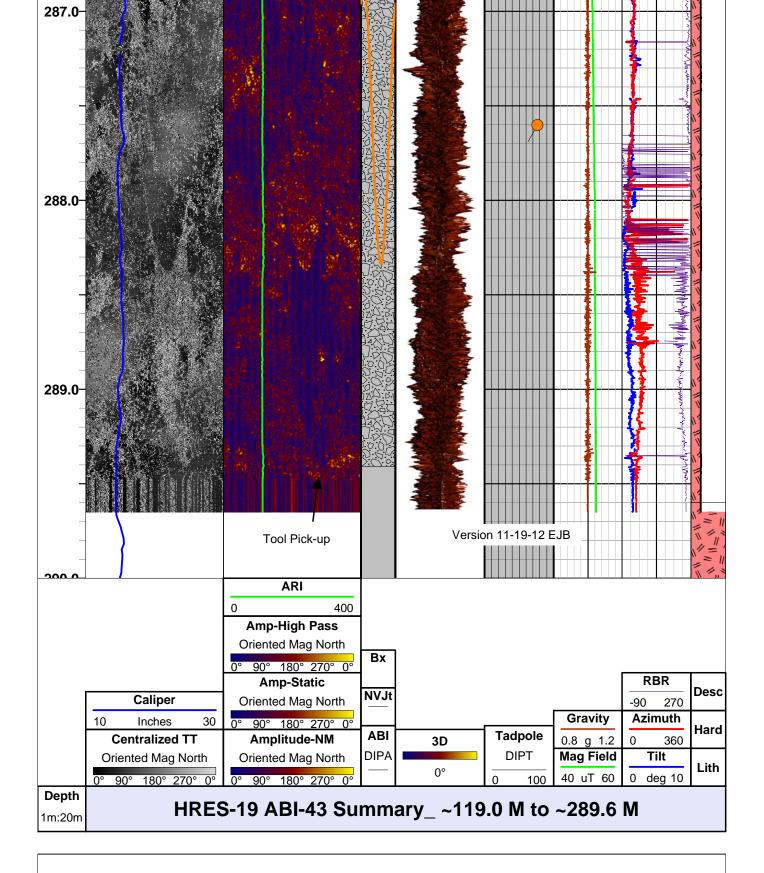





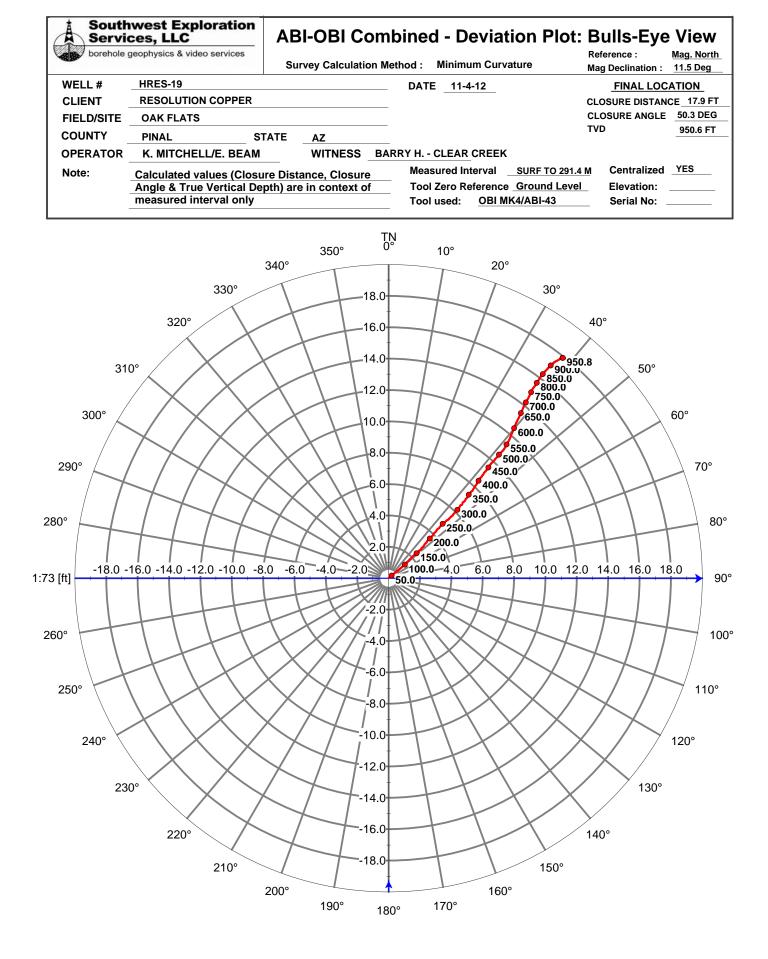









# ABI Image Summary Legend


## **Mnemonics and Comments**

**Centralized TT** = 2D plot of acoustic image travel time with probe position centralized. Oriented to magnetic north and plotted from left to right N-E-S-W-N

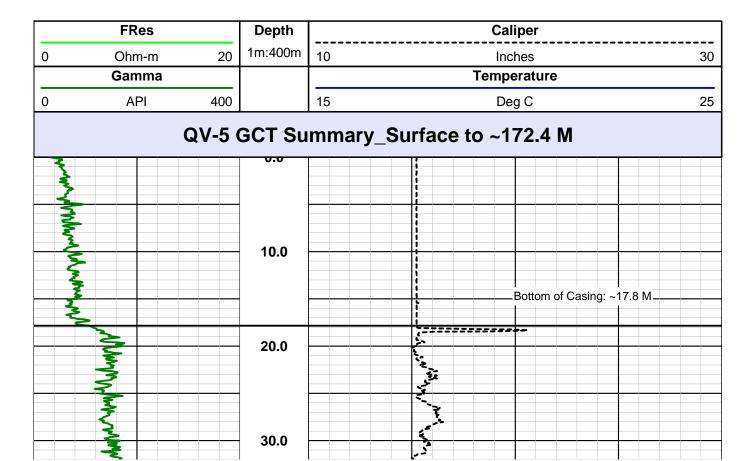
**Caliper** = 3-arm mechanical caliper of hole diameter plotted from 10 to 30 inches (blue line).

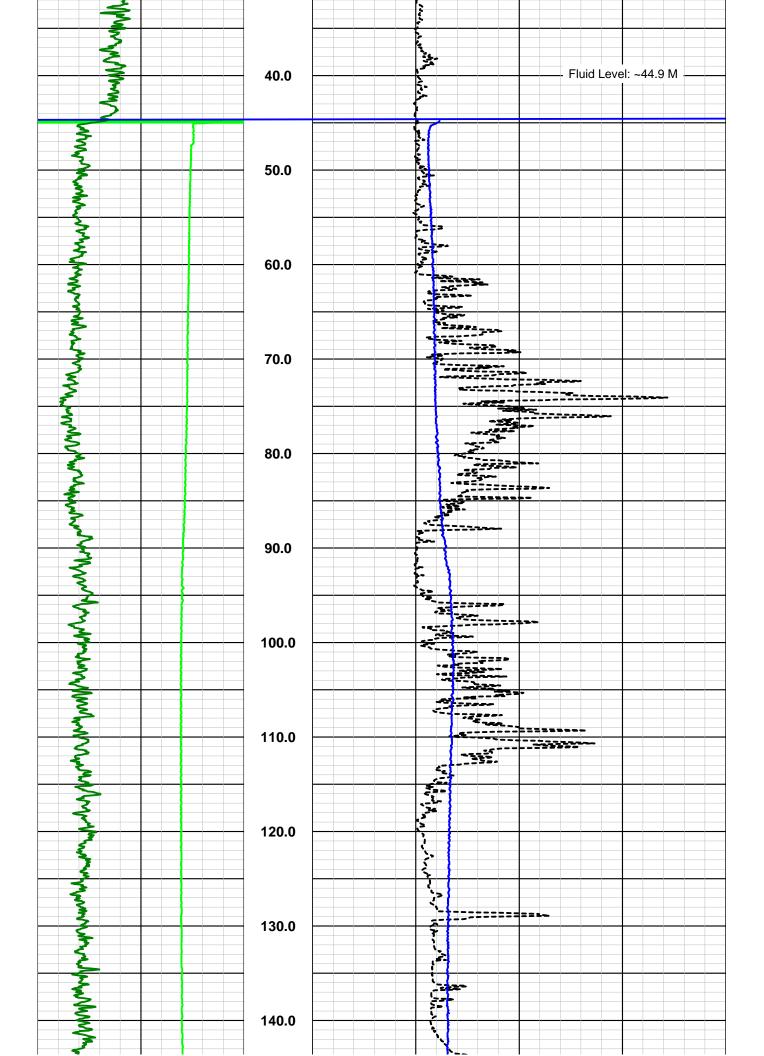
An Annual Collinse - Maximum accustic caliner of hole diameter calculated from Travel Time data

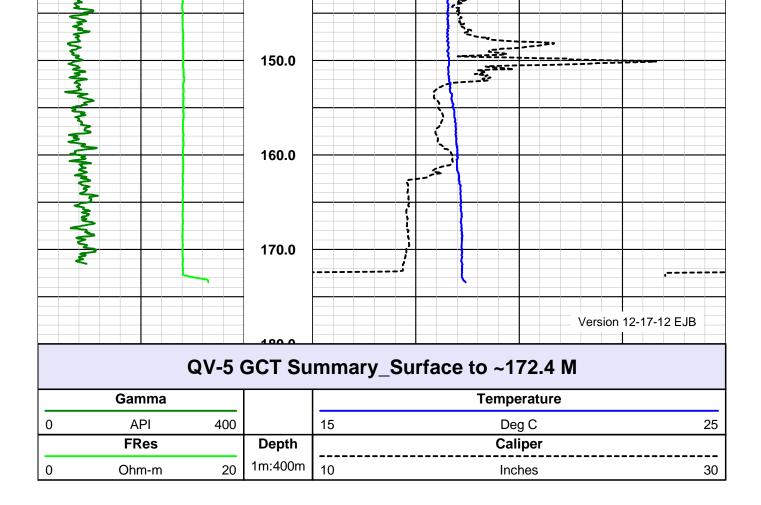
wax-Acous	stic Caliper	and plotted as orange line from 10 to 30 inches. Turned off due to elongation of hole diameter.				
Ave-Acous	tic Caliper	= Average acoustic caliper of hole diameter calculated from Travel Time data and plotted as bright green line from 10 to 30 inches. Turned off due to elongation of hole diameter				
<b>Enlargements</b> = Pink shaded zone between Avg-Acoustic Caliper and Max-Acoustic Caliper calcula from Travel Time data showing borehole enlargment. Turned off due to elongation of hole diameter.						
<b>Amplitude-NM</b> = 2D plot of unfiltered acoustic image amplitude oriented to magnetic north. from left to right N-E-S-W-N. Image toggled off.						
Amp-Static	<b>mp-Static</b> = 2D plot of acoustic image amplitude with Static normalization filter oriented to magnetic north. Plotted from left to Right N-E-S-W-N. Image toggled on.					
Amp-High	<b>1p-High Pass</b> = 2D plot of acoustic image amplitude with High Pass normalization filter oriented to magnetic north. Plotted from left to Right N-E-S-W-N. Image toggled on.					
ARI	= Acoustic Reflectance Index or relative rock hardness from ABI Amplitude log. Plotted 0 (soft) to 400 (harder) as green line.					
ABI	= Planar strucutral features picked on acoustic borehole image shown as colored sinusoid (color designation shown on header) DIPA = dip apparent hole axis.					
NVJt	= Near Vertical (near parallel to hole axis) joint/fracture features picked on acoustic borehole image shown as colored sinusoid (color designation shown on header).					
Bx	= Apparent Breccia or Congomerate zones and Vugs/Vesicles/Cavities.					
3-D	= 3D cylindrical projection of ABI image using Centralized TT log for hole shape looking from North.					
Tadpole		lot of the ABI feature picks (fractures and bedding planes); plotted from 0 to 90 dip - d above. DIPT = True orientation; features corrected for hole deviation.				
Mag Field	= Total magnetic field strength as measured by fluxgate magnetometer in OBI or ABI deviation sensor - plotted 40-60 uT (green line).					
Gravity	= Total gravity (probe acceleration) as measured by 3-axis accelerometers in ABI deviation sensor - plotted 0.8-1.2 g (brown line).					
Azimuth	= Direction of tool tilt plotted 0 to 360 deg - represents borehole deviation direction (red line).					
Tilt	= Tool tilt (vertical = 0 and horizontal = 90) plotted 0 to 10 deg; represents borehole deviation tilt from vertical (blue line).					
RBR	= Relative bearing - azimuth of the probe marker position to Magnetic North measured clockwise (thin purple line).					
Lith	= Major/principal lithology based on field geologic descriptions provided by Clear Creek staff.					
Desc	= Major/principal field geologic descriptions provided by Clear Creek staff.					
Hard	<b>d</b> = Apparent rock harness from ARI used to silhouette lithology.					
	Prepared by Erika J. Beam Rev 11-19-12					
Rev 11-19-12						



