

### Results of Hydrochemical Characterization of Groundwater Upper Queen Creek/Devils Canyon Study Area

Resolution Copper Mining LLC, Pinal County, AZ





Water Resource Consultants



#### March 15, 2012 REPORT

# RESULTS OF HYDROCHEMICAL CHARACTERIZATION OF GROUNDWATER UPPER QUEEN CREEK/DEVILS CANYON STUDY AREA RESOLUTION COPPER MINING LLC, PINAL COUNTY, ARIZONA





#### **CONTENTS**

|                                   | Page |
|-----------------------------------|------|
| 1.0 EXECUTIVE SUMMARY             | ES-1 |
| 1.1 CONCLUSIONS                   | ES-2 |
| 1.2 RECOMMENDATIONS               | ES-5 |
| 2.0 INTRODUCTION                  | 1    |
| 2.1 HYDROGEOLOGIC CONTEXT         | 3    |
| 2.1.1 Shallow Groundwater System  | 3    |
| 2.1.2 Apache Leap Tuff Aquifer    | 3    |
| 2.1.3 Deep Groundwater System     |      |
| 2.2 GROUNDWATER QUALITY STANDARDS | 5    |
| 3.0 SHALLOW GROUNDWATER SYSTEM    | 6    |
| 3.1 CHEMICAL COMPOSITION          | 6    |
| 3.2 SEASONAL VARIABILITY          | 7    |
| 3.3 RECHARGE                      | 7    |
| 3.4 DISCHARGE                     | _    |
| 4.0 APACHE LEAP TUFF AQUIFER      |      |
| 4.1 CHEMICAL COMPOSITION          |      |
| 4.2 SEASONAL VARIABILITY          |      |
| 4.3 RECHARGE                      | 10   |
| 4.4 DISCHARGE                     |      |
| 4.4.1 Devils Canyon Watershed     |      |
| 4.4.2 Mineral Creek Watershed     |      |
| 5.0 DEEP GROUNDWATER SYSTEM       |      |
| 5.1 CHEMICAL COMPOSITION          | 18   |
| 5.2 RECHARGE                      |      |
| 5.3 DISCHARGE                     |      |
| 6.0 RECOMMENDATIONS               | 24   |
| 7.0 REFERENCES                    | 26   |



#### **CONTENTS** – continued

#### **TABLES**

#### **Table**

- 1 GROUNDWATER SAMPLING LOCATIONS, UPPER QUEEN CREEK/DEVILS CANYON STUDY AREA, RESOLUTION COPPER MINING LLC, PINAL COUNTY, ARIZONA
- 2 SURFACE WATER AND SPRING SAMPLING LOCATIONS, RESOLUTION COPPER MINING LLC, PINAL COUNTY, ARIZONA
- 3 SUMMARY OF ANALYTICAL SUITE FOR GROUNDWATER AND SURFACE WATER SAMPLING, RESOLUTION COPPER MINING LLC, PINAL COUNTY, ARIZONA

#### **ILLUSTRATIONS**

#### Figure

- 1\* HYDROLOGIC MONITORING LOCATIONS, UPPER QUEEN CREEK/ DEVILS CANYON STUDY AREA
- 2\* GEOLOGIC UNITS, UPPER QUEEN CREEK / DEVILS CANYON STUDY AREA
- TRILINEAR DIAGRAM SHOWING COMMON ION COMPOSITIONS OF GROUNDWATER, RESOLUTION PROJECT
- TIME SERIES OF MAJOR ION CHEMISTRY FOR SHALLOW GROUNDWATER SYSTEM, RESOLUTION PROJECT
- 5  $\partial^2$ H VERSUS  $\partial^{18}$ O COMPOSITION FOR GROUNDWATER, RESOLUTION PROJECT

<sup>\*</sup> In pocket



### **CONTENTS** – continued

| Figure |                                                                                                                                |
|--------|--------------------------------------------------------------------------------------------------------------------------------|
| 6      | <sup>87</sup> Sr/ <sup>86</sup> Sr ISOTOPE RATIO VERSUS INVERSE STRONTIUM CONCENTRATION OF GROUNDWATER, RESOLUTION PROJECT     |
| 7      | $\partial^{34} \mathrm{S}_{\mathrm{SO4}}$ VERSUS SO <sub>4</sub> /CI MASS RATIO OF GROUNDWATER SAMPLES, RESOLUTION PROJECT     |
| 8      | <sup>3</sup> H VERSUS <sup>14</sup> C FOR GROUNDWATER AND SELECTED SPRING AND SURFACE WATER LOCATIONS, RESOLUTION PROJECT      |
| 9      | TIME SERIES OF MAJOR ION CHEMISTRY FOR APACHE LEAP<br>TUFF AQUIFER, RESOLUTION PROJECT                                         |
| 10     | TRILINEAR DIAGRAM SHOWING COMMON ION COMPOSITIONS OF SURFACE WATER AND SPRINGS, RESOLUTION PROJECT                             |
| 11*    | STIFF DIAGRAMS, UPPER QUEEN CREEK / DEVILS CANYON STUDY AREA                                                                   |
| 12     | $\partial^2 H$ VERSUS $\partial^{18} O$ COMPOSITION OF SPRING AND SURFACE WATER SAMPLES COLLECTED IN 2008, RESOLUTION PROJECT  |
| 13     | $\partial^2 H$ VERSUS $\partial^{18} O$ COMPOSITION OF SPRING AND SURFACE WATER SAMPLES COLLECTED IN 2009, RESOLUTION PROJECT  |
| 14     | $\partial^2 H$ VERSUS $\partial^{18} O$ COMPOSITION OF SPRING AND SURFACE WATER SAMPLES COLLECTED IN 2010, RESOLUTION PROJECT  |
| 15     | $\partial^2$ H VERSUS $\partial^{18}$ O COMPOSITION FOR SPRING AND SURFACE WATER SAMPLES COLLECTED IN 2011, RESOLUTION PROJECT |
| 16     | $\partial^{34} S_{SO4}$ VERSUS SO <sub>4</sub> /CI MASS RATIO OF SURFACE WATER AND SPRINGS, RESOLUTION PROJECT                 |

<sup>\*</sup> In pocket



#### **CONTENTS** – continued

#### **Figure**

- 17 87 Sr/86 Sr ISOTOPE RATIO VERSUS INVERSE STRONTIUM CONCENTRATION OF SPRINGS AND SURFACE WATER, RESOLUTION PROJECT
- 18 TRILINEAR DIAGRAM SHOWING COMMON ION COMPOSITIONS FOR DEEP GROUNDWATER SYSTEM, RESOLUTION PROJECT
- 19 TRILINEAR DIAGRAM SHOWING COMMON ION COMPOSITIONS FOR DEEP GROUNDWATER AND MINE WORKINGS, RESOLUTION PROJECT
- 20  $$\partial^{34}{\rm S}$$  VERSUS  $\partial^{18}{\rm O}$  IN DISSOLVED SULFATE FOR DEEP GROUNDWATER SYSTEM AND MINE WORKINGS, RESOLUTION PROJECT

#### **APPENDICES**

#### **Appendix**

- A GROUNDWATER HYDROCHEMICAL DATA
- B SURFACE WATER HYDROCHEMICAL DATA



#### March 15, 2012 **REPORT**

#### RESULTS OF HYDROCHEMICAL CHARACTERIZATION **UPPER QUEEN CREEK/DEVILS CANYON STUDY AREA** RESOLUTION COPPER MINING LLC, PINAL COUNTY, ARIZONA

#### 1.0 EXECUTIVE SUMMARY

- 1. Hydrochemical sampling of groundwater started with characterization samples collected as monitor wells were drilled, completed, and tested beginning in 2004. This level of well-by-well sampling is on-going and all new wells are sampled both for screening during construction and development, and for characterization once a pumping test is conducted.
- 2. In addition to the well-by-well hydrochemical sampling, six consecutive quarterly sampling rounds were conducted in 2008 and the first half of 2009. In the third quarter of 2008 and the first two quarters of 2009, coordinated groundwater/surface water sampling rounds were conducted in collaboration with Golder Associates.
- 3. Samples were collected for a full hydrochemical and isotopic suite including:
  - Routine parameters and common constituents
  - Trace constituents
  - Radiological constituents
  - Deuterium and oxygen-18 in water
  - Sulfur-34 and oxygen-18 in dissolved sulfate
  - Carbon-13
  - Carbon-14
  - Tritium

  - Strontium concentration and <sup>87</sup>Sr/<sup>86</sup>Sr ratio Uranium concentration and isotopes (<sup>234</sup>U, <sup>235</sup>U, <sup>238</sup>U)
- 4. In February 2010 Montgomery & Associates (M&A) published a report entitled "Interim Results of Groundwater Monitoring, Upper Queen Creek and Devils Canyon Watersheds" (M&A 2010) which reported all hydrochemical and isotopic data available through the second quarter of 2009. Discussion presented in that report was based on all



available hydrochemical data but only incorporated interpretation of isotopic data from the first coordinated surface water/groundwater round in the third quarter of 2008.

5. The current report presents hydrochemical and isotopic data collected since M&A (2010) was published and interpretations based on analysis of data available through December 2011.

#### 1.1 CONCLUSIONS

In this section a brief synopsis of current understanding is presented for each aquifer or groundwater system and any revisions to conclusions presented in M&A (2010) are highlighted.

#### **Shallow Groundwater System**

- 1. Incorporation of new data support current understanding of the shallow groundwater system:
  - a. For the constituents measured, shallow groundwater meets the United States Environmental Protection Agency (U.S. EPA) National Primary Drinking Water Regulations (NPDWR), and the State of Arizona Numeric Aquifer Water Quality Standards (AWQS) with the exception of two samples taken from JI Ranch Corral Well that exceed the NPDWR for nitrogen (NO<sub>3</sub> + NO<sub>2</sub> as N).
  - b. Shallow groundwater meets the majority of the U.S. EPA National Secondary Drinking Water Regulations (NSDWR) with the exception of several samples that are out of compliance with the NSDWR for sulfate, total dissolved solids, pH, iron, and manganese.
  - c. Impacts to shallow groundwater at JI Ranch are likely due to local agriculture, regional mineralization, and/or historical mining and mineral processing activities in the region.
  - d. The shallow groundwater system is currently recharged by local rainfall runoff with some degree of evaporation occurring during recharge.
  - e. Mean groundwater residence times are short in the Hackberry Canyon alluvium, on the order of less than 5 to perhaps as much as 10 years. Residence times are longer at JI Ranch, perhaps as long as 700 years in the deeper part of the shallow aquifer hosted in the upper weathered portion of the Apache Leap Tuff (Tal).



- f. It does not appear that substantial amounts of water move vertically to the Apache Leap Tuff (ALT) aquifer from the alluvial deposits that host shallow groundwater at JI Ranch.
- 2. Seasonal variability in hydrochemical composition of shallow groundwater is small at Hackberry Windmill but more substantial at JI Ranch. Variability in water quality at the JI Ranch wells is likely due to local agricultural and residential inputs, and historical mining and mineral processing activities in the region.

#### Apache Leap Tuff Aquifer

- 1. Incorporation of new hydrochemical data largely confirmed current understanding of occurrence and movement of groundwater in the ALT aquifer. New data from the Mineral Creek watershed have broadened understanding of the ALT aquifer. The current conceptual model contains the following elements:
  - a. For the constituents measured, groundwater sampled from the ALT aquifer in Resolution Project area meets U.S. EPA NPDWR and State of Arizona AWQS. A substantial number of groundwater samples collected from the ALT aquifer are out of compliance with U.S. EPA NSDWR with the main constituents of concern being manganese, iron, and pH.
  - b. The ALT aquifer is recharged by infiltration of precipitation and of precipitation-driven runoff. Recharge to the aquifer results from fast-path infiltration along principal drainage ways.
  - c. Residence times in the central ALT aquifer (Oak Flat and east Devils Canyon areas) appear to be on the order of 3,000 to 5,000 years; groundwater with shorter residence times (on the order of 1,000 to 2,000 years) occurs in the ALT aquifer along Queen Creek and Iron Canyon.
  - d. The ALT aquifer discharges at springs and along stream channels associated with the perennial reaches of Devils Canyon and Mineral Creek.
- 2. Additions to the conceptual model of groundwater flow and recharge/discharge relationships within the ALT aquifer include:
  - a. Recharge to the ALT aquifer occurs along Lyon's Fork of Mineral Creek. Water entering the ALT along Lyon's Fork appears to have interacted with the Precambrian and Younger Precambrian geologic units of the upper Mineral Creek watershed.
  - b. Groundwater sampled at HRES-10 and CT Well along Lyon's Fork is modern in age consistent with active recharge of recent precipitation-driven runoff to the ALT aquifer in this area.



- c. Precipitation that lands on the ALT outcrop belt enters one of two infiltration domains: (1) a shallow circulation system in which water enters near-surface fractures where it is subject to evaporation and transpiration, and from which it may discharge to the surface over the days and weeks following a precipitation event; and, (2) deep infiltration through fast preferential flow paths that results in recharge to the ALT aquifer.
- d. Analysis of temporal variability indicates that the major-ion chemistry of the ALT aquifer at six wells exhibits negligible seasonal or annual variability.

#### Deep Groundwater System

- 1. Since M&A (2010) was published the extent of the deep groundwater system as defined for the Resolution Project area has been enlarged to include several groundwater domains that encompass a variety of geologic units. The system consists of:
  - <u>Deep groundwater within the Resolution Graben</u>. The Resolution Graben hosts the Resolution ore body; a series of regional faults offsets the rocks within the graben from those units that are located outside the graben. Within the Resolution Graben the deep groundwater system is hydraulically connected to existing mine workings and a clear hydraulic response to ongoing dewatering of the mine workings is observed.
  - <u>Deep groundwater east of the Concentrator Fault but outside the Resolution Graben.</u> Graben-bounding faults appear to limit hydraulic communication between the deep groundwater system outside the graben and the deep groundwater system within the graben. Water levels are substantially higher outside the graben and no response to dewatering of the existing mine workings has been observed to date.
  - <u>Deep groundwater system west of the Concentrator Fault.</u> This system is hosted in low permeability Tertiary basin-fill deposits and fractured Tertiary volcanic rocks that occur west of the Concentrator Fault. Hydraulic connection between the deep groundwater system west of the Concentrator Fault and the deep groundwater system east of the Concentrator Fault appears to be limited; to date no response to dewatering of the existing mine workings has been observed in wells west of the Concentrator Fault.
- 2. Several samples from the deep groundwater system are out of compliance with U.S. EPA NPDWR and State of Arizona AWQS for the radiological constituents: gross alpha, gross beta, and/or radium (Ra-226 + Ra-228). In addition, exceedances of the NPDWR and/or AWQS for antimony, arsenic, chromium, copper, fluoride, and lead are occasionally observed in samples from the deep groundwater system.



- 3. A substantial proportion of deep groundwater samples are out of compliance with U.S. EPA NSDWR with the main constituents of concern being manganese, iron, aluminum, fluoride, sulfate, and total dissolved solids
- 4. Common ion composition of groundwater sampled from the deep groundwater system varies depending on the geologic units present at each sampling location.
- 5. The deep groundwater system is recharged by infiltration of meteoric water.
- 6. There is no evidence of active recharge to the deep groundwater system from the surface at any of the deep groundwater sampling locations with the exception of well DHRES-09. Groundwater sampled from Younger Precambrian Dripping Spring Quartzite and Diabase east of the Concentrator Fault and west of the Main Fault (well DHRES-09) yields an estimated mean residence time on the order of 1000 to 2000 years and appears to contain a component of recent recharge. Estimated mean groundwater residence times for the other deep groundwater domains are as follows:
  - Groundwater collected from Cretaceous volcaniclastic rocks within the Resolution Graben yields estimated mean residence times on the order of 6,000 to 12,000 years (wells DHRES-01, DHRES-02, RES-009)
  - Groundwater collected from Paleozoic carbonate rocks east of the Concentrator Fault yields an estimated mean residence time on the order of 15,000 years (well DHRES-06)
  - Groundwater collected from Tertiary volcanic rocks west of the Concentrator Fault yields an estimated mean residence time on the order of 14,000 years (well DHRES-04)
  - Groundwater collected from younger Precambrian Dripping Spring Quartzite, Mescal Limestone, and Diabase east of the Concentrator Fault and northeast of the Resolution Graben yields an estimated residence time on the order of 19,000 years (well DHRES-11)
  - Groundwater collected from younger Precambrian Dripping Spring Quartzite, Pioneer Shale, and Diabase and Older Precambrian Pinal Schist to the east of the Concentrator fault but southwest of the Resolution Graben yields an estimated residence time on the order of 7,000 years (well DHRES-13)

#### 1.2 RECOMMENDATIONS

Based on review and analysis of the results of the 2004-2011 RCM groundwater hydrochemical monitoring program, M&A has the following recommendations:

1. One comprehensive sampling round of all ALT aquifer wells equipped with pumping assemblies should be conducted. This comprehensive round should be coordinated



with sampling of surface water and spring locations. Ideally this effort should occur during May or June in order for surface water data to represent baseflow conditions.

- 2. Subsequently all ALT aquifer wells drilled in 2010 and 2011 should be sampled for three additional consecutive quarters (i.e. for four consecutive quarters including the initial comprehensive round).
- 3. Where practicable, additional chemistry samples should be collected from wells completed in the deep groundwater system in order to confirm findings that are currently based on a single sample from each deep groundwater system well (except DHRES-02 where data from four samples are available).
- 4. Samples from ALT aquifer wells drilled in 2010 and 2011 collected during both the comprehensive round and the quarterly sampling should be analyzed for the full hydrochemical and isotopic suite defined as:
  - o Routine parameters and common constituents
  - Trace constituents including total and dissolved metals, cyanide, and sulfide
  - o Radiological constituents
  - o Deuterium and oxygen-18 in water
  - o Sulfur-34 and oxygen-18 in dissolved sulfate
  - o Carbon-13 in dissolved inorganic carbon
  - o Carbon-14 in dissolved inorganic carbon
  - o Tritium
  - o Strontium concentration and <sup>87</sup>Sr/<sup>86</sup>Sr ratio
  - o Uranium concentration and isotopes (<sup>234</sup>U, <sup>235</sup>U, <sup>238</sup>U)

Based on the results of this sampling (specifically whether there is any indication of substantial temporal variability) further baseline sampling may be recommended.

5. Surface water samples and samples collected from ALT aquifer wells that have previously been sampled for six consecutive quarters (HRES-04, HRES-05, HRES-06, HRES-07, A-06, and MJ-11) should be analyzed for the suite defined in Item (4) above with the exception of radiological constituents and uranium concentration and isotopes.



#### March 15, 2012 REPORT

## RESULTS OF HYDROCHEMICAL CHARACTERIZATION OF GROUNDWATER UPPER QUEEN CREEK/DEVILS CANYON STUDY AREA RESOLUTION COPPER MINING LLC, PINAL COUNTY, ARIZONA

#### 2.0 INTRODUCTION

At the request of Mr. Greg Ghidotti, Resolution Copper Mining LLC (RCM), Montgomery & Associates (M&A) has prepared this report as an addendum to an earlier report entitled "Interim Results of Groundwater Monitoring, Upper Queen Creek and Devils Canyon Watersheds" published February 17, 2010 (M&A, 2010). The objectives of this report are to:

- 1. Report all groundwater hydrochemical data generated through December 2011 by the ongoing hydrogeologic characterization program
- 2. Report all surface water hydrochemical data generated through December 2011 during baseline studies and by the ongoing hydrogeologic characterization program
- 3. Update plots and graphs provided in M&A (2010) with current data
- 4. Present time-series plots of common ion data for groundwater and surface water sampling locations
- 5. Assess new data in light of the current hydrogeologic conceptual model and highlight any changes made in consideration of new data



Hydrochemical sampling was undertaken by RCM in order to refine the conceptual hydrogeologic model for the Apache Leap Tuff (ALT) aquifer and adjacent aquifers. The principal goals of the hydrochemical characterization program include: (1) establish groundwater quality baseline for the ALT aquifer and adjacent aquifers in the vicinity of proposed block-cave mining operations; (2) identify principal sources of groundwater recharge and pathways for groundwater discharge to/from the ALT aquifer and adjacent groundwater systems; and (3) define the connectivity between the shallow groundwater system, the ALT aquifer, and the deep groundwater system.

Groundwater and surface water sampling locations are shown on **Figure 1** and summarized in **Tables 1 and 2**. A geologic map of the study area is provided on **Figure 2**. Samples were collected for common and trace constituents, routine parameters, radiological constituents, stable isotopes, and radioactive/radiogenic isotopes. The complete groundwater and surface water analytical suites are summarized in **Table 3**. Analytical results for groundwater and surface water samples are provided in **Appendices A and B**.

This report is organized by aquifer/groundwater system. For each system hydrochemical characterization is discussed including: (1) water quality and type, (2) seasonal variability where temporal data are available, and (3) recharge/discharge relationships. For details regarding hydrochemical sampling and the associated water level monitoring program, and for explanation of isotopic analyses and interpretation see M&A (2010).

The current report does not address surface water hydrochemistry in detail. Surface water data are reported in full but only addressed as they pertain to understanding surface water/groundwater interaction, recharge/discharge relationships and groundwater movement.



#### 2.1 HYDROGEOLOGIC CONTEXT

Based on results of hydrogeologic characterization conducted by M&A on behalf of RCM (M&A, 2001, 2005, 2008, 2010) three principal groundwater systems have been identified in the study area including: the shallow groundwater system, the ALT aquifer, and the deep groundwater system. Salient observations regarding each groundwater system are summarized below.

#### 2.1.1 Shallow Groundwater System

The shallow groundwater system consists of several shallow perched aquifers of limited areal extent hosted in alluvial deposits and the uppermost weathered part of the Apache Leap Tuff (Tal) (**Figure 2**).

#### 2.1.2 Apache Leap Tuff Aquifer

The ALT aquifer is a fractured-rock aquifer hosted in the Tal outcrop belt that extends throughout much of the Upper Queen Creek and Devils Canyon drainages, and a portion of the Mineral Creek drainage (**Figure 2**). The Tal is separated from the deep groundwater system by a thick sequence of Tertiary basin fill sediments (Whitetail Conglomerate (Tw)). For the majority of its central and southern extent the Tal is underlain by the low-permeability Tw, although there are local areas along the western margin of the Tal outcrop belt where Tal directly overlies Paleozoic carbonates. In the northern area of the Tal outcrop belt early Tertiary volcanics and sediments (Tev and Tes) lie between the Tw and the Tal; however, the Tw still separates the ALT aquifer from the deep groundwater system. No response to dewatering of existing mine workings has been observed in any well completed in the ALT aquifer.



#### 2.1.3 Deep Groundwater System

The deep groundwater system, as defined for the Resolution Project area, includes several groundwater domains that encompass a variety of geologic units. These groundwater domains are currently defined as follows:

- <u>Deep groundwater within the Resolution Graben</u>. The Resolution Graben hosts the Resolution ore body; a series of regional faults offsets the rocks within the graben from those units that are located outside the graben. Within the Resolution Graben the deep groundwater system is hydraulically connected to existing mine workings and a clear hydraulic response to ongoing dewatering of the mine workings is observed.
- <u>Deep groundwater east of the Concentrator Fault but outside the Resolution</u>

  <u>Graben.</u> Graben-bounding faults appear to limit hydraulic communication between the deep groundwater system outside the graben and the deep groundwater system within the graben. Water levels are substantially higher outside the graben and no response to dewatering of the existing mine workings has been observed to date.
- <u>Deep groundwater system west of the Concentrator Fault.</u> This system is hosted in low-permeability Tertiary basin-fill deposits and fractured Tertiary volcanic rocks that occur west of the Concentrator Fault. Hydraulic connection between the deep groundwater system west of the Concentrator Fault and the deep groundwater system east of the Concentrator Fault appears to be limited; to date no response to dewatering of the existing mine workings has been observed in wells west of the Concentrator Fault.



#### 2.2 GROUNDWATER QUALITY STANDARDS

Hydrochemical data from groundwater samples have been compared with the United States Environmental Protection Agency (U.S. EPA) National Primary Drinking Water Regulations (NPDWR), the U.S. EPA National Secondary Drinking Water Regulations (NSDWR), and the State of Arizona Numeric Aquifer Water Quality Standards (AWQS). The goal of comparing hydrochemistry with respect to these federal and state standards is to provide a general assessment of water quality in the ALT aquifer and the shallow and deep groundwater systems. This comparison is not intended to be comprehensive, nor is it intended to establish any groundwater in the study area as a drinking water source.

Hydrochemical data and the numerical NPDWR, NPSWR, and AWQS values for groundwater and surface water are tabulated in **Appendices A and B**, respectively. Water quality is discussed below with respect to each principal groundwater system in the study area.



#### 3.0 SHALLOW GROUNDWATER SYSTEM

The shallow groundwater system in the study area consists of several shallow aquifers of limited areal extent. Shallow groundwater has been sampled at three locations in the Devils Canyon Watershed (**Table 1**; **Figure 1**):

- JI Ranch Corral Well: completed in alluvium and upper, weathered Tal
- JI Ranch Middle Well: completed in alluvium and upper, weathered Tal
- Hackberry Windmill Well: completion unknown but likely completed in alluvium and upper, weathered Tal

#### 3.1 CHEMICAL COMPOSITION

Major ion chemistry of shallow groundwater is plotted on a trilinear diagram on **Figure 3**. Shallow groundwater types range from calcium-bicarbonate type at Hackberry Windmill to calcium-bicarbonate-sulfate type at the JI Ranch Middle well and calcium-sulfate type at the JI Ranch Corral Well.

For the constituents measured, shallow groundwater meets U.S. EPA NPDWR and State of Arizona AWQS with the exception of two samples taken from JI Ranch Corral Well that exceed the NPDWR for nitrogen (NO<sub>3</sub> + NO<sub>2</sub> as N). Shallow groundwater meets the majority of the U.S. EPA NSDWR with the exception of several samples that are out of compliance with the NSDWR for sulfate, total dissolved solids, pH, iron, and manganese (for details see **Tables A-1, A-2 and A-3; Appendix A**).



#### 3.2 SEASONAL VARIABILITY

Figure 4 shows major ion time-series data for Hackberry Windmill, JI Ranch Corral Well, and JI Ranch Middle Well. Inspection of these plots shows that there is little seasonal variation in hydrochemical composition of shallow groundwater sampled at Hackberry Windmill. Water quality at the JI Ranch wells is more variable although there does not appear to be a systematic seasonal variation. Variability in water quality at the JI Ranch wells (and water quality degradation where it occurs) is likely due to local agricultural and residential inputs, and historical mining and mineral processing activities in the region.

#### 3.3 RECHARGE

Analysis of stable isotopes of oxygen and hydrogen ( $\partial^2 H$  and  $\partial^{18}O$ ) indicates that the shallow groundwater system is recharged by local precipitation with some degree of evaporation occurring during recharge (Table A-4; Figure 5). Strontium-87/strontium-86 ratios (87Sr/86Sr) in shallow groundwater from Devils Canyon watershed (JI Ranch wells and Hackberry Windmill well) also indicate that the shallow groundwater is locally recharged (i.e., that the <sup>87</sup>Sr/<sup>86</sup>Sr is largely controlled by interaction with the alluvium and ALT (M&A, 2010)) (**Figure 6**). Relatively high sulfur contents and depleted  $\partial^{34}$ S values suggest that shallow groundwaters have interacted with dryfall sulfur particles deposited on the surface by smelter operations that occurred in Superior between 1924 and 1971 (Bassett et al., 1994) or by other historical smelter operations in the area (Figure 7). This indicates that shallow groundwaters have a substantial recent recharge component, which is also supported by the carbon-14 (<sup>14</sup>C) and tritium (<sup>3</sup>H) data presented on **Figure 8**. Carbon-14 and tritium data indicate that shallow groundwaters have short mean residence times ranging from modern (recharged within <5 to 10 years) at Hackberry Windmill to a mixture of submodern waters (with mean residence times perhaps as long as 700 years) and recent recharge at the JI Ranch wells.



#### 3.4 DISCHARGE

Discharge from the shallow groundwater system is likely to be largely controlled by evapotranspiration although only groundwater from Hackberry Windmill well shows an evaporation signal in the deuterium and oxygen-18 data (**Figure 5**). The lack of an evaporation signal in the groundwater sampled from the JI Ranch wells suggests that transpiration is the dominant process (transpiration is a purely advective process and does not result in isotope fractionation). Water likely also leaves the shallow groundwater system via direct discharge to local drainages where near-surface bedrock forces groundwater flow to the surface.

It does not appear that substantial amounts of groundwater move vertically to the ALT aquifer from the alluvial deposits that host shallow groundwater at JI Ranch. If recharge to the ALT in this area were mediated by the shallow groundwater system we would expect to observe a depleted  $\partial^{34}S$  signature in the ALT groundwater at well HRES-06. However,  $\partial^{34}S$  values from well HRES-06 are on the order of 5‰, similar to those observed in the majority of the ALT aquifer, and considerably enriched compared to values from the shallow groundwater system at JI Ranch (**Figure 7**).



#### 4.0 APACHE LEAP TUFF AQUIFER

The ALT aguifer is a fractured-rock aguifer hosted in dacite tuff that extends throughout much of the upper Queen Creek and Devils Canyon drainages, and a portion of the Mineral Creek drainage. The major focus of hydrogeologic investigations, including hydrochemistry, has been to understand recharge to, and discharge from, the ALT aquifer along with the degree of connection between the ALT aquifer and adjacent groundwater systems and surface water features. ALT groundwater has been sampled at 19 locations in the Devils Canyon, Upper Queen Creek and Mineral Creek watersheds. This count includes CT Well for which construction details are unknown and which may be completed only in the Tal or may be screened through both the Tal and the Gila Conglomerate (QTg) (**Table 1**; Figure 1). For six of these wells (HRES-04, HRES-05, HRES-06, HRES-07, A-06, and MJ-II) six consecutive quarterly samples were collected in 2008 and 2009. These locations were chosen for quarterly sampling because, of the wells currently drilled in 2008/2009, these were best situated to provide hydrochemical baseline data for the central ALT aquifer on both sides of Devils Canyon and to the north in the JI Ranch area. Three of the guarterly rounds were coordinated with surface water sampling in third quarter 2008, first quarter 2009, and second quarter 2009.

#### **4.1 CHEMICAL COMPOSITION**

Major ion chemistry for the ALT aquifer is plotted on a trilinear diagram on **Figure 3**. Groundwater from the majority of the ALT aquifer is generally calcium-sodium-bicarbonate type with approximately equal cation weighting of calcium and sodium. Groundwater sampled from three wells screened in the deeper part of the ALT aquifer (HRES-01, HRES-02, and HRES-03d) is sodium-bicarbonate type. An exception to this pattern is



observed at HRES-10 and CT Well along Lyon's Fork of Mineral Creek where groundwater is generally calcium-bicarbonate-sulfate type.

For the constituents measured, groundwater from the ALT aquifer in the Resolution Project area meets U.S. EPA NPDWR and State of Arizona AWQS. A substantial number of groundwater samples collected from the ALT aquifer are out of compliance with U.S. EPA NSDWR with the main constituents of concern being manganese, iron, and pH (for details see **Tables A-1, A-2 and A-3; Appendix A**).