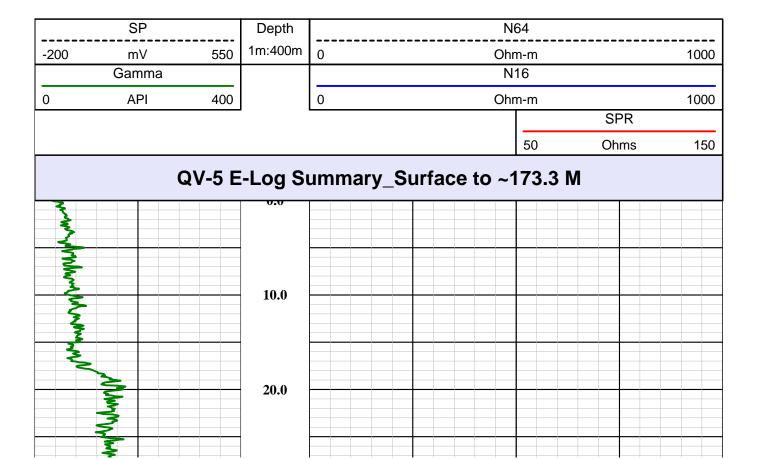
	geophysics & video servi		rvey Calculatio	n Method : Minim	um Curvature		erence : g Declination :	Mag. No 11.5 Deg
WELL #	HRES-19			DATE 11-	4-12		FINAL LOC	
CLIENT	RESOLUTION COP	PER				CLO	SURE DISTAN	CE_17.9
FIELD/SITE	OAK FLATS						OSURE ANGLE	
COUNTY	PINAL	STATE	AZ			TVI	)	950.6 F
OPERATOR	K. MITCHELL/E. I	BEAM	WITNESS	BARRY H CLEAR	CREEK			
Note:	Calculated values Angle & True Verti				nterval <u>SURF TO</u> eference <u>Ground</u>	<u>) 291.4 M</u>	Centralized Elevation:	YES
	of measured interv	al only.		Tool used:	OBI MK4/ABI-43		Serial No:	
								90.00°
0.0	2.0	4.0	6.0	8.0	10.0	12	2.0	[ft] 1:27
<b>0.2 (5</b>	0.0)					•50	.0ft • HRES-1	9
50.0								
100.0	1.0 (100.0)							
+								
150.0	1.8 (150.0)							
+	2.6 (2	200.0						
200.0	2.0 (2							
Ŧ		3.5 (250.0)						
250.0	<b>_</b>	0.0 (200.0)						
Ť		4.4 /	300.0)					
300.0								
t			5.1 (350.0)					
350.0								
400.0			5.7 (40	0.0)				
400.0								
450.0			6.	.4 (450.0)				
450.0								
				7.0 (500.0)				
500 0								
500.0				7.5 (550.0)				
-				<b>_</b>				
500.0								
550.0				8.0 (60	0.0)			
-				8.0 (60				
550.0				8.0 (60	0.0) 4 (650.0)			
550.0 600.0				8.0 (60	l (650.0)			
550.0 600.0				8.0 (60				
550.0 600.0 650.0 700.0				8.0 (60	8.8 (700.0)			
550.0 600.0 650.0				8.0 (60	l (650.0)			
550.0 600.0 650.0 700.0 750.0				8.0 (60	8.8 (700.0) 9.1 (750.0)			
550.0 600.0 650.0 700.0				8.0 (60	8.8 (700.0)			
550.0 600.0 650.0 700.0 750.0 800.0				8.0 (60	4 (650.0) 8.8 (700.0) 9.1 (750.0) 9.4 (800.0)	0)		
550.0 600.0 650.0 700.0 750.0				8.0 (60	8.8 (700.0) 9.1 (750.0)	0)		
550.0 600.0 650.0 700.0 750.0 800.0 850.0				8.0 (60	4 (650.0) 8.8 (700.0) 9.1 (750.0) 9.4 (800.0) 9.8 (850.	0) 3 (900.0)		
550.0 600.0 650.0 700.0 750.0 800.0				8.0 (60	4 (650.0) 8.8 (700.0) 9.1 (750.0) 9.4 (800.0) 9.8 (850.			
550.0 600.0 650.0 700.0 750.0 800.0 850.0				8.0 (60	4 (650.0) 8.8 (700.0) 9.1 (750.0) 9.4 (800.0) 9.8 (850.		50.8)	

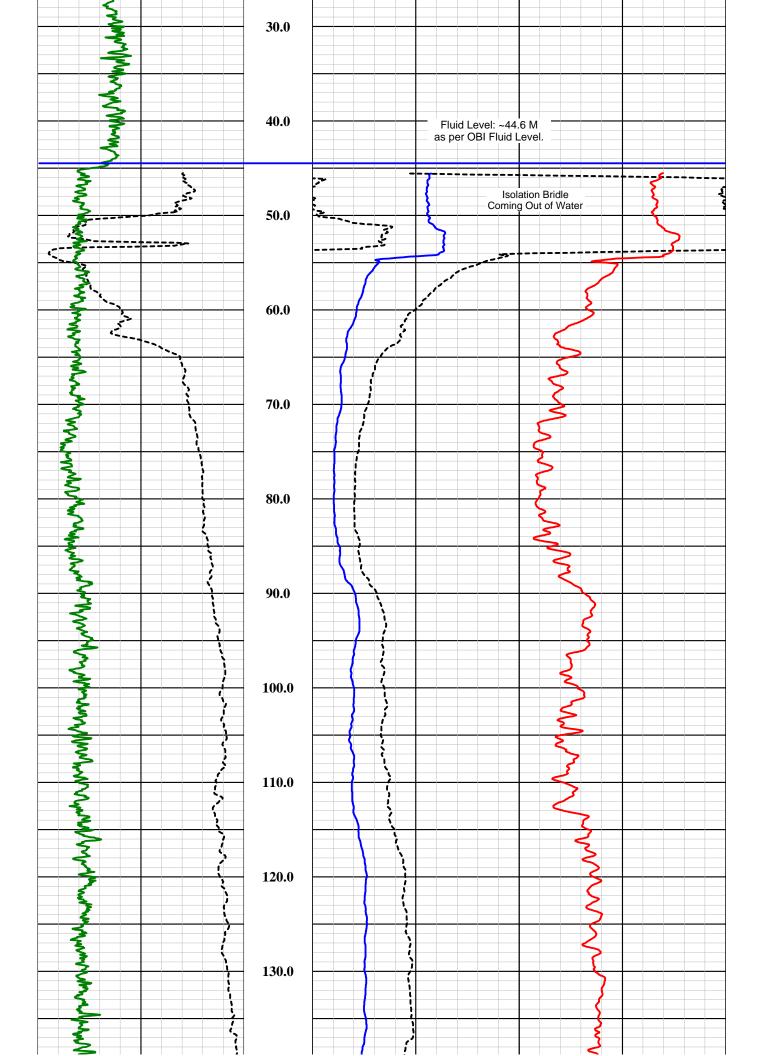

and David	ices, I geophysi		services								Refere	DSURE	Mag. Nort
				Su	rvey C	alculation N	lethod	: Mir	nimum Curv	ature		eclination :	11.5 Deg
WELL #	HRES						_ D	ATE _	11-4-12		1	INAL LOC	ATION
CLIENT		DLUTION					_					IRE DISTAN	-
FIELD/SITE	OAK	FLATS					_				CLOSI TVD	JRE ANGLE	255.2 DE 950.6 F
COUNTY	PINA			STATE	AZ		_				110		330.0 1
OPERATOR	K. M	ITCHEL	L/E. BEAN	l	WI	NESS B			AR CREEK				
Note:	Calcu	lated va	lues (Clos	ure Dist	ance,	Closure			d Interval	SURF TO 29		entralized	YES
	Angle	& True	Vertical D nterval on	epth) are	e in co	ontexted		ool Zer		Ground Le K4/ABI-43		levation: erial No:	
0.0	2.0	4	.0	6.0	8	.0 1	0.0	12	.0 14	I.O 16	6.0	18.0	[ft] 1:38
	50.0)							-	1		- 50 Off	• HRES-1	
50.0											<b>-</b> 50.01		
100.0	1.4 (10	0.0)											
+													
150.0		2.4 (150.0	) 										
ł			.7 (200.0)										
200.0			(200.0)										
+			4.9	(249.9)									
250.0													
				6.2 (2	299.9)								
300.0													
350.0					7.4	(349.9)							
350.0					$\overline{\}$								
400.0						8.5 (399	.9)						
-													
450.0						9.	.5 (449	.9)					
-								0 6 (400					
500.0								0.6 (499	1.9)				
ł								11 4	l (549.9)				
550.0									(040.0)				
t									12.5 (599	).8)			
600.0													
050 0 [†]									13	.5 (649.8)			
650.0													
700.0										14.2 (699.	B)		
750.0										14.9 (	749.8)		
ł											5.6 (799.8)		
800.0											J.J (1 JJ.O)	_	
ł											16.3 (84	19.8)	
850.0												,	
											17	.1 (899.8)	
900.0												· ·	
050 0												17.9 (95	0.6)
950.0												•	
+			1	1			1					1	1

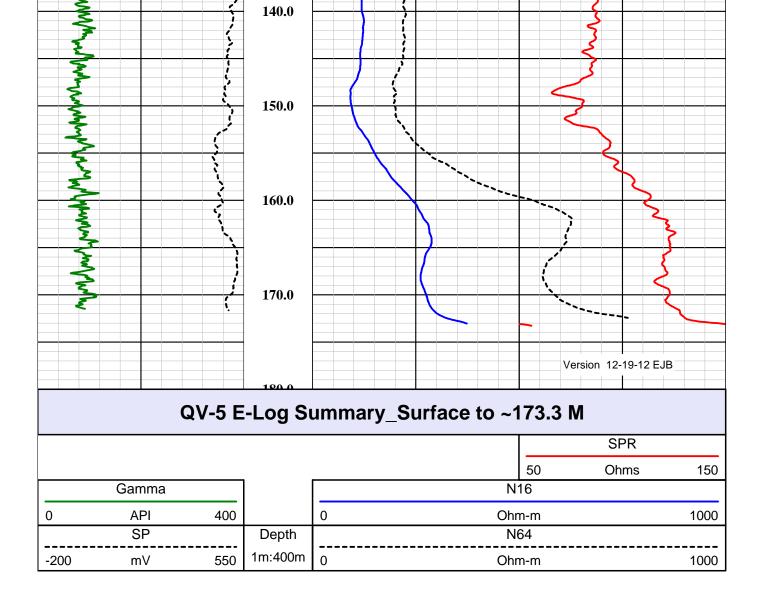

## PLATE 3


### **QV-5 GEOPHYSICAL LOGS**



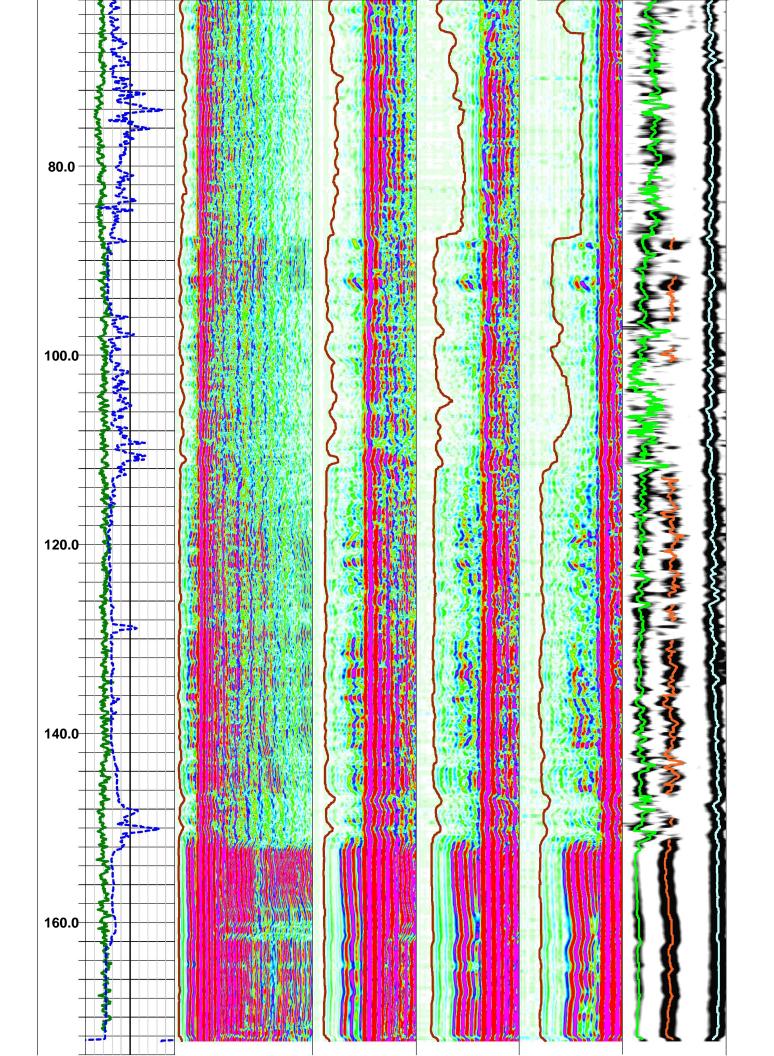

-	)					1	
XXXX	Sou Ser	Southwest Exploration Services, LLC	, LL	Cxplo	ra	ion	
	boreh	borehole geophysics & video services	ysics 8	, video :	servi	ces	
	COMPANY	RESOLUTION COPPER CO	V COPPER	CO			
	WELL ID FIELD	QV-5 (ADWR 55-221850) RESOLUTION	55-22185 V	9			
	COUNTY	PINAL		STATE		ARIZONA	
	<b>TYPE OF LOGS:</b>		IPER-GA	CALIPER-GAMMA RAY		OTHER SERVICES	CES
	<b>MORE:</b>		FLUID TEMP/RESIS	<b>/RESIS</b>	A C	ABI	
	LOCATION D(1-10)34CDD				S E	E-LOGS SONIC	
	SEC 34	TWP 1S	RGE	10E			
PERMANENT DATUM			ELEVATION		K	K.B.	
LOG MEAS. FROM	GROUND LEVEL		ABOVE PERM. DATUM	JM	D.F.	Ή.	
DRILLING MEAS. FROM GROUND LEVEL	GROUND LEVE	L			G.L.	.L.	
DATE	12-13-12		TYPE FLU	TYPE FLUID IN HOLE	Ħ	FRESH WATER	,-
RUN No	1		SALINITY	TY	N/A	/A	
TYPE LOG	GAMMA-0	GAMMA-CALIPER-TEMP	DENSITY	Y		N/A	
DEPTH-DRILLER DEPTH-LOGGER	173 M		MAX. REC. TEMP.	. TEMP.	4	40 M 18.8 DEG C	
BTM LOGGED INTERVAL	173 M		IMAGE OR	IMAGE ORIENTED TO:	N/A	Ά	
TOP LOGGED INTERVAL	40 M		SAMPLE INTERVAL	VTERVAL	·	.1 FT	
DRILLER / RIG#	BOART LY	Y	LOGGING TRUCK	TRUCK	TI	TRUCK -300	
RECORDED BY / Logging Eng.	-	K. MITCHELL/E. BEAM	TOOL STRING/SN	ING/SN		MSI 2PCA-PGA-F SN4953	-F SN4953
WITNESSED BY	CLEAR CR	CLEAR CREEK-BARRY	LOG TIME	LOG TIME: ON SITE/OFF SITE		6:30 AM	
RUN BOREHOLE RECORD	ORD		CASING RECORD	ECORD			
NO. BIT FR	FROM	TO	SIZE	WGT.	FROM	Г	ТО
22"	SURFACE	60 FT	16"	HWT	SURFACE		60 FT
	60 FT	388 FT					
3/4"	388 FT	TD					
COMMENTS:							
·							






									•
								NTS:	COMMENTS:
					TD		388 FT	14 3/4"	3
					388 FT		$60  \mathrm{FT}$	15"	2
60 FT	ACE	SURFACE	HWT	16"	60 FT	CE	SURFACE	22"	1
TO	4	FROM	WGT.	SIZE	то		FROM	BIT	NO.
			ECORD	CASING RECORD			RECORL	BOREHOLE RECORD	RUN
	6:30 AM	OFF SITE	LOG TIME: ON SITE/OFF SITE	LOG TIMI	CLEAR CREEK-BARRY	CLEAR CRI		SED BY	WITNESSED BY
SN 5513	40 GRP SN 5513		ING/SN	TOOL STRING/SN	K. MITCHELL/E. BEAM	K. MITCHE	ing Eng.	RECORDED BY / Logging Eng.	RECORD
-300	TRUCK -300		TRUCK	LOGGING TRUCK		BOART LY		t/RIG#	DRILLER / RIG#
	.2 FT		NTERVAL	SAMPLE INTERVAL		40 M	AL	TOP LOGGED INTERVAL	TOP LOC
	N/A	0	IMAGE ORIENTED TO:	IMAGE OF		173 M	/AL	BTM LOGGED INTERVAL	BTM LOC
3 C	18.8 DEG C		: TEMP.	MAX. REC. TEMP.		173 M		OGGER	DEPTH-LOGGER
	40 m			LEVEL		173 M		DRILLER	DEPTH-DRILLER
	N/A		ΓY	DENSITY		E-LOGS		G	TYPE LOG
	N/A		TY	SALINITY		1			RUN No
WATER	FRESH WATER	(*)	TYPE FLUID IN HOLE	TYPE FLU		12-13-12			DATE
	G.L.					UND LEVEL	M GRO	DRILLING MEAS. FROM GROUND LEVEL	DRILLIN
	D.F.		UM	ABOVE PERM. DATUM	ABOVE	GROUND LEVEL	GRO	LOG MEAS. FROM	LOG ME.
	K.B.		2	ELEVATION				PERMANENT DATUM	PERMAN
			E 10E	RGE	TWP 1S	34	SEC		
GAMMA-CALIPER TEMP/FLUID RES SONIC	GAMMA TEMP/FI SONIC					LOCATION D(1-10)34CDD	D(1-1		
	ABI					<b>MORE:</b>	M		
OTHER SERVICES	OTHER S			OGS	<b>JOGS: E-LOGS</b>	<b>TYPE OF LOGS:</b>	ΥT		
NA	ARIZONA	STATE	LS		PINAL	COUNTY	CO		
				Z	RESOLUTION	LD	FIELD		
			0)	\$55-22185	QV-5 (ADWR 55-221850)	WELL ID	WE		
			8 CO	N COPPER	<b>RESOLUTION COPPER CO</b>	COMPANY	CO		
							9	4	
	vices	o ser	video	ysics 8	borehole geophysics & video services	boreho			
ž	itio	ora	C X P	, LLC	Southwest Exploration Services, LLC	Ser	)	T TTT	
	ì		1		i	)			



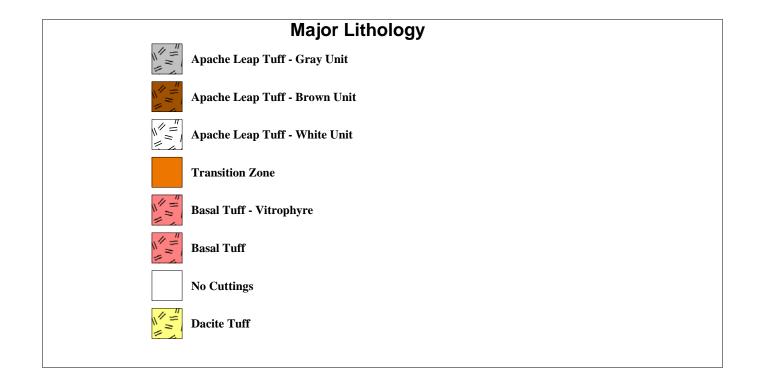





X+ S S	Southwest Services, Ll	st Exploration	ation
oq 💦	rehole geophy	borehole geophysics & video services	ervices
COMPANY	ANY RESOLUTION COPPER CO	COPPER CO	
WELL ID	ID QV-5 (ADWR 55-221850)	55-221850)	
FIELD	RESOLUTION	2	
COUNTY	ry pinal	STATE	E ARIZONA
ТҮРЕ	TYPE OF LOGS: SONI	SONIC 4 RX	OTHER SERVICES
MORE:		GAMMA-CALIPER	ABI
LOCATION D(1-10)34CDD	CDD		E-LOGS TEMP/FLUID RES
SEC 34	4 TWP 1S	RGE 10E	
PERMANENT DATUM		ELEVATION	K.B.
LOG MEAS. FROM GROUND LEVEL		ABOVE PERM. DATUM	D.F.
DRILLING MEAS. FROM GROUND LEVEL	LEVEL		G.L.
DATE 12-1	12-13-12	TYPE FLUID IN HOLE	FRESH WATER
RUN No 1		SALINITY	N/A
	SONIC-GAMMA-CALIPER	DENSITY	N/A
		LEVEL	40 M
RTM LOGGED INTERVAL 170 M	≤ ≥	MAA: KEC. LEMP.	N/A
	Δ	SAMPLE INTERVAL	.25 FT
DRILLER / RIG# BO	BOART LY	LOGGING TRUCK	TRUCK -300
RECORDED BY / Logging Eng. K. N	K. MITCHELL/E. BEAM	TOOL STRING/SN	ALT SONIC 4RX SN 5185
WITNESSED BY CLE	CLEAR CREEK-BARRY	LOG TIME:ON SITE/OFF SITE	TE 6:30 AM
RUN BOREHOLE RECORD		CASING RECORD	
NO. BIT FROM	TO	SIZE WGT. F	FROM TO
22"	60 FT	16" HWT S	SURFACE 60 FT
	388 FT		
3   14 3/4"   388 FT	TD		
COMMENTS:			
·			