#### 4.2 SEASONAL VARIABILITY

**Figure 9** shows major ion time-series data for all the ALT wells for which temporally distributed data are available. Inspection of these time-series plots shows that the major-ion chemistry of the ALT aquifer at six wells exhibits negligible seasonal variability. Data are presented in **Table A1**, **Appendix A**.

#### 4.3 RECHARGE

Stable isotope ( $\partial^2$ H and  $\partial^{18}$ O) results show that the ALT aquifer is recharged by infiltration of precipitation or of precipitation-driven runoff. Samples plot close to the global meteoric water line which indicates that groundwater in the ALT aquifer is composed of precipitation with limited evaporation (**Figure 5**). The limited evaporation signature in the stable isotope data is consistent with recharge to the ALT aquifer occurring largely as focused recharge along principal surface drainage ways. Precipitation that lands on the ALT outcrop belt is thought to enter one of two infiltration domains: (1) a shallow circulation system in which water enters near-surface fractures where it is subject to evaporation and transpiration, and from which it may discharge to the surface over the days and weeks



following a precipitation event; and, (2) deep infiltration through fast preferential flow paths that results in recharge to the ALT aquifer. The fact that stable isotope data from ALT groundwater show little if any evaporation signature is indicative of fast, preferential flow with little interaction with the near-surface circulation system. This type of dual infiltration regime, and the resulting lack of an evaporation signal in the regional aquifer, is well documented in arid and semi-arid environments (e.g., Mathieu and Bariac, 1996; Clark and Fritz, 1997).

Active recharge to the ALT aquifer via fast preferential flow from the surface is evident in the tritium data. Tritium is measured in tritium units (TU); one TU = 1 atom  $^3H$  per  $10^{18}$  atoms of hydrogen. Detectable tritium in groundwater is a direct indicator of the degree to which a groundwater sample represents modern recharge as follows (Clark and Fritz, 1997):

- 5 to 15 TU indicates modern recharge (<5 to 10 years)
- 0.8 to ~4 TU indicates a mixture of submodern and recent recharge
- <0.8 TU indicates submodern recharge (i.e. groundwater recharged prior to 1952)

Tritium levels in samples from the ALT aquifer vary from below the detection limit (indicating groundwater recharged prior to 1952) to as high as 3.3 TU (**Figure 8; Table A-4**) consistent with modern recharge mixing with older water. Detectable tritium in samples with <sup>14</sup>C activities that indicate the waters are several thousand years old (and tritium should have decayed to below detection limits) is evidence of the mixing between older waters and recent recharge within the ALT aquifer.

While tritium data provide information regarding the presence or absence of modern-day recharge, carbon-14 (<sup>14</sup>C) activities may be used to estimate mean groundwater residence times in the ALT aquifer. Estimates of mean groundwater residence time are necessarily approximate as many processes within the aquifer can potentially affect the <sup>14</sup>C activity (see



Appendix E, M&A (2010) for detailed explanation of calculation of groundwater ages from <sup>14</sup>C activities and associated uncertainties). However, despite the limitations of the method, valuable qualitative information may be gained regarding the approximate residence time distribution of groundwater in the ALT aquifer as well as identification of areas of active recharge.

Carbon-14 activities within the ALT aquifer range from 55.3 to 104.6 pmC (**Figure 8**). Higher <sup>14</sup>C activities (i.e., larger pmC values) indicate groundwaters with smaller residence times; residence time estimates range from approximately 5,000 years to modern recharge (water recharged since 1952). For the most part, <sup>14</sup>C activities in the ALT aquifer are on the order of 50-70 pmC and represent mean residence times of approximately 3,000 to 5,000 years. However, groundwater with smaller residence times is observed along Iron Canyon at well HRES-06 and the JI Ranch House Well (data suggest residence times on the order of 1,000 to 2,000 years), along Queen Creek at well HRES-12 (calculated residence time also on the order of 1,000 to 2,000 years) and along Lyon's Fork of Mineral Creek (groundwater sampled at well HRES-10 and CT Well is modern). Smaller residence times, coupled with the presence of detectable tritium, indicate that these principal drainages are areas of active recharge to the ALT aquifer.

Although groundwater residence time estimates are provided based on the <sup>14</sup>C activity in a given sample it must be recognized that these are average values. Averaging occurs when samples are collected from wells that are screened over large intervals of the aquifer or have multiple small screened intervals across the aquifer so that deeper and shallower waters contribute to each sample. This effect is intensified in fractured rock aquifers by the fact that a well may receive water from any depth depending on the distribution of the productive fractures that the well intersects. If the fractures are shallow, they likely will provide younger water, and, conversely, if a well only intersects fractures deep in the aquifer the water will likely be older.



Tritium and <sup>14</sup>C data provide a qualitative tool for assessing the relative residence time of groundwater sampled from the ALT aquifer. It is not possible to quantitatively calculate the mean groundwater residence time of water in the ALT aquifer; however, it is possible, with reasonable confidence, to conclude:

- that the ALT aquifer is actively being recharged by precipitation particularly along the principal drainage ways; and,
- that mean groundwater residence time in the ALT aquifer is on the order of 3,000-5,000 years.

Other potential sources of recharge to the ALT aguifer (besides local precipitation and precipitation-driven runoff) are groundwater underflow and surface water run-on from Cretaceous-Tertiary intrusive rocks, Younger Precambrian sedimentary and the east. intrusive rocks, and Precambrian Pinal Schist occur in the Mineral Creek watershed to the east of the Tal outcrop belt. In addition, Cretaceous-Tertiary intrusive rocks occur in a small area in the northeast part of the Devils Canyon watershed (Figure 2). Due to differences in mineralogy and bulk chemistry between these units and the Tal, water recharging the ALT aquifer from the east may be expected to have elevated uranium concentrations and <sup>87</sup>Sr/<sup>86</sup>Sr ratios (Faure, 1986). In the majority of the ALT aquifer sampled to date, uranium concentrations are low (typically less than 0.002 mg/L); however, in CT Well and well HRES-10 (located along Lyon's fork in the Mineral Creek watershed) uranium concentrations are considerably higher (0.009 and 0.0134 mg/L, respectively). In addition, strontium ratios, which are relatively homogenous in the majority of the ALT aquifer sampled to date, are substantially elevated in the CT Well and HRES-10 samples (Figure 6). Higher uranium concentrations, together with elevated <sup>87</sup>Sr/<sup>86</sup>Sr ratios suggest that along Lyon's Fork the ALT aguifer is recharged by water that has interacted with older geologic units of the upper Mineral Creek watershed. Post-modern <sup>14</sup>C activities and detectable <sup>3</sup>H observed at HRES-10 and CT Well (Figure 8) indicate that water recharging the ALT aguifer is likely rainfall runoff rather than groundwater underflow which would be expected



to have had a longer residence time and thus a lower  $^{14}$ C activity and likely no detectable  $^{3}$ H. Elevated sulfur content and depleted  $\delta^{34}$ S values consistent with interaction with dryfall sulfur particles in surficial materials also indicate that groundwater sampled at HRES-10 and CT Well contains a substantial component of rainfall runoff (see **Section 3.3** for further details regarding dryfall sulfur).

Strontium and uranium data from new hydrogeologic characterization wells completed to the east of Devils Canyon as part of the 2011 drilling program (HRES-15 through HRES-18) will provide further opportunity to evaluate potential inflow to the ALT aquifer from the east; these data are not yet available and will be presented in a future report.

#### 4.4 DISCHARGE

Hydrochemical data indicate that the ALT aquifer discharges naturally at springs and along stream channels associated with the perennial reaches of Devils Canyon and Mineral Creek. In addition to natural discharge points, water from the ALT aquifer drains to the Never Sweat Tunnel (NST) at Shaft No. 9 where it is either collected in a sump and pumped to the surface at Shaft No. 9 or discharged to the RCM water treatment plant via the NST. The portion of ALT discharge to Shaft No. 9 that is not collected in the NST drains into the shaft and collects in the mine workings. Hydrochemical data supporting identification of natural ALT discharge locations are discussed below.

#### 4.4.1 Devils Canyon Watershed

All available common ion data from spring and surface water samples collected in the Resolution Project area are plotted on a trilinear diagram on **Figure 10**. Also included on **Figure 10** is a field that shows where the samples from the ALT aquifer lie. This figure shows that, although the majority of the surface and spring waters in the project area are



chemically distinct from the ALT aquifer groundwater, there are data that plot within the ALT aquifer field. In order to present these data more clearly, Stiff diagrams of selected ALT aquifer data (from locations in the vicinity of the perennial reach of Devils Canyon) and selected spring and surface water data are shown on a map of the study area in **Figure 11**. The shape of the central element in each Stiff plot indicates the relative concentrations of the major ion groups and the size of this element is representative of the TDS concentration. Thus, samples represented by Stiff diagrams with similar shapes and sizes have similar chemical compositions and TDS concentrations.

Common ion data from Devils Canyon drainage indicate that the ALT aquifer discharges both directly to the stream channel and from springs slightly elevated above the stream channel. Inspection of **Figure 11** shows that two surface water samples (DC8.1C and DC6.14C) have chemical compositions very similar to groundwater from the ALT aquifer indicating that, within the perennial reach, discharge from the ALT aquifer contributes a substantial proportion of flow to Devils Canyon. Further north in the Devils Canyon watershed, where the surface waters are ephemeral, waters are more dilute (lower TDS) and have a higher sulfate content (relative to the other common anions bicarbonate and chloride) because they are composed of runoff from precipitation events (see sample locations DC13.5C, DC14.7C, and DC15.5C on **Figure 11**). Stiff diagrams on **Figure 11** also show that the chemical composition and TDS concentration of water from four springs that issue along Devils Canyon (DC8.2W, DC6.6W, DC6.1E, and DC 4.1E) are very similar to the chemical composition and TDS concentration of the ALT aquifer. This indicates that these springs represent discharge points of the ALT aquifer to Devils Canyon.

**Figures 12 through 17** summarize  $\partial^2 H$  and  $\partial^{18} O$  (for 2008, 2009, 2010, and 2011),  $\partial^{34} S$  and strontium data from surface water and spring locations in the study area. On each figure the field occupied by data collected from the ALT is delineated for reference. Inspection of these figures indicates that isotope values from surface waters (DC8.1C and DC6.14C) and springs (DC8.2W and DC 6.1E) in the Devils Canyon drainage are very



similar to those observed in groundwater from the ALT aquifer. All data are consistent with these locations being discharge points for the ALT aquifer.

Carbon-14 data and tritium data indicate that water discharging from spring DC8.2W has a radiometric age consistent with mean residence times observed in the bulk of the ALT aquifer samples (**Figure 8**). Radiocarbon data are not available for other spring and surface water locations in the Devils Canyon watershed.

#### 4.4.2 Mineral Creek Watershed

Both hydrochemical and isotopic data suggest that Wet Leg Spring (MC3.4W), which issues along the west bank of Mineral Creek, is supported by discharge from the ALT aquifer. This is illustrated on **Figures 10 through 17** which show that the majority of common ion,  $\partial^2 H$ ,  $\partial^{18}O$ ,  $\partial^{34}S$  and  ${}^{87}Sr/{}^{86}Sr$  values from samples collected at Wet Leg Spring (MC3.4W) are very similar to those observed in the bulk of the ALT aquifer.



#### 5.0 DEEP GROUNDWATER SYSTEM

The deep groundwater system, as defined for the Resolution Project area, includes several groundwater domains that encompass a variety of geologic units. These groundwater domains are currently defined as follows: groundwater within the Resolution Graben, groundwater outside the Resolution Graben east of the Concentrator Fault, and groundwater outside the Resolution Graben west of the Concentrator Fault (see **Section 2.1.3** for details).

Deep groundwater has been sampled at nine locations in the Resolution Project area (**Table 1; Figure 1**):

- DHRES-01, DHRES-02, and RES-009: Completed in Cretaceous volcaniclastic rocks within the Resolution Graben
- DHRES-04: Completed in Tertiary volcanic rocks west of the Concentrator Fault
- DHRES-06: Completed in Paleozoic carbonate rocks east of the Concentrator Fault and south of the Resolution Graben
- DHRES-09: Completed in the younger Precambrian Dripping Spring Quartzite and Diabase to the east of the Concentrator Fault and west of the Main fault.
- DHRES-10: Completed primarily in younger Precambrian Diabase. DHRES-10 is located at the West Plant site; this well intercepted fractures at depth that are likely connected to underground mine workings. The only sample available for DHRES-10 is a screening sample collected at the end of an 11-hour airlift test. As such, these data are provisional and further sampling is required to confirm results.
- DHRES-11: Completed in the younger Precambrian Dripping Spring Quartzite,
   Mescal Limestone, and Diabase east of the Concentrator Fault and northeast of the Resolution Graben.



DHRES-13: Completed in the younger Precambrian Dripping Spring Quartzite,
 Pioneer Shale, and Diabase, and older Precambrian Pinal Schist to the east of the
 Concentrator Fault and southwest of the Resolution Graben.

Approximate depth to water, groundwater level elevations and elevations of perforated zones at each of the above locations are summarized in the table below.

| WELL ID  | DATE        | WATER LEVEL<br>ELEVATION<br>(meters amsl) <sup>a</sup> | ELEVATION OF PERFORATED ZONES (meters amsl)                                  |
|----------|-------------|--------------------------------------------------------|------------------------------------------------------------------------------|
| DHRES-01 | 08 Nov 2011 | 492                                                    | -219.2 to -275.6<br>-374.9 to -431.4<br>-463.5 to -469.8<br>-530.6 to -567.6 |
| DHRES-02 | 16 Nov 2011 | 454                                                    | 142.8 to 73.9<br>-588.1 to -619.8<br>-748.5 to -779.9                        |
| RES-009* | 27 Aug 2010 | 583                                                    | -469 to -852                                                                 |
| DHRES-04 | 16 Nov 2011 | 800                                                    | 380.8 to 213.6                                                               |
| DHRES-06 | 14 Nov 2011 | 990                                                    | 733.7 to 425.0                                                               |
| DHRES-09 | 16 Nov 2011 | 908                                                    | 817.8 to 671.5<br>459.0 to 439.8<br>348.4 to 317.9                           |
| DHRES-11 | 16 Nov 2011 | 1003                                                   | -226.7 to -765.9                                                             |
| DHRES-13 | 16 Nov 2011 | 846                                                    | 509.9 to 349.2<br>300.0 to -27.1                                             |

<sup>\*</sup> Water level elevation and elevation of test interval in borehole RES-009 from Golder (2007)

#### 5.1 CHEMICAL COMPOSITION

Major ion chemistry of deep groundwater samples is plotted on a trilinear diagram on **Figure 18**. Chemical composition of groundwater sampled from the deep groundwater

<sup>&</sup>lt;sup>a</sup>meters amsl = meters above mean sea level



system varies considerably depending on the geologic units present at each sampling location. The predominant groundwater types identified to date within the deep groundwater system include:

- Sodium-bicarbonate-sulfate type: groundwater sampled from Cretaceous volcaniclastic rocks within the Resolution Graben at wells DHRES-01 and RES-009. Groundwater from the Tertiary volcanic rocks west of the Concentrator Fault (well DHRES-04) is also sodium-bicarbonate-sulfate type but has substantially higher sodium content than the deep groundwater within the Resolution Graben.
- Calcium-sodium-sulfate type: groundwater sampled from Cretaceous volcaniclastic rocks within the Resolution Graben at well DHRES-02. This composition is substantially different from the composition of groundwater from the Cretaceous volcaniclastic rocks as represented by wells DHRES-01 and RES-009. In addition to the difference in chemical composition the total dissolved solids concentration is higher at DHRES-02 (1400 mg/L) compared with DHRES-01 and RES-009 (500 and 859 mg/L, respectively).
- Mixed cation-bicarbonate type: groundwater sampled from Paleozoic carbonate rocks east of the Concentrator Fault and south of the Resolution Graben (well DHRES-06). This sample contains roughly equal proportions of cations with Ca>Mg>(Na + K).
- Calcium-magnesium-bicarbonate-sulfate type: groundwater sampled from younger Precambrian Dripping Spring Quartzite and Diabase between the Concentrator Fault and the Main fault (well DHRES-09).
- Calcium-magnesium-sulfate type: groundwater sampled from DHRES-10; this
  groundwater composition is consistent with the composition of groundwater
  sampled from the underground mine workings at Shaft No. 9 (Figure 19) and is
  likely not representative of the natural composition of the deep groundwater
  system at this location.



In general, the chemical composition of groundwater sampled from a specific location within the deep groundwater system appears to reflect the composition of the geologic units at that location. This suggests that the deep groundwater system is compartmentalized and that there is not substantial mixing of groundwater within the system.

The difference between the common ion chemistry of groundwater sampled at well DHRES-02 and that sampled at DHRES-01 and RES-009 may reflect heterogeneities within the Cretaceous volcaniclastic rocks. Although the composition of groundwater from DHRES-02 is intermediate between the composition at DHRES-01 and the composition of water resident in the mine workings (**Figure 19**) it does not appear that the chemistry at DHRES-02 is the result of mixing or exchange between the mine workings and the adjacent aquifer. Stable isotopes in dissolved sulfate ( $\delta^{34}$ S and  $\delta^{18}$ O) are substantially different between the mine workings and the groundwater sampled at DHRES-02 (**Figure 20**). Further sampling of groundwater resident in the Cretaceous volcaniclastic rocks within the Resolution Graben would be required to investigate the distribution of different water types within these units.

Several samples from the deep groundwater system are out of compliance with U.S. EPA NPDWR and State of Arizona AWQS for the radiological constituents: gross alpha, gross beta, and/or radium (Ra-226 + Ra-228). In addition, exceedances of the NPDWR and/or AWQS for antimony, arsenic, chromium, copper, fluoride, and lead are occasionally observed in samples from the deep groundwater system. A substantial proportion of deep groundwater samples are out of compliance with U.S. EPA NSDWR with the main constituents of concern being manganese, iron, aluminum, fluoride, sulfate, and total dissolved solids (for details see **Tables A-1, A-2 and A-3; Appendix A**).



#### **5.2 RECHARGE**

Stable isotope ( $\partial^2 H$  and  $\partial^{18}O$ ) results show that the deep groundwater system is recharged by infiltration of meteoric water. Samples plot close to the meteoric water line which indicates that deep groundwater has undergone little evaporation during recharge (**Figure 5**). Stable isotope compositions ( $\partial^2 H$  and  $\partial^{18}O$ ) of deep groundwater sampled at wells DHRES-01, DHRES-02, DHRES-04, and DHRES-06 are lighter than stable isotope compositions in groundwater from the ALT aquifer (**Figure 5**). As was noted in M&A (2010) this is consistent with recharge under a cooler, wetter climate regime (e.g., late Pleistocene which occurred more than 10,000 years ago). Stable isotope data from wells DHRES-09 and DHRES-13 lie within the field occupied by stable isotope data from the ALT aquifer and the shallow groundwater system. This suggests that groundwater sampled from the deep groundwater system at these locations integrates compositions of more recent meteoric water (i.e., precipitation that has fallen within the current climate regime). This is consistent with the shorter residence time estimates yielded for these groundwaters by  $^{14}C$  and  $^{3}H$  data discussed below.

Carbon-14 ( $^{14}$ C) activities have been used to estimate mean groundwater residence times in the deep groundwater system. Residence times were calculated from  $^{14}$ C activities corrected using the Fontes and Garnier method and soil gas  $\delta^{13}$ C data from Bassett et al. (1994). See Appendix E, M&A (2010) for explanation of residence time calculations. It should be noted that, with the exception of DHRES-02, each well in the deep groundwater system has been sampled only once. Analytical results and interpretation should be considered provisional until data are confirmed through further sampling.

Carbon-14 data indicate that groundwater sampled from the Cretaceous volcaniclastic rocks within the Resolution Graben (at wells DHRES-01, DHRES-02, and RES-009) has a mean residence time on the order of 6,000 to 12,000 years (**Figure 8**). Tritium was not detected at DHRES-02 or RES-009 which suggests that groundwater sampled from this



region of the deep groundwater system is submodern and that there is no fast-path recharge to the system from the surface at this location. Note that a tritium value of 1.9 TU has been reported by the laboratory for well DHRES-1 but qualified due to uncertainty regarding sample processing. Additional data are required to confirm tritium level at DHRES-01.

Carbon-14 data from groundwater sampled from Tertiary volcanic rocks west of the Concentrator Fault (well DHRES-04) gives an estimated mean residence time on the order of 14,000 years. Groundwater sampled from Paleozoic carbonate rocks east of the Concentrator Fault and south of the Resolution Graben (well DHRES-06) yields an estimated mean residence time on the order of 15,000 years (**Figure 8**). Absence of detectable tritium at either location provides further evidence that residence times are long and that recharge to the deep groundwater system at these locations is submodern.

Carbon-14 data from groundwater sampled from the younger Precambrian Dripping Spring Quartzite, Mescal Limestone, and Diabase east of the Concentrator Fault and northeast of the Resolution Graben (well DHRES-11) yields an estimated residence time on the order of 19,000 years. Long residence times are supported by the lack of detectable tritium in this sample. Groundwater collected from younger Precambrian Dripping Spring Quartzite, Pioneer Shale, and Diabase and Older Precambrian Pinal Schist to the east of the Concentrator fault but southwest of the Resolution Graben (at well DHRES-13) is also submodern based on the absence of detectable tritium but yields a considerably shorter mean residence time estimate on the order of 7,000 years (**Figure 8**). This shorter residence time estimate is consistent with the current conceptual model that identifies a potential recharge source through the fractured Paleozoic and younger Precambrian rocks west of the Apache Leap escarpment to the deep groundwater system.

In contrast to the older waters observed in other parts of the deep groundwater system, groundwater sampled from the younger Precambrian Dripping Spring Quartzite and Diabase between the Concentrator Fault and the Main Fault (well DHRES-09) yields an



estimated mean residence time on the order of 1,000 to 2,000 years (**Figure 8**). Tritium was detected in this sample at a concentration of 1.5 TU which indicates that the groundwater is a mixture of modern and submodern recharge. This sample is relatively enriched in  $\partial^2 H$  and  $\partial^{18}O$  compared to samples from other locations within the deep groundwater system (**Figure 5**). This suggests that the groundwater sampled at DHRES-09 integrates values from relatively modern precipitation (based on comparison with ALT aquifer values) with limited evaporation. The  $\partial^2 H$  and  $\partial^{18}O$  data, together with the <sup>14</sup>C and <sup>3</sup>H data, indicate that groundwater in this area has been recharged more recently than groundwater sampled from other parts of the deep system. Evidence of active recharge in the vicinity of well DHRES-09 is consistent with the current conceptual model which identifies the fractured Paleozoic and younger Precambrian rocks west of the Apache Leap as a recharge area for the deep groundwater system.

#### 5.3 DISCHARGE

No active natural discharges from the deep groundwater system have been identified. However, deep groundwater is assumed to discharge to the existing mine workings. Groundwater discharge to the mine workings can be estimated from historical mine dewatering rates (25 to 40 L/s); the proportion of this discharge attributable to inflow from the deep groundwater system is currently being evaluated.



#### **6.0 RECOMMENDATIONS**

Based on review and analysis of the results of the 2004-2011 RCM groundwater hydrochemical monitoring program, M&A has the following recommendations:

- 1. One comprehensive sampling round of all ALT aquifer wells equipped with pumping assemblies should be conducted. This comprehensive round should be coordinated with sampling of surface water and spring locations. Ideally this effort should occur during May or June in order for surface water data to represent baseflow conditions.
- 2. Subsequently all ALT aquifer wells drilled in 2010 and 2011 should be sampled for three additional consecutive quarters (i.e. for four consecutive quarters including the initial comprehensive round).
- 3. Where practicable, additional chemistry samples should be collected from wells completed in the deep groundwater system in order to confirm findings that are currently based on a single sample from each deep groundwater system well (except DHRES-02 where data from four samples are available).
- 6. Samples from ALT aquifer wells drilled in 2010 and 2011 collected during both the comprehensive round and the quarterly sampling should be analyzed for the full hydrochemical and isotopic suite defined as:
  - o Routine parameters and common constituents
  - Trace constituents including total and dissolved metals, cyanide, and sulfide
  - o Radiological constituents
  - o Deuterium and oxygen-18 in water
  - o Sulfur-34 and oxygen-18 in dissolved sulfate
  - o Carbon-13 in dissolved inorganic carbon
  - o Carbon-14 in dissolved inorganic carbon
  - o Tritium
  - o Strontium concentration and <sup>87</sup>Sr/<sup>86</sup>Sr ratio
  - o Uranium concentration and isotopes (<sup>234</sup>U, <sup>235</sup>U, <sup>238</sup>U)



Based on the results of this sampling (specifically whether there is any indication of substantial temporal variability) further baseline sampling may be recommended.

7. Surface water samples and samples collected from ALT aquifer wells that have previously been sampled for six consecutive quarters (HRES-04, HRES-05, HRES-06, HRES-07, A-06, and MJ-11) should be analyzed for the suite defined in Item (4) above with the exception of radiological constituents and uranium concentration and isotopes.



#### 7.0 REFERENCES

- Bassett, R.L., Neuman, S.P., Rasmussen, T.C., Guzman, A., Davidson, G.R., and Lohrstorfer, C.F., 1994, Validations studies for assessing unsaturated flow and transport through fractured rock: NUREG/CR-6203, U. S. Nuclear Regulatory Commission, August 1994.
- Clark, I., and P. Fritz, 1997, **Environmental isotopes in hydrogeology**: Lewis Publishers, Boca Raton, Florida.
- Craig, H., 1961, Isotopic variations in meteoric waters: Science, 133, pp.1702-1703.
- Faure, G., 1986, **Principles of isotope geology**: 2nd ed., John Wiley and Sons, New York.
- Golder Associates Inc., 2007, **Field Report—Phase IV hydrogeologic testing in RES-009** (**1680.7 to 2064.5 m**): prepared for Resolution Copper Mining LLC, January 31, 2007.
- Mathieu, R. and Bariac, T., 1996, **An isotopic study <sup>2</sup>H and <sup>18</sup>O of water movements in clayey soils under a semiarid environment**: Water Resources Research, 32(4): 779-789.
- Montgomery & Associates, 2001, Summary of hydrogeologic data for the Superior area, Pinal and Gila Counties, Arizona: report prepared for Kennecott Canada Exploration, Inc., Vancouver, Canada, November 27, 2001.



- Richard, S.M. (compiler), 1998, **Geologic Map of portions of the Globe 30' X 60' Quadrangle, Arizona:** Digital Information Series DI-13, version 1.0, Arizona Geological Survey.
- Spencer, 1998, **Digital Geologic map of the Globe 30' x 60' quadrangle, east-central Arizona:** Arizona Geological Survey Open-file Report DI-13.
- Spencer, J.E., Richard, S.M., and Pearthree, P.A., 1996, Geologic map of the Mesa 30' x 60' quadrangle, east-central Arizona: Arizona Geological Survey Open-file Report 96-23, scale 1:100,000, 1 sheet.
- Spencer, J.E., Richard, S.M., and Pearthree, P.A. (compilers), 1998, **Geologic Map of the Mesa 30' X 60' Quadrangle, Arizona:** Digital Information Series DI-11, version 1.0, Arizona Geological Survey.

# TABLE 1. GROUNDWATER SAMPLING LOCATIONS UPPER QUEEN CREEK/DEVILS CANYON STUDY AREA RESOLUTION COPPER MINING LLC PINAL COUNTY, ARIZONA

| WELL<br>IDENTIFIER     | HYDROCHEMICAL<br>SAMPLE<br>COLLECTED | QUARTERLY<br>HYDROCHEMICAL<br>SAMPLING<br>(2008-2009) |
|------------------------|--------------------------------------|-------------------------------------------------------|
| SHALL                  | OW GROUNDWATER SYST                  | EM                                                    |
| Corral Well (JI Ranch) | Х                                    | Х                                                     |
| Hackberry Windmill     | Х                                    | Х                                                     |
| Middle Well (JI Ranch) | X                                    | Х                                                     |
| APA                    | ACHE LEAP TUFF AQUIFER               |                                                       |
| A-06                   | Х                                    | X                                                     |
| CT Windmill            | Х                                    |                                                       |
| HRES-01                | X                                    |                                                       |
| HRES-02                | Х                                    |                                                       |
| HRES-03                | X                                    |                                                       |
| HRES-04                | Х                                    | X                                                     |
| HRES-05                | X                                    | X                                                     |
| HRES-06                | X                                    | X                                                     |
| HRES-07                | X                                    | X                                                     |
| HRES-08                | X                                    |                                                       |
| HRES-09                | X                                    |                                                       |
| HRES-10                | X                                    |                                                       |
| HRES-11                | X                                    |                                                       |
| HRES-12                | X                                    |                                                       |
| HRES-13                | X                                    |                                                       |
| HRES-14                | X                                    |                                                       |
| JI Ranch House Well    | X                                    |                                                       |
| MJ-11                  | X                                    | X                                                     |
| Oak Flat Well          | X                                    |                                                       |
|                        | P GROUNDWATER SYSTEM                 | <u> </u>                                              |
| DHRES-01               | X                                    |                                                       |
| DHRES-02               | X                                    |                                                       |
| DHRES-03               |                                      |                                                       |
| DHRES-04               | X                                    |                                                       |
| DHRES-05               |                                      |                                                       |
| DHRES-06               | X                                    |                                                       |
| DHRES-07               |                                      |                                                       |
| DHRES-08               |                                      |                                                       |
| DHRES-09               | X                                    |                                                       |
| DHRES-10               | X                                    |                                                       |
| DHRES-11               | Х                                    |                                                       |
| DHRES-13               | X                                    |                                                       |
| DHRES-14               |                                      |                                                       |
| RES-09                 | X <sup>a</sup>                       |                                                       |

<sup>&</sup>lt;sup>a</sup> Data reported in Golder (2007)



# TABLE 2. SURFACE WATER AND SPRING SAMPLING LOCATIONS RESOLUTION COPPER MINING LLC PINAL COUNTY, ARIZONA

#### **UTM COORDINATES**<sup>a</sup>

APPROXIMATE ELEVATION

EASTING NORTHING ELEVATION

STATION IDENTIFIER (meters) (meters, amsl)<sup>b</sup> TYPE LOCATION

| STATION IDENTIFIER                                                                                   | (meters)                             | (meters)                                 | (meters, amsl) <sup>s</sup> | TYPE                         | LOCATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------|-----------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEVILS CANYON WATERSHI                                                                               | ED                                   |                                          |                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DC 15.5 C                                                                                            | 497181                               | 3688022                                  | 1,244                       | Reach                        | Channel - bedrock with pools immediately above confluence with Iron Canyon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| IC 1.0 C<br>(Iron Canyon)                                                                            | 497860                               | 3688383                                  | 1,280                       | Reach                        | Small bedrock nick point. Drainage on northside of US 60 ~ 30 meters upstream of small parking area on south side of highway                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DC 14.7 C /US 60 Bridge                                                                              | 497035                               | 3687263                                  | 1,219                       | Reach                        | Devils Canyon at US 60 Bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DC 13.5 C                                                                                            | 496860                               | 3686136                                  | 1,189                       | Reach                        | Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| RR 1.5 C                                                                                             | 496066                               | 3682698                                  | 1,183                       | Reach                        | Approximately 100 meters downstream from parking area (that's just beyond breached stock tank)                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| H 0.1 C                                                                                              | 497410                               | 3681438                                  | 1,097                       | Reach                        | Approximately 20 meters upsteam of large pool ("hackberry pool")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| DC 8.2 W                                                                                             | 497540                               | 3681190                                  | 1,079                       | Spring                       | ~ 1 meter above main channel on west bank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DC 8.1 C                                                                                             | 497565                               | 3681168                                  | 1,073                       | Reach                        | Pool approximately 75 meters downstream of DC8.2W - Nice outcrop on eastbank (river left) to mount sonde                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DC 6.6 W                                                                                             | 497458                               | 3679879                                  | 3,520                       | Spring                       | ~200 meters above main stem of Devils Canyon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DC 6.14 C                                                                                            | 497932                               | 3679581                                  | 1,000                       | pool/reach                   | First Crater Tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DC 6.1 E                                                                                             | 498130                               | 3679540                                  | 963                         | Spring                       | Hanging Garden emanating from Apache Leap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DC 4.1 E                                                                                             | 499273                               | 3678440                                  | 2,720                       | Spring                       | Hanging Garden emanating from Apache Leap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| UEEN CREEK WATERSHED                                                                                 | )                                    |                                          |                             | <u> </u>                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Pump Station                                                                                         | 494104                               | 3688819                                  | 1,338                       | Spring                       | Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| QC 27.3 C<br>(Upper QC)                                                                              | 494970                               | 3686239                                  | 1,204                       | Reach                        | Intermittent channel - slot/incised portion of canyon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Oak Flat                                                                                             | 494590                               | 3685490                                  | 1,172                       | Reach                        | Sandy bottom reach with bedrock coming down to creek on southside (river left) (~75 meters above confluence with QC)                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Number Nine                                                                                          | 494248                               | 3685326                                  | 1,146                       | Reach                        | Bedrock pool drops visible from US 60 (~50 meter above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                      |                                      |                                          |                             |                              | confluence with QC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Boulder Hole                                                                                         | 492297                               | 3684549                                  | 933                         | Seep                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Boulder Hole  QC 22.6 E (Karst Spring)                                                               | 492297<br>491722                     | 3684549                                  | 933                         | Seep<br>Spring               | confluence with QC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| QC 22.6 E                                                                                            |                                      |                                          |                             |                              | confluence with QC)  Channel  Solution void in limestone on east bank of creek (~3 meters from channel) - immediately upstream of old highway bridge  Approximately 100 meters upstream of Magma Avenue Bridge.                                                                                                                                                                                                                                                                                                                                                       |
| QC 22.6 E<br>(Karst Spring)<br>QC 21.7 C                                                             | 491722                               | 3684033                                  | 896                         | Spring                       | confluence with QC)  Channel  Solution void in limestone on east bank of creek (~3 meters from channel) - immediately upstream of old highway bridge  Approximately 100 meters upstream of Magma Avenue Bridge.  Approximately 30 meters downstream from large boulder on river                                                                                                                                                                                                                                                                                       |
| QC 22.6 E (Karst Spring) QC 21.7 C (Magma Avenue)                                                    | 491722<br>491204                     | 3684033<br>3683540                       | 896<br>867                  | Spring<br>Reach              | confluence with QC)  Channel  Solution void in limestone on east bank of creek (~3 meters from channel) - immediately upstream of old highway bridge  Approximately 100 meters upstream of Magma Avenue Bridge.  Approximately 30 meters downstream from large boulder on river left and 10 meters upstream of powerlines crossing channel                                                                                                                                                                                                                            |
| QC 22.6 E (Karst Spring)  QC 21.7 C (Magma Avenue)  QC 19.7 C (Queen above Magma Wash)               | 491722<br>491204<br>489674           | 3684033<br>3683540<br>3682567            | 896<br>867<br>817           | Spring  Reach  Reach         | confluence with QC)  Channel  Solution void in limestone on east bank of creek (~3 meters from channel) - immediately upstream of old highway bridge  Approximately 100 meters upstream of Magma Avenue Bridge. Approximately 30 meters downstream from large boulder on river left and 10 meters upstream of powerlines crossing channel  Along high cut bank on river left  Small drainage immediately east of AZ highway 177, down from                                                                                                                            |
| QC 22.6 E (Karst Spring)  QC 21.7 C (Magma Avenue)  QC 19.7 C (Queen above Magma Wash)  Bored Spring | 491722<br>491204<br>489674<br>491192 | 3684033<br>3683540<br>3682567<br>3680961 | 896<br>867<br>817<br>878    | Spring  Reach  Reach  Spring | confluence with QC)  Channel  Solution void in limestone on east bank of creek (~3 meters from channel) - immediately upstream of old highway bridge  Approximately 100 meters upstream of Magma Avenue Bridge. Approximately 30 meters downstream from large boulder on river left and 10 meters upstream of powerlines crossing channel  Along high cut bank on river left  Small drainage immediately east of AZ highway 177, down from rock quarry - sample from pipe disharging into cement trough  Discharges from Paleozoic carbonates west of the Apache Leap |



## TABLE 2. SURFACE WATER AND SPRING SAMPLING LOCATIONS RESOLUTION COPPER MINING LLC PINAL COUNTY, ARIZONA

#### **UTM COORDINATES**<sup>a</sup>

APPROXIMATE ELEVATION

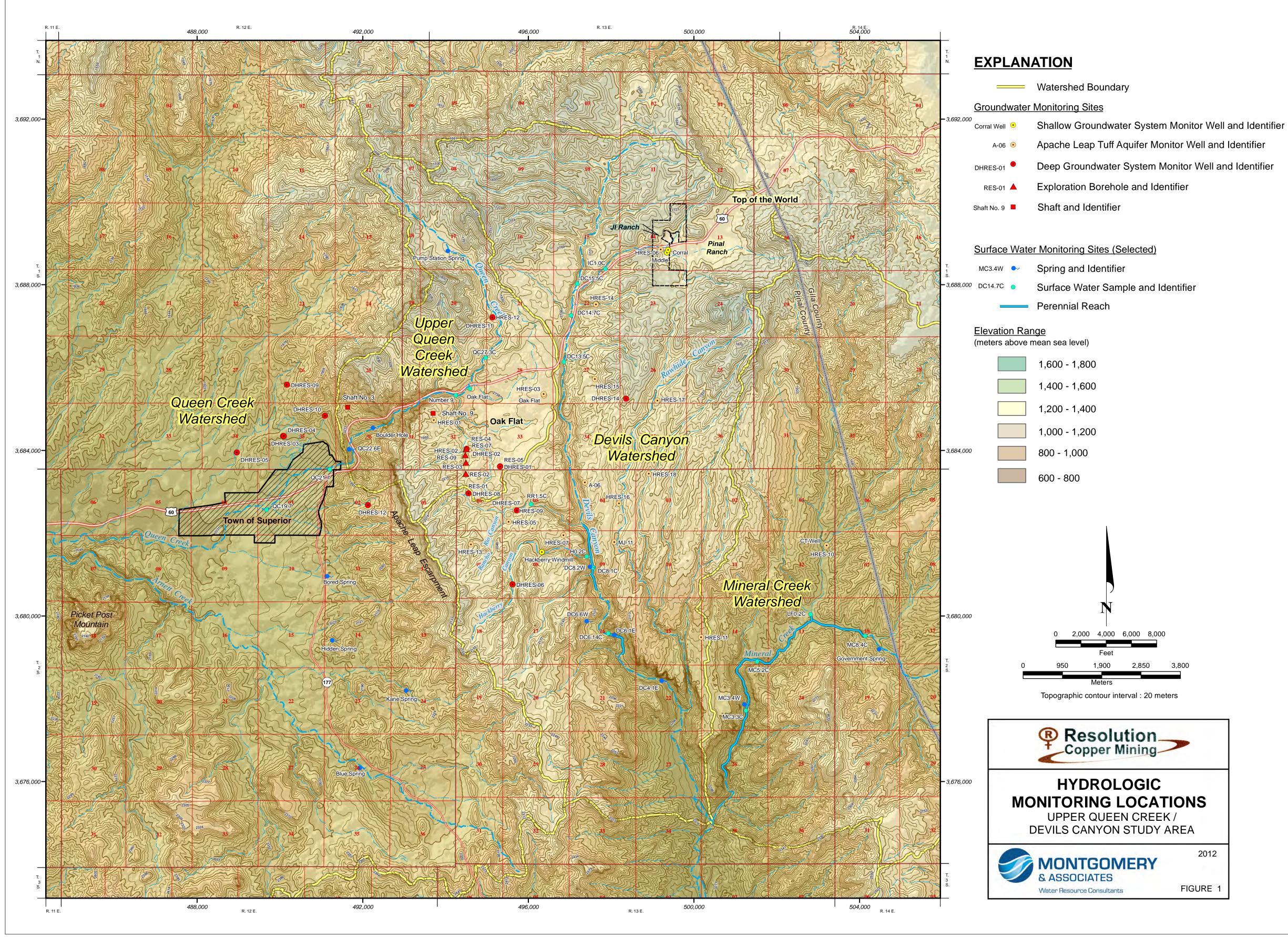
EASTING NORTHING ELEVATION

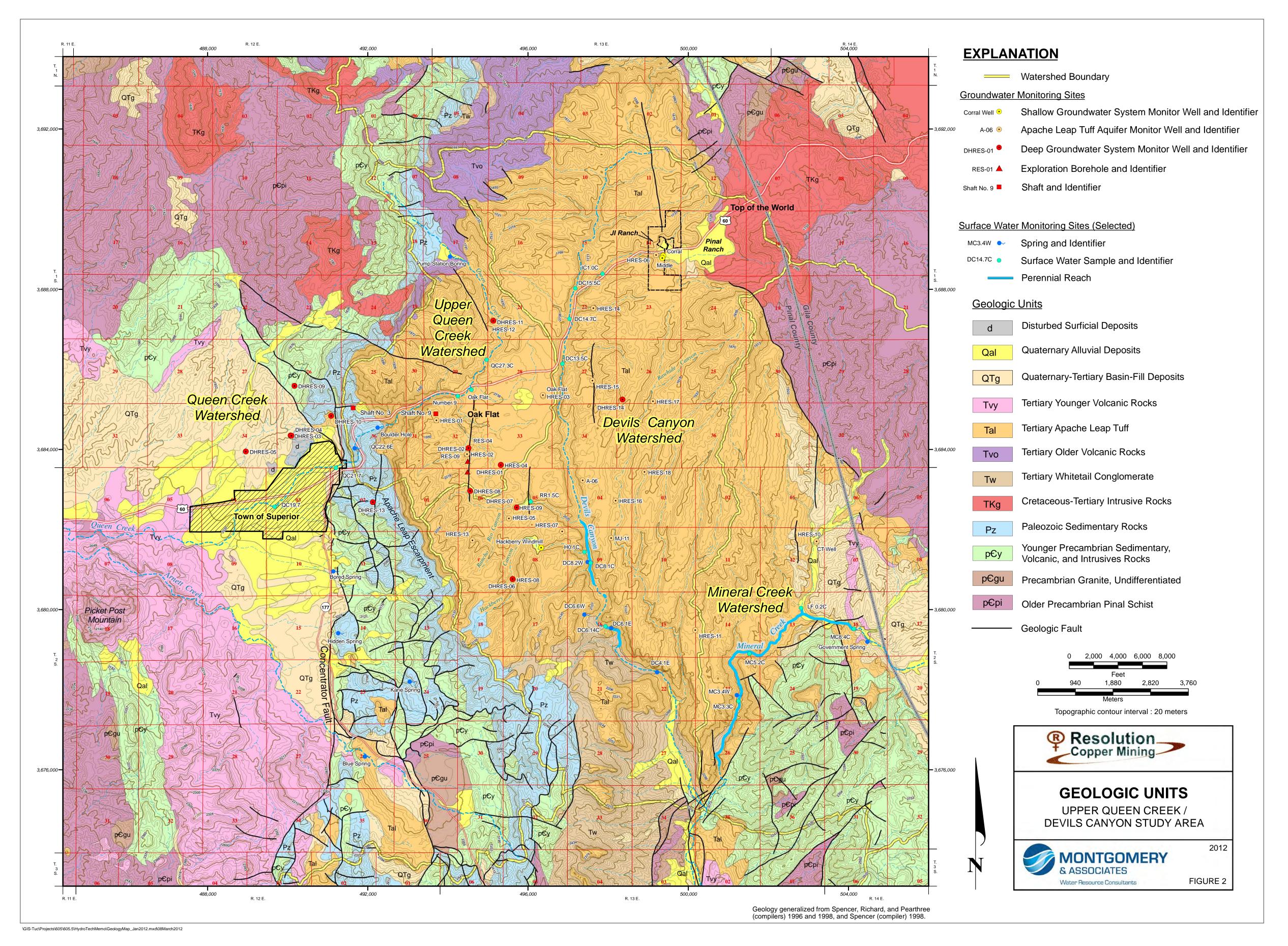
STATION IDENTIFIER (meters) (meters, amsl)<sup>b</sup> TYPE LOCATION

| O I / CITO I I DE LITTI I E I C        | (      | (11101010) | (motoro, amor) | –      | 2007111011                                                                                                                     |
|----------------------------------------|--------|------------|----------------|--------|--------------------------------------------------------------------------------------------------------------------------------|
| MINERAL CREEK WATERSHE                 | :D     |            |                |        |                                                                                                                                |
| Government Springs                     | 504525 | 3679199    | NA             | Spring | Largest spring emanating from concrete vault behind ranch house; discharges from a brecciated zone of the Apache Leap Tuff     |
| MC 8.4 C (Ranch Fork Headwater Spring) | 504135 | 3679521    | 878            | Spring | First Apache Leap pinch point along drainage with Government Ranch (Mineral Creek)                                             |
| LF 0.2 C (Lyons Fork Headwater Spring) | 502820 | 3680039    | 859            | Spring | Lyons Fork Spring - Approximately 100 meters above confluence with Mineral Creek                                               |
| MC 5.2 C                               | 501528 | 3678898    | 840            | Reach  | Approximately 1/2 way down perennial reach below end of currently defined gaining reach. Preliminary GPS location approximate. |
| MC 3.4 W<br>(Wet Leg Spring)           | 501266 | 3677866    | 810            | Spring | Largest spring emanating from river right; discharges from shallow colluvium overlying Apache Leap Tuff                        |
| MC 3.3 C                               | 501254 | 3677715    | 766            | Reach  | Approximately 3/4 of way down perennial reach - in bedrock channel immediately upstream of first outcrop of vitrophere         |
| Patterson Spring                       | 506877 | 3685954    | NA             | Spring | Spring emanating from mine adit in Pinal Schist; upper Mineral Creek watershed                                                 |

REFERENCE: Golder Associates Inc., 2009, Third and fourth quarters 2008 - surface water monitoring results: Prepared for Resolution Copper Mining LLC, March 12, 2009




<sup>&</sup>lt;sup>a</sup> Universal Transverse Mercator 1927 North American Datum Zone 12 North


<sup>&</sup>lt;sup>b</sup>amsl = above mean sea level

# TABLE 3. SUMMARY OF ANALYTICAL SUITE FOR GROUNDWATER AND SURFACE WATER SAMPLING, RESOLUTION COPPER MINING LLC PINAL COUNTY, ARIZONA

|                                       | Routine Parameters                                          |                                                                |
|---------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------|
| pН                                    | Temperature                                                 |                                                                |
| Electrical Conductivity (EC)          | Total Dissolved Solids (TDS)                                |                                                                |
|                                       | Common Constituents                                         |                                                                |
| Calcium (Ca)                          | Sulfate (SO <sub>4</sub> )                                  |                                                                |
| Magnesium (Mg)                        | Silica (SiO <sub>2</sub> )                                  |                                                                |
| Sodium (Na)                           | Bromide (Br)                                                |                                                                |
| Potassium (K)                         | Fluoride (F)                                                |                                                                |
| Chloride (CI)                         | Nitrate (NO <sub>3</sub> )                                  |                                                                |
| Carbonate (CO <sub>3</sub> )          | Nitrite (NO <sub>2</sub> )                                  |                                                                |
| Bicarbonate (HCO <sub>3</sub> )       |                                                             |                                                                |
|                                       | Trace Constituents                                          |                                                                |
| Aluminum (Al)                         | Cobalt (Co)                                                 | Manganese (Mn)                                                 |
| Antimony (Sb)                         | Copper (Cu)                                                 | Nickel (Ni)                                                    |
| Arsenic (As)                          | Cyanide (CN)                                                | Selenium (Se)                                                  |
| Barium (Ba)                           | Iron (Fe)                                                   | Silver (Ag)                                                    |
| Beryllium (Be)                        | Lead (Pb)                                                   | Sulfide (S)                                                    |
| Boron (B)                             | Mercury (Hg)                                                | Thallium (TI)                                                  |
| Cadmium (Cd)                          | Molybdenum (Mo)                                             | Zinc (Zn)                                                      |
| Chromium (Cr)                         |                                                             |                                                                |
|                                       | Radiological Consituents                                    |                                                                |
| Gross Alpha                           | Radium-226 ( <sup>226</sup> Ra)                             | Uranium (U)                                                    |
| Gross Beta                            | Radium-228 ( <sup>228</sup> Ra)                             |                                                                |
|                                       | Stable Isotopes                                             |                                                                |
| Oxygen-18 ( $\delta^{18}$ O) in water | Carbon-13 (δ <sup>13</sup> C) in dissolved inorganic carbon | Oxygen-18 in dissolved sulfate ( $\delta$ 18O <sub>SO4</sub> ) |
| Deuterium (δ <sup>2</sup> H) in water | Sulfur-34 ( $\delta^{34}$ S) in dissolved sulfate           | (3 - 304)                                                      |
|                                       | Radioisotopes                                               |                                                                |
| Tritium ( <sup>3</sup> H)             | Strontium (Sr)                                              | Uranium-234 ( <sup>234</sup> U)                                |
| Carbon-14 ( <sup>14</sup> C)          | Strontium-87/Strontium-86 (87Sr/86Sr)                       | Uranium-235 ( <sup>235</sup> U)                                |
|                                       |                                                             | Uranium-238 ( <sup>238</sup> U)                                |
| 1                                     |                                                             |                                                                |







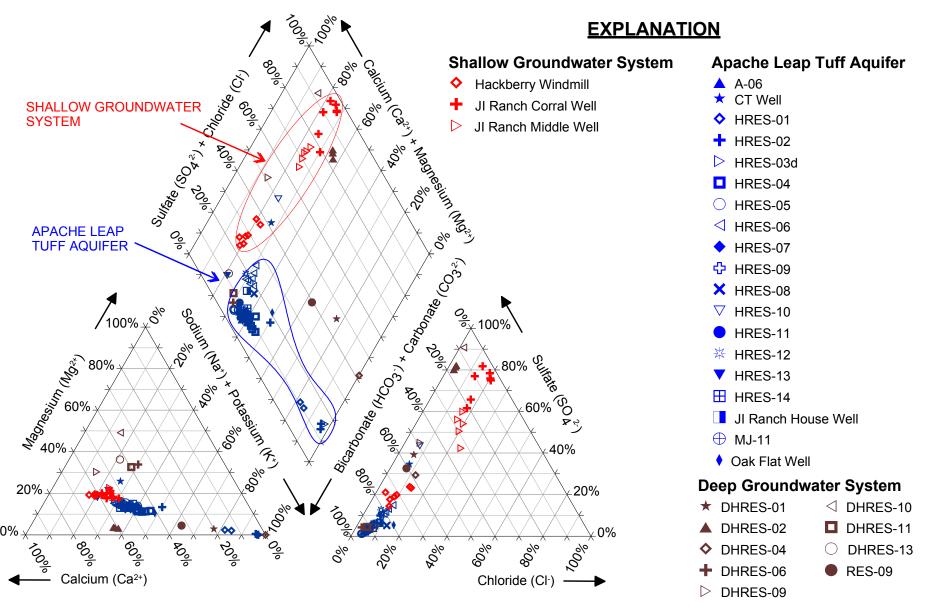



FIGURE 3. TRILINEAR DIAGRAM SHOWING COMMON ION COMPOSITIONS OF GROUNDWATER, RESOLUTION PROJECT



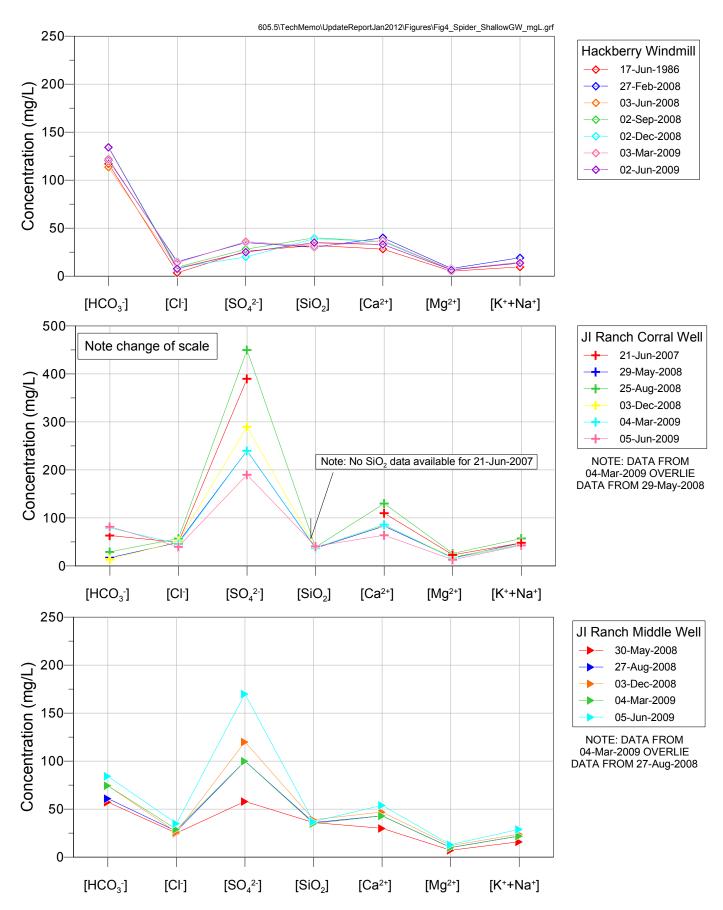



FIGURE 4. TIME SERIES OF MAJOR ION CHEMISTRY FOR SHALLOW GROUNDWATER SYSTEM, RESOLUTION PROJECT



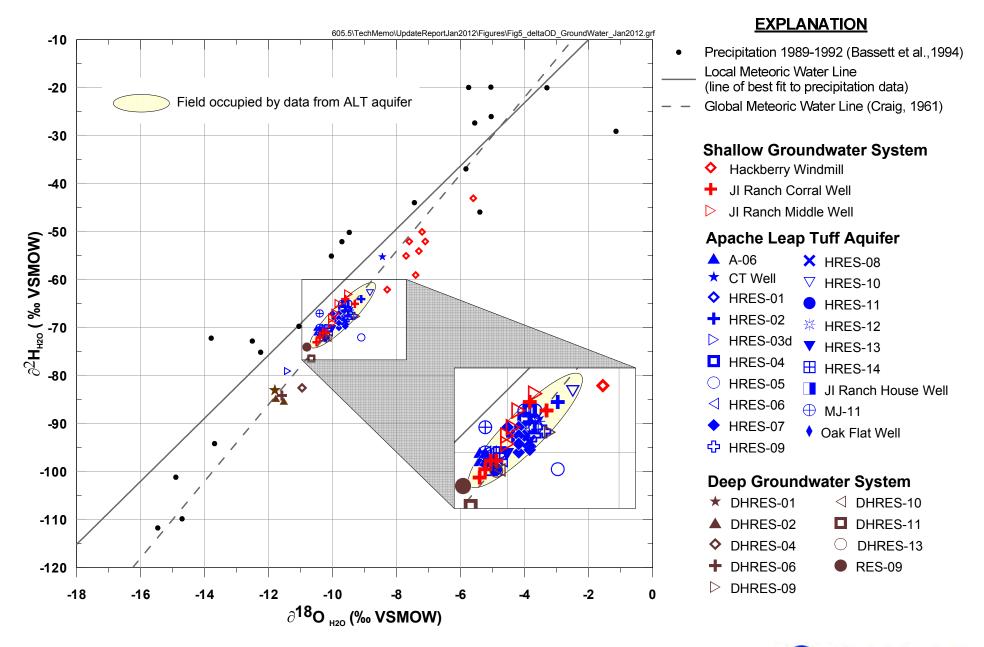



FIGURE 5.  $\partial^2 H$  VERSUS  $\partial^{18}O$  COMPOSITION OF GROUNDWATER, RESOLUTION PROJECT



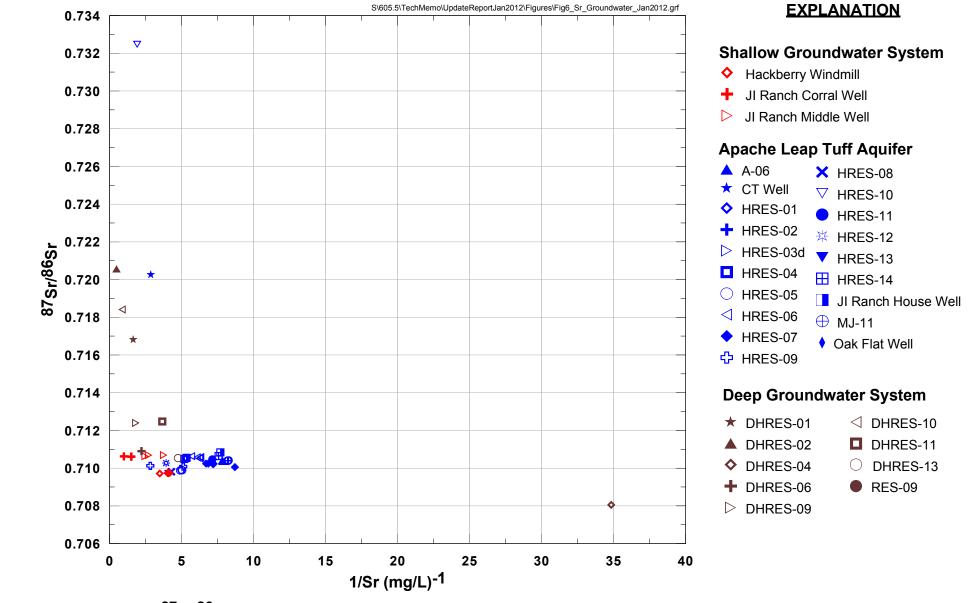



FIGURE 6. 87 Sr/86 Sr ISOTOPE RATIO VERSUS INVERSE STRONTIUM CONCENTRATION OF GROUNDWATER, RESOLUTION PROJECT



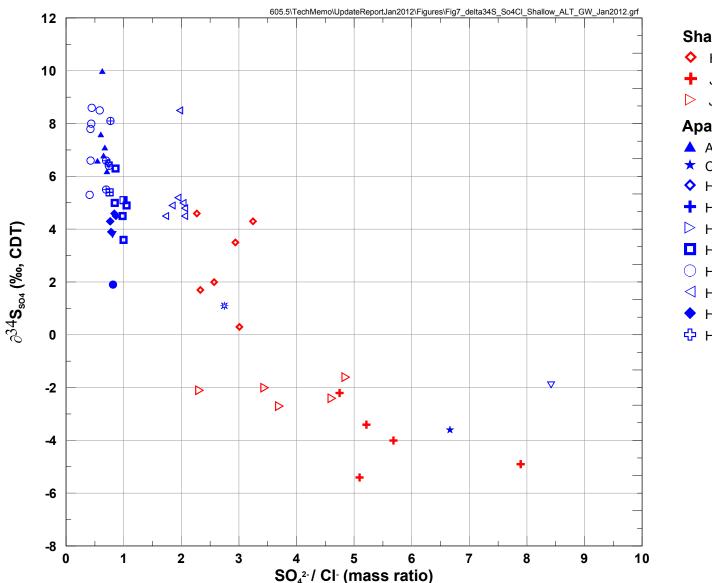



FIGURE 7.  $\partial^{34} \text{S}_{\text{SO4}}$  VERSUS SO<sub>4</sub>/CI MASS RATIO OF GROUNDWATER SAMPLES **RESOLUTION PROJECT** 

#### **Shallow Groundwater System**

- Hackberry Windmill
- JI Ranch Corral Well
- ▶ JI Ranch Middle Well

#### **Apache Leap Tuff Aquifer**

- ▲ A-06
- X HRES-08
- ★ CT Well
- ▽ HRES-10
- ♦ HRES-01
- HRES-11
- + HRES-02
- ₩ HRES-12
- ▶ HRES-03d ▼ HRES-13
- ☐ HRES-04
- ⊞ HRES-14
- O HRES-05
- JI Ranch House Well
- ✓ HRES-06
- ⊕ MJ-11
- ♦ HRES-07
- Oak Flat Well