<b>Depth</b> 1:400		QV-5 Sonic	Summary_	~43.7 M to	o ~172.3 M	
	Gamma	RX1 - VDL	RX2 - VDL	RX3 - VDL	RX4 - VDL	Velocity Analysis
	0 API 400	-256 256	-256 255	-128 127	-100 100	32 uSec/ft 232
	Caliper	RX1 - dt	RX2 - dt	RX3 - dt	RX4 - dt	P-Wave Cond
	10 Inches 30	100 uSec 2040	100 uSec 1020	100 uSec 1020	100 uSec 1020	32 uSec/ft 232
						S-Wave Cond
						32 uSec/ft 232
						St-Wave Cond
						32 uSec/ft 232
40.0	<b>1</b>			Fluid Level: ~44.	0 M	
	3				A THE REPORT OF THE	行動電気



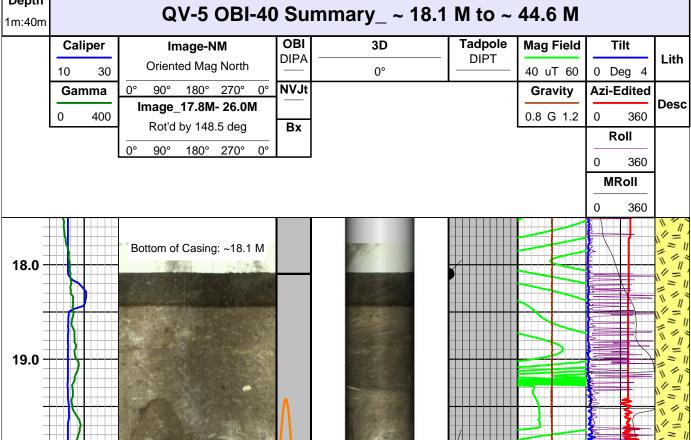

_						Version 12-	19-12 EJB
_							
100 0							St-Wave Cond
							32 uSec/ft 232
							S-Wave Cond
							32 uSec/ft 232
	Caliper	RX1 - dt		RX2 - dt	RX3 - dt	RX4 - dt	P-Wave Cond
	10 Inches 30	100 uSec 20	40	100 uSec 1020	100 uSec 1020	100 uSec 1020	32 uSec/ft 232
	Gamma	RX1 - VDL		RX2 - VDL	RX3 - VDL	RX4 - VDL	Velocity Analysis
	0 API 400	-256 2	56	-256 255	-128 127	-100 100	32 uSec/ft 232
Depth			io (	Summary	12 7 M to	170 2 M	
1:400		QV-3 301		Summary_	~43.7 M to		

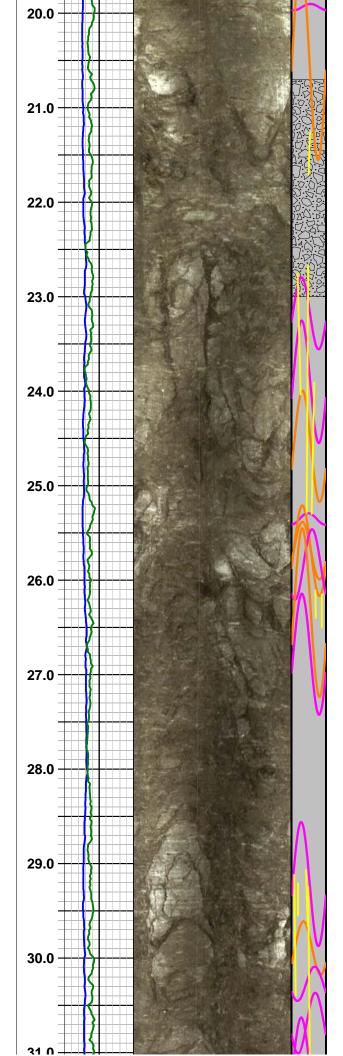
# Full Waveform Sonic Summary Legend Mnemonics and Comments

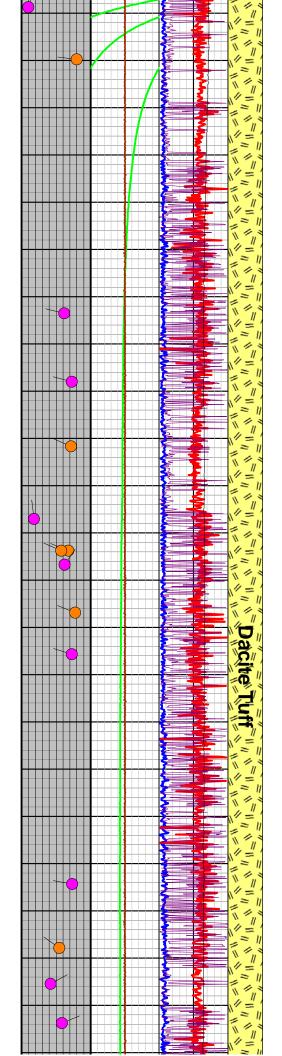
Gamma =	Natural gamma ray log plotted from 0 to 400 API units (green line).
Caliper =	3-arm mechanical caliper of hole diameter plotted from 10-30 inches (blue line).
RX1 - VDL	= Color variable density display of 0.6m Rx waveform; stacked over 5 waveforms, and plotted from 100 to 2040 uSec.
RX1 - dt	= P-wave travel time pick. Plotted 100 to 2040 uSec (brown line).
RX2 - VDL	= Color variable density display of 0.8m Rx waveform; stacked over 5 waveforms, and plotted from 100 to 1020 uSec.
RX2 - dt	= P-wave travel time pick. Plotted 100 to 1020 uSec (brown line).
RX3 - VDL	= Color variable density display of 1.0m Rx waveform; stacked over 5 waveforms, and plotted from 100 to 1020 uSec.
RX3 - dt	= P-wave travel time pick - if determined. Plotted 100 to 1020 uSec (brown line).
RX4 - VDL	= Color variable density display of 1.2m Rx waveform; stacked over 5 waveforms, and plotted from 100 to 1020 uSec.
RX4 - dt	= P-wave travel time pick - if determined. Plotted 100 to 1020 uSec (brown line).
Velocity Anal	<b>ysis</b> = Gray scale variable density display of velocity semblence waveform of the stacked waveforms; plotted from 32 to 232 uSec/ft.
P-Wave-Conc	= Apparent P-wave transit time or slowness from maximum energy peak on semblence velocity waveform in uSec/ft (green line).
S-Wave-Conc	Apparent S-wave transit time or slowness from maximum energy peak on semblence velocity waveform in uSec/ft - with conditional testing to remove invalid values (orange line).
St-Wave-Con	<b>d</b> = Apparent Stoneley-wave transit time or slowness from maximum energy peak on semblence velocity waveform in uSec/ft with conditional testing to remove invalid values (light blue line).

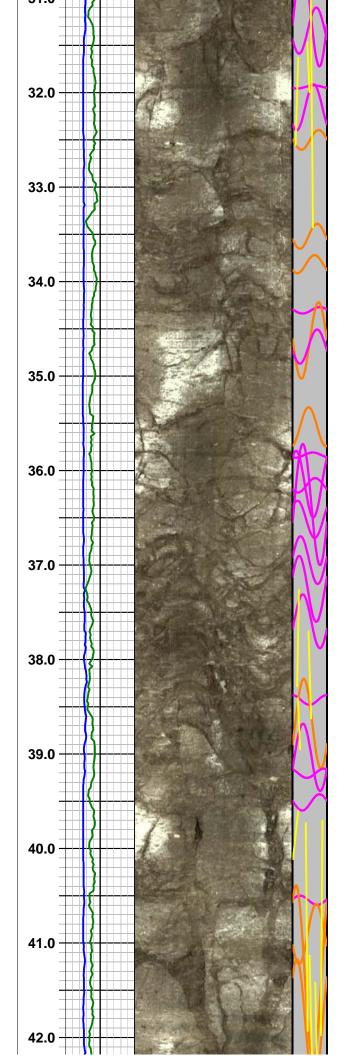
Prepared by Erika J Beam Version 12-10-12

XXXX	SS	out	Southwest Exploration Services, LLC			a	lion	
	bor	rehole	borehole geophysics & video services	/sics &	video s	ervi	ces	
	COMPANY	Y	RESOLUTION COPPER CO	COPPER	CO			
	WELL ID FIELD		QV-5 (ADWR 55-221850) RESOLUTION	55-221850 I	J			
	COUNTY		PINAL		STATE		ARIZONA	
	TYPE	TYPE OF LOGS:		CAL TE	<b>OPTICAL TELEVIEWER</b>	·	OTHER SERVICES	ICES
	<b>MORE:</b>	•••	3-ARI	<b>3-ARM CALIPER</b>	ER	<u>–</u>	GAMMA- TEMP-FL. RESISTIVITY	SISTIVITY
	LOCATION D(1-10)34CDD	DDD				SEA	ABI E-LOGS SONIC	
	SEC 34	-	TWP 1S	RGE	10E			
PERMANENT DATUM				ELEVATION		K	K.B.	
LOG MEAS. FROM	GROUND LEVEL	LEVEL	ABOVE	ABOVE PERM. DATUM	M	D.F.	Ξ	
DRILLING MEAS. FROM GROUND LEVEL	M GROUND	LEVEL				G.L	.L.	
DATE	12-13-12	3-12		TYPE FLUID IN HOLE	D IN HOLE	FI	FRESH WATER	R
RUN No	1			SALINITY	ſΥ	N/A	/A	
TYPE LOG	OPT	OPTICAL TELEVIEWER	EVIEWER	DENSITY	Y	Z	N/A	
DEPTH-DRILLER	170 M			LEVEL	TEMD	4	40 M	
BTM LOGGED INTERVAL	AL 45.5 M	M		IMAGE ORIENTEI	IMAGE ORIENTED TO:	M I	MAG NORTH	
TOP LOGGED INTERVAL		M		SAMPLE INTERVAL	ITERVAL	0.0	0.0096 FT	
DRILLER / RIG#		BOART LY		LOGGING TRUCK	TRUCK	TI	TRUCK -300	
RECORDED BY / Logging Eng.	-	K. MITCHELL/E. BEAM	E. BEAM	TOOL STRING/SN	NG/SN	A	ALT OBI-M5 SN-5145	SN-5145
WITNESSED BY	CLE	CLEAR CREEK-BARRY	BARRY	LOG TIME	LOG TIME: ON SITE/OFF SITE		6:30 AM	
RUN BOREHOLE RECORD	RECORD			CASING RECORD	CORD			
NO. BIT	FROM	TO	0	SIZE	WGT. I	FROM		TO
	SURFACE	60	60 FT	16"	HWT	SURFACE	Ĕ	60 FT
2 15"	60 FT	38	388 FT					
3 14 3/4"	388 FT	TD						
COMMENTS:								

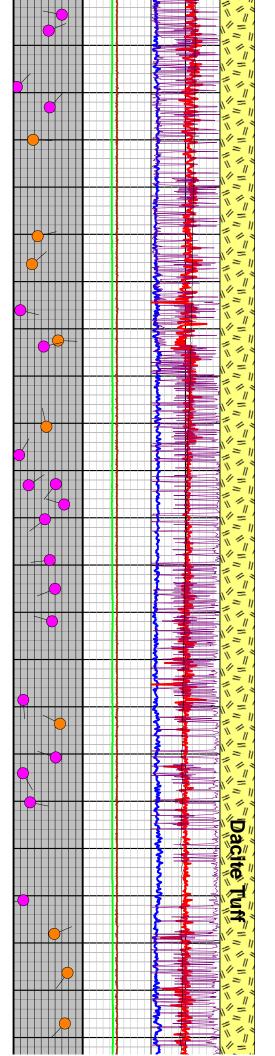


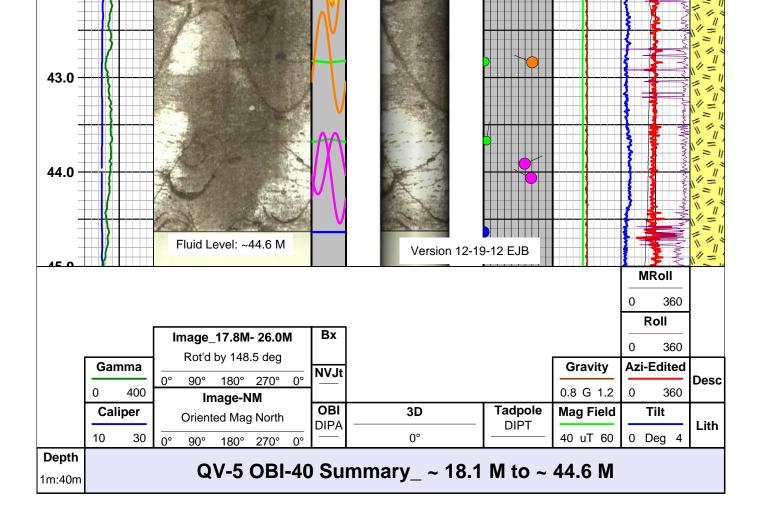


#### **Optical Image Features Legend**


 $\bigcap$ 





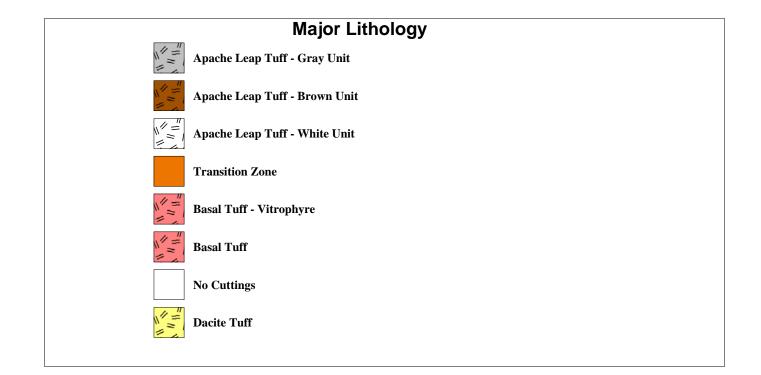








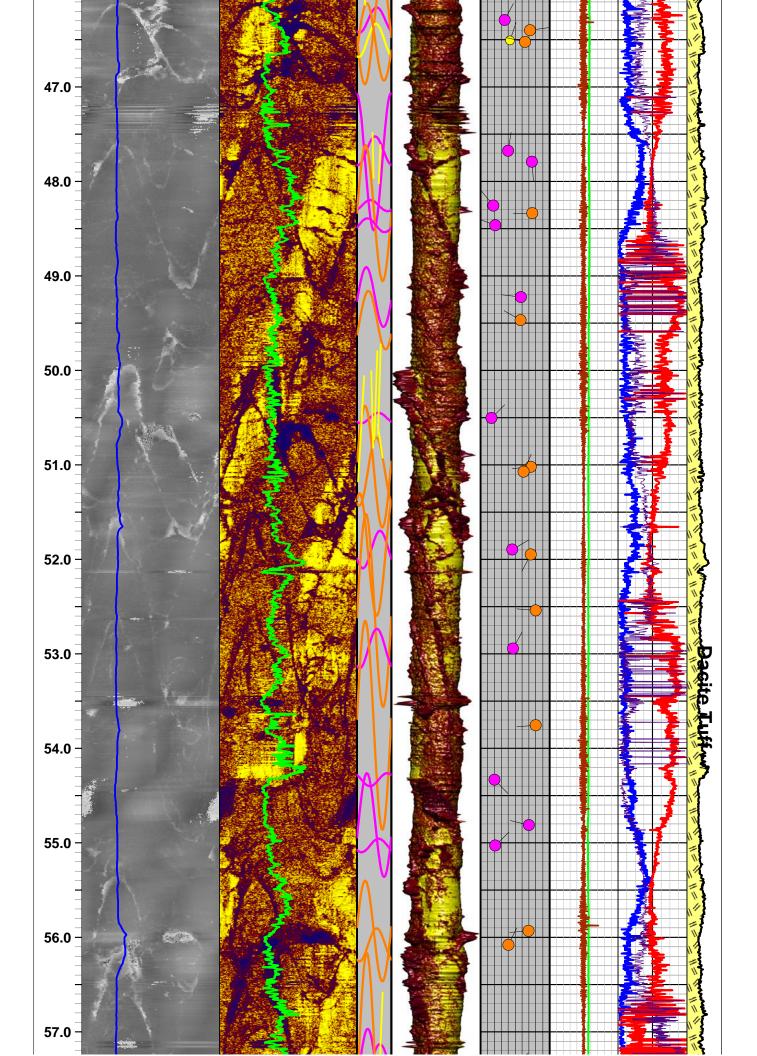


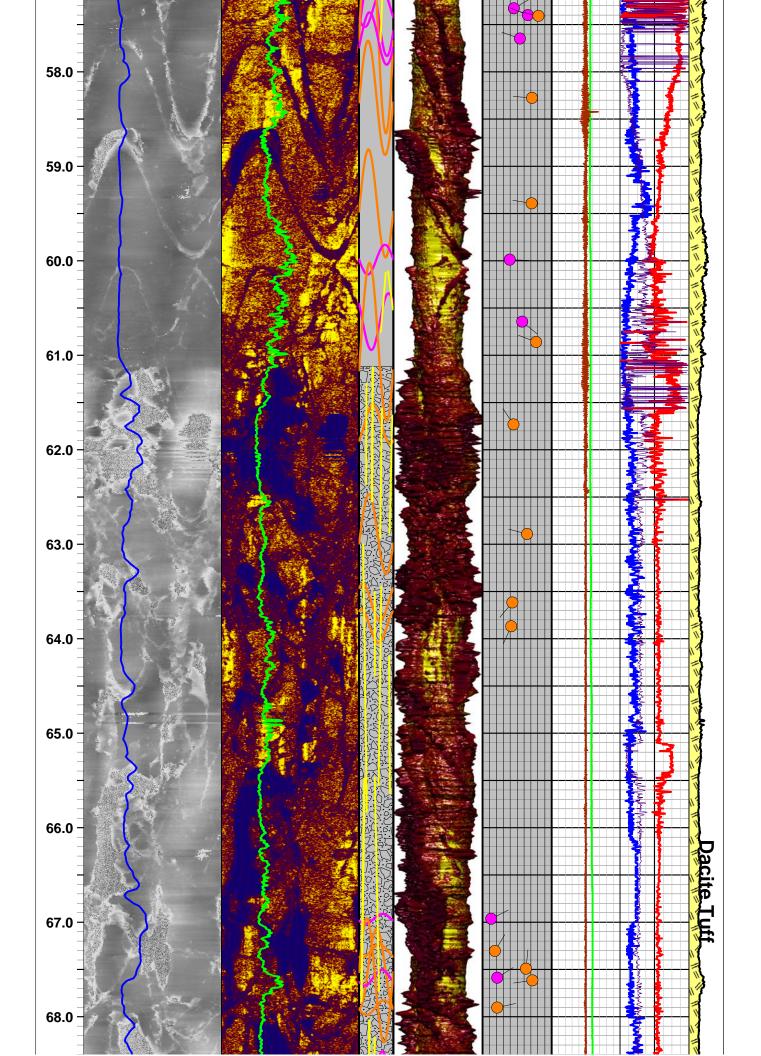


## **Optical Image Summary Legend**

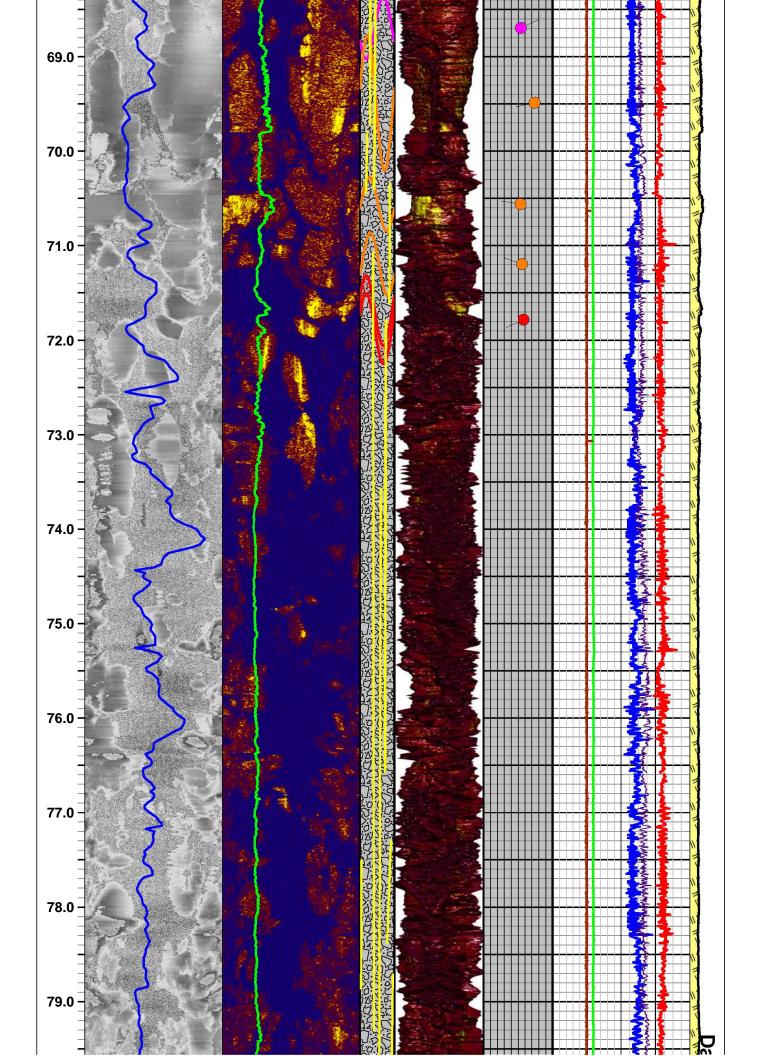
## **Mnemonics and Comments**

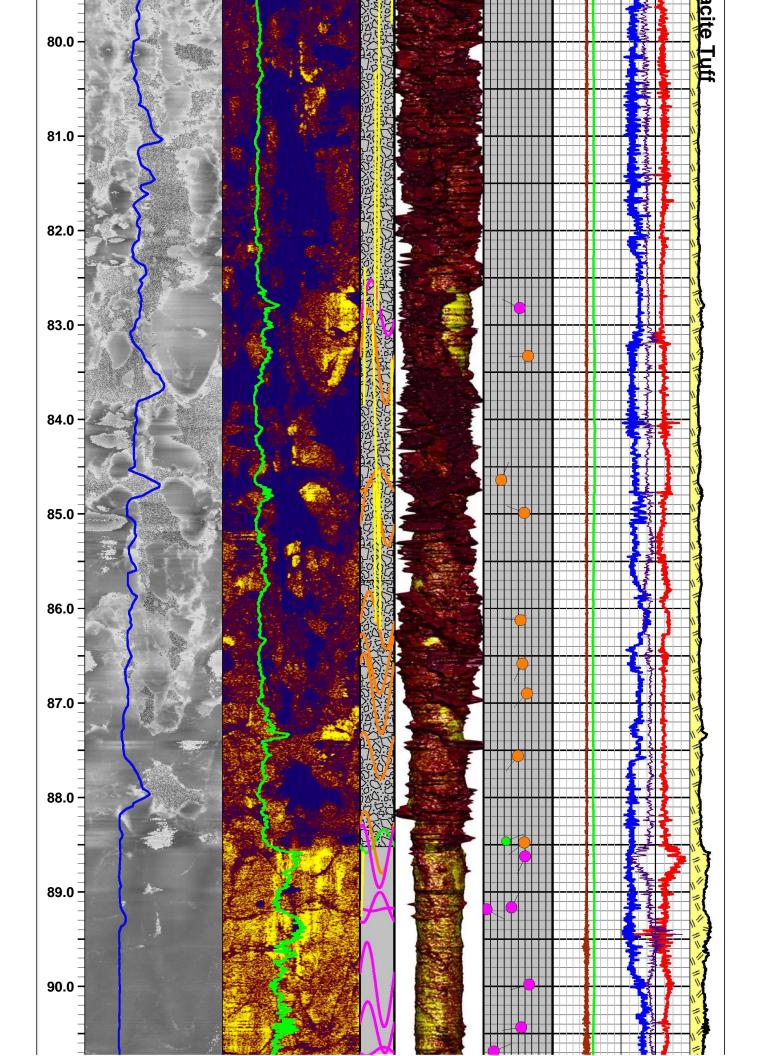
Caliper Gamma Image-NM	<ul> <li>= 3-arm mechanical caliper of hole diameter plotted from 10-30 inches (blue line).</li> <li>= Natural gamma ray log plotted from 0 to 400 API units (green line).</li> <li>= 2D plot of optical image oriented to magnetic north. Plotted from left to right N-E-S-W-N.</li> </ul>
Image_17.8	<b>BM - 26.0M</b> = 2D plot of optical image non-oriented and rotated by 148.5 deg to correct for magnetic affect in proximity of steel casing. Plotted from left to Right N-E-S-W-N.
OBI	= Planar features picked on optical borehole image shown as colored sinusoid (color designation shown on header). DIPA = dip apparent hole axis.
Bx	<ul> <li>Apparent Breccia or Congomerate zones and Vugs/Vesicles/Cavities.</li> </ul>
NVJt	= Near Vertical (near parallel to hole axis) joint/fracture features picked on acoustic borehole image shown as colored sinusoid (color designation shown on header).
3D	= 3D cylindrical projection of OBI image viewed from north.
Tadpole	<ul> <li>Tadpole plot of the image feature picks (fractures and bedding planes); plotted from 0 to 90 dip</li> <li>see legend above. DIPT = True orientation; features corrected for hole deviation.</li> </ul>
Mag Field	<ul> <li>Total magnetic field strength as measured by fluxgate magnetometer in OBI deviation sensor</li> <li>plotted 40-60 uT (green line).</li> </ul>
Gravity	= Tool accelleration or gravity as measured by 3-axis accellerometers in OBI deviation sensor - plotted 0.8 - 1.2 G (brown line).
Azi-Edited	= Direction of tool tilt plotted 0 to 360 deg; edited for anomalous magnetic influence - represents borehole deviation direction (red line).
Roll	= Roll or gravity tool face angle is plotted 0 to 360 degrees. Roll is 90 degree if the y-axis of the probe (reference mark on the housing) points to the high side of the borehole. (purple line)