♣ HRES-09



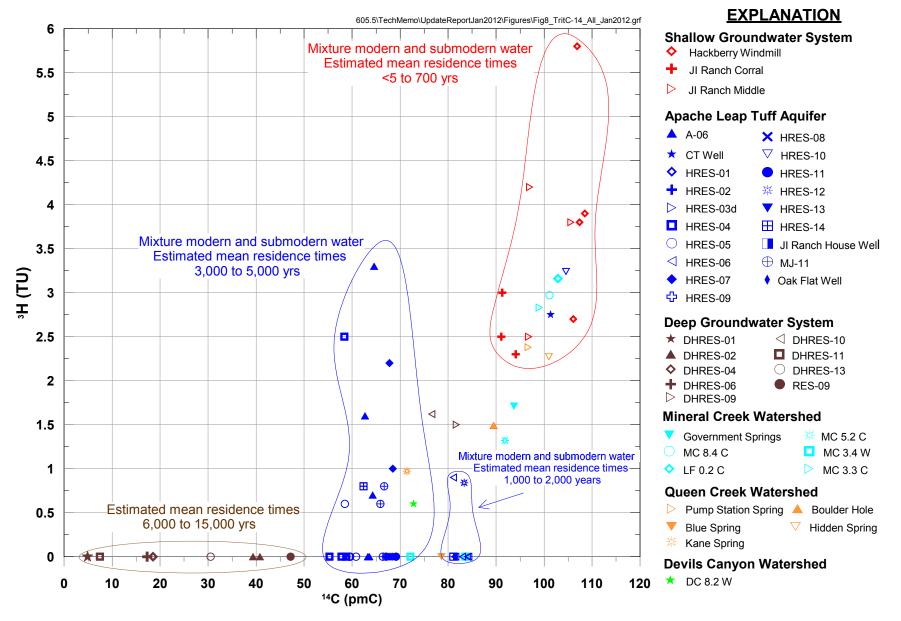



FIGURE 8. 3H VERSUS 14C FOR GROUNDWATER AND SELECTED SPRING AND SURFACE WATER LOCATIONS, RESOLUTION PROJECT



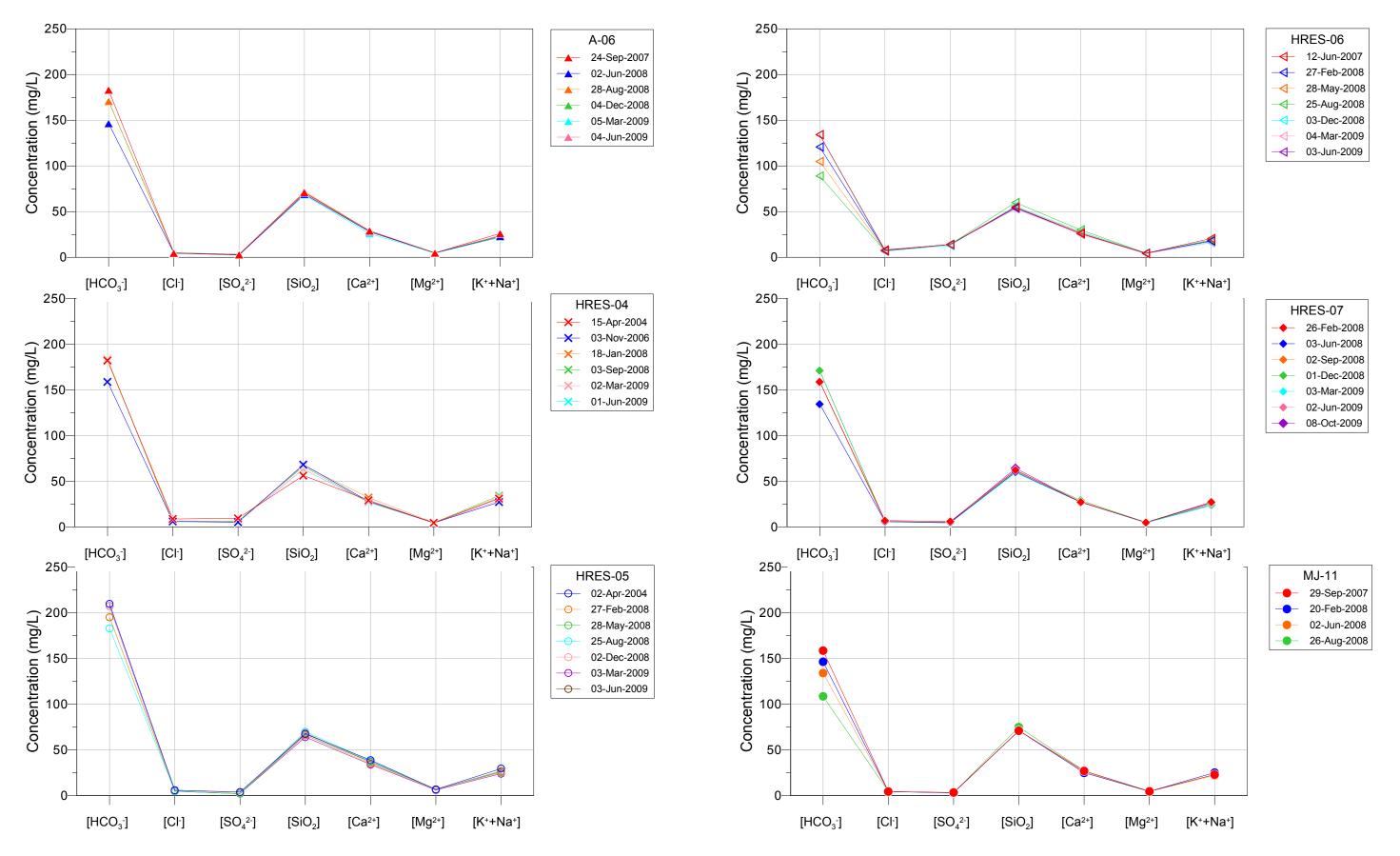



FIGURE 9. TIME SERIES OF MAJOR ION CHEMISTRY FOR APACHE LEAP TUFF AQUIFER, RESOLUTION PROJECT



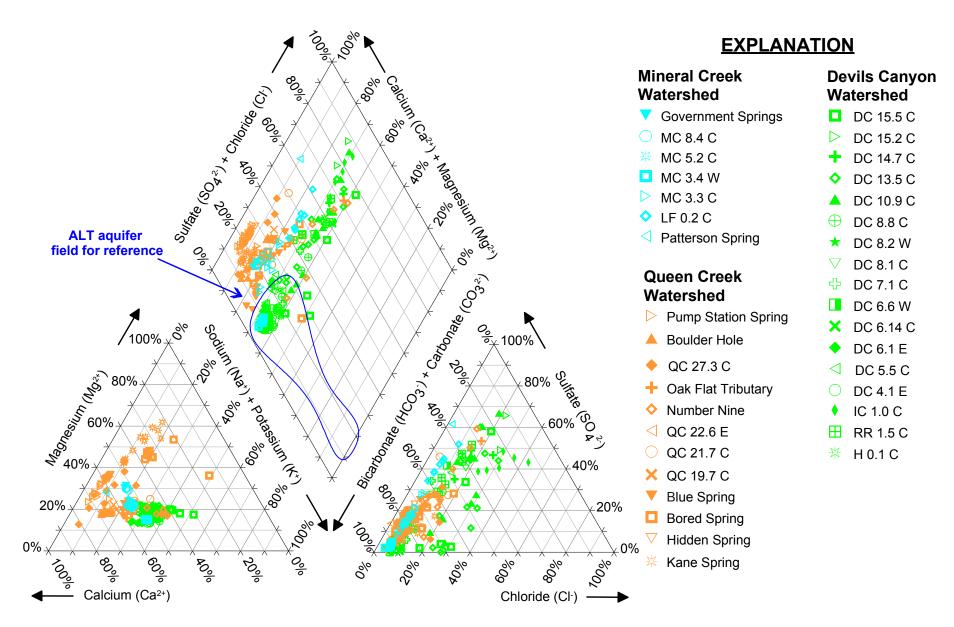
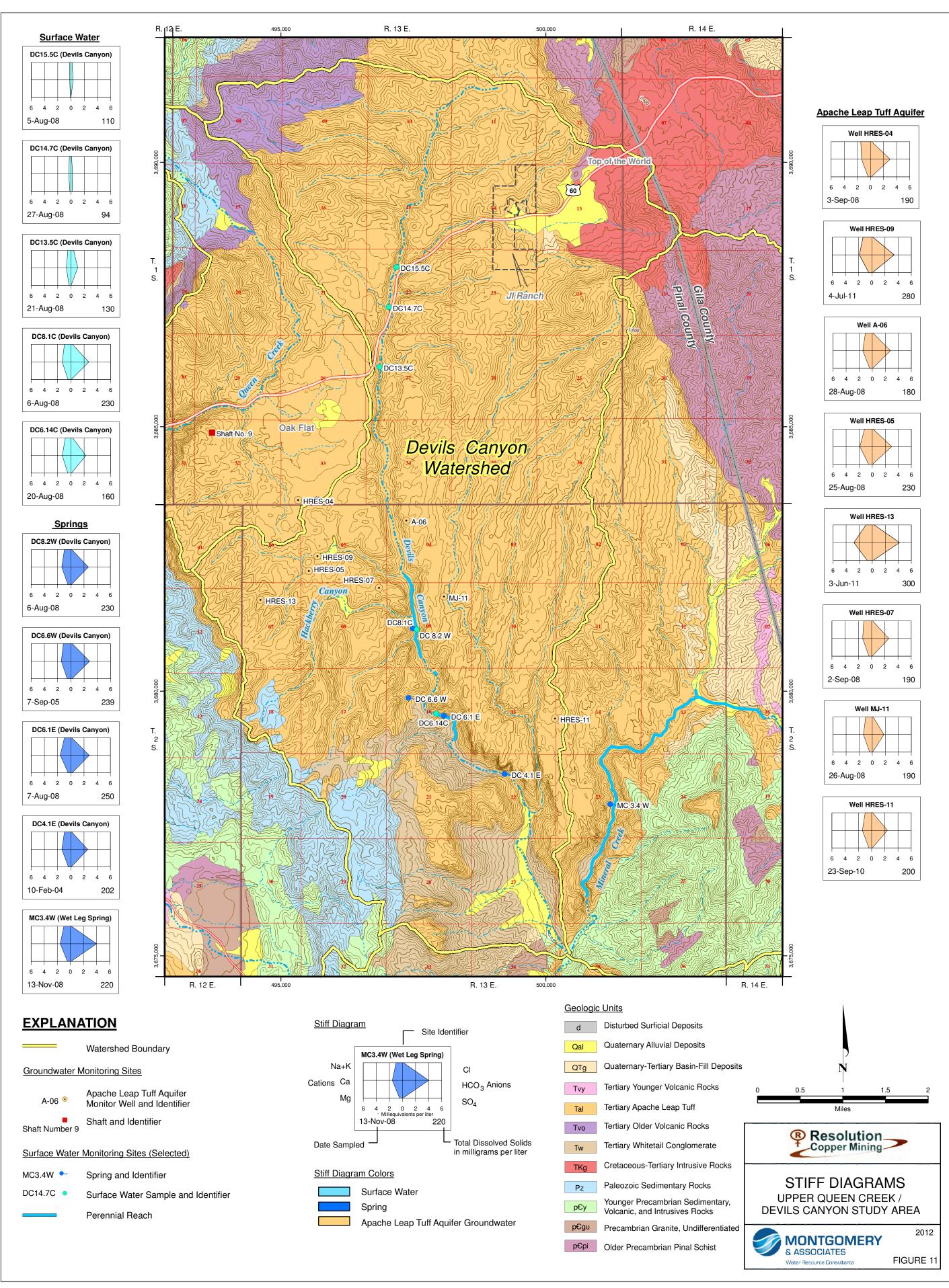




FIGURE 10. TRILINEAR DIAGRAM SHOWING COMMON ION COMPOSITIONS OF SURFACE WATER AND SPRINGS, RESOLUTION PROJECT





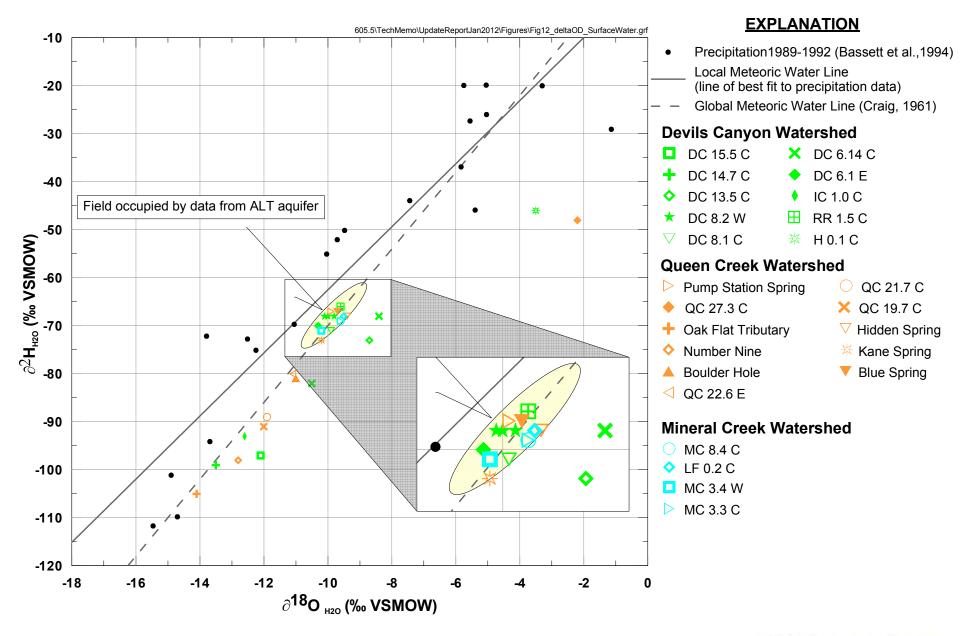



FIGURE 12.  $\partial^2$ H VERSUS  $\partial^{18}$ O COMPOSITION OF SPRING AND SURFACE WATER SAMPLES COLLECTED IN 2008, RESOLUTION PROJECT



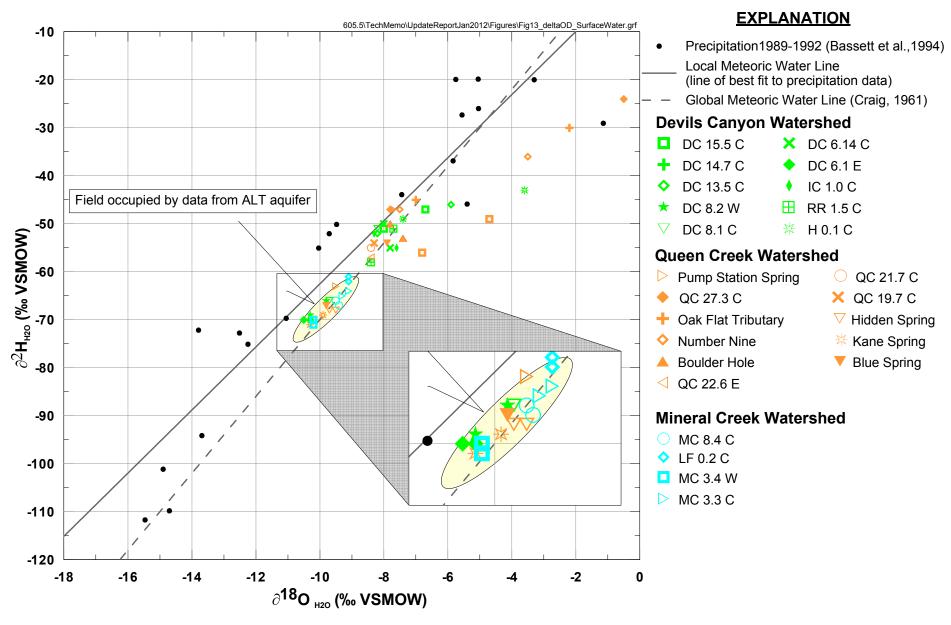



FIGURE 13.  $\partial^2$ H VERSUS  $\partial^{18}$ O COMPOSITION OF SPRING AND SURFACE WATER SAMPLES COLLECTED IN 2009, RESOLUTION PROJECT



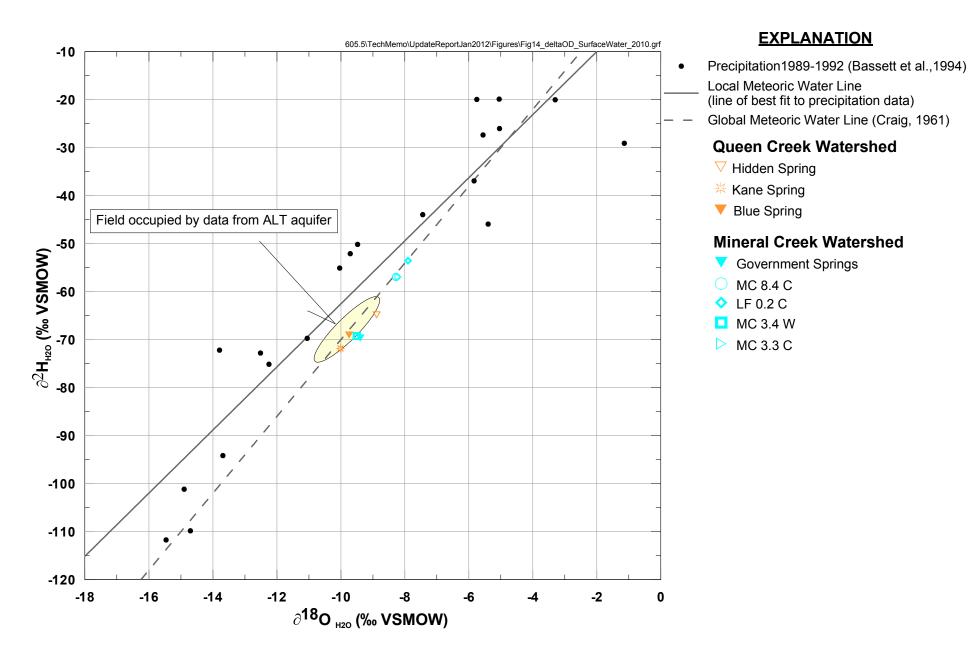



FIGURE 14.  $\partial^2$ H VERSUS  $\partial^{18}$ O COMPOSITION OF SPRING AND SURFACE WATER SAMPLES COLLECTED IN 2010, RESOLUTION PROJECT



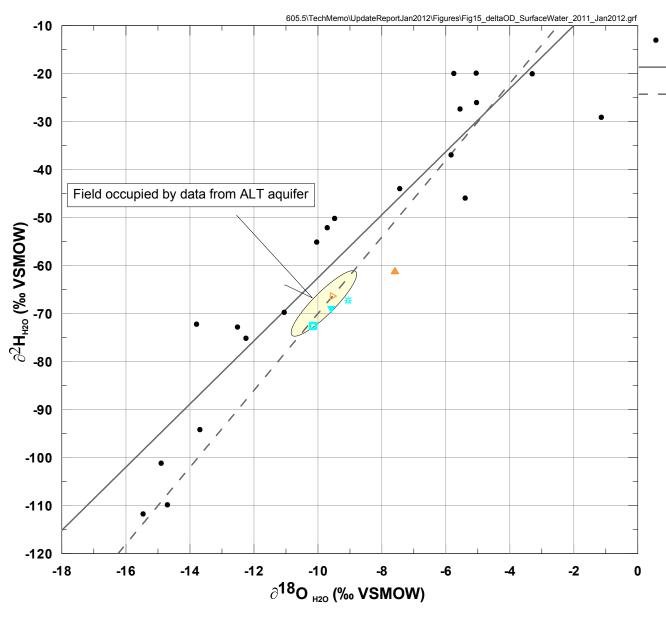



FIGURE 15.  $\partial^2$ H VERSUS  $\partial^{18}$ O COMPOSITION OF SPRING AND SURFACE WATER SAMPLES COLLECTED IN 2011, RESOLUTION PROJECT

Precipitation1989-1992 (Bassett et al.,1994) Local Meteoric Water Line (line of best fit to precipitation data) Global Meteoric Water Line (Craig, 1961)

#### **Queen Creek Watershed**

- Pump Station Spring
- ▲ Boulder Hole

#### **Mineral Creek Watershed**

- Government Springs
- ★ MC 5.2 C
- MC 3.4 W



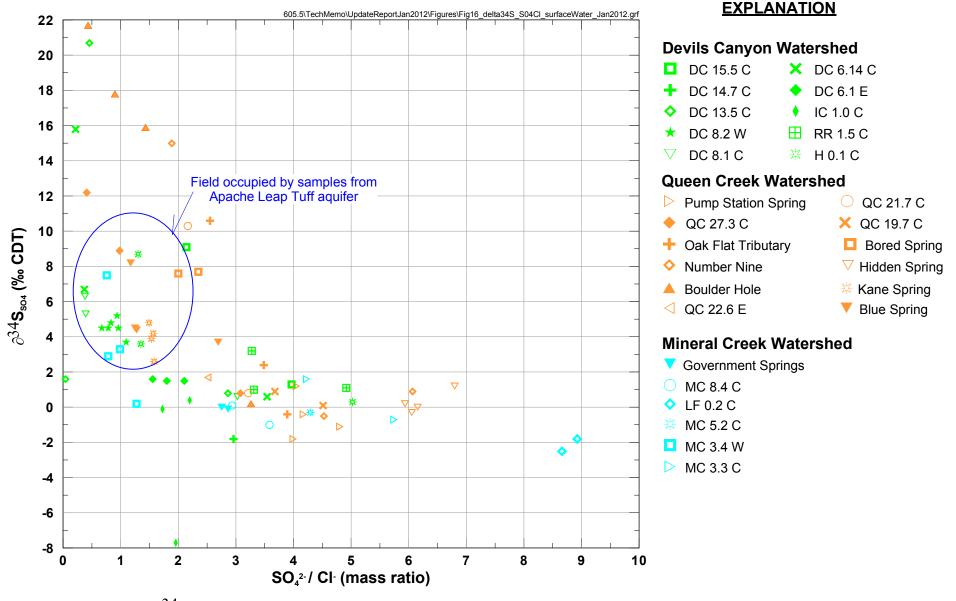



FIGURE 16.  $\partial^{34} \rm S_{SO4}$  VERSUS SO<sub>4</sub>/CI MASS RATIO OF SURFACE WATER AND SPRINGS, RESOLUTION PROJECT



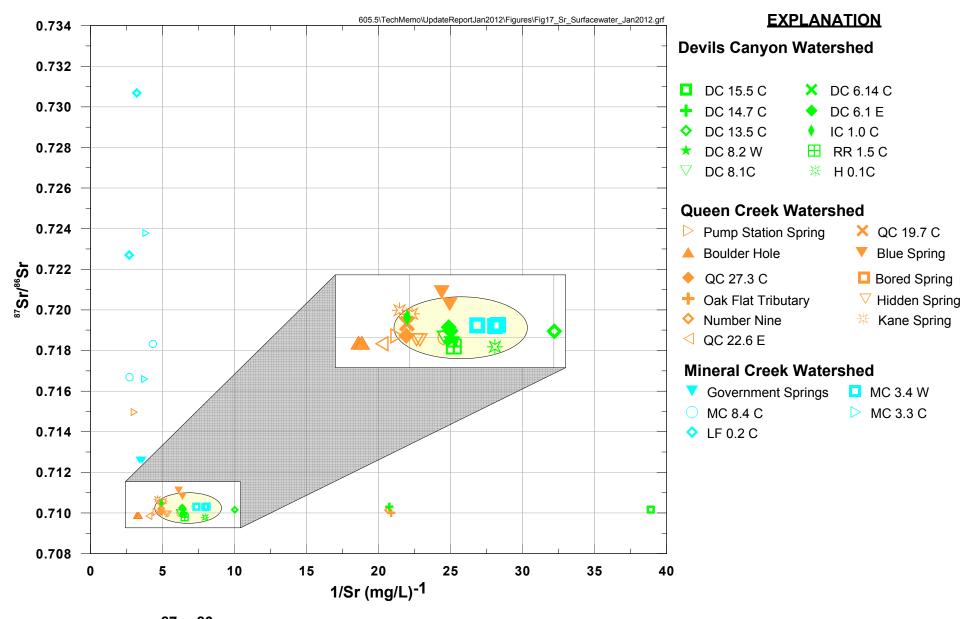



FIGURE 17.  $^{87}\text{Sr}/^{86}\text{Sr}$  ISOTOPE RATIO VERSUS INVERSE STRONTIUM CONCENTRATION OF SPRINGS AND SURFACE WATER, RESOLUTION PROJECT



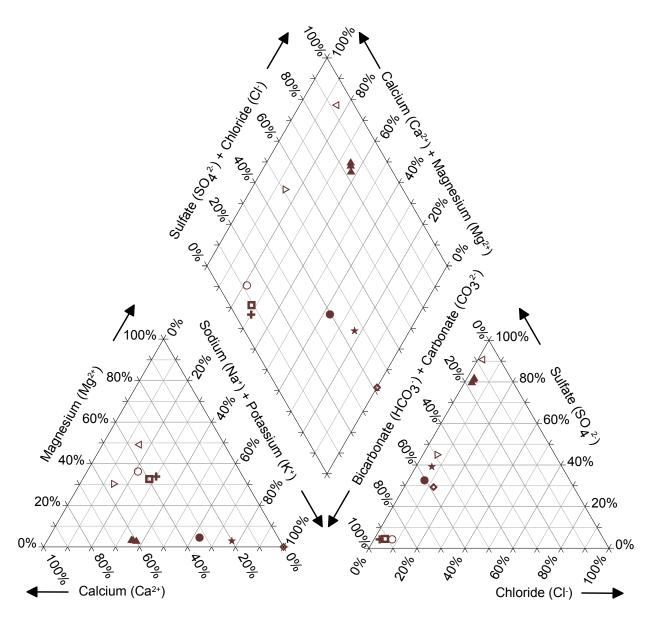



FIGURE 18. TRILINEAR DIAGRAM SHOWING COMMON ION COMPOSITIONS FOR DEEP GROUNDWATER SYSTEM, RESOLUTION PROJECT

#### **Deep Groundwater System**

★ DHRES-01

☐ DHRES-10

▲ DHRES-02

☐ DHRES-11

♦ DHRES-04

O DHRES-13

**+** DHRES-06

RES-09

DHRES-09



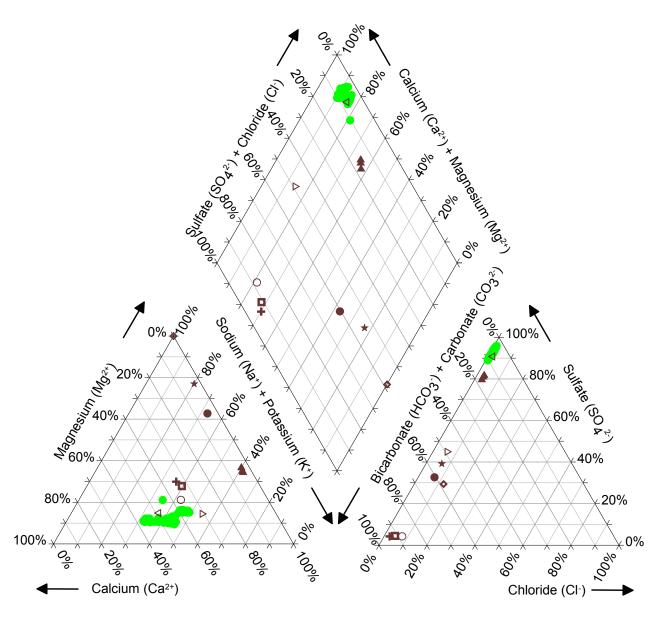



FIGURE 19. TRILINEAR DIAGRAM SHOWING COMMON ION COMPOSITION FOR DEEP GROUNDWATER AND MINE WORKINGS, RESOLUTION PROJECT

#### **Deep Groundwater System**

- ★ DHRES-01
- ☐ DHRES-10
- ▲ DHRES-02
- DHRES-11
- ♦ DHRES-04
- O DHRES-13
- **+** DHRES-06
- RES-09
- DHRES-09

#### **Mine Workings**

SHAFT NO. 9 DISCHARGE



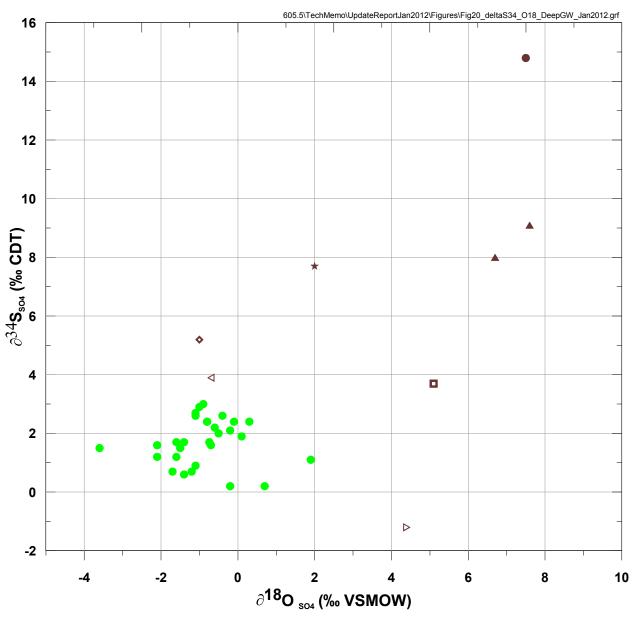



FIGURE 20.  $\partial^{34}$ S VERSUS  $\partial^{18}$ O IN DISSOLVED SULFATE FOR DEEP GROUNDWATER SYSTEM AND MINE WORKINGS, RESOLUTION PROJECT