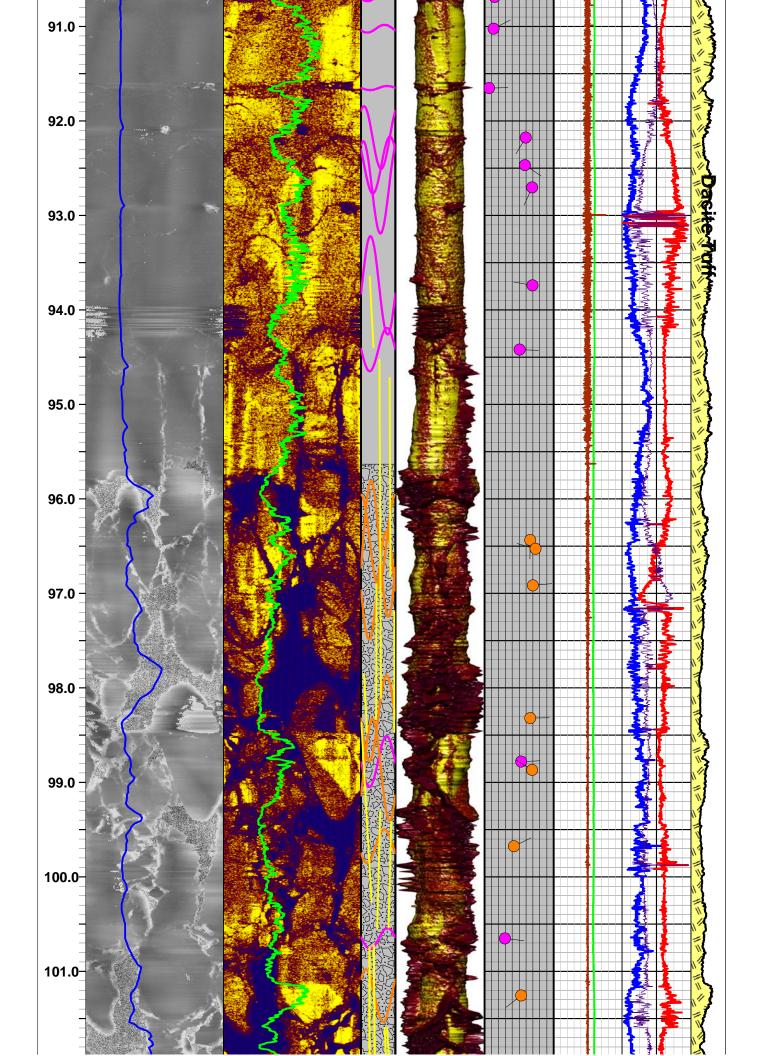
MRoll	= MRoll or Magnetic Roll angle is plotted 0 to 360 degrees. MRoll is used when Tool Tilt is < 1 deg from vertical and two components of accelerometer are close to zero. At vertical, MRoll is 90 degree if the projection of the y-axis of the probe (reference mark on the housing) into a horizontal plane points to Magnetic North. (black line)
Tilt	= Tool tilt (vertical = $0$ and horizontal = $90$ ) plotted 0 to 4 deg; represents borehole deviation tilt from vertical (blue line).
Lith	= Major/principal lithology based on field geologic descriptions provided by Clear Creek staff.
Desc	= Major/principal field geologic descriptions provided by Clear Creek staff.
Prepared b Version 12-	y Erika J. Beam 18-12

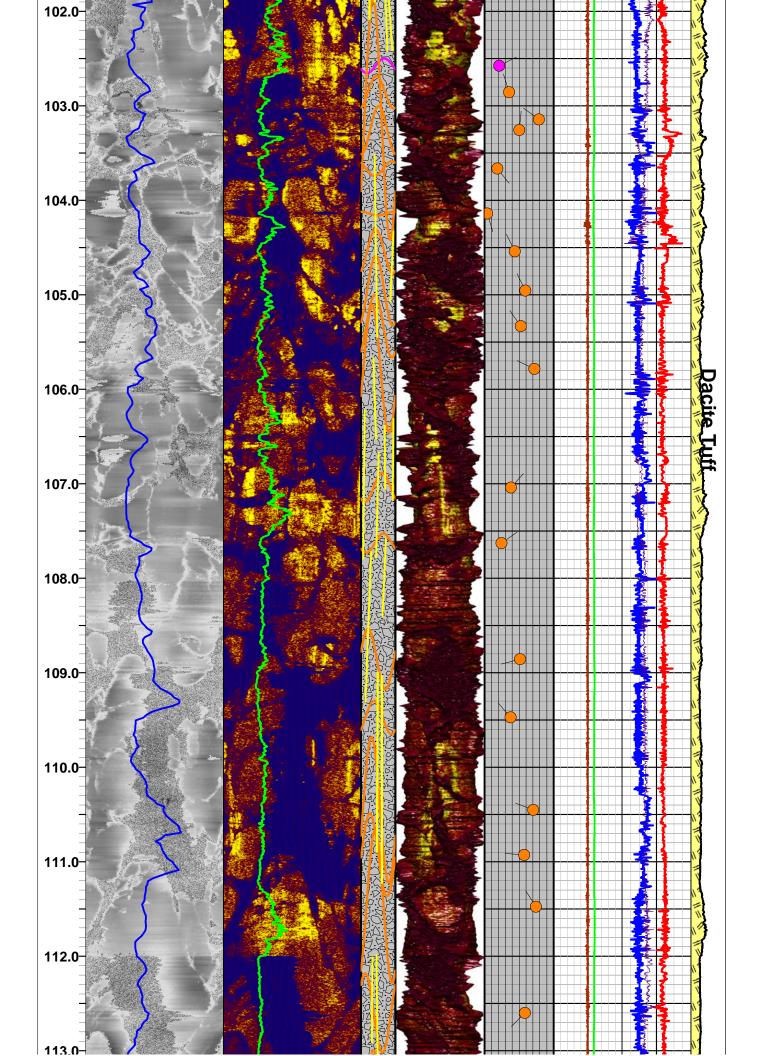

	XID+	Sou	Southwest Exploration Services, LLC		Cxplo	ration	-
		boreho	borehole geophysics & video services	ysics 8	t video s	ervices	
	w ()	COMPANY	RESOLUTION COPPER CO	COPPER	CO		
	F V	WELL ID FIELD	QV-5 (ADWR 55-221850) RESOLUTION	55-22185( I	) )		
	0	COUNTY	PINAL		STATE	E ARIZONA	-
	<u> </u>	<b>TYPE OF LOGS:</b>	LOGS: ABI-43	む		OTHER SERVICES	VICES
	7	<b>MORE:</b>	3-ARI	<b>3-ARM CALIPER</b>	PER	GAMMA	
		LOCATION D(1-10)34CDD				TEMP/FLUID RES E-LOGS SONIC	D RES
	SI	SEC 34	TWP 1S	RGE	10E		
PERMANENT DATUM	DATUM			ELEVATION		K.B.	
LOG MEAS. FROM		GROUND LEVEL		ABOVE PERM. DATUM	M	D.F.	
DRILLING ME.	AS. FROM G	DRILLING MEAS. FROM GROUND LEVEL	L			G.L.	
DATE		12-13-12		TYPE FLUID IN HOLE	D IN HOLE	FRESH WATER	TER
RUN No				SALINITY	ΓY	N/A	
TYPE LOG		ABI-43		DENSITY	Y	N/A	
DEPTH-LOGGER	BR	173 M		MAX. REC. TEMP.	. TEMP.	40 M 18.8 DEG C	
BTM LOGGED INTERVAL	INTERVAL	173 M		IMAGE OR	IMAGE ORIENTED TO:	N/A	
TOP LOGGED INTERVAL	INTERVAL	40 M		SAMPLE INTERVAL	VTERVAL	0.0096 FT	
DRILLER / RIG#	#	BOART LY		LOGGING TRUCK	<b>FRUCK</b>	TRUCK -300	
RECORDED BY / Logging Eng.	Y / Logging En;	-	K. MITCHELL/E. BEAM	TOOL STRING/SN	ING/SN	ALT ABI-43 SN-91601	SN-91601
WITNESSED BY	Y	CLEAR CR	CLEAR CREEK-BARRY	LOG TIME	LOG TIME: ON SITE/OFF SITE	SITE 6:30 AM	1:00 PM
RUN BOR	BOREHOLE RECORD	RD		CASING RECORD	CORD		
NO. BIT	FROM	M	TO	SIZE	WGT.	FROM	ТО
1 22"	SUR	SURFACE	60 FT	16"	HWT	SURFACE	60 FT
2 15"	60 FT	Т	388 FT				
3 14 3/4"	4" 388 FT	FT	IJ				
COMMENTS:							

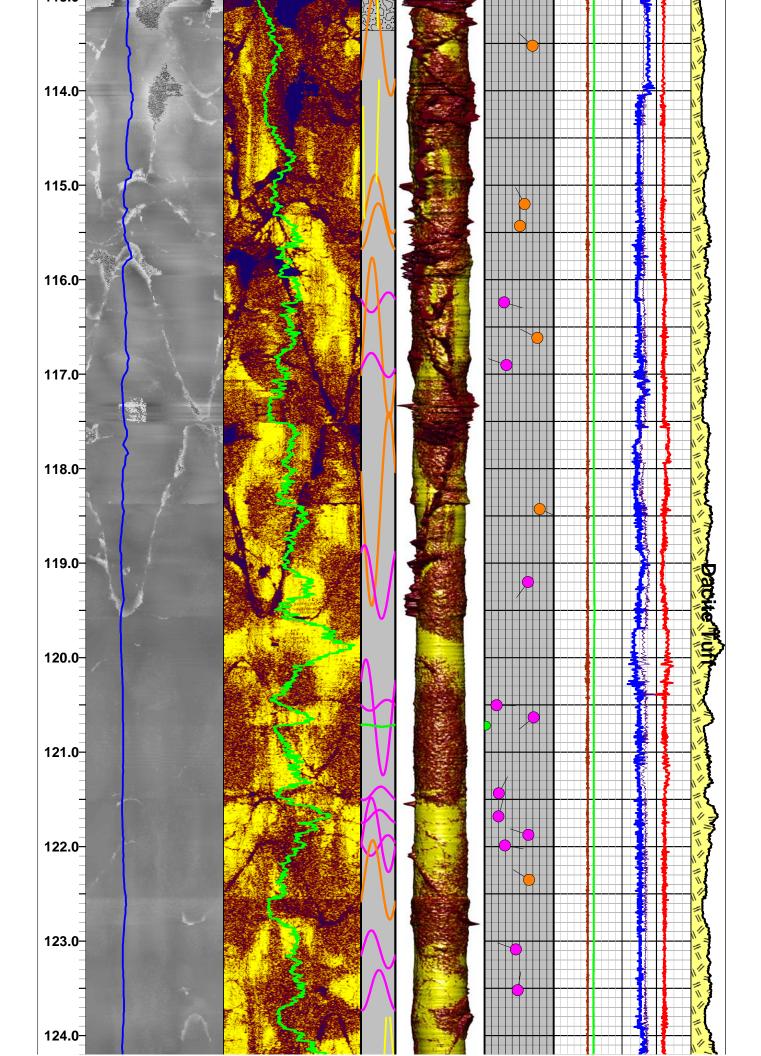


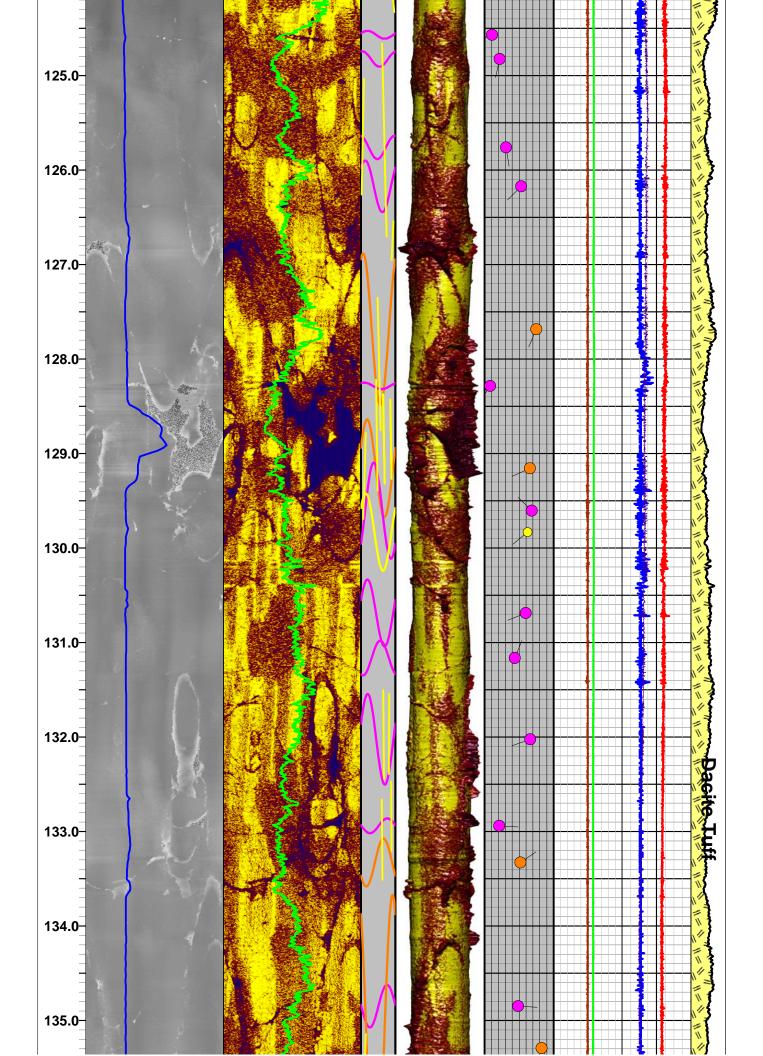


Acoustic Image Features Legend

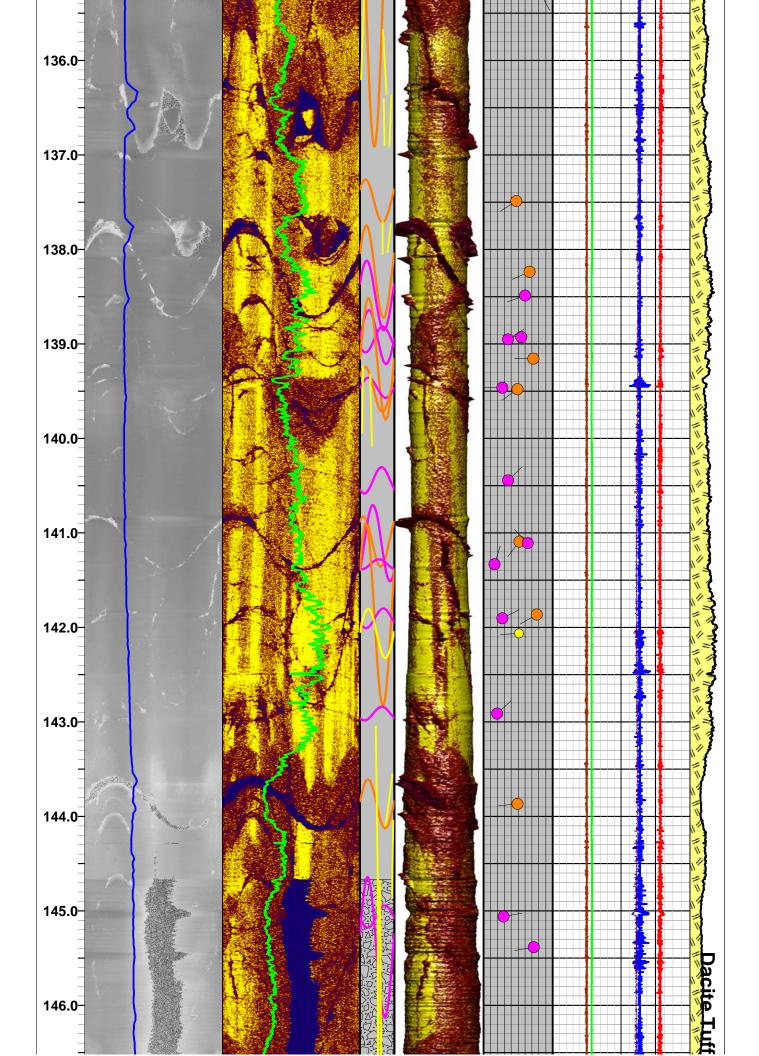


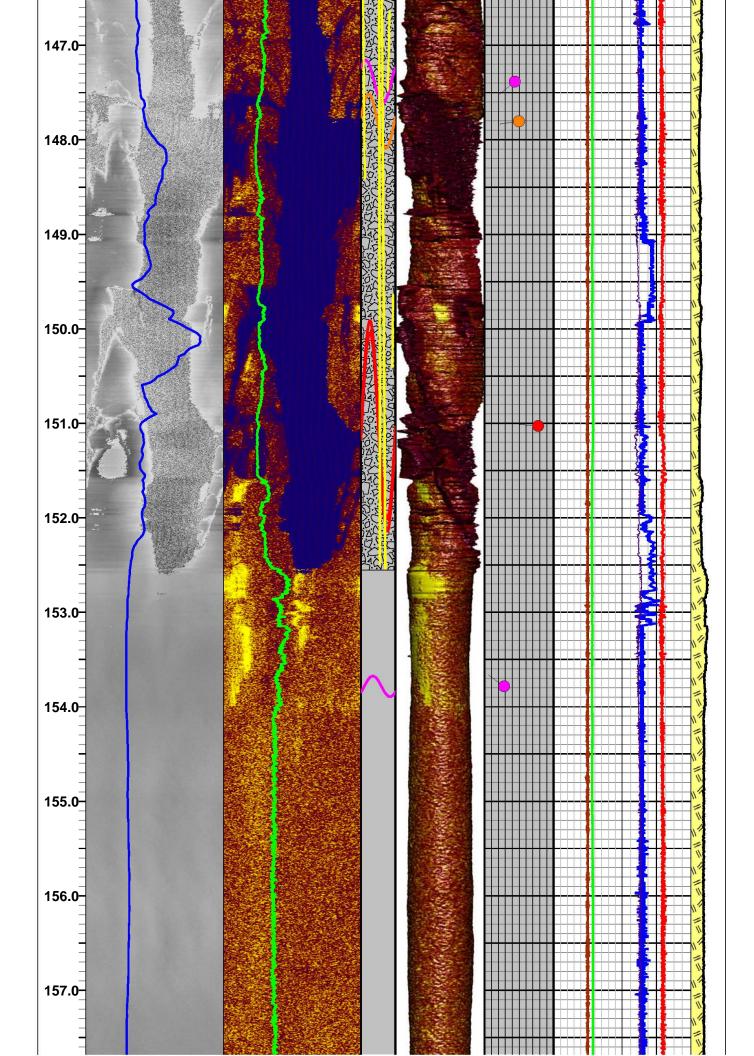


<b>Depth</b> 1m:40m	QV-5 ABI-43 Summary_ ~44.7 M to ~172.3 M							
	Centralized TT	Amplitude-NM	ABI	3D	Tadpole	Mag Field	Tilt	Lith
	Oriented Mag North	Oriented Mag North	DIPA		DIPT	40 uT 60	0 deg 4	
	0° 90° 180° 270° 0°	<u>0° 90° 180° 270° 0°</u>		0°	0 100	Gravity	Azimuth	Hard
	Caliper	Amp-High Pass	NVJt			0.8 g 1.2		Tiaru
	10 Inches 30	Oriented Mag North					RBR	Desc
		0° 90° 180° 270° 0°	Bx				-90 270	
		Amp-Static						
		Oriented Mag North						
		0° 90° 180° 270° 0°						
		ARI						
44.0		0 500						
45.0		Fluid Level: ~44.7 M	$\langle \langle \rangle$					A State of the sta