#### **Deep Groundwater System**

★ DHRES-01 < DHRES-10

▲ DHRES-02 □ DHRES-11

♦ DHRES-04 ○ DHRES-13

**+** DHRES-06

RES-09

DHRES-09

#### **Mine Workings**

SHAFT NO. 9 DISCHARGE





#### **APPENDIX A**

#### **GROUNDWATER HYDROCHEMICAL DATA**

| SAMPLE LOCATION                      | SAMPLE IDENTIFIER/ | SAMPLE    |      |       |      |      | COI    | MMON | CONSTIT | UENTS           | a (mg/L)         | b      |        |                                   |     |                   | RO   | UTINE PARA           | METERS |         | ANALYTICAL  |
|--------------------------------------|--------------------|-----------|------|-------|------|------|--------|------|---------|-----------------|------------------|--------|--------|-----------------------------------|-----|-------------------|------|----------------------|--------|---------|-------------|
| İ                                    | DESCRIPTION        | DATE      |      |       |      |      |        |      |         |                 |                  |        |        |                                   |     |                   | FIEL | D                    | LABO   | RATORY  | LABORATORY  |
| İ                                    |                    |           | Ca   | Mg    | Na   | K    | Cl     | CO₃  | HCO₃    | SO <sub>4</sub> | SiO <sub>2</sub> | Br     | F      | NO <sub>3</sub> + NO <sub>2</sub> | TDS | TEMP              | рН   | SC                   | рН     | SC      |             |
|                                      |                    |           |      |       |      |      |        |      |         |                 |                  |        |        | (as N)                            |     | (°C) <sup>c</sup> |      | (μS/cm) <sup>d</sup> |        | (μS/cm) |             |
|                                      |                    |           |      |       |      | -    | Apache | Leap | Tuff Aq | uifer           |                  |        |        |                                   |     |                   |      |                      |        |         |             |
| (D-1-13)14ccc (Gresham Well - ADEQ)  |                    | 19-Feb-02 |      |       |      |      |        |      | 100     |                 |                  |        |        |                                   |     | 14.98             | 7.08 | 214                  | 6.7    | 210     |             |
| (D-1-13)14ccc (Gresham Well - ADEQ)  |                    | 19-Feb-02 | 21   | 4.4   | 15   | 1.2  | 6.4    |      |         | 16              |                  |        | 0.16   | 0.028                             | 150 |                   |      |                      |        |         |             |
| (D-1-13)14dbd (JI Ranch Well - ADEQ) |                    | 28-Jun-00 |      |       |      |      |        |      | 120     |                 |                  |        |        |                                   | 190 | 20.28             | 7.22 | 214                  |        | 240     |             |
| (D-1-13)14dbd (JI Ranch Well - ADEQ) |                    | 28-Jun-00 | 27   | 3.8   | 17   | 2.1  | 6.6    |      |         | ND              |                  |        | 0.22   | 0.95                              |     |                   |      |                      |        |         |             |
| A-06                                 | RESE-1000255       | 24-Sep-07 |      |       |      |      |        |      |         |                 |                  |        |        |                                   |     | 25.9              | 7.13 | 268.1                |        |         |             |
| A-06                                 | RESE-1000255       | 24-Sep-07 | 29   | 4.8   | 25   | 1.1  |        |      |         |                 | 71               |        |        |                                   |     |                   |      |                      |        |         | TestAmerica |
| A-06                                 | RESE-1000255       | 24-Sep-07 |      |       |      |      | 4.6    |      | 183     | 2.9             |                  | <0.50  | 0.35   | 0.37                              | 210 |                   |      |                      |        |         | TestAmerica |
| A-06 DUP                             | RESE-1000256       | 24-Sep-07 |      |       |      |      |        |      |         |                 |                  |        |        |                                   |     | 25.9              | 7.13 | 268.1                |        |         |             |
| A-06 DUP                             | RESE-1000256       | 24-Sep-07 | 30   | 5.0   | 24   | 1.0  |        |      |         |                 | 73               |        |        |                                   |     |                   |      |                      |        |         | TestAmerica |
| A-06 DUP                             | RESE-1000256       | 24-Sep-07 |      |       |      |      | 4.6    |      | 183     | 2.8             |                  | <0.50  | 0.35   | 0.36                              | 210 |                   |      |                      |        |         | TestAmerica |
| A-06                                 | RESE-1003008       | 02-Jun-08 |      |       |      |      |        |      |         |                 |                  |        |        |                                   |     | 26.2              | 7.17 | 264.4                |        |         |             |
| A-06                                 | RESE-1003008       | 02-Jun-08 | 28   | 4.8   | 23   | <2.0 |        |      |         |                 | 69               |        |        |                                   |     |                   |      |                      |        |         | TestAmerica |
| A-06                                 | RESE-1003008       | 02-Jun-08 |      |       |      |      | 4.4    |      | 146.4   | 2.4             |                  | <0.50  | <0.40  | 0.27                              | 220 |                   |      |                      | 7.42   | 260     | TestAmerica |
| A-06                                 | RESE-1003016       | 28-Aug-08 |      |       |      |      |        |      |         |                 |                  |        |        |                                   |     | 26.0              | 7.23 | 267                  |        |         |             |
| A-06                                 | RESE-1003016       | 28-Aug-08 | 29   | 4.8   | 24   | <2.0 |        |      |         |                 | 72               |        |        |                                   |     |                   |      |                      |        |         | TestAmerica |
| A-06                                 | RESE-1003016       | 28-Aug-08 |      |       |      |      | 4.5    |      | 170.8   | 3.2             |                  | <0.50  | < 0.40 | 0.32                              | 180 |                   |      |                      | 7.29   | 280     | TestAmerica |
| A-06                                 | RESE-1003030       | 04-Dec-08 |      |       |      |      |        |      |         |                 |                  |        |        |                                   |     | 25.5              | 7.39 | 264.3                |        |         |             |
| A-06                                 | RESE-1003030       | 04-Dec-08 | 28   | 4.8   | 22   | <2.0 |        |      |         |                 | 71               |        |        |                                   |     |                   |      |                      |        |         | TestAmerica |
| A-06                                 | RESE-1003030       | 04-Dec-08 |      |       |      |      | 4.9    |      | 170.8   | 3.3             |                  | <0.50  | 0.41   | 0.29                              | 220 |                   |      |                      | 7.41   | 270     | TestAmerica |
| A-06                                 | RESE-1003039       | 05-Mar-09 |      |       |      |      |        |      |         |                 |                  |        |        |                                   |     | 25.1              | 7.28 | 265                  |        |         |             |
| A-06                                 | RESE-1003039       | 05-Mar-09 | 26   | 4.4   | 22   | <2.0 |        |      |         |                 | 68               |        |        |                                   |     |                   |      |                      |        |         | TestAmerica |
| A-06                                 | RESE-1003039       | 05-Mar-09 |      |       |      |      | 4.6    | -    | 170.8   | 3.0             |                  | <0.50  | 0.75   | 0.30                              | 190 |                   |      |                      | 7.73   | 260     | TestAmerica |
| A-06 SP                              | RESE-1003039       | 05-Mar-09 |      |       |      |      | 4.76   |      |         | 3.10            |                  | <0.100 | 0.247  |                                   |     |                   |      |                      |        |         | SVL         |
| A-06                                 | RESE-1003046       | 04-Jun-09 |      |       |      |      |        |      |         |                 |                  |        |        |                                   |     | 26.3              | 7.22 | 267.8                |        |         |             |
| A-06                                 | RESE-1003046       | 04-Jun-09 | 28   | 4.7   | 24   | <2.0 |        |      |         |                 | 70               |        |        |                                   |     |                   |      |                      |        |         | TestAmerica |
| A-06                                 | RESE-1003046       | 04-Jun-09 |      |       |      |      | 4.8    |      | 170.8   | 2.9             |                  | <0.50  | 0.73   | 0.38                              | 190 |                   |      |                      | 7.88   | 260     | TestAmerica |
| A-06 SP                              | RESE-1003046       | 04-Jun-09 |      |       |      |      | 4.73   |      |         | 3.04            |                  | <0.100 | 0.218  |                                   |     |                   |      |                      |        |         | SVL         |
| CT Well                              | RESE-1003101       | 20-Apr-10 |      |       |      |      |        |      |         |                 |                  |        |        |                                   |     | 15.0              | 6.77 | 662.2                |        |         |             |
| CT Well                              | RESE-1003101       | 20-Apr-10 | 67   | 22    | 43   | <2.0 |        |      |         |                 | 29               |        |        |                                   |     |                   |      |                      |        |         | TestAmerica |
| CT Well                              | RESE-1003101       | 20-Apr-10 | 67   | 22    | 43   | <2.0 | 18     |      | 256.2   | 120             | 30               | <0.50  | 0.44   | 0.36                              | 490 |                   |      |                      | 7.88   | 680     | TestAmerica |
| CT Well                              | RESE-1003102       | 20-Apr-10 |      |       |      |      |        |      |         |                 |                  |        |        |                                   |     | 15.6              | 6.79 | 677.8                |        |         |             |
| HRES-01                              | RESE-1001102       | 15-Mar-04 |      |       |      |      |        |      |         |                 |                  |        | _      |                                   |     | 26.2              | 8.34 | 259                  |        |         |             |
| HRES-01                              | RESE-1001102       | 15-Mar-04 | 8.75 | 0.815 | 52.2 | <1.0 | 5.64   |      | 154.9   | 6.82            | 55.0             |        | 0.29   | 0.840                             | 205 |                   |      |                      | 8.30   | 269     | SVL         |
| HRES-01                              | RESE-1001103       | 18-Mar-04 |      |       |      |      |        |      |         |                 |                  |        |        |                                   |     | 26.9              | 8.42 | 259                  |        |         |             |
| HRES-01                              | RESE-1001103       | 18-Mar-04 | 7.41 | 0.722 | 54.8 | <1.0 | 5.70   | -    | 154.9   | 6.80            | 54.4             |        | 0.31   | 0.810                             | 196 |                   |      |                      | 8.31   | 270     | SVL         |
| HRES-02                              | RESE-1001105       | 06-Apr-04 |      |       |      |      |        |      |         |                 |                  |        |        |                                   |     | 23.8              | 8.03 | 268.8                |        |         |             |
| HRES-02                              | RESE-1001105       | 06-Apr-04 | 21.3 | 4.76  | 33.8 | <1.0 | 7.42   |      | 144     | 13.6            | 60.7             |        | 0.4    | 0.94                              | 206 |                   |      |                      | 8.01   | 285     | SVL         |
| HRES-02                              | RESE-1001108       | 08-Apr-04 |      |       |      |      |        |      |         |                 |                  |        |        |                                   |     | 25.4              | 9.30 | 322                  |        |         |             |
|                                      |                    |           |      |       |      |      |        |      |         |                 |                  |        |        |                                   |     |                   |      |                      |        |         |             |



| SAMPLE LOCATION | SAMPLE IDENTIFIER/ | SAMPLE    |      |       |      |      | COI    | MMON            | CONSTIT | UENTS           | a (mg/L)         | b      |       |                                          |     |                           | RO    | UTINE PARA                 | METERS |               | ANALYTICAL  |
|-----------------|--------------------|-----------|------|-------|------|------|--------|-----------------|---------|-----------------|------------------|--------|-------|------------------------------------------|-----|---------------------------|-------|----------------------------|--------|---------------|-------------|
|                 | DESCRIPTION        | DATE      |      |       |      |      |        |                 |         |                 |                  |        |       |                                          |     |                           | FIELI | D                          | LABOI  | RATORY        | LABORATORY  |
|                 |                    |           | Ca   | Mg    | Na   | К    | Cl     | CO <sub>3</sub> | HCO₃    | SO <sub>4</sub> | SiO <sub>2</sub> | Br     | F     | NO <sub>3</sub> + NO <sub>2</sub> (as N) | TDS | TEMP<br>(°C) <sup>c</sup> | рН    | SC<br>(μS/cm) <sup>d</sup> | рН     | SC<br>(μS/cm) |             |
|                 |                    |           |      |       |      | -    | Apache | Leap            | Tuff Aq | uifer           |                  |        |       |                                          |     |                           |       |                            |        |               |             |
| HRES-02         | RESE-1001109       | 10-Apr-04 |      |       |      |      |        |                 |         |                 |                  |        |       |                                          |     | 22.6                      | 9.36  | 333                        |        |               |             |
| HRES-02         | RESE-1001109       | 10-Apr-04 | 1.89 | 0.047 | 69.3 | <1.0 | 6.64   | 21.9            | 130.5   | 8.31            | 47.6             |        | 0.76  | 0.89                                     | 211 |                           |       |                            | 9.21   | 324           | SVL         |
| HRES-03d        | RESE-1001111       | 16-Apr-04 |      |       |      |      |        |                 |         |                 |                  |        |       |                                          |     | 24.2                      | 10.17 | 515                        |        |               |             |
| HRES-03d        | RESE-1001111       | 16-Apr-04 | 1.16 | 0.041 | 55.7 | <1.0 | 6.8    | 36.5            | 73.8    | 7.16            | 6.98             |        | 1.05  | <0.020                                   | 155 |                           |       |                            | 9.79   | 293           | SVL         |
| HRES-04         | RESE-1001110       | 15-Apr-04 | 29   | 4.31  | 30.9 | <1.0 | 8.45   | -               | 181.8   | 9.25            | 56.1             |        | 0.41  | 0.36                                     | 217 |                           |       |                            | 7.9    | 321           | SVL         |
| HRES-04         | 4531               | 03-Nov-06 |      |       |      |      |        |                 |         |                 |                  |        |       |                                          |     | 27.1                      | 6.72  | 298                        |        |               |             |
| HRES-04         | 4531               | 03-Nov-06 | 28   | 4.3   | 27   | <1.0 |        |                 |         |                 | 68               |        |       |                                          |     |                           |       |                            |        |               | TestAmerica |
| HRES-04         | 4531               | 03-Nov-06 |      |       |      |      | 5.9    |                 | 158.6   | 5.0             |                  |        | 0.46  | 0.589                                    | 210 |                           |       |                            | 7.83   | 260           | TestAmerica |
| HRES-04         | RESE-1001114       | 18-Jan-08 |      |       |      |      |        |                 |         |                 |                  |        |       |                                          |     | 25.6                      | 7.87  | 299                        |        |               |             |
| HRES-04         | RESE-1001114       | 18-Jan-08 | 32   | 4.6   | 31   | 0.95 |        |                 |         |                 | 67               |        |       |                                          |     |                           |       |                            |        |               | TestAmerica |
| HRES-04         | RESE-1001114       | 18-Jan-08 |      |       |      |      | 5.7    |                 | 183     | 4.9             |                  | <0.50  | 0.37  | 0.33                                     | 200 |                           |       |                            | 7.99   | 300           | TestAmerica |
| HRES-04         | RESE-1003021       | 03-Sep-08 |      |       |      |      |        |                 |         |                 |                  |        |       |                                          |     | 28.2                      | 7.28  | 290                        |        |               |             |
| HRES-04         | RESE-1003021       | 03-Sep-08 | 27   | 4.5   | 34   | <2.0 |        |                 |         |                 | 66               |        |       |                                          |     |                           |       |                            |        |               | TestAmerica |
| HRES-04         | RESE-1003021       | 03-Sep-08 | -    |       |      |      | 5.8    |                 | 183     | 6.1             |                  | <0.50  | 0.42  | 0.49                                     | 190 |                           |       |                            | 7.83   | 280           | TestAmerica |
| HRES-04         | RESE-1003031       | 02-Mar-09 |      |       |      |      |        |                 |         |                 |                  |        |       |                                          |     | 27.7                      | 7.54  | 292.4                      |        |               |             |
| HRES-04         | RESE-1003031       | 02-Mar-09 | 27   | 4.0   | 29   | <2.0 |        |                 |         |                 | 63               |        |       |                                          |     |                           |       |                            |        |               | TestAmerica |
| HRES-04         | RESE-1003031       | 02-Mar-09 |      |       |      |      | 5.6    |                 | 183     | 5.6             |                  | < 0.50 | 0.71  | 0.51                                     | 210 |                           |       |                            | 7.99   | 290           | TestAmerica |
| HRES-04 SP      | RESE-1003031       | 02-Mar-09 |      |       |      |      | 5.76   |                 |         | 5.78            |                  | <0.100 | 0.263 |                                          |     |                           |       |                            |        |               | SVL         |
| HRES-04         | RESE-1003040       | 01-Jun-09 |      |       |      |      |        |                 |         |                 |                  |        |       |                                          |     | 28.4                      | 7.59  | 294                        |        |               |             |
| HRES-04         | RESE-1003040       | 01-Jun-09 | 27   | 4.2   | 31   | <2.0 |        |                 |         |                 | 63               |        |       |                                          |     |                           |       |                            |        |               | TestAmerica |
| HRES-04         | RESE-1003040       | 01-Jun-09 |      |       |      |      | 5.5    |                 | 183     | 5.4             |                  | < 0.50 | 0.46  | 0.54                                     | 180 |                           |       |                            | 8.10   | 280           | TestAmerica |
| HRES-04 SP      | RESE-1003040       | 01-Jun-09 |      |       |      |      | 5.61   |                 |         | 5.58            |                  | <0.100 | 0.214 |                                          |     |                           |       |                            |        |               | SVL         |
| HRES-05         | RESE-1001104       | 02-Apr-04 |      |       |      |      |        |                 |         |                 |                  |        |       |                                          |     | 21.3                      | 7.64  | 328.8                      |        |               |             |
| HRES-05         | RESE-1001104       | 02-Apr-04 | 38.8 | 6.74  | 28.5 | 1.1  | 5.96   |                 | 209.8   | 3.89            | 67.4             |        | 0.32  | 0.65                                     | 240 |                           |       |                            | 7.66   | 351           | SVL         |
| HRES-05         | RESE-1000264       | 27-Feb-08 |      |       |      |      |        |                 |         |                 |                  |        |       |                                          |     | 23.3                      | 7.49  | 319.5                      |        |               |             |
| HRES-05         | RESE-1000264       | 27-Feb-08 | 35   | 6.6   | 27   | <2.0 |        |                 |         |                 | 66               |        |       |                                          |     |                           |       |                            |        |               | TestAmerica |
| HRES-05         | RESE-1000264       | 27-Feb-08 |      |       |      |      | 5.8    |                 | 195.2   | 3.4             |                  | <0.50  | 0.46  | 0.81                                     | 210 |                           |       |                            |        |               | TestAmerica |
| HRES-05         | RESE-1003001       | 28-May-08 |      |       |      |      |        |                 |         |                 |                  |        |       |                                          |     | 24.9                      | 7.34  | 329.9                      |        |               |             |
| HRES-05         | RESE-1003001       | 28-May-08 | 37   | 6.7   | 26   | <2.0 |        |                 |         |                 | 66               |        |       |                                          |     |                           |       |                            |        |               | TestAmerica |
| HRES-05         | RESE-1003001       | 28-May-08 | -    | -     |      | -    | 5.1    | -               | 195.2   | 2.1             |                  | <0.50  | <0.40 | 0.56                                     | 250 | -                         |       |                            | 7.73   | 320           | TestAmerica |
| HRES-05         | RESE-1003012       | 25-Aug-08 |      |       |      |      |        |                 |         |                 |                  |        |       |                                          |     | 25.3                      | 7.37  | 321                        |        |               |             |
| HRES-05         | RESE-1003012       | 25-Aug-08 | 38   | 6.8   | 27   | <2.0 |        |                 |         |                 | 70               |        |       |                                          |     |                           |       |                            |        |               | TestAmerica |
| HRES-05         | RESE-1003012       | 25-Aug-08 |      |       |      |      | 4.7    |                 | 183     | 2.0             |                  | <0.50  | <0.40 | 0.57                                     | 230 |                           |       |                            | 7.64   | 330           | TestAmerica |
| HRES-05         | RESE-1003025       | 02-Dec-08 |      |       |      |      |        |                 |         |                 |                  |        |       |                                          |     | 24.2                      | 7.64  | 325.9                      |        |               |             |
| HRES-05         | RESE-1003025       | 02-Dec-08 | 36   | 6.8   | 25   | <2.0 |        |                 |         |                 | 69               |        |       |                                          |     |                           |       |                            |        |               | TestAmerica |
| HRES-05         | RESE-1003025       | 02-Dec-08 |      |       |      |      | 4.9    |                 | 207.4   | 2.1             |                  | <0.50  | 0.44  | 0.56                                     | 220 |                           |       |                            | 7.62   | 330           | TestAmerica |
| HRES-05         | RESE-1003034       | 03-Mar-09 |      |       |      |      |        |                 |         |                 |                  |        |       |                                          |     | 24.3                      | 7.53  | 324.6                      |        |               |             |
| HRES-05         | RESE-1003034       | 03-Mar-09 | 34   | 6.1   | 24   | <2.0 |        |                 |         |                 | 64               |        |       |                                          |     |                           |       |                            | 7.00   |               | TestAmerica |
| HRES-05         | RESE-1003034       | 03-Mar-09 |      |       |      |      | 4.7    | -               | 207.4   | 2.1             |                  | <0.50  | 0.73  | 0.55                                     | 230 |                           |       |                            | 7.96   | 310           | TestAmerica |
| HRES-05 SP      | RESE-1003034       | 03-Mar-09 |      |       |      |      | 4.88   |                 |         | 2.16            |                  | <0.100 | 0.246 |                                          |     |                           |       |                            |        |               | SVL         |



| SAMPLE LOCATION | SAMPLE IDENTIFIER/ | SAMPLE    |    |     |    |      | COI    | MMON   | CONSTIT | UENTS           | a (mg/L)         | <b>)</b> <sup>b</sup> |        |                                          |     |                           | RO    | UTINE PARA                 | METERS |               | ANALYTICAL  |
|-----------------|--------------------|-----------|----|-----|----|------|--------|--------|---------|-----------------|------------------|-----------------------|--------|------------------------------------------|-----|---------------------------|-------|----------------------------|--------|---------------|-------------|
|                 | DESCRIPTION        | DATE      |    |     |    |      |        |        |         |                 |                  |                       |        |                                          |     |                           | FIELI | D                          | LABO   | RATORY        | LABORATORY  |
|                 |                    |           | Са | Mg  | Na | К    | Cl     | CO₃    | HCO₃    | SO <sub>4</sub> | SiO <sub>2</sub> | Br                    | F      | NO <sub>3</sub> + NO <sub>2</sub> (as N) | TDS | TEMP<br>(°C) <sup>c</sup> | рН    | SC<br>(μS/cm) <sup>d</sup> | рН     | SC<br>(μS/cm) |             |
|                 |                    |           |    |     |    | ,    | Apache | Leap ' | Tuff Aq | uifer           |                  |                       |        |                                          |     |                           |       |                            |        |               |             |
| HRES-05         | RESE-1003043       | 03-Jun-09 |    |     |    |      |        |        |         |                 |                  |                       |        |                                          |     | 24.5                      | 7.39  | 327.6                      |        |               |             |
| HRES-05         | RESE-1003043       | 03-Jun-09 | 37 | 6.5 | 26 | <2.0 |        |        |         |                 | 68               |                       |        |                                          |     |                           |       |                            |        |               | TestAmerica |
| HRES-05         | RESE-1003043       | 03-Jun-09 |    |     |    |      | 4.8    |        | 207.4   | 2.1             |                  | < 0.50                | 0.66   | 0.59                                     | 190 |                           |       |                            | 8.01   | 310           | TestAmerica |
| HRES-05 SP      | RESE-1003043       | 03-Jun-09 |    |     |    |      | 4.95   |        |         | 2.27            |                  | <0.100                | 0.230  |                                          |     |                           |       |                            |        |               | SVL         |
| HRES-06         | RESE-1000301       | 12-Jun-07 |    |     |    |      |        |        |         |                 |                  |                       |        |                                          |     | 19.7                      | 6.72  | 261                        |        |               |             |
| HRES-06         | RESE-1000301       | 12-Jun-07 | 26 | 4.3 | 19 | 1.6  |        |        |         |                 | 55               |                       |        |                                          |     |                           |       |                            |        |               | TestAmerica |
| HRES-06         | RESE-1000301       | 12-Jun-07 |    |     |    |      | 8.1    |        | 134.2   | 14              |                  | < 0.50                | 0.32   | 0.27                                     | 200 |                           |       |                            |        |               | TestAmerica |
| HRES-06         | RESE-1000265       | 27-Feb-08 |    |     |    |      |        |        |         |                 |                  |                       |        |                                          |     | 19.1                      | 7.27  | 243.00                     |        |               |             |
| HRES-06         | RESE-1000265       | 27-Feb-08 | 26 | 4.4 | 18 | <2.0 |        |        |         |                 | 54               |                       |        |                                          |     |                           |       |                            |        |               | TestAmerica |
| HRES-06         | RESE-1000265       | 27-Feb-08 |    |     |    |      | 7.6    |        | 120.8   | 14              |                  | <0.50                 | <0.40  | 0.52                                     | 180 |                           |       |                            |        |               | TestAmerica |
| HRES-06 DUP     | RESE-1000266       | 27-Feb-08 |    |     |    |      |        |        |         |                 |                  |                       |        |                                          |     | 19.1                      | 7.27  | 243                        |        |               |             |
| HRES-06 DUP     | RESE-1000266       | 27-Feb-08 | 27 | 4.4 | 18 | <2.0 |        |        |         |                 | 55               |                       |        |                                          |     |                           |       |                            |        |               | TestAmerica |
| HRES-06 DUP     | RESE-1000266       | 27-Feb-08 |    |     |    |      | 7.6    |        | 120.8   | 14              |                  | < 0.50                | < 0.40 | 0.54                                     | 180 |                           |       |                            |        |               | TestAmerica |
| HRES-06         | RESE-1003003       | 28-May-08 |    |     |    |      |        |        |         |                 |                  |                       |        |                                          |     | 20.3                      | 6.51  | 245.2                      |        |               |             |
| HRES-06         | RESE-1003003       | 28-May-08 | 27 | 4.4 | 18 | <2.0 |        |        |         |                 | 55               |                       |        |                                          |     |                           |       |                            |        |               | TestAmerica |
| HRES-06         | RESE-1003003       | 28-May-08 |    |     |    |      | 7.1    |        | 104.9   | 14              |                  | < 0.50                | < 0.40 | 0.26                                     | 200 |                           |       |                            | 7.20   | 240           | TestAmerica |
| HRES-06         | RESE-1003013       | 25-Aug-08 |    |     |    |      |        |        |         |                 |                  |                       |        |                                          |     | 21.2                      | 7.74  | 262                        |        |               |             |
| HRES-06         | RESE-1003013       | 25-Aug-08 | 30 | 4.7 | 19 | <2.0 |        |        |         |                 | 60               |                       |        |                                          |     |                           |       |                            |        |               | TestAmerica |
| HRES-06         | RESE-1003013       | 25-Aug-08 |    |     |    |      | 6.9    |        | 89.1    | 14              |                  | < 0.50                | < 0.40 | 0.26                                     | 170 |                           |       |                            | 7.16   | 250           | TestAmerica |
| HRES-06         | RESE-1003026       | 03-Dec-08 |    |     |    |      |        |        |         |                 |                  |                       |        |                                          |     | 20.9                      | 6.51  | 252.7                      |        |               |             |
| HRES-06         | RESE-1003026       | 03-Dec-08 | 28 | 4.6 | 17 | <2.0 |        |        |         |                 | 56               |                       |        |                                          |     |                           |       |                            |        |               | TestAmerica |
| HRES-06         | RESE-1003026       | 03-Dec-08 |    |     |    |      | 6.7    |        | 134.2   | 13              |                  | < 0.50                | < 0.40 | 0.25                                     | 180 |                           |       |                            | 7.18   | 250           | TestAmerica |
| HRES-06 DUP     | RESE-1003027       | 03-Dec-08 |    |     |    |      |        |        |         |                 |                  |                       |        |                                          |     | 20.9                      | 6.51  | 252.7                      |        |               |             |
| HRES-06 DUP     | RESE-1003027       | 03-Dec-08 | 28 | 4.5 | 17 | <2.0 |        |        |         |                 | 57               |                       |        |                                          |     |                           |       |                            |        |               | TestAmerica |
| HRES-06 DUP     | RESE-1003027       | 03-Dec-08 |    |     |    |      | 6.9    |        | 134.2   | 14              |                  | < 0.50                | < 0.40 | 0.26                                     | 220 |                           |       |                            | 7.27   | 250           | TestAmerica |
| HRES-06         | RESE-1003035       | 04-Mar-09 |    |     |    |      |        |        |         |                 |                  |                       |        |                                          |     | 20.4                      | 7.00  | 241.2                      |        |               |             |
| HRES-06         | RESE-1003035       | 04-Mar-09 | 25 | 4.0 | 16 | <2.0 |        |        |         |                 | 53               |                       |        |                                          |     |                           |       |                            |        |               | TestAmerica |
| HRES-06         | RESE-1003035       | 04-Mar-09 |    |     |    |      | 6.8    |        | 134.2   | 14              |                  | < 0.50                | 0.60   | 0.26                                     | 180 |                           |       |                            | 7.61   | 240           | TestAmerica |
| HRES-06 SP      | RESE-1003035       | 04-Mar-09 |    |     |    |      | 7.24   |        |         | 14.7            |                  | <0.100                | 0.142  |                                          |     |                           |       |                            |        |               | SVL         |
| HRES-06 DUP     | RESE-1003036       | 04-Mar-09 |    |     |    |      |        |        |         |                 |                  |                       |        |                                          |     | 20.4                      | 7.00  | 241.2                      |        |               |             |
| HRES-06 DUP     | RESE-1003036       | 04-Mar-09 | 25 | 4.1 | 17 | <2.0 |        |        |         |                 | 55               |                       |        |                                          |     |                           |       |                            |        |               | TestAmerica |
| HRES-06 DUP     | RESE-1003036       | 04-Mar-09 |    |     |    |      | 6.9    |        | 134.2   | 14              |                  | <0.50                 | 0.57   | 0.26                                     | 180 |                           |       |                            | 7.63   | 240           | TestAmerica |
| HRES-06 SPD     | RESE-1003036       | 04-Mar-09 |    |     |    |      | 7.24   |        |         | 14.7            |                  | <0.100                | 0.140  |                                          |     |                           |       |                            |        |               | SVL         |
| HRES-06         | RESE-1003044       | 03-Jun-09 |    |     |    |      |        |        |         |                 |                  |                       |        |                                          |     | 20.6                      | 6.99  | 243.8                      |        |               |             |
| HRES-06         | RESE-1003044       | 03-Jun-09 | 26 | 4.2 | 18 | <2.0 |        |        |         |                 | 55               |                       |        |                                          |     |                           |       |                            |        |               | TestAmerica |
| HRES-06         | RESE-1003044       | 03-Jun-09 |    |     |    |      | 6.8    |        | 134.2   | 14              |                  | <0.50                 | 0.52   | <0.30                                    | 140 |                           |       |                            | 7.63   | 240           | TestAmerica |
| HRES-06 SP      | RESE-1003044       | 03-Jun-09 |    |     |    |      | 7.14   |        |         | 14.5            |                  | <0.100                | 0.126  |                                          |     |                           |       |                            |        |               | SVL         |



| DESCRIPTION   DATE     Ca   Mg   Na   K   Cl   CO <sub>3</sub>   HCO <sub>3</sub>   SO <sub>4</sub>   SIO <sub>2</sub>   Br   F   NO <sub>3</sub> + NO <sub>2</sub>   TDS   TMS   TMS   Cl   LSS/cms   F   NO <sub>3</sub> + NO <sub>3</sub> + NO <sub>3</sub>   TMS   LSS/cms   F   NO <sub>3</sub> + NO <sub>3</sub> + NO <sub>3</sub>   TMS   LSS/cms   F   NO <sub>3</sub> + NO <sub>3</sub> + NO <sub>3</sub>   TMS   LSS/cms   TMS               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Comp                                                                                                                                                       | LABORATORY  |
| HRES-06 DUP RESE-1003045 03-Jun-09 27 4.3 18 4.2 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |
| HRES-06 DUP HRES-1003045 HRES-06 DUP RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-1003045 RESE-10                                                                                                                                                     |             |
| HRES-06 DUP HRES-06 DUP HRES-003045  03-Jun-09 HRES-06 SPD RESE-1003045  03-Jun-09 HRES-07 RESE-1003045  03-Jun-09 HRES-07 RESE-1003026  26-Feb-08 RESE-100262  27-47 RESE-07 RESE-100262  27-47 RESE-07 RESE-100262  27-47 RESE-07 RESE-100262  27-47 RESE-07 RESE-100262  27-47 RESE-07 RESE-100262  27-47 RESE-07 RESE-100262  27-47 RESE-07 RESE-100262  27-47 RESE-07 RESE-100262  27-47 RESE-07 RESE-100262  27-47 RESE-07 RESE-100262  27-47 RESE-07 RESE-100262  27-47 RESE-07 RESE-100262  27-47 RESE-07 RESE-100262  27-47 RESE-07 RESE-100262  27-47 RESE-07 RESE-100262  27-47 RESE-07 RESE-100262  27-47 RESE-07 RESE-100262  27-47 RESE-07 RESE-100262  27-47 RESE-07 RESE-100262  27-47 RESE-07 RESE-100262  27-47 RESE-07 RESE-100262  27-47 RESE-07 RESE-100262  27-47 RESE-07 RESE-100262  27-47 RESE-07 RESE-100262  27-47 RESE-07 RESE-100262 RESE-100262 RESE-100262 RESE-100262 RESE-100262 RESE-100262 RE                                                                                                                                                     |             |
| HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-09 HRES-100262 HRES-100262 HRES-100262 HRES-100262 HRES-100262 HRES-08 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-08 HRES-100262 HRES-100262 HRES-100262 HRES-100262 HRES-100262 HRES-100262 HRES-100262 HRES-100262 HRES-100262 HRES-100262 HRES-100262 HRES-100262 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-08 HRES-100262 HRES-100262 HRES-100262 HRES-100262 HRES-100262 HRES-100262 HRES-100262 HRES-100262 HRES-100262 HRES-100262 HRES-100262 HRES-100262 HRES-100262 HRES-100262 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HR                                                                                                                                                     | TestAmerica |
| HRES-07 HRES-07 HRES-08 HRES-1000262 HRES-08 HRES-07 HRES-07 HRES-08 HRES-1000262 HRES-1000262 HRES-1000262 HRES-08 HRES-09 HRES-07 HRES-08 HRES-1000262 HRES-1000062 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-1000062 HRES-1000062 HRES-1000062 HRES-1000062 HRES-1000062 HRES-1000062 HRES-1000062 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07 HRES-07                                                                                                                                                      | TestAmerica |
| HRES-07 RESE-1000262 26-Feb-08 RESE-1000262 26-Feb-08 RESE-1000262 26-Feb-08 RESE-1000262 26-Feb-08 RESE-10000262 26-Feb-08 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000026 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-10000262 RESE-100000262 RESE-10000262 RESE-100000262 RESE-100000262 RESE-100000262 RESE-100000262 RESE-10000026                                                                                                                                                     | SVL         |
| HRES-07 RESE-1003009 03-Jun-08 27 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 27 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 27 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 27 26 4.7 27 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 26 4.7 27 27 27 27 27 27 27 27 27 27 27 27 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| HRES-07 RESE-1003009 03-Jun-08 27 4.7 26 <2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TestAmerica |
| HRES-07 RESE-1003009 03-Jun-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TestAmerica |
| HRES-07 DUP RESE-1003010 03-Jun-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |
| HRES-07 DUP  RESE-1003010 03-Jun-08 26 4.4 24 <2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TestAmerica |
| HRES-07 DUP  RESE-1003010 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 04-Mes-07 04-Mes-07 05-Mes-1003018 03-Jun-08 03-Jun-08 04-Mes-07 05-Mes-1003018 03-Jun-08 03-Jun-08 04-Mes-07 05-Mes-1003018 03-Jun-08 03-Jun-08 03-Jun-08 04-Mes-07 05-Mes-1003018 03-Jun-08 03-Jun-08 03-Jun-08 03-Jun-08 04-Mes-07 05-Mes-1003018 03-Jun-08 04-Mes-07 05-Mes-07 05-Mes-1003018 03-Jun-08 03-Jun-08 04-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Mes-07 05-Me                                                                                                                                                     | TestAmerica |
| HRES-07 DUP  RESE-1003010  03-Jun-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| HRES-07 HRES-07 HRES-07 HRES-07 RESE-1003018 02-Sep-08 27 4.8 27 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TestAmerica |
| HRES-07 HRES-07 HRES-08 RESE-1003018 02-Sep-08 02-Sep-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TestAmerica |
| HRES-07 RESE-1003018 02-Sep-08 5.7 158.6 4.4 < 0.50 < 0.40 0.58 190 7.76 260  HRES-07 RESE-1003022 01-Dec-08 5.7 158.6 4.4 < 0.50 < 0.40 0.58 190 7.76 260  HRES-07 HRES-07 RESE-1003022 01-Dec-08 29 4.8 24 <2.0 61 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
| HRES-07 RESE-1003022 01-Dec-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TestAmerica |
| HRES-07 RESE-1003022 01-Dec-08 29 4.8 24 <2.0 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TestAmerica |
| HRES-07 RESE-1003022 01-Dec-08 5.6 170.8 4.3 <0.50 0.44 0.61 200 7.43 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TestAmerica |
| HPES_07 PESE_1003032 03.Mar_00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TestAmerica |
| INCO-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
| HRES-07 RESE-1003032 03-Mar-09 27 4.2 23 <2.0 59 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TestAmerica |
| HRES-07 RESE-1003032 03-Mar-09 5.5 170.8 4.2 <0.50 0.60 0.59 190 7.88 260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TestAmerica |
| HRES-07 SP RESE-1003032 03-Mar-09 5.68 4.46 <0.100 0.252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SVL         |
| HRES-07 RESE-1003041 02-Jun-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| HRES-07 RESE-1003041 02-Jun-09 28 4.5 25 <2.0 61 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TestAmerica |
| HRES-07 RESE-1003041 02-Jun-09 5.5 170.8 4.3 <0.50 0.65 0.62 160 7.92 260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TestAmerica |
| HRES-07 SP RESE-1003041 02-Jun-09 5.67 4.49 0.100 0.247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SVL         |
| HRES-07 RESE-1000279 08-Oct-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| HRES-07 RESE-1000279 08-Oct-09 27 4.5 24 <2.0 64 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TestAmerica |
| HRES-07 RESE-1000279 08-Oct-09 5.5 158.6 4.7 <0.50 <0.40 0.71 200 8.01 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TestAmerica |
| HRES-07 RESE-1000280 15-Oct-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| HRES-07 RESE-1000280 15-Oct-09 28 4.6 24 <2.0 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TestAmerica |
| HRES-07 RESE-1000280 15-Oct-09 5.8 183 4.8 <0.50 <0.40 0.69 180 7.55 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TestAmerica |
| HRES-07 RESE-1000281 20-Oct-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| HRES-07 RESE-1000281 20-Oct-09 29 4.7 26 <2.0 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TestAmerica |
| HRES-07 RESE-1000281 20-Oct-09 5.5 134.2 4.5 <0.50 0.69 0.74 190 7.62 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TestAmerica |
| HRES-07 RESE-1000282 28-Oct-09 27 4.5 23 <2.0 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TestAmerica |
| HRES-07 RESE-1000282 28-Oct-09 5.2 195.2 4.6 <0.50 0.74 0.70 210 7.38 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TestAmerica |