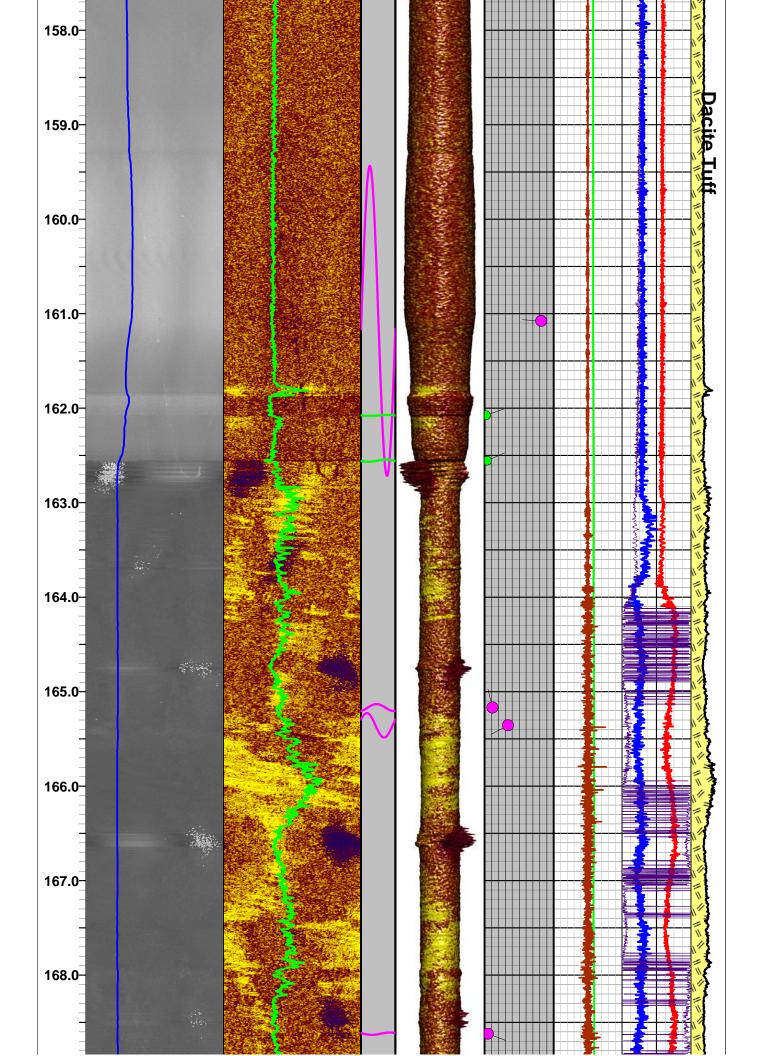


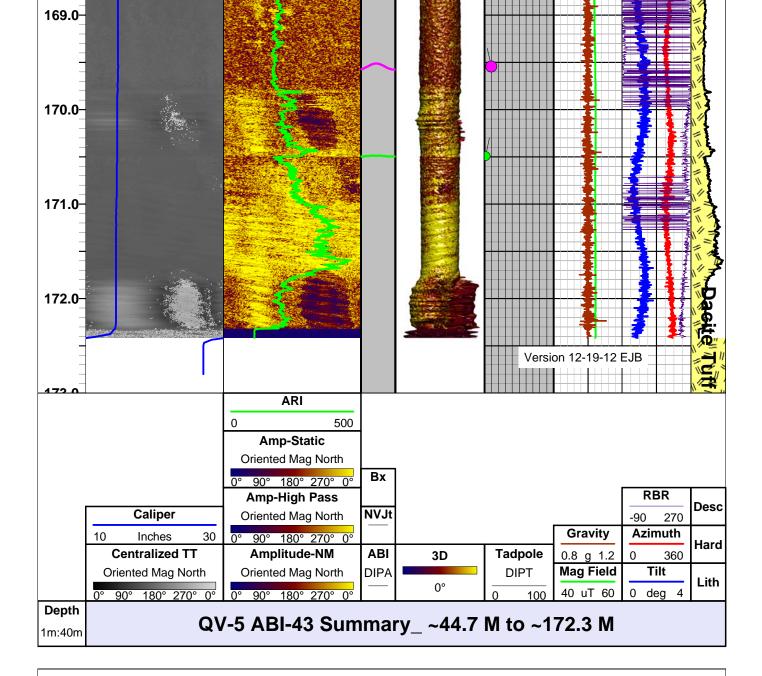







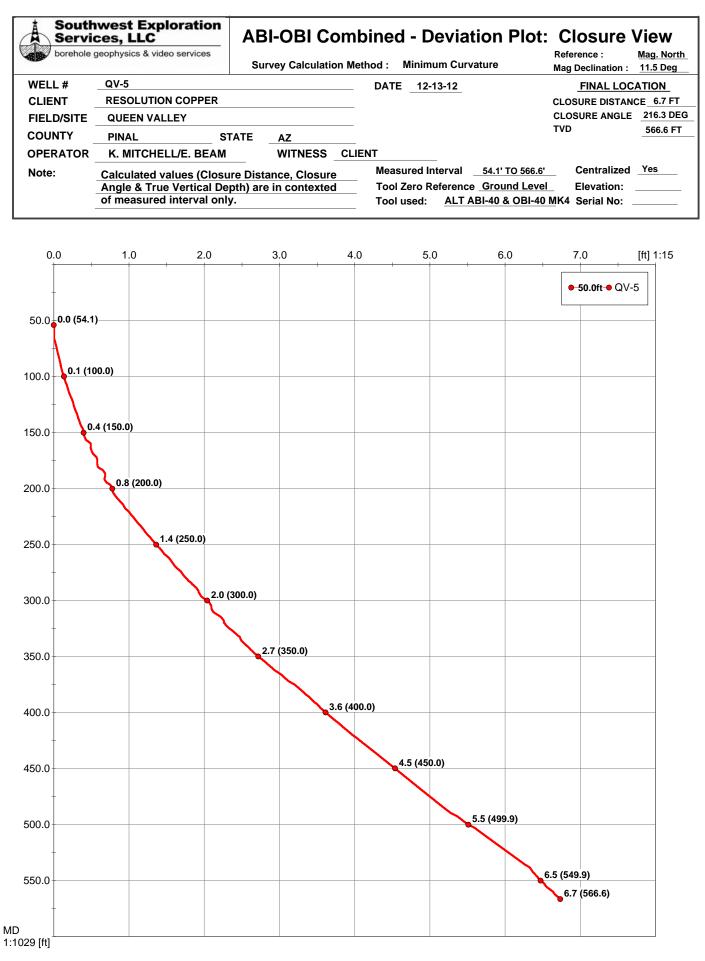







## **ABI Image Summary Legend**

#### **Mnemonics and Comments**


Centralized TT =	2D plot of acoustic image travel time with probe position centralized. Oriented to magnetic north and plotted from left to right N-E-S-W-N
Caliper = 3-arm	mechanical caliper of hole diameter plotted from 10 to 30 inches (blue line).
Max-Acoustic Calip	<b>Der</b> = Maximum acoustic caliper of hole diameter calculated from Travel Time data and plotted as orange line from 10 to 30 inches. Turned off due to elongation of hole diameter.
Ave-Acoustic Calip	er = Average acoustic caliper of hole diameter calculated from Travel Time data and plotted as bright green line from 10 to 30 inches. Turned off due to elongation of hole diameter
fr	Pink shaded zone between Avg-Acoustic Caliper and Max-Acoustic Caliper calculated om Travel Time data showing borehole enlargment. Turned off due to elongation of ole diameter.
	2D plot of unfiltered acoustic image amplitude oriented to magnetic north. Plotted rom left to right N-E-S-W-N. Image togaled on.

Amp-Static	= 2D plot of acoustic image amplitude with Static normalization filter oriented to magnetic north. Plotted from left to Right N-E-S-W-N. Image toggled on.
Amp-High	Pass = 2D plot of acoustic image amplitude with High Pass normalization filter oriented to magnetic north. Plotted from left to Right N-E-S-W-N. Image toggled off.
ARI	= Acoustic Reflectance Index or relative rock hardness from ABI Amplitude log. Plotted 0 (soft) to 500 (harder) as green line.
ABI	= Planar strucutral features picked on acoustic borehole image shown as colored sinusoid (color designation shown on header) DIPA = dip apparent hole axis.
NVJt	= Near Vertical (near parallel to hole axis) joint/fracture features picked on acoustic borehole image shown as colored sinusoid (color designation shown on header).
Bx	<ul> <li>Apparent Breccia or Congomerate zones and Vugs/Vesicles/Cavities.</li> </ul>
3-D	= 3D cylindrical projection of ABI image using Centralized TT log for hole shape looking from North.
Tadpole	= Tadpole plot of the ABI feature picks (fractures and bedding planes); plotted from 0 to 90 dip - see legend above. DIPT = True orientation; features corrected for hole deviation.
Mag Field	= Total magnetic field strength as measured by fluxgate magnetometer in OBI or ABI deviation sensor - plotted 40-60 uT (green line).
Gravity	= Total gravity (probe acceleration) as measured by 3-axis accelerometers in ABI deviation sensor - plotted 0.8-1.2 g (brown line).
Azimuth	= Direction of tool tilt plotted 0 to 360 deg - represents borehole deviation direction (red line).
Tilt	= Tool tilt (vertical = 0 and horizontal = 90) plotted 0 to 4 deg; represents borehole deviation tilt from vertical (blue line).
RBR	= Relative bearing - azimuth of the probe marker position to Magnetic North measured clockwise (thin purple line).
Lith	= Major/principal lithology based on field geologic descriptions provided by Clear Creek staff.
Desc	= Major/principal field geologic descriptions provided by Clear Creek staff.
Hard	= Apparent rock harness from ARI used to silhouette lithology.
Prepared by	Erika J. Beam
Version 12-1	D-12

17.1 David	ces, LLC geophysics & video services	ABI-OBI COMI Survey Calculation Me	bined - Deviation P	Ot:         Buils-Eye         View           Reference :         MAG NORTH           Mag Declination :         11.5 Deg
WELL # CLIENT FIELD/SITE COUNTY	QV-5 RESOLUTION COPPER QUEEN VALLEY PINAL ST	ATE AZ	DATE <u>12-13-12</u>	FINAL LOCATIONCLOSURE DISTANCE6.7 FTCLOSURE ANGLE216.3 DEGTVD566.6 FT
OPERATOR Note:	K. MITCHELL/E.BEAM Calculated values (Closu Angle & True Vertical Dep of measured interval only	WITNESS Client re Distance, Closure oth) are in contexted	Measured Interval54.1' TO 5 Tool Zero ReferenceGround	
31 300° 290° 280° 280° 260° 250° 240° 23		350° 340° 7.0 6.0 7.0 6.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7		40° 50° 60° 70° 80° 90° 100° 110° 120°

●-50.0ft-● QV-5

borehole geophysics & video services			Survey Cal	culation Method : Min	imum Curvature		Reference : Mag. North Mag Declination : 11.5 Deg	
VELL # CLIENT IELD/SITE OUNTY	QV-5       RESOLUTION COPPER       QUEEN VALLEY       PINAL     STATE			DATE _1	2/13/12	FINAL LOC CLOSURE DISTAN CLOSURE ANGLE TVD	CE 6.7 FT	
PERATOR	Calculated Angle & T		ure Distance, C epth) are in con	texted Tool Zero	IT Measured Interval <u>54.1' TO 566.6'</u> Tool Zero Reference <u>Ground Level</u> Tool used: <u>ALT ABI-43 &amp; OBI-40</u>			
l 90.00° E 1:11 [ft]		-4.0	-3.0	-2.0	-1.0	-0.0		
•-50.0f	ft∙● QV-5						.1)50.0	
						-0.1 (100.0)		
						-0.1 (150.0)		
					-0.3	(200.0)	200.0	
					-0.6 (250.0	,	250.0	
					-1.1 (300.0)			
				-1.5 (350.	.0)			
				-2.1 (400.0)			400.0	
			-2.7 (450.0					
		-3.1	(500.0)					
	-3. -4.0 (566.	7 (550.0) 6)						