|         | SAMPLE LOCATION | SAMPLE IDENTIFIER/ | SAMPLE    |    |     |    |      | CO       | MMON   | CONSTIT | UENTS           | a (mg/L)         | ) <sup>b</sup> |        |                                   |     |                   | RO    | UTINE PAR            | AMETERS |         | ANALYTICAL  |
|---------|-----------------|--------------------|-----------|----|-----|----|------|----------|--------|---------|-----------------|------------------|----------------|--------|-----------------------------------|-----|-------------------|-------|----------------------|---------|---------|-------------|
|         |                 | DESCRIPTION        | DATE      |    |     |    |      |          |        |         |                 |                  |                |        |                                   |     |                   | FIELD | )                    | LABOI   | RATORY  | LABORATORY  |
|         |                 |                    |           | Са | Mg  | Na | К    | Cl       | CO₃    | HCO₃    | SO <sub>4</sub> | SiO <sub>2</sub> | Br             | F      | NO <sub>3</sub> + NO <sub>2</sub> | TDS | TEMP              | рН    | SC                   | рН      | sc      |             |
|         |                 |                    |           |    | 1   |    |      | <b>.</b> |        |         |                 |                  |                |        | (as N)                            |     | (°C) <sup>c</sup> |       | (μS/cm) <sup>a</sup> |         | (μS/cm) |             |
|         |                 |                    |           |    |     |    |      | Apacne   | е сеар | Tuff Aq | uiter           |                  |                |        |                                   |     |                   |       |                      |         |         |             |
| HRES-07 |                 | RESE-1000284       | 03-Nov-09 |    |     |    |      |          |        |         |                 |                  |                |        |                                   |     | 24.0              | 7.22  | 264.2                |         |         |             |
| HRES-07 |                 | RESE-1000284       | 03-Nov-09 | 27 | 4.5 | 23 | <2.0 |          |        |         |                 | 67               |                |        |                                   |     |                   |       |                      |         |         | TestAmerica |
| HRES-07 |                 | RESE-1000284       | 03-Nov-09 |    |     |    |      | 5.2      |        | 146.4   | 4.6             |                  | <0.50          | <0.40  | 0.70                              | 200 |                   |       |                      | 7.72    | 240     | TestAmerica |
| HRES-07 |                 | RESE-1000285       | 10-Nov-09 |    |     |    |      |          |        |         |                 |                  |                |        |                                   |     | 24.0              | 7.07  | 259.4                |         |         |             |
| HRES-07 |                 | RESE-1000285       | 10-Nov-09 | 26 | 4.5 | 26 | <2.0 |          |        |         |                 | 66               |                |        |                                   |     |                   |       |                      |         |         | TestAmerica |
| HRES-07 |                 | RESE-1000285       | 10-Nov-09 |    |     |    |      | 5.2      |        | 170.8   | 4.6             |                  | <0.50          | <0.40  | 0.70                              | 300 |                   |       |                      | 7.50    | 260     | TestAmerica |
| HRES-07 |                 | RESE-1000286       | 17-Nov-09 |    |     |    |      |          |        |         |                 |                  |                |        |                                   |     | 24.2              | 7.29  | 281                  |         |         |             |
| HRES-07 |                 | RESE-1000286       | 17-Nov-09 | 27 | 4.5 | 24 | <2.0 |          |        |         |                 | 66               |                |        |                                   |     |                   |       |                      |         |         | TestAmerica |
| HRES-07 |                 | RESE-1000286       | 17-Nov-09 |    |     |    |      | 5.2      |        | 158.6   | 4.7             |                  | <0.50          | 0.73   | 0.71                              | 210 |                   |       |                      | 7.53    | 260     | TestAmerica |
| HRES-07 |                 | RESE-1000287       | 24-Nov-09 |    |     |    |      |          |        |         |                 |                  |                |        |                                   |     | 23.7              | 7.19  | 266                  |         |         |             |
| HRES-07 |                 | RESE-1000287       | 24-Nov-09 | 27 | 4.6 | 24 | <2.0 |          |        |         |                 | 66               |                |        |                                   |     |                   |       |                      |         |         | TestAmerica |
| HRES-07 |                 | RESE-1000287       | 24-Nov-09 |    |     |    |      | 5.2      | -      | 158.6   | 4.8             |                  | <0.50          | <0.40  | 0.71                              | 190 |                   |       |                      | 7.34    | 260     | TestAmerica |
| HRES-07 |                 | RESE-1000289       | 30-Nov-09 |    |     |    |      |          |        |         |                 |                  |                |        |                                   |     | 23.5              | 7.30  | 268.9                |         |         |             |
| HRES-07 |                 | RESE-1000289       | 30-Nov-09 | 26 | 4.6 | 25 | <2.0 |          |        |         |                 | 65               |                |        |                                   |     |                   |       |                      |         |         | TestAmerica |
| HRES-07 |                 | RESE-1000289       | 30-Nov-09 |    |     |    |      | 5.2      |        | 158.6   | 4.7             |                  | <0.50          | 0.41   | 0.71                              | 230 |                   |       |                      | 7.58    | 270     | TestAmerica |
| HRES-07 |                 | RESE-1000290       | 06-Dec-09 |    |     |    |      |          |        |         |                 |                  |                |        |                                   |     | 23.5              | 7.22  | 266.6                |         |         |             |
| HRES-07 |                 | RESE-1000290       | 06-Dec-09 | 28 | 4.6 | 24 | <2.0 |          |        |         |                 | 68               |                |        |                                   |     |                   |       |                      |         |         | TestAmerica |
| HRES-07 |                 | RESE-1000290       | 06-Dec-09 |    |     |    |      | 5.2      |        | 158.6   | 4.7             |                  | <0.50          | <0.40  | 0.71                              | 360 |                   |       |                      | 7.86    | 270     | TestAmerica |
| HRES-08 |                 | RESE-1003149       | 21-Jul-11 |    |     |    |      |          |        |         |                 |                  |                |        |                                   |     | 23.4              | 7.11  | 371.7                |         |         |             |
| HRES-08 |                 | RESE-1003149       | 21-Jul-11 | 39 | 5.7 | 32 | <2.0 |          |        |         |                 | 61               |                |        |                                   |     |                   |       |                      |         |         | TestAmerica |
| HRES-08 |                 | RESE-1003149       | 21-Jul-11 | 40 | 6.0 | 31 | 2.0  | 17       |        | 195.2   | 9.6             | 60               | <0.50          | < 0.40 | 0.33                              | 260 |                   |       |                      | 7.36    | 370     | TestAmerica |
| HRES-09 |                 | RESE-1003182       | 29-Dec-10 |    |     |    |      |          |        |         |                 |                  |                |        |                                   |     | 26.3              | 7.24  | 498.3                |         |         |             |
| HRES-09 |                 | RESE-1003182       | 29-Dec-10 | 64 | 10  | 48 | <2.0 |          |        |         |                 | 63               |                |        |                                   |     |                   |       |                      |         |         | TestAmerica |
| HRES-09 |                 | RESE-1003182       | 29-Dec-10 | 62 | 9.9 | 48 | <2.0 | 11       |        | 305     | 6.2             | 63               | < 0.50         | < 0.40 | <2.0                              | 470 |                   |       |                      | 7.75    | 480     | TestAmerica |
| HRES-09 |                 | RESE-1003133       | 12-Jun-11 |    |     |    |      |          |        |         |                 |                  |                |        |                                   |     | 26.6              | 7.44  | 470.5                |         |         |             |
| HRES-09 |                 | RESE-1003133       | 12-Jun-11 | 53 | 8.5 | 41 | <2.0 |          |        |         |                 | 62               |                |        |                                   |     |                   |       |                      |         |         | TestAmerica |
| HRES-09 |                 | RESE-1003133       | 12-Jun-11 | 52 | 8.4 | 41 | <2.0 | 8.6      |        | 280.6   | 5.5             | 60               | <1.0           | < 0.40 | <2.0                              | 410 |                   |       |                      | 7.91    | 460     | TestAmerica |
| HRES-09 |                 | RESE-1003136       | 21-Jun-11 |    |     |    |      |          |        |         |                 |                  |                |        |                                   |     | 26.7              | 7.07  | 363.5                |         |         |             |
| HRES-09 |                 | RESE-1003136       | 21-Jun-11 | 42 | 6.5 | 33 | <2.0 |          |        |         |                 | 66               |                |        |                                   |     |                   |       |                      |         |         | TestAmerica |
| HRES-09 |                 | RESE-1003136       | 21-Jun-11 | 40 | 6.2 | 33 | <2.0 | 6.4      |        | 219.6   | 4.9             | 70               | <0.50          | < 0.40 |                                   | 290 |                   |       |                      | 7.67    | 360     | TestAmerica |
| HRES-09 |                 | RESE-1003137       | 28-Jun-11 |    |     |    |      |          |        |         |                 |                  |                |        |                                   |     | 26.8              | 7.14  | 350.1                |         |         |             |
| HRES-09 |                 | RESE-1003137       | 28-Jun-11 | 39 | 6.1 | 32 | <2.0 |          |        |         |                 | 65               |                |        |                                   |     |                   |       |                      |         |         | TestAmerica |
| HRES-09 |                 | RESE-1003137       | 28-Jun-11 | 39 | 6.2 | 31 | <2.0 | 5.9      |        | 207.4   | 4.4             | 66               | <0.50          | < 0.40 | 0.22                              | 280 |                   |       |                      | 7.81    | 340     | TestAmerica |
| HRES-09 |                 | RESE-1003143       | 04-Jul-11 |    |     |    |      |          |        |         |                 |                  |                |        |                                   |     | 26.9              | 7.04  | 337.9                |         |         |             |
| HRES-09 |                 | RESE-1003143       | 04-Jul-11 | 38 | 5.9 | 31 | <2.0 |          |        |         |                 | 66               |                |        |                                   |     |                   |       |                      |         |         | TestAmerica |
| HRES-09 |                 | RESE-1003143       | 04-Jul-11 | 39 | 6.2 | 31 | <2.0 | 5.8      |        | 207.4   | 4.3             | 67               | <0.50          | < 0.40 | 0.26                              | 280 |                   |       |                      | 7.49    | 330     | TestAmerica |
| HRES-10 |                 | RESE-1003175       | 24-Sep-10 |    |     |    |      |          |        |         |                 |                  |                |        |                                   |     | 19.9              | 6.97  | 736.2                |         |         |             |
| HRES-10 |                 | RESE-1003175       | 24-Sep-10 | 76 | 18  | 38 | <4.0 |          |        |         |                 | 38               |                |        |                                   |     |                   |       |                      |         |         | TestAmerica |
| HRES-10 |                 | RESE-1003175       | 24-Sep-10 | 88 | 19  | 42 | 2.1  | 19       |        | 231.8   | 160             | 36               | <0.50          | <0.40  | 0.60                              | 500 |                   |       |                      | 7.12    | 740     | TestAmerica |



| SAMPLE LOCATION            | SAMPLE IDENTIFIER/  | SAMPLE    |      |     |      |      | СО     | MMON            | CONSTIT  | UENTS           | <sup>a</sup> (mg/L) | ) <sup>b</sup> |        |                                          |     |                           | RO    | UTINE PARA                 | METERS |               | ANALYTICAL  |
|----------------------------|---------------------|-----------|------|-----|------|------|--------|-----------------|----------|-----------------|---------------------|----------------|--------|------------------------------------------|-----|---------------------------|-------|----------------------------|--------|---------------|-------------|
|                            | DESCRIPTION         | DATE      |      |     |      |      |        |                 |          |                 |                     |                |        |                                          |     |                           | FIELI | D                          | LABO   | RATORY        | LABORATORY  |
|                            |                     |           | Ca   | Mg  | Na   | К    | Cl     | CO <sub>3</sub> | HCO₃     | SO <sub>4</sub> | SiO <sub>2</sub>    | Br             | F      | NO <sub>3</sub> + NO <sub>2</sub> (as N) | TDS | TEMP<br>(°C) <sup>c</sup> | рН    | SC<br>(μS/cm) <sup>d</sup> | рН     | SC<br>(μS/cm) |             |
|                            |                     |           |      | 1   |      |      | Apache | Leap            | Tuff Aq  | uifer           | 1                   |                |        | , ,                                      |     | , , ,                     |       | ,                          |        | 1 1 7 7       |             |
| HRES-11                    | RESE-1003174        | 23-Sep-10 |      | _   |      |      | _      |                 |          |                 |                     |                |        |                                          |     | 27.5                      | 7.28  | 274.6                      |        |               |             |
| HRES-11                    | RESE-1003174        | 23-Sep-10 | 28   | 4.8 | 20   | <4.0 |        |                 |          |                 | 68                  |                |        |                                          |     |                           |       |                            |        |               | TestAmerica |
| HRES-11                    | RESE-1003174        | 23-Sep-10 | 29   | 5.1 | 21   | <2.0 | 5.4    |                 | 146.4    | 4.4             | 68                  | <0.50          | < 0.40 | 0.46                                     | 200 |                           |       |                            | 7.44   | 260           | TestAmerica |
| HRES-12                    | RESE-1003144        | 10-Jul-11 |      |     |      |      |        |                 |          |                 |                     |                |        |                                          |     | 24.8                      | 7.35  | 542.5                      |        |               |             |
| HRES-12                    | RESE-1003144        | 10-Jul-11 | 66   | 12  | 39   | <2.0 |        |                 |          |                 | 48                  |                |        |                                          |     |                           |       |                            |        |               | TestAmerica |
| HRES-12                    | RESE-1003144        | 10-Jul-11 | 61   | 11  | 38   | <2.0 | 12     |                 | 268.4    | 33              | 48                  | < 0.50         | 0.47   | <2.0                                     | 320 |                           |       |                            | 7.66   | 510           | TestAmerica |
| HRES-13                    | RESE-1003130        | 03-Jun-11 |      |     |      |      |        |                 |          |                 |                     |                |        |                                          |     | 24.4                      | 7.12  | 448.4                      |        |               |             |
| HRES-13                    | RESE-1003130        | 03-Jun-11 | 56   | 10  | 22   | <2.0 |        |                 |          |                 | 69                  |                |        |                                          |     |                           |       |                            |        |               | TestAmerica |
| HRES-13                    | RESE-1003130        | 03-Jun-11 | 53   | 9.7 | 20   | <2.0 | 11     |                 | 256.2    | 8.9             | 64                  | <0.50          | < 0.40 | 0.83                                     | 300 |                           |       |                            | 7.38   | 430           | TestAmerica |
| HRES-14                    | RESE-1003147        | 15-Jul-11 |      |     |      |      |        |                 |          |                 |                     |                |        |                                          |     | 26.5                      | 7.15  | 280.6                      |        |               |             |
| HRES-14                    | RESE-1003147        | 15-Jul-11 | 29   | 5.5 | 26   | <2.0 |        |                 |          |                 | 71                  |                |        |                                          |     |                           |       |                            |        |               | TestAmerica |
| HRES-14                    | RESE-1003147        | 15-Jul-11 | 28   | 5.5 | 23   | 5.8  | 7.4    |                 | 158.6    | 5.6             | 70                  | <0.50          | 0.43   | 0.38                                     | 220 |                           |       |                            | 7.47   | 270           | TestAmerica |
| JI Ranch House Well        | RESE-1000303        | 21-Jun-07 |      |     |      |      |        |                 |          |                 |                     |                |        |                                          |     | 22.8                      | 6.80  | 232                        |        |               |             |
| JI Ranch House Well        | RESE-1000303        | 21-Jun-07 | 26   | 3.8 | 17   | 2.0  |        |                 |          |                 |                     |                |        |                                          |     |                           |       |                            |        |               | TestAmerica |
| JI Ranch House Well        | RESE-1000303        | 21-Jun-07 |      |     |      |      | 7.3    |                 | 122      | 7.3             |                     | <0.50          | 0.27   | 1.1                                      | 190 |                           |       |                            |        |               | TestAmerica |
| MJ-11                      | RESE-1000257        | 29-Sep-07 |      |     |      |      |        |                 |          |                 |                     |                |        |                                          |     | 23.7                      | 7.09  | 248.7                      |        |               |             |
| MJ-11                      | RESE-1000257        | 29-Sep-07 | 27   | 4.6 | 22   | 0.97 |        |                 |          |                 | 71                  |                |        |                                          |     |                           |       |                            |        |               | TestAmerica |
| MJ-11                      | RESE-1000257        | 29-Sep-07 |      |     |      |      | 4.4    |                 | 158.6    | 3.4             |                     | <0.50          | 0.34   | 0.41                                     | 190 |                           |       |                            |        |               | TestAmerica |
| MJ-11                      | RESE-1000261        | 20-Feb-08 |      |     |      |      |        |                 |          |                 |                     |                |        |                                          |     | 22.0                      | 7.14  | 256                        |        |               |             |
| MJ-11                      | RESE-1000261        | 20-Feb-08 | 25   | 4.6 | 24   | 1.2  |        |                 |          |                 | 71                  |                |        |                                          |     |                           |       |                            |        |               | TestAmerica |
| MJ-11                      | RESE-1000261        | 20-Feb-08 |      |     |      |      | 4.3    |                 | 146.4    | 3.0             |                     | <0.50          | 0.38   | 0.43                                     | 230 |                           |       |                            |        |               | TestAmerica |
| MJ-11                      | RESE-1003007        | 02-Jun-08 |      |     |      |      |        |                 |          |                 |                     |                |        |                                          |     | 23.3                      | 7.17  | 247.9                      |        |               |             |
| MJ-11                      | RESE-1003007        | 02-Jun-08 | 26   | 4.6 | 22   | <2.0 |        |                 |          |                 | 71                  |                |        |                                          |     |                           |       |                            |        |               | TestAmerica |
| MJ-11                      | RESE-1003007        | 02-Jun-08 |      |     |      |      | 4.3    |                 | 134.2    | 3.2             |                     | <0.50          | <0.40  | 0.46                                     | 220 |                           |       |                            | 7.39   | 250           | TestAmerica |
| MJ-11                      | RESE-1003015        | 26-Aug-08 |      |     |      |      |        |                 |          |                 |                     |                |        |                                          |     | 23.9                      | 7.08  | 251                        |        |               |             |
| MJ-11                      | RESE-1003015        | 26-Aug-08 | 27   | 4.8 | 23   | <2.0 |        |                 |          |                 | 75                  |                |        |                                          |     |                           |       |                            |        |               | TestAmerica |
| MJ-11                      | RESE-1003015        | 26-Aug-08 |      |     |      |      | 4.3    |                 | 108.6    | 3.0             |                     | <0.50          | <0.40  | 0.46                                     | 190 |                           |       |                            | 7.40   | 270           | TestAmerica |
| Oak Flat Well              | RESE-1001301        | 16-Aug-06 |      |     |      |      |        |                 |          |                 |                     |                |        |                                          |     | 23.0                      |       |                            |        |               |             |
| Oak Flat Well              | RESE-1001301        | 16-Aug-06 | 25   | 3.9 | 31   | 5.3  |        |                 |          |                 | 88                  |                |        |                                          |     |                           |       |                            |        |               | TestAmerica |
| Oak Flat Well              | RESE-1001301        | 16-Aug-06 |      |     |      |      | 14     | 14.4            | 112.2    | 6.8             |                     |                | 0.36   | 1.3                                      | 240 |                           |       |                            | 8.86   | 270           | TestAmerica |
| UA - Deep Slanted Borehole | UA - DSB Jun93      | 11-Jun-93 | 20.7 | 3.8 | 22.5 | 0.9  | 4.4    |                 | 122.6    | 1.9             | 51.8                | <0.25          | <0.25  |                                          | 229 | 23                        | 7.2   |                            |        |               |             |
| UA - Deep Slanted Borehole | UA - DSB Jul93      | 08-Jul-93 | 20.6 | 3.8 | 22.1 | 0.9  | 4.0    |                 | 121.7    | 1.9             | 54.8                | <0.25          | <0.25  |                                          | 231 | 23                        | 7.4   |                            |        |               |             |
| UA - Deep Slanted Borehole | UA - DSB (51 700 I) | 02-Nov-93 | 19.3 | 3.5 | 21.0 | 0.9  | 4.1    |                 | 118.3    | 1.9             | 52.4                | <0.25          | <0.25  |                                          | 223 | 22.4                      | 7.44  |                            |        |               |             |
|                            |                     |           |      |     |      | D    | eep Gr | oundv           | vater Sy | stem            |                     |                |        |                                          |     |                           |       |                            |        |               |             |
| DHRES-01                   | RESE-112808         | 28-Nov-08 |      |     |      |      |        |                 |          |                 |                     |                |        |                                          |     | 68.7                      | 7.20  | 865                        |        |               |             |
| DHRES-01                   | RESE-112808         | 28-Nov-08 | 32   | 2.8 | 130  | 18   |        |                 |          |                 | 44                  |                |        |                                          |     |                           |       |                            |        |               | TestAmerica |
| DHRES-01                   | RESE-112808         | 28-Nov-08 | 32   | 2.8 | 130  | 18   | 20     | -               | 280.6    | 160             | 45                  | <0.50          | 3.2    |                                          | 500 |                           |       |                            | 7.91   | 810           | TestAmerica |



| SAMPLE LOCATION | SAMPLE IDENTIFIER/ | SAMPLE    |      |       |     |      | COI    | MMON  | CONSTIT | UENTS           | a (mg/L)         | b      |       |                                          |      |                           | RO    | UTINE PARA                 | METERS | 3             | ANALYTICAL  |
|-----------------|--------------------|-----------|------|-------|-----|------|--------|-------|---------|-----------------|------------------|--------|-------|------------------------------------------|------|---------------------------|-------|----------------------------|--------|---------------|-------------|
|                 | DESCRIPTION        | DATE      |      |       |     |      |        |       |         |                 |                  |        |       |                                          |      |                           | FIELD |                            | LABO   | RATORY        | LABORATORY  |
|                 |                    |           | Ca   | Mg    | Na  | K    | Cl     | CO₃   | HCO₃    | SO <sub>4</sub> | SiO <sub>2</sub> | Br     | F     | NO <sub>3</sub> + NO <sub>2</sub> (as N) | TDS  | TEMP<br>(°C) <sup>c</sup> | рН    | SC<br>(μS/cm) <sup>d</sup> | рН     | SC<br>(μS/cm) |             |
|                 | <u>.</u>           |           |      |       |     | D    | eep Gr | oundw | ater Sy | stem            |                  |        |       |                                          |      |                           |       |                            |        |               |             |
| DHRES-02        | RESE-1003150       | 20-Jul-11 |      |       |     |      |        |       |         |                 |                  |        |       |                                          |      | 59.1                      | 6.59  | 3167                       |        |               | -           |
| DHRES-02        | RESE-1003150       | 20-Jul-11 | 240  | 7.7   | 150 | 36   |        |       |         |                 | 41               |        |       |                                          |      |                           |       |                            |        |               | TestAmerica |
| DHRES-02        | RESE-1003150       | 20-Jul-11 | 250  | 8.7   | 160 | 38   | 21     |       | 219.6   | 810             | 46               | <0.50  | 4.0   |                                          | 1400 |                           |       |                            | 7.09   | 1800          | TestAmerica |
| DHRES-02 DUP    | RESE-1003201       | 20-Jul-11 |      |       |     |      |        |       |         |                 |                  |        |       |                                          |      | 58.7                      | 6.82  | 3155                       |        |               |             |
| DHRES-02 DUP    | RESE-1003201       | 20-Jul-11 | 250  | 8.9   | 160 | 39   |        |       |         |                 | 46               |        |       |                                          |      |                           |       |                            |        |               | TestAmerica |
| DHRES-02 DUP    | RESE-1003201       | 20-Jul-11 | 250  | 8.5   | 160 | 38   | 21     |       | 219.6   | 820             | 45               | <0.50  | 3.9   |                                          | 1400 |                           |       |                            | 7.04   | 1800          | TestAmerica |
| DHRES-02        | RESE-1003216       | 21-Oct-11 |      |       |     |      |        |       |         |                 |                  |        |       |                                          |      | 42.4                      | 7.50  | 2081                       |        |               |             |
| DHRES-02        | RESE-1003218       | 22-Oct-11 |      |       |     |      |        |       |         |                 |                  |        |       |                                          |      | 61.88                     | 7.02  | 1922                       |        |               |             |
| DHRES-02        | RESE-1003218       | 22-Oct-11 | 240  | 8.4   | 140 | 35   |        |       |         |                 | 40               |        |       |                                          |      |                           |       |                            |        |               | TestAmerica |
| DHRES-02        | RESE-1003218       | 22-Oct-11 | 240  | 8.6   | 150 | 37   | 21     | -     | 207.4   | 840             | 42               | <0.50  | 4.1   | <2.0                                     | 1400 |                           |       |                            | 7.00   | 1800          | TestAmerica |
| DHRES-02        | RESE-1003217       | 22-Oct-11 |      |       |     |      |        |       |         |                 |                  |        |       |                                          |      | 43.9                      | 7.39  | 2131                       |        |               |             |
| DHRES-02        | RESE-1003219       | 23-Oct-11 |      |       |     |      |        |       |         |                 |                  |        |       |                                          |      | 45.4                      | 7.42  | 2256                       |        |               | -           |
| DHRES-02        | RESE-1003220       | 24-Oct-11 |      |       |     |      |        |       |         |                 |                  |        |       |                                          |      | 41.9                      | 7.15  | 2485                       |        |               |             |
| DHRES-02        | RESE-1003222       | 25-Oct-11 |      |       |     |      |        |       |         |                 |                  |        |       |                                          |      | 62.72                     | 7.03  | 4196                       |        |               |             |
| DHRES-02        | RESE-1003222       | 25-Oct-11 | 230  | 8.3   | 130 | 33   |        |       |         |                 | 41               |        |       |                                          |      |                           |       |                            |        |               | TestAmerica |
| DHRES-02        | RESE-1003222       | 25-Oct-11 | 240  | 8.5   | 140 | 36   | 21     |       | 195.2   | 840             | 41               | <0.50  | 4.1   |                                          | 1400 |                           |       |                            | 7.50   | 1700          | TestAmerica |
| DHRES-02        | RESE-1003221       | 25-Oct-11 |      |       |     |      |        |       |         |                 |                  |        |       |                                          |      | 39.1                      | 7.13  | 2721                       |        |               |             |
| DHRES-02        | RESE-1003223       | 26-Oct-11 |      |       |     |      |        |       |         |                 |                  |        |       |                                          |      | 44.4                      | 7.30  | 2779                       |        |               |             |
| DHRES-02        | RESE-1003226       | 27-Oct-11 |      |       |     |      |        |       |         |                 |                  |        |       |                                          |      | 42.7                      | 7.37  | 2668                       |        |               |             |
| DHRES-02        | RESE-1003227       | 27-Oct-11 |      |       |     |      |        |       |         |                 |                  |        |       |                                          |      | 48.01                     | 7.16  | 2256                       |        |               |             |
| DHRES-02        | RESE-1003227       | 27-Oct-11 | 190  | 6.9   | 140 | 38   |        |       |         |                 | 26               |        |       |                                          |      |                           |       |                            |        |               | TestAmerica |
| DHRES-02        | RESE-1003227       | 27-Oct-11 | 270  | 8.9   | 150 | 39   | 20     |       | 183     | 740             | 87               | <0.50  | 3.9   | <2.0                                     | 1200 |                           |       |                            | 7.13   | 1700          | TestAmerica |
| DHRES-02        | RESE-1003230       | 28-Oct-11 |      |       |     |      |        |       |         |                 |                  |        |       |                                          |      | 29.6                      | 7.70  | 2565                       |        |               |             |
| DHRES-04        | RESE-1000291       | 21-Dec-09 |      |       |     |      |        |       |         |                 |                  |        |       |                                          |      | 33.9                      | 9.75  | 370.5                      |        |               |             |
| DHRES-04        | RESE-1000291       | 21-Dec-09 | <2.0 | <0.25 | 87  | <2.0 |        |       |         |                 | 32               |        |       |                                          |      |                           |       |                            |        |               | TestAmerica |
| DHRES-04        | RESE-1000291       | 21-Dec-09 |      |       |     |      | 12     | 39    | 58.6    | 39              |                  | <0.50  | 1.5   |                                          | 92   |                           |       |                            | 9.38   | 360           | TestAmerica |
| DHRES-06 DUP    | RESE-1003184       | 09-Jan-11 |      |       |     |      |        |       |         |                 |                  |        |       |                                          |      | 37.7                      | 7.36  | 599.1                      |        |               |             |
| DHRES-06 DUP    | RESE-1003184       | 09-Jan-11 | 51   | 29    | 46  | 4.3  |        |       |         |                 | 21               |        |       |                                          |      |                           |       |                            |        |               | TestAmerica |
| DHRES-06 DUP    | RESE-1003184       | 09-Jan-11 | 53   | 29    | 49  | 4.7  | 5.8    | -     | 390.4   | 14              | 20               | <0.50  | 0.57  | <2.0                                     | 450  |                           |       |                            | 7.37   | 580           | TestAmerica |
| DHRES-06        | RESE-1003186       | 09-Jan-11 |      |       |     |      |        |       |         |                 |                  |        |       |                                          |      | 37.7                      | 7.36  | 599.1                      |        |               | ·           |
| DHRES-06        | RESE-1003186       | 09-Jan-11 | 51   | 29    | 46  | 4.3  |        |       |         |                 | 20               |        |       |                                          |      |                           |       |                            |        |               | TestAmerica |
| DHRES-06        | RESE-1003186       | 09-Jan-11 | 53   | 29    | 48  | 4.6  | 5.8    |       | 390.4   | 14              | 20               | <0.50  | 0.57  | <2.0                                     | 440  |                           |       |                            | 7.38   | 570           | TestAmerica |
| DHRES-09        | RESE-1003206       | 02-Sep-11 |      |       |     |      |        |       |         |                 |                  |        |       |                                          |      | 29.1                      | 7.34  | 954.2                      |        |               |             |
| DHRES-09        | RESE-1003206       | 02-Sep-11 | 120  | 40    | 34  | 3.7  |        |       |         |                 | 20               |        |       |                                          |      |                           |       |                            |        |               | TestAmerica |
| DHRES-09        | RESE-1003206       | 02-Sep-11 | 110  | 43    | 33  | 3.8  | 25     |       | 329.4   | 240             | 20               | <0.50  | <0.40 | 1.1                                      | 650  |                           |       |                            | 7.70   | 920           | TestAmerica |
| DHRES-10        | RESE-1003105       | 28-Nov-10 |      |       |     |      |        |       |         |                 |                  |        |       |                                          |      | 34.9                      | 8.12  | 4644                       |        |               |             |
| DHRES-10        | RESE-1003105       | 28-Nov-10 | 530  | 440   | 220 | 54   |        |       |         |                 | 51               |        |       |                                          |      |                           |       |                            |        |               | TestAmerica |
| DHRES-10        | RESE-1003105       | 28-Nov-10 | 480  | 350   | 220 | 54   | 41     |       | 341.6   | 3200            | 77               | < 0.50 | 1.8   | <2.0                                     | 5100 |                           |       |                            | 8.22   | 4300          | TestAmerica |



| SAMPLE LOCATION                                | SAMPLE IDENTIFIER/           | SAMPLE                 |                  |      |     |        | COI    | MMON  | CONSTIT  | UENTS           | a (mg/L)         | ) <sup>b</sup> |       |                                   |      |                   | RO   | UTINE PARA           | METERS | 3        | ANALYTICAL              |
|------------------------------------------------|------------------------------|------------------------|------------------|------|-----|--------|--------|-------|----------|-----------------|------------------|----------------|-------|-----------------------------------|------|-------------------|------|----------------------|--------|----------|-------------------------|
|                                                | DESCRIPTION                  | DATE                   |                  |      |     |        |        |       |          |                 |                  |                |       |                                   |      |                   | FIEL | D                    | LABO   | RATORY   | LABORATORY              |
|                                                |                              |                        | Ca               | Mg   | Na  | K      | Cl     | CO₃   | HCO₃     | SO <sub>4</sub> | SiO <sub>2</sub> | Br             | F     | NO <sub>3</sub> + NO <sub>2</sub> | TDS  | TEMP              | рН   | SC                   | рН     | SC       |                         |
|                                                |                              |                        |                  |      |     |        |        |       |          |                 |                  |                |       | (as N)                            |      | (°C) <sup>c</sup> |      | (µS/cm) <sup>d</sup> |        | (μS/cm)  |                         |
|                                                | <u>.</u>                     |                        |                  |      |     | D      | eep Gr | oundw | vater Sy | stem            |                  | •              |       |                                   |      |                   |      |                      |        |          |                         |
| DHRES-11                                       | RESE-1003131                 | 29-Jun-11              |                  |      |     |        |        |       |          |                 |                  |                |       |                                   |      | 39.5              | 7.16 | 366.3                |        |          |                         |
| DHRES-11                                       | RESE-1003131                 | 29-Jun-11              | 32               | 16   | 23  | 4.7    |        |       |          |                 | 31               |                |       |                                   |      |                   |      |                      |        |          | TestAmerica             |
| DHRES-11                                       | RESE-1003131                 | 29-Jun-11              | 31               | 15   | 22  | 4.4    | 6.0    |       | 207.4    | 8.0             | 31               | <0.50          | 1.1   | 1.0                               | 210  |                   |      |                      | 7.80   | 350      | TestAmerica             |
| DHRES-13                                       | RESE-1003138                 | 28-Jun-11              |                  |      |     |        |        |       |          |                 |                  |                |       |                                   |      | 34.8              | 7.36 | 745                  |        |          |                         |
| DHRES-13                                       | RESE-1003138                 | 28-Jun-11              | 56               | 29   | 29  | 5.1    |        |       |          |                 | 21               |                |       |                                   |      |                   |      |                      |        |          | TestAmerica             |
| DHRES-13                                       | RESE-1003138                 | 28-Jun-11              | 57               | 30   | 29  | 5.3    | 17     |       | 341.6    | 13              | 22               | <0.50          | <0.40 | 1.4                               | 350  |                   |      |                      | 7.67   | 570      | TestAmerica             |
| RES-09                                         | RES009-1681-2064.28          | 09-Oct-06              |                  |      |     |        |        |       |          |                 |                  |                |       |                                   | 760  |                   |      |                      |        |          | SVL                     |
| RES-09                                         | RES009-1681-2064.28          | 09-Oct-06              | 72.1             | 6.00 | 149 | 16.6   | 27.0   |       | 411      | 175             | 72.4             | <0.10          | 6.26  | <0.020                            | 859  |                   |      |                      |        |          | SVL                     |
|                                                |                              |                        |                  |      |     |        | Mi     | ne Wo | rkings   |                 |                  |                |       |                                   |      |                   |      |                      |        |          | -                       |
| Chaff No. O Discharge                          | DECE 4000070                 | 22 4 22                |                  |      |     |        |        | 110   | . Kings  |                 |                  |                |       |                                   |      | 40.0              | E 05 | E607                 |        |          |                         |
| Shaft No. 9 Discharge                          | RESE-1000278                 | 22-Apr-09              | 400              | 400  | 160 | <br>E4 |        |       |          |                 |                  |                |       |                                   |      | 40.0              | 5.95 | 5627                 |        |          | TootA                   |
| Shaft No. 9 Discharge<br>Shaft No. 9 Discharge | RESE-1000278<br>RESE-1000278 | 22-Apr-09<br>22-Apr-09 | 490              | 490  | 160 | 54     | 24     |       | 317.2    | 4100            | 60               | <0.50          | 1.7   |                                   | 6200 |                   |      |                      | 6.49   | <br>5100 | TestAmerica TestAmerica |
| Shaft No. 9 Discharge Shaft No. 9 Discharge    | RESE-1000276                 | 24-Nov-09              |                  |      |     |        |        |       |          | 4100            |                  | <0.50          |       |                                   |      | 41.9              | 6.18 | 4721                 |        |          | restamenta              |
| Shaft No. 9 Discharge                          | RESE-1000288                 | 24-Nov-09<br>24-Nov-09 | 540              | 440  | 150 | 51     |        |       |          |                 | 61               |                |       |                                   |      | 41.9              | 0.10 | 4721                 |        |          | TestAmerica             |
| Shaft No. 9 Discharge Shaft No. 9 Discharge    | RESE-1000288                 | 24-Nov-09<br>24-Nov-09 | 5 <del>4</del> 0 | 440  | 150 |        | 23     |       | 402.6    | 3300            |                  | <0.50          | 2.0   |                                   | 5200 |                   |      |                      | 6.30   | 4500     | TestAmerica             |
|                                                |                              |                        |                  |      |     |        | 23     |       | 402.0    | 3300            |                  | <0.50          | 2.0   |                                   |      | 42.0              | 6.41 | 4153                 | 0.30   | 4500     | restAmenca              |
| Shaft No. 9 Discharge<br>Shaft No. 9 Discharge | RESE-1003157<br>RESE-1003157 | 25-Jun-10<br>25-Jun-10 | 540              | 370  | 120 | 43     |        |       |          |                 | 60               |                |       |                                   |      | 42.0              | 0.41 | 4100                 |        |          | TestAmerica             |
| Shaft No. 9 Discharge Shaft No. 9 Discharge    | RESE-1003157                 | 25-Jun-10<br>25-Jun-10 | 540              | 350  | 120 | 43     | 20     |       | 414.8    | 2800            | 54               | <0.50          | 1.9   |                                   | 4500 |                   |      |                      | 6.30   | 4100     | TestAmerica             |
| Shaft No. 9 Discharge                          | RESE-1003169                 | 29-Jul-10              | 340              | 330  | 120 | 45     |        |       | 414.0    | 2000            |                  | <b>\0.50</b>   | 1.9   |                                   | 4000 | 45.3              | 6.13 | 4050                 | 0.30   | 4100     | TestAmenca              |
| Shaft No. 9 Discharge Shaft No. 9 Discharge    | RESE-1003169                 | 29-Jul-10<br>29-Jul-10 | 430              | 290  | 100 | 36     |        |       |          |                 | 49               |                |       |                                   |      | 40.0              | 0.13 | 4000                 |        |          | TestAmerica             |
| Shaft No. 9 Discharge                          | RESE-1003169                 | 29-Jul-10              | 540              | 350  | 120 | 43     | 20     |       | 390.4    | 2800            | 55               | <0.50          | 1.9   |                                   | 4300 |                   |      |                      | 6.34   | 4100     | TestAmerica             |
| Shaft No. 9 Discharge                          | RESE-1003160                 | 16-Aug-10              |                  |      |     |        |        |       | 330.4    | 2000            |                  | <b>\0.50</b>   | 1.9   |                                   | 4000 | 44.6              | 6.06 | 4123                 | 0.04   |          | restAmenda              |
| Shaft No. 9 Discharge                          | RESE-1003171                 | 30-Aug-10              |                  |      |     |        |        |       |          |                 |                  |                |       |                                   |      | 44.7              | 6.14 | 4066                 |        |          |                         |
| Shaft No. 9 Discharge                          | RESE-1003171                 | 30-Aug-10              | 490              | 350  | 120 | 44     |        |       |          |                 | 62               |                |       |                                   |      |                   |      |                      |        |          | TestAmerica             |
| Shaft No. 9 Discharge                          | RESE-1003171                 | 30-Aug-10              |                  |      |     |        | 20     |       | 353.8    | 3000            |                  | <0.50          | 1.8   |                                   | 4900 |                   |      |                      | 6.19   | 4000     | TestAmerica             |
| Shaft No. 9 Discharge                          | RESE-1003162                 | 14-Sep-10              |                  |      |     |        |        |       |          |                 |                  |                |       |                                   |      | 45.2              | 5.94 | 4244                 |        |          | 1000 111101100          |
| Shaft No. 9 Discharge                          | RESE-1003162                 | 14-Sep-10              | 530              | 400  | 130 | 47     |        |       |          |                 | 62               |                |       |                                   |      |                   |      |                      |        |          | TestAmerica             |
| Shaft No. 9 Discharge                          | RESE-1003162                 | 14-Sep-10              |                  |      |     |        | 21     |       | 317.2    | 3100            |                  | <0.50          | 2.0   |                                   | 4800 |                   |      |                      | 6.17   | 4500     | TestAmerica             |
| Shaft No. 9 Discharge                          | RESE-1003177                 | 27-Sep-10              |                  |      |     |        |        |       |          |                 |                  |                |       |                                   |      | 45.7              | 6.12 | 4407                 |        |          |                         |
| Shaft No. 9 Discharge                          | RESE-1003177                 | 27-Sep-10              | 510              | 380  | 120 | 44     |        |       |          |                 | 63               |                |       |                                   |      |                   |      |                      |        |          | TestAmerica             |
| Shaft No. 9 Discharge                          | RESE-1003177                 | 27-Sep-10              |                  |      |     |        | 22     |       | 366      | 3100            |                  | <0.50          | 1.9   |                                   | 4800 |                   |      |                      | 6.37   | 4400     | TestAmerica             |
| Shaft No. 9 Discharge                          | RESE-1003179                 | 11-Oct-10              |                  |      |     |        |        |       |          |                 |                  |                |       |                                   |      | 45.5              | 6.08 | 4381                 |        |          |                         |
| Shaft No. 9 Discharge                          | RESE-1003179                 | 11-Oct-10              | 510              | 370  | 130 | 45     |        |       |          |                 | 59               |                |       |                                   |      |                   |      |                      |        |          | TestAmerica             |
| Shaft No. 9 Discharge                          | RESE-1003179                 | 11-Oct-10              | 510              | 380  | 130 | 46     | 20     |       | 353.8    | 3000            |                  | <0.50          | 1.7   |                                   | 4800 |                   |      |                      | 6.27   | 4200     | TestAmerica             |
| Shaft No. 9 Discharge                          | RESE-1003180                 | 25-Oct-10              |                  |      |     |        |        |       |          |                 |                  |                |       |                                   |      | 45.4              | 6.07 | 418.3                |        |          |                         |
| Shaft No. 9 Discharge                          | RESE-1003180                 | 25-Oct-10              | 500              | 340  | 130 | 45     |        |       |          |                 | 61               |                |       |                                   |      |                   |      |                      |        |          | TestAmerica             |
| Shaft No. 9 Discharge                          | RESE-1003180                 | 25-Oct-10              |                  |      |     |        | 21     |       | 378.2    | 2900            |                  | <0.50          | 1.9   | <2.0                              | 4600 |                   |      |                      | 6.29   | 4300     | TestAmerica             |



| SAMPLE LOCATION           | SAMPLE IDENTIFIER/ | SAMPLE    |     |     |     |    | CO | MMON            | CONSTI | UENTS           | a (mg/L)         | ) <sup>b</sup> |     |                                   |      |                   | RO   | UTINE PARA           | METERS |         | ANALYTICAL  |
|---------------------------|--------------------|-----------|-----|-----|-----|----|----|-----------------|--------|-----------------|------------------|----------------|-----|-----------------------------------|------|-------------------|------|----------------------|--------|---------|-------------|
|                           | DESCRIPTION        | DATE      |     |     |     |    |    |                 |        |                 |                  |                |     |                                   |      |                   | FIEL | D                    | LABO   | RATORY  | LABORATORY  |
|                           |                    |           | Ca  | Mg  | Na  | K  | Cl | CO <sub>3</sub> | HCO₃   | SO <sub>4</sub> | SiO <sub>2</sub> | Br             | F   | NO <sub>3</sub> + NO <sub>2</sub> | TDS  | TEMP              | рН   | SC                   | рН     | SC      |             |
|                           |                    |           |     |     |     |    |    |                 |        |                 |                  |                |     | (as N)                            |      | (°C) <sup>c</sup> |      | (μS/cm) <sup>d</sup> |        | (μS/cm) |             |
|                           |                    |           |     |     |     |    | M  | ine Wo          | rkings |                 |                  |                |     |                                   |      |                   |      |                      |        |         |             |
| Shaft No. 9 Discharge     | RESE-1003181       | 09-Nov-10 |     |     |     |    |    |                 |        |                 |                  |                |     |                                   |      | 42.7              | 6.09 | 413.9                |        |         |             |
| Shaft No. 9 Discharge     | RESE-1003181       | 09-Nov-10 | 530 | 350 | 130 | 46 |    |                 |        |                 | 62               |                |     |                                   |      |                   |      |                      |        |         | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003181       | 09-Nov-10 |     |     |     |    | 21 |                 | 378.2  | 2900            |                  | <0.50          | 2.0 | <2.0                              | 4700 |                   |      |                      | 6.58   | 4100    | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003106       | 12-Jan-11 |     |     |     |    |    |                 |        |                 |                  |                |     |                                   |      | 46.6              | 6.33 | 4147                 |        |         |             |
| Shaft No. 9 Discharge     | RESE-1003106       | 12-Jan-11 | 510 | 340 | 140 | 45 |    |                 |        |                 | 60               |                |     |                                   |      |                   |      |                      |        |         | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003106       | 12-Jan-11 | 520 | 340 | 140 | 46 | 21 |                 | 353.8  | 2800            | 63               | <0.50          | 2.0 | <2.0                              | 4500 |                   |      |                      | 6.63   | 4100    | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003187       | 25-Jan-11 |     |     |     |    |    |                 |        |                 |                  |                |     |                                   |      | 47.8              | 6.19 | 4151                 |        |         |             |
| Shaft No. 9 Discharge     | RESE-1003187       | 25-Jan-11 | 510 | 340 | 130 | 45 |    |                 |        |                 | 64               |                |     |                                   |      |                   |      |                      |        |         | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003187       | 25-Jan-11 | 500 | 340 | 130 | 47 | 21 |                 | 366    | 2800            | 67               | <0.50          | 2.0 | <2.0                              | 4400 |                   |      |                      | 6.66   | 4100    | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003195       | 09-Feb-11 |     |     |     |    |    |                 |        |                 |                  |                |     |                                   |      | 47.3              | 6.15 | 4128                 |        |         |             |
| Shaft No. 9 Discharge     | RESE-1003195       | 09-Feb-11 | 530 | 370 | 140 | 49 |    |                 |        |                 | 67               |                |     |                                   |      |                   |      |                      |        |         | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003195       | 09-Feb-11 | 500 | 350 | 130 | 45 | 21 |                 | 378.2  | 2800            | 64               | < 0.50         | 1.9 |                                   | 4600 |                   |      |                      | 6.73   | 4100    | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003198       | 22-Feb-11 |     |     |     |    |    |                 |        |                 |                  |                |     |                                   |      | 47.2              | 6.34 | 4208                 |        |         |             |
| Shaft No. 9 Discharge     | RESE-1003198       | 22-Feb-11 | 520 | 360 | 130 | 48 |    |                 |        |                 | 68               |                |     |                                   |      |                   |      |                      |        |         | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003198       | 22-Feb-11 | 540 | 360 | 140 | 53 | 21 |                 | 378.2  | 2900            | 65               | < 0.50         | 2.1 | <2.0                              | 4400 |                   |      |                      | 6.69   | 4000    | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003115       | 08-Mar-11 |     |     |     |    |    |                 |        |                 |                  |                |     |                                   |      | 47.8              | 6.34 | 2421                 |        |         |             |
| Shaft No. 9 Discharge     | RESE-1003115       | 08-Mar-11 | 520 | 350 | 140 | 50 |    |                 |        |                 | 66               |                |     |                                   |      |                   |      |                      |        |         | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003115       | 08-Mar-11 | 480 | 340 | 140 | 46 | 21 |                 | 353.8  | 2800            | 66               | < 0.50         | 2.0 | <2.0                              | 4400 |                   |      |                      | 6.67   | 4200    | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003107       | 22-Mar-11 |     |     |     |    |    |                 |        |                 |                  |                |     |                                   |      | 47.9              | 6.15 | 4191                 |        |         |             |
| Shaft No. 9 Discharge     | RESE-1003107       | 22-Mar-11 | 480 | 340 | 140 | 48 |    |                 |        |                 | 62               |                |     |                                   |      |                   |      |                      |        |         | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003107       | 22-Mar-11 | 470 | 340 | 140 | 49 | 23 |                 | 341.6  | 2900            | 63               | < 0.50         | 2.0 |                                   | 4500 |                   |      |                      | 7.09   | 4200    | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003111       | 06-Apr-11 |     |     |     |    |    |                 |        |                 |                  |                |     |                                   |      | 47.5              | 6.19 | 4108                 |        |         |             |
| Shaft No. 9 Discharge     | RESE-1003111       | 06-Apr-11 | 520 | 340 | 150 | 49 |    |                 |        |                 | 64               |                |     |                                   |      |                   |      |                      |        |         | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003111       | 06-Apr-11 | 510 | 350 | 150 | 51 | 23 |                 | 353.8  | 2800            | 65               | <0.50          | 1.8 |                                   | 4300 |                   |      |                      | 7.22   | 4100    | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003200       | 19-Apr-11 |     |     |     |    |    |                 |        |                 |                  |                |     |                                   |      | 48.5              | 6.12 | 3977                 |        |         |             |
| Shaft No. 9 Discharge     | RESE-1003200       | 19-Apr-11 | 540 | 360 | 150 | 50 |    |                 |        |                 | 62               |                |     |                                   |      |                   |      |                      |        |         | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003200       | 19-Apr-11 | 500 | 330 | 150 | 47 | 25 |                 | 341.6  | 2700            | 66               | < 0.50         | 2.4 |                                   | 4400 |                   |      |                      | 7.13   | 4000    | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003123       | 02-May-11 |     |     |     |    |    |                 |        |                 |                  |                |     |                                   |      | 48.6              | 6.45 | 3696                 |        |         |             |
| Shaft No. 9 Discharge     | RESE-1003123       | 02-May-11 | 510 | 310 | 140 | 47 |    |                 |        |                 | 62               |                |     |                                   |      |                   |      |                      |        |         | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003123       | 02-May-11 | 510 | 350 | 150 | 50 | 24 |                 | 317.2  | 2700            | 63               | <0.50          | 2.3 |                                   | 4200 |                   |      |                      | 7.19   | 3900    | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003120       | 18-May-11 |     |     |     |    |    |                 |        |                 |                  |                |     |                                   |      | 42.7              | 6.25 | 4172                 |        |         |             |
| Shaft No. 9 Discharge     | RESE-1003120       | 18-May-11 | 510 | 340 | 160 | 55 |    |                 |        |                 | 69               |                |     |                                   |      |                   |      |                      |        |         | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003120       | 18-May-11 | 500 | 320 | 160 | 50 | 26 |                 | 341.6  | 2700            | 63               | <0.50          | 2.2 |                                   | 4200 |                   |      |                      | 7.13   | 4000    | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003127       | 01-Jun-11 |     |     |     |    |    |                 |        |                 |                  |                |     |                                   |      | 49.5              | 6.24 | 3689                 |        |         |             |
| Shaft No. 9 Discharge     | RESE-1003127       | 01-Jun-11 | 500 | 310 | 160 | 47 |    |                 |        |                 | 61               |                |     |                                   |      |                   |      |                      |        |         | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003127       | 01-Jun-11 | 500 | 320 | 160 | 49 | 24 |                 | 329.4  | 2500            | 65               | <0.50          | 2.3 | 0.27                              | 4000 |                   |      |                      | 7.22   | 4000    | TestAmerica |
| Shaft No. 9 Discharge DUP | RESE-1003128       | 01-Jun-11 |     |     |     |    |    |                 |        |                 |                  |                |     |                                   |      | 49.5              | 6.24 | 3689                 |        |         |             |
| Shaft No. 9 Discharge DUP | RESE-1003128       | 01-Jun-11 | 460 | 290 | 150 | 44 |    |                 |        |                 | 59               |                |     |                                   |      |                   |      |                      |        |         | TestAmerica |
| Shaft No. 9 Discharge DUP | RESE-1003128       | 01-Jun-11 | 440 | 280 | 140 | 47 | 24 |                 | 305    | 2500            | 58               | <0.50          | 2.3 |                                   | 3900 |                   |      |                      | 7.70   | 4100    | TestAmerica |



| SAMPLE LOCATION           | SAMPLE IDENTIFIER/ | SAMPLE    |     |     |     |    | COI | MMON  | CONSTIT  | UENTS           | a (mg/L)         | ) <sup>b</sup> |     |                                   |      |                   | RO   | UTINE PARA           | METERS | 3       | ANALYTICAL  |
|---------------------------|--------------------|-----------|-----|-----|-----|----|-----|-------|----------|-----------------|------------------|----------------|-----|-----------------------------------|------|-------------------|------|----------------------|--------|---------|-------------|
|                           | DESCRIPTION        | DATE      |     |     |     |    |     |       |          |                 |                  |                |     |                                   |      |                   | FIEL | D                    | LABO   | RATORY  | LABORATORY  |
|                           |                    |           | Ca  | Mg  | Na  | K  | Cl  | CO₃   | HCO₃     | SO <sub>4</sub> | SiO <sub>2</sub> | Br             | F   | NO <sub>3</sub> + NO <sub>2</sub> | TDS  | TEMP              | рН   | SC                   | рН     | SC      |             |
|                           |                    |           |     |     |     |    |     |       |          |                 |                  |                |     | (as N)                            |      | (°C) <sup>c</sup> |      | (μS/cm) <sup>d</sup> |        | (μS/cm) |             |
|                           |                    |           |     |     |     |    | Mi  | ne Wo | rkings   |                 |                  |                |     |                                   |      |                   |      |                      |        |         |             |
| Shaft No. 9 Discharge     | RESE-1003134       | 13-Jun-11 |     |     |     |    |     |       |          |                 |                  |                |     |                                   |      | 48.4              | 6.21 | 3745                 |        |         |             |
| Shaft No. 9 Discharge     | RESE-1003134       | 13-Jun-11 | 460 | 300 | 150 | 47 |     |       |          |                 | 59               |                |     |                                   |      |                   |      |                      |        |         | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003134       | 13-Jun-11 | 470 | 300 | 150 | 50 | 25  |       | 317.2    | 2600            | 63               | < 0.50         | 2.5 |                                   | 4000 |                   |      |                      | 6.78   | 4000    | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003140       | 30-Jun-11 |     |     |     |    |     |       |          |                 |                  |                |     |                                   |      | 46.7              | 6.70 | 3472                 |        |         |             |
| Shaft No. 9 Discharge     | RESE-1003140       | 30-Jun-11 | 440 | 240 | 170 | 47 |     |       |          |                 | 53               |                |     |                                   |      |                   |      |                      |        |         | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003140       | 30-Jun-11 | 460 | 250 | 160 | 45 | 23  |       | 292.8    | 2400            | 56               | < 0.50         | 2.3 | <2.0                              | 3700 |                   |      |                      | 6.65   | 3600    | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003145       | 12-Jul-11 |     |     |     |    |     |       |          |                 |                  |                |     |                                   |      | 49.7              | 6.29 | 3584                 |        |         |             |
| Shaft No. 9 Discharge     | RESE-1003145       | 12-Jul-11 | 490 | 280 | 160 | 55 |     |       |          |                 | 60               |                |     |                                   |      |                   |      |                      |        |         | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003145       | 12-Jul-11 | 510 | 290 | 170 | 57 | 26  |       | 292.8    | 2600            | 62               | <0.50          | 2.4 | <2.0                              | 3900 |                   |      |                      | 6.69   | 3800    | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003202       | 27-Jul-11 |     |     |     |    |     |       |          |                 |                  |                |     |                                   |      | 50.2              | 6.57 | 3617                 |        |         |             |
| Shaft No. 9 Discharge     | RESE-1003202       | 27-Jul-11 | 460 | 230 | 150 | 50 |     |       |          |                 | 52               |                |     |                                   |      |                   |      |                      |        |         | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003202       | 27-Jul-11 | 480 | 250 | 160 | 54 | 24  | -     | 244      | 2400            | 52               | <0.50          | 2.5 |                                   | 3700 |                   |      |                      | 6.78   | 3600    | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003204       | 12-Aug-11 |     |     |     |    |     |       |          |                 |                  |                |     |                                   |      | 50.8              | 6.18 | 3332                 |        |         |             |
| Shaft No. 9 Discharge     | RESE-1003204       | 12-Aug-11 | 470 | 230 | 150 | 49 |     |       |          |                 | 45               |                |     |                                   |      |                   |      |                      |        |         | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003204       | 12-Aug-11 | 470 | 250 | 150 | 49 | 26  |       | 195.2    | 2500            | 48               | < 0.50         | 2.9 |                                   | 3500 |                   |      |                      | 7.11   | 3300    | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003209       | 25-Aug-11 |     |     |     |    |     |       |          |                 |                  |                |     |                                   |      | 48.9              | 6.14 | 3391                 |        |         |             |
| Shaft No. 9 Discharge     | RESE-1003209       | 25-Aug-11 | 470 | 240 | 160 | 52 |     |       |          |                 | 41               |                |     |                                   |      |                   |      |                      |        |         | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003209       | 25-Aug-11 | 500 | 260 | 170 | 57 | 24  |       | 170.8    | 2200            | 49               | < 0.50         | 2.6 |                                   | 3500 |                   |      |                      | 7.11   | 3400    | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003210       | 07-Sep-11 |     |     |     |    |     |       |          |                 |                  |                |     |                                   |      | 50.1              | 7.24 | 3246                 |        |         |             |
| Shaft No. 9 Discharge     | RESE-1003210       | 07-Sep-11 | 460 | 220 | 140 | 43 |     |       |          |                 | 45               |                |     |                                   |      |                   |      |                      |        |         | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003210       | 07-Sep-11 | 560 | 270 | 170 | 45 | 24  |       | 219.6    | 2400            | 58               | < 0.50         | 2.6 |                                   | 3500 |                   |      |                      | 7.12   | 3400    | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003212       | 20-Sep-11 |     |     |     |    |     |       |          |                 |                  |                |     |                                   |      | 49.5              | 6.63 | 1851                 |        |         |             |
| Shaft No. 9 Discharge     | RESE-1003212       | 20-Sep-11 | 420 | 210 | 130 | 41 |     |       |          |                 | 44               |                |     |                                   |      |                   |      |                      |        |         | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003212       | 20-Sep-11 | 430 | 220 | 150 | 42 | 25  |       | 170.8    | 2400            | 47               | < 0.50         | 2.6 |                                   | 3300 |                   |      |                      | 7.68   | 3200    | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003225       | 26-Oct-11 |     |     |     |    |     |       |          |                 |                  |                |     |                                   |      | 47.4              | 6.59 | 3257                 |        |         |             |
| Shaft No. 9 Discharge     | RESE-1003225       | 26-Oct-11 | 440 | 210 | 140 | 42 |     |       |          |                 | 39               |                |     |                                   |      |                   |      |                      |        |         | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003225       | 26-Oct-11 | 410 | 200 | 130 | 41 | 24  |       | 146.4    | 2400            | 39               | <0.50          | 2.5 |                                   | 3200 |                   |      |                      | 7.36   | 3200    | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003228       | 09-Nov-11 |     |     |     |    |     |       |          |                 |                  |                |     |                                   |      | 49                | 6.65 | 3007                 |        |         |             |
| Shaft No. 9 Discharge     | RESE-1003228       | 09-Nov-11 | 410 | 190 | 130 | 40 |     |       |          |                 | 38               |                |     |                                   |      |                   |      |                      |        |         | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003228       | 09-Nov-11 | 410 | 190 | 130 | 38 | 24  |       | 170.8    | 2200            | 41               | <0.50          | 2.7 |                                   | 3200 |                   |      |                      | 7.50   | 3300    | TestAmerica |
| Shaft No. 9 Discharge DUP | RESE-1003229       | 09-Nov-11 |     |     |     |    |     |       |          |                 |                  |                |     |                                   |      | 48.5              | 6.75 | 3228                 |        |         |             |
| Shaft No. 9 Discharge DUP | RESE-1003229       | 09-Nov-11 | 410 | 190 | 130 | 40 |     |       |          |                 | 40               |                |     |                                   |      |                   |      |                      |        |         | TestAmerica |
| Shaft No. 9 Discharge DUP | RESE-1003229       | 09-Nov-11 | 400 | 190 | 120 | 37 | 23  |       | 170.8    | 2200            | 40               | <0.50          | 2.7 |                                   | 3200 |                   |      |                      | 7.51   | 3300    | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003232       | 22-Nov-11 |     |     |     |    |     |       |          |                 |                  |                |     |                                   |      | 48.7              | 6.79 | 3094                 |        |         |             |
| Shaft No. 9 Discharge     | RESE-1003232       | 22-Nov-11 | 410 | 190 | 130 | 36 |     |       |          |                 | 41               |                |     |                                   |      |                   |      |                      |        |         | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003232       | 22-Nov-11 | 400 | 190 | 130 | 37 | 23  |       | 158.6    | 2100            | 42               | <0.50          | 2.6 |                                   | 3100 |                   |      |                      | 7.02   | 3000    | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003234       | 07-Dec-11 |     |     |     |    |     |       |          |                 |                  |                |     |                                   |      | 47.7              | 6.48 | 3125                 |        |         |             |
| Shaft No. 9 Discharge     | RESE-1003234       | 07-Dec-11 | 440 | 200 | 140 | 40 |     |       |          |                 | 47               |                |     |                                   |      |                   |      |                      |        |         | TestAmerica |
| Shaft No. 9 Discharge     | RESE-1003234       | 07-Dec-11 | 410 | 210 | 140 | 39 | 24  |       | 158.6    | 2400            | 44               | <0.50          | 2.7 |                                   | 2900 |                   |      |                      | 7.39   | 3000    | TestAmerica |
|                           |                    |           |     |     | •   |    |     |       | lwater S |                 |                  |                |     |                                   |      |                   |      |                      |        |         |             |



| SAMPLE LOCATION                           | SAMPLE IDENTIFIER/           | SAMPLE                 |      |      |     |          | COI     | MMON  | CONSTIT  | UENTS           | a (mg/L)         | b      |              |                                          |         |                           | RO        | UTINE PARA                 | METERS   |               | ANALYTICAL              |
|-------------------------------------------|------------------------------|------------------------|------|------|-----|----------|---------|-------|----------|-----------------|------------------|--------|--------------|------------------------------------------|---------|---------------------------|-----------|----------------------------|----------|---------------|-------------------------|
|                                           | DESCRIPTION                  | DATE                   | 1    |      |     |          |         |       |          |                 |                  |        |              |                                          |         |                           | FIELI     | D                          | LABO     | RATORY        | LABORATORY              |
|                                           |                              |                        | Ca   | Mg   | Na  | К        | Cl      | CO₃   | HCO₃     | SO <sub>4</sub> | SiO <sub>2</sub> | Br     | F            | NO <sub>3</sub> + NO <sub>2</sub> (as N) | TDS     | TEMP<br>(°C) <sup>c</sup> | рН        | SC<br>(μS/cm) <sup>d</sup> | рН       | SC<br>(μS/cm) |                         |
|                                           |                              |                        | 1    | 1    |     | Sh       | allow C | round | lwater S | ystem           |                  |        |              |                                          |         |                           |           |                            |          |               |                         |
| (D-1-12)35 (Urquijo Well - ADEQ)          |                              | 22-Mar-01              |      |      |     |          |         |       | 350      |                 |                  |        |              |                                          |         | 13.5                      | 8.5       | 2590                       |          |               |                         |
| (D-1-12)35 (Urquijo Well - ADEQ)          |                              | 22-Mar-01              | 410  | 120  | 120 | 5.1      | 210     |       |          | 950             |                  |        |              |                                          | 2100    |                           |           |                            |          |               |                         |
| (D-2-12)03abc (Layne Well - ADEQ)         |                              | 21-Mar-01              |      |      |     |          |         | ND    | 490      |                 |                  |        |              |                                          |         | 10.2                      | 6.9       | 4400                       |          |               |                         |
| (D-2-12)03abc (Layne Well - ADEQ)         |                              | 21-Mar-01              | 370  | 330  | 480 | 7.4      | 800     |       |          | 1300            |                  |        | 0.64         |                                          | 3600    |                           |           |                            |          |               |                         |
| (D-2-12)03bcd (Ruiz Well - ADEQ)          |                              | 20-Mar-01              |      |      |     |          |         | 17    | 180      |                 |                  |        |              |                                          |         | 9.1                       | 8.9       | 570                        |          |               |                         |
| (D-2-12)03bcd (Ruiz Well - ADEQ)          |                              | 20-Mar-01              | ND   | ND   | 124 | 4.6      | 28      |       |          | 60              |                  |        | 3.4          | ND                                       | 400     |                           |           |                            |          |               |                         |
| Hackberry Windmill Well                   | WM-ALU                       | 17-Jun-86              | 28.2 | 5.15 | 7   | 2.61     | 3.52    |       | 117      | 25.9            | 31.9             |        | 0.45         | <0.14                                    | 135     | 20.0                      | 6.50      |                            |          |               |                         |
| Hackberry Windmill Well                   | RESE-1000263                 | 27-Feb-08              |      |      |     |          |         |       |          |                 |                  |        |              |                                          |         | 14.9                      | 6.61      | 328                        |          |               |                         |
| Hackberry Windmill Well                   | RESE-1000263                 | 27-Feb-08              | 40   | 8.0  | 16  | 3.1      |         |       |          |                 | 30               |        |              |                                          |         |                           |           |                            |          |               | TestAmerica             |
| Hackberry Windmill Well                   | RESE-1000263                 | 27-Feb-08              |      |      |     |          | 15      |       | 120.8    | 35              |                  | < 0.50 | <0.40        | 2.4                                      | 230     |                           |           |                            |          |               | TestAmerica             |
| Hackberry Windmill Well                   | RESE-1003011                 | 03-Jun-08              |      |      |     |          |         |       |          |                 |                  |        |              |                                          |         | 16.8                      | 6.47      | 267.6                      |          |               |                         |
| Hackberry Windmill Well                   | RESE-1003011                 | 03-Jun-08              | 33   | 6.4  | 11  | 2.5      |         | -     |          |                 | 34               | -      | -            |                                          |         |                           |           |                            |          |               | TestAmerica             |
| Hackberry Windmill Well                   | RESE-1003011                 | 03-Jun-08              |      |      |     |          | 8.5     |       | 113.5    | 25              |                  | <0.50  | <0.40        |                                          | 190     |                           |           |                            | 6.78     | 270           | TestAmerica             |
| Hackberry Windmill Well                   | RESE-1003019                 | 02-Sep-08              |      |      |     |          |         |       |          |                 |                  |        |              |                                          |         | 20.7                      | 6.66      | 279                        |          |               |                         |
| Hackberry Windmill Well                   | RESE-1003019                 | 02-Sep-08              | 36   | 6.7  | 11  | 3.1      |         |       |          |                 | 40               |        |              |                                          |         |                           |           |                            |          |               | TestAmerica             |
| Hackberry Windmill Well                   | RESE-1003019                 | 02-Sep-08              |      |      |     |          | 9.3     |       | 134.2    | 28              |                  | <0.50  | <0.40        |                                          | 200     |                           |           |                            | 6.83     | 280           | TestAmerica             |
| Hackberry Windmill Well DUP               | RESE-1003020                 | 02-Sep-08              |      |      |     |          |         |       |          |                 |                  |        |              |                                          |         | 20.7                      | 6.66      | 279                        |          |               |                         |
| Hackberry Windmill Well DUP               | RESE-1003020                 | 02-Sep-08              | 35   | 7.0  | 12  | 3.3      |         |       |          |                 | 39               |        |              |                                          |         |                           |           |                            |          |               | TestAmerica             |
| Hackberry Windmill Well DUP               | RESE-1003020                 | 02-Sep-08              |      |      |     |          | 9.3     |       | 134.2    | 28              |                  | <0.50  | <0.40        |                                          | 170     |                           |           |                            | 7.19     | 280           | TestAmerica             |
| Hackberry Windmill Well                   | RESE-1003024                 | 02-Dec-08              |      |      |     |          |         |       |          |                 |                  |        |              |                                          |         | 20.2                      | 6.41      | 270.4                      |          |               |                         |
| Hackberry Windmill Well                   | RESE-1003024                 | 02-Dec-08              | 36   | 7.0  | 11  | 3.0      |         |       |          |                 | 39               |        |              |                                          |         |                           |           |                            |          |               | TestAmerica             |
| Hackberry Windmill Well                   | RESE-1003024                 | 02-Dec-08              |      |      |     |          | 8.8     |       | 134.2    | 20              |                  | <0.50  | <0.40        |                                          | 190     |                           |           |                            | 6.81     | 280           | TestAmerica             |
| Hackberry Windmill Well                   | RESE-1003033                 | 03-Mar-09              |      |      |     |          |         |       |          |                 |                  |        |              |                                          |         | 17.1                      | 6.40      | 312.8                      |          |               |                         |
| Hackberry Windmill Well                   | RESE-1003033                 | 03-Mar-09              | 37   | 6.8  | 12  | 2.5      |         |       |          |                 | 31               |        |              |                                          |         |                           |           |                            |          |               | TestAmerica             |
| Hackberry Windmill Well                   | RESE-1003033                 | 03-Mar-09              |      |      |     |          | 14      |       | 122      | 36              |                  | <0.50  | <0.40        | 1.2                                      | 200     |                           |           |                            | 7.28     | 310           | TestAmerica             |
| Hackberry Windmill Well SP                | RESE-1003033                 | 03-Mar-09              |      |      |     |          | 14.0    |       |          | 37.6            |                  | 0.112  | <0.100       |                                          |         |                           |           |                            |          |               | SVL                     |
| Hackberry Windmill Well                   | RESE-1003042                 | 02-Jun-09              |      |      |     |          |         |       |          |                 |                  |        |              |                                          |         | 17.6                      | 6.43      | 270.7                      |          |               | <b>T</b>                |
| Hackberry Windmill Well                   | RESE-1003042                 | 02-Jun-09              | 33   | 6.4  | 11  | 2.7      |         |       | 404.0    |                 | 35               |        |              |                                          | 450     |                           |           |                            | 7.04     |               | TestAmerica             |
| Hackberry Windmill Well                   | RESE-1003042                 | 02-Jun-09              |      |      |     |          | 7.7     |       | 134.2    | 25              |                  | <0.50  | <0.40        | <0.30                                    | 150     |                           |           |                            | 7.31     | 260           | TestAmerica             |
| Hackberry Windmill Well SP                | RESE-1003042                 | 02-Jun-09              |      |      |     |          | 8.23    |       |          | 25.8            |                  | 0.108  | <0.100       |                                          |         |                           |           |                            |          |               | SVL                     |
| JI Ranch Corral Well                      | RESE-1000302                 | 21-Jun-07              |      |      |     |          |         |       |          |                 |                  |        |              |                                          |         | 16.0                      | 5.88      | 990                        |          |               | <del>-</del>            |
| JI Ranch Corral Well                      | RESE-1000302                 | 21-Jun-07              | 110  | 23   | 46  | 2.1      |         |       |          |                 |                  |        |              |                                          | 700     |                           |           |                            |          |               | TestAmerica             |
| JI Ranch Corral Well                      | RESE-1000302                 | 21-Jun-07              |      |      |     |          | 49      | -     | 63.4     | 390             |                  | <0.50  | 0.11         | <0.40                                    | 730     | 16.4                      | <br>E E E | 772.2                      |          |               | TestAmerica             |
| JI Ranch Corral Well                      | RESE-1003004                 | 29-May-08              |      | 47   | 40  |          |         |       |          |                 | 27               |        |              |                                          |         | 16.4                      | 5.55      | 772.2                      |          |               | TootA                   |
| JI Ranch Corral Well                      | RESE-1003004                 | 29-May-08              | 83   | 17   | 48  | <2.0     | 40      |       | 17.1     | 240             | 37               | <0.50  |              | 16                                       | <br>590 |                           |           |                            | <br>5 70 | 770           | TestAmerica             |
| JI Ranch Corral Well JI Ranch Corral Well | RESE-1003004<br>RESE-1003005 | 29-May-08              |      |      |     |          | 49      |       | 17.1     | 240             |                  | <0.50  | <0.40        | <u>16</u>                                | 580     | 15.0                      | <br>E E 1 | 706.0                      | 5.78     | 770           | TestAmerica             |
| JI Ranch Corral Well                      | RESE-1003005<br>RESE-1003005 | 29-May-08              | 95   | 17   | 49  | <br>-2 0 |         |       |          |                 | 37               |        |              |                                          |         | 15.0                      | 5.51      | 786.8                      |          |               | Toet A marian           |
| JI Ranch Corral Well                      | RESE-1003005<br>RESE-1003005 | 29-May-08<br>29-May-08 | 85   | 17   | 48  | <2.0     | 51      |       | 17.1     | 260             | 37               | <0.50  | <0.40        | 16                                       | 620     |                           |           |                            | 5.54     | 780           | TestAmerica TestAmerica |
| UI NATION CONAL WEIL                      | KESE-1003003                 | 29-ividy-00            |      |      |     |          | 31      | -     | 17.1     | 200             |                  | V0.50  | <b>~0.40</b> | <u>16</u>                                | 020     |                           |           |                            | 0.04     | 760           | restamenta              |



| SAMPLE LOCATION         | SAMPLE IDENTIFIER/ | SAMPLE    |     |     |    |      | COI     | MMON  | CONSTIT | UENTS           | a (mg/L)         | ) <sup>b</sup> |        |                                          |     |                           | RO   | UTINE PARA                 | AMETERS | 6             | ANALYTICAL  |
|-------------------------|--------------------|-----------|-----|-----|----|------|---------|-------|---------|-----------------|------------------|----------------|--------|------------------------------------------|-----|---------------------------|------|----------------------------|---------|---------------|-------------|
|                         | DESCRIPTION        | DATE      |     |     |    |      |         |       |         |                 |                  |                |        |                                          |     |                           | FIEL | D                          | LABO    | RATORY        | LABORATORY  |
|                         |                    |           | Ca  | Mg  | Na | К    | Cl      | CO₃   | HCO₃    | SO <sub>4</sub> | SiO <sub>2</sub> | Br             | F      | NO <sub>3</sub> + NO <sub>2</sub> (as N) | TDS | TEMP<br>(°C) <sup>c</sup> | рН   | SC<br>(μS/cm) <sup>d</sup> | рН      | SC<br>(μS/cm) |             |
|                         |                    |           |     |     |    | Sh   | allow G | round | water S | ystem           |                  |                |        |                                          |     |                           |      |                            |         |               |             |
| JI Ranch Corral Well    | RESE-1003014       | 25-Aug-08 |     | -   |    |      | -       |       |         |                 |                  |                | _      |                                          |     | 17.0                      | 5.66 | 1020                       |         |               | •           |
| JI Ranch Corral Well    | RESE-1003014       | 25-Aug-08 | 130 | 26  | 55 | 2.1  |         |       |         |                 | 39               |                |        |                                          |     |                           |      |                            |         |               | TestAmerica |
| JI Ranch Corral Well    | RESE-1003014       | 25-Aug-08 |     |     |    |      | 57      |       | 29.3    | 450             |                  | < 0.50         | < 0.40 |                                          | 750 |                           |      |                            | 5.81    | 1100          | TestAmerica |
| JI Ranch Corral Well    | RESE-1003029       | 03-Dec-08 |     |     |    |      |         |       |         |                 |                  |                |        |                                          |     | 14.4                      | 5.49 | 778.2                      |         |               |             |
| JI Ranch Corral Well    | RESE-1003029       | 03-Dec-08 | 85  | 19  | 45 | <2.0 |         |       |         |                 | 38               |                |        |                                          |     |                           |      |                            |         |               | TestAmerica |
| JI Ranch Corral Well    | RESE-1003029       | 03-Dec-08 |     |     |    |      | 51      |       | 13.4    | 290             |                  | < 0.50         | < 0.40 |                                          | 550 |                           |      |                            | 5.65    | 780           | TestAmerica |
| JI Ranch Corral Well    | RESE-1003038       | 04-Mar-09 |     |     |    |      |         |       |         |                 |                  |                |        |                                          |     | 13.6                      | 6.02 | 776                        |         |               |             |
| JI Ranch Corral Well    | RESE-1003038       | 04-Mar-09 | 86  | 16  | 41 | 3.3  |         |       |         |                 | 38               |                |        |                                          |     |                           |      |                            |         |               | TestAmerica |
| JI Ranch Corral Well    | RESE-1003038       | 04-Mar-09 |     |     |    |      | 46      |       | 79.3    | 240             |                  | < 0.50         | < 0.40 | 4.7                                      | 530 |                           |      |                            | 6.83    | 760           | TestAmerica |
| JI Ranch Corral Well SP | RESE-1003038       | 04-Mar-09 |     |     |    |      | 39.8    |       |         | 229             |                  | 0.160          | 0.143  |                                          |     |                           |      |                            |         |               | SVL         |
| JI Ranch Corral Well    | RESE-1003047       | 05-Jun-09 |     |     |    |      |         |       |         |                 |                  |                |        |                                          |     | 15.8                      | 5.94 | 613.8                      |         |               |             |
| JI Ranch Corral Well    | RESE-1003047       | 05-Jun-09 | 64  | 13  | 41 | 2.0  |         |       |         |                 | 41               |                |        |                                          |     |                           |      |                            |         |               | TestAmerica |
| JI Ranch Corral Well    | RESE-1003047       | 05-Jun-09 |     |     |    |      | 40      |       | 81.7    | 190             |                  | < 0.50         | <0.40  | <0.30                                    | 400 |                           |      |                            | 6.91    | 600           | TestAmerica |
| JI Ranch Corral Well SP | RESE-1003047       | 05-Jun-09 |     |     |    |      | 40.2    |       |         | 177             |                  | 0.252          | <0.100 |                                          |     |                           |      |                            |         |               | SVL         |
| JI Ranch Middle Well    | RESE-1003006       | 30-May-08 |     |     |    |      |         |       |         |                 |                  |                |        |                                          |     | 17.0                      | 6.16 | 300                        |         |               |             |
| JI Ranch Middle Well    | RESE-1003006       | 30-May-08 | 30  | 7.1 | 16 | <2.0 |         |       |         |                 | 36               |                |        |                                          |     |                           |      |                            |         |               | TestAmerica |
| JI Ranch Middle Well    | RESE-1003006       | 30-May-08 |     |     |    |      | 25      |       | 57.3    | 58              |                  | < 0.50         | < 0.40 | 0.44                                     | 240 |                           |      |                            | 6.54    | 300           | TestAmerica |
| JI Ranch Middle Well    | RESE-1003017       | 27-Aug-08 |     |     |    |      |         |       |         |                 |                  |                |        |                                          |     | 17.1                      | 6.26 | 377                        |         |               | -           |
| JI Ranch Middle Well    | RESE-1003017       | 27-Aug-08 | 43  | 10  | 22 | <2.0 |         |       |         |                 | 36               |                |        |                                          |     |                           |      |                            |         |               | TestAmerica |
| JI Ranch Middle Well    | RESE-1003017       | 27-Aug-08 |     |     |    |      | 27      |       | 61      | 100             |                  | < 0.50         | < 0.40 | 0.36                                     | 270 |                           |      |                            | 6.32    | 420           | TestAmerica |
| JI Ranch Middle Well    | RESE-1003028       | 03-Dec-08 |     |     |    |      |         |       |         |                 |                  |                |        |                                          |     | 17.7                      | 6.50 | 494.1                      |         |               |             |
| JI Ranch Middle Well    | RESE-1003028       | 03-Dec-08 | 47  | 12  | 24 | <2.0 |         |       |         |                 | 39               |                |        |                                          |     |                           |      |                            |         |               | TestAmerica |
| JI Ranch Middle Well    | RESE-1003028       | 03-Dec-08 |     |     |    |      | 26      |       | 74.4    | 120             |                  | < 0.50         | < 0.40 |                                          | 310 |                           |      |                            | 6.60    | 470           | TestAmerica |
| JI Ranch Middle Well    | RESE-1003037       | 04-Mar-09 |     |     |    |      |         |       |         |                 |                  |                |        |                                          |     | 17.1                      | 6.38 | 444.3                      |         |               |             |
| JI Ranch Middle Well    | RESE-1003037       | 04-Mar-09 | 43  | 9.9 | 22 | <2.0 |         |       |         |                 | 35               |                |        |                                          |     |                           |      |                            |         |               | TestAmerica |
| JI Ranch Middle Well    | RESE-1003037       | 04-Mar-09 |     |     |    |      | 29      |       | 74.4    | 100             |                  | < 0.50         | < 0.40 | 0.78                                     | 290 |                           |      |                            | 7.20    | 420           | TestAmerica |
| JI Ranch Middle Well SP | RESE-1003037       | 04-Mar-09 |     |     |    |      | 26.0    |       |         | 100             |                  | 0.198          | 0.109  |                                          |     |                           |      |                            |         |               | SVL         |
| JI Ranch Middle Well    | RESE-1003048       | 05-Jun-09 |     |     |    |      |         |       |         |                 |                  |                |        |                                          |     | 17.8                      | 6.21 | 563                        |         |               |             |
| JI Ranch Middle Well    | RESE-1003048       | 05-Jun-09 | 54  | 13  | 29 | <2.0 |         |       |         |                 | 37               |                |        |                                          |     |                           |      |                            |         |               | TestAmerica |
| JI Ranch Middle Well    | RESE-1003048       | 05-Jun-09 |     |     |    |      | 35      |       | 84.2    | 170             |                  | < 0.50         | <0.40  | 0.46                                     | 350 |                           |      |                            | 7.07    | 530           | TestAmerica |
| JI Ranch Middle Well SP | RESE-1003048       | 05-Jun-09 |     |     |    |      | 30.4    |       |         | 122             |                  | 0.136          | <0.100 |                                          |     |                           |      |                            |         |               | SVL         |



| SAMPLE LOCATION                                       | SAMPLE IDENTIFIER/<br>DESCRIPTION | SAMPLE<br>DATE |    |    |    |   | COI | MMON            | CONSTIT | UENTS           | a (mg/L)         | D  |     |                                          |     |                           | RO         | UTINE PAR                  | _          | ATORY         | ANALYTICAL LABORATORY |
|-------------------------------------------------------|-----------------------------------|----------------|----|----|----|---|-----|-----------------|---------|-----------------|------------------|----|-----|------------------------------------------|-----|---------------------------|------------|----------------------------|------------|---------------|-----------------------|
|                                                       |                                   |                | Са | Mg | Na | К | Cl  | CO <sub>3</sub> | HCO₃    | SO <sub>4</sub> | SiO <sub>2</sub> | Br | F   | NO <sub>3</sub> + NO <sub>2</sub> (as N) | TDS | TEMP<br>(°C) <sup>c</sup> | рН         | SC<br>(μS/cm) <sup>d</sup> | рН         | SC<br>(μS/cm) |                       |
| U.S EPA National Primary Drinking Water Regulations   |                                   | 1              |    |    |    |   |     |                 |         |                 |                  |    | 4.0 | 10                                       |     |                           |            |                            |            |               |                       |
| U.S EPA National Secondary Drinking Water Regulations |                                   |                |    |    |    |   | 250 |                 |         | 250             |                  |    | 2.0 |                                          | 500 |                           | 6.5 to 8.5 |                            | 6.5 to 8.5 |               |                       |
| Arizona Numeric Aquifer Water Quality Standards       |                                   |                |    |    |    |   |     |                 |         |                 |                  |    |     | 10                                       |     |                           |            |                            |            |               |                       |

Values in bold red are out of compliance with EPA primary water quality standards Values in red italics are out of compliance with EPA secondary water quality standards Values in red underline are out of compliance with Arizona numeric water quality standards Values in blue indicate that detection limit exceeds standard

- --- = Not available, not applicable
- -- = Not calculated due to non-detect
- \* = Value reported as Na+K

Shading indicates dissolved results
Shading indicates total results
Shading indicates total recoverable results
Shading indicates unknown filtration or no filtration method provided for analyses

a Ca = Calcium

Mg = Magnesium

Na = Sodium

K = Potassium

CI = Chloride

CO₃ = Carbonate

HCO₃ = Bicarbonate

SO<sub>4</sub> = Sulfate

SiO₂ = Silica

Br = Bromide

F = Fluoride

NO<sub>3</sub>+NO<sub>2</sub> (as N) = Nitrate plus Nitrite, in equivalent milligrams of nitrogen per liter

TDS = Total dissolved solids

#### **Explanation of Codes**

Absent = Analyte not present

ge = Greater than or equal to reported value

i = Insufficient sample

j = Estimated value

j+ = Estimated value, high bias

j- = Estimated value, low bias

Lost = Sample lost in processing

n = Not measured

na = Not available

ND = Not Detected

np = Analyte not applicable

Present = Analyte was detected

g = Uncertain value

r = Unusable data

r = Unusable data
< = Less than reported detection limit
> = Greater than reported value
d = Diluted. Diluted samples are indicated only when value is estimated.
DUP = Field Duplicate

LD = Laboratory duplicate

SP = Split sample SPD = Split-Duplicate



b mg/L = milligrams per liter

<sup>&</sup>lt;sup>C</sup> TEMP (°C) = Temperature, in degrees Celsius

 $<sup>^{\</sup>rm d}$  SC ( $\mu$ S/cm) = Specific Conductance in microsiemens per centimeter

| SAMPLE LOCATION | SAMPLE                  | SAMPLE    |        |         |         |         |         |        |          |         |         | TRACE   | CONSTIT | UENTS  | (mg/L)b |         |          |         |         |         |          |        |                  |         | ANALYTICAL  |
|-----------------|-------------------------|-----------|--------|---------|---------|---------|---------|--------|----------|---------|---------|---------|---------|--------|---------|---------|----------|---------|---------|---------|----------|--------|------------------|---------|-------------|
|                 | IDENTIFIER/ DESCRIPTION | DATE      | Al     | Sb      | As      | Ва      | Ве      | В      | Cd       | Cr      | Со      | Cu      | CN      | Fe     | Pb      | Mn      | Hg       | Мо      | Ni      | Se      | Ag       | S      | TI               | Zn      | LABORATORY  |
|                 | 1                       |           |        |         | ı       |         |         |        |          | Apache  | Leap T  | uff Aqu | ifer    |        |         | I       |          |         | I       | 1       |          |        |                  | l l     |             |
| A-06            | RESE-1000255            | 24-Sep-07 | <0.50  | <0.002  | 0.0015  | 0.017   | <0.0040 | <0.50  | <0.001   | <0.010  | <0.050  | <0.020  |         | <0.20  | 0.0014  | 0.048   | <0.00020 | <0.050  | <0.050  | <0.002  | <0.001   |        | <0.001           | 0.17    | TestAmerica |
| A-06            | RESE-1000255            | 24-Sep-07 |        |         |         |         |         |        |          |         |         |         | <0.020  |        |         |         |          |         |         |         |          | <0.10  |                  |         | TestAmerica |
| A-06 DUP        | RESE-1000256            | 24-Sep-07 | <0.50  | <0.002  | 0.0016  | 0.016   | <0.0040 | <0.50  | <0.001   | <0.010  | <0.050  | <0.020  |         | <0.20  | 0.0018  | 0.048   | <0.00020 | <0.050  | <0.050  | <0.002  | <0.001   |        | <0.001           | 0.16    | TestAmerica |
| A-06 DUP        | RESE-1000256            | 24-Sep-07 |        |         |         |         |         |        |          |         |         |         | <0.020  |        |         |         |          |         |         |         |          | <0.10  |                  |         | TestAmerica |
| A-06            | RESE-1003008            | 02-Jun-08 | <0.20  |         |         | 0.016   | <0.0010 | <0.20  |          | <0.010  |         | <0.010  |         | <0.050 |         |         |          | <0.010  | <0.010  |         |          |        |                  | 0.48    | TestAmerica |
| A-06            | RESE-1003008            | 02-Jun-08 |        | <0.0030 | 0.0016  |         |         |        | <0.0010  |         | <0.0010 |         | <0.025  |        | 0.0016  | 0.13    | <0.00020 |         |         | <0.0020 | <0.0010  | <0.040 | <0.0010          |         | TestAmerica |
| A-06            | RESE-1003016            | 28-Aug-08 | <0.20  |         |         | 0.015   | <0.0010 | <0.20  |          | <0.010  |         | <0.010  |         | <0.050 |         |         | <0.00020 | <0.010  | <0.010  |         |          |        |                  | 0.34    | TestAmerica |
| A-06            | RESE-1003016            | 28-Aug-08 |        | <0.0030 | 0.0023  |         |         |        | <0.0010  |         | <0.0010 |         | <0.025  |        | <0.0010 | <0.0050 |          |         |         | <0.0020 | <0.0010  | <0.040 | <0.0010          |         | TestAmerica |
| A-06            | RESE-1003030            | 04-Dec-08 | <0.20  | <0.0030 | 0.0021  | 0.014   | <0.0010 |        | <0.0010  | <0.010  |         | <0.010  |         | <0.050 | <0.0010 |         | <0.00020 | <0.010  | <0.010  | <0.0020 | <0.0010  |        | <0.0010          | 0.39    | TestAmerica |
| A-06            | RESE-1003030            | 04-Dec-08 |        |         |         |         |         |        |          |         |         |         | <0.025  |        |         |         |          |         |         |         |          | <0.10  |                  |         | TestAmerica |
| A-06            | RESE-1003039            | 05-Mar-09 | <0.20  | <0.0030 | 0.0021  | 0.014   | <0.0010 | <0.20  | <0.0010  | <0.0010 | <0.0010 | 0.0018  |         | <0.050 | <0.0010 | 0.034   | <0.00020 | <0.0010 | 0.0018  | <0.0020 | <0.0010  |        | <0.0010          | 0.25    | TestAmerica |
| A-06            | RESE-1003039            | 05-Mar-09 |        |         |         |         |         |        |          |         |         |         | <0.020  |        |         |         |          |         |         |         |          | <0.040 |                  |         | TestAmerica |
| A-06            | RESE-1003046            | 04-Jun-09 | <0.20  | <0.0030 | 0.0020  | 0.014   | <0.0010 | <0.20  | <0.0010  | <0.0010 | <0.0010 | <0.0010 |         | <0.050 | <0.0010 | 0.026   | <0.00020 | <0.0010 | <0.0010 | <0.0020 | <0.0010  |        | <0.0010          | 0.16    | TestAmerica |
| A-06            | RESE-1003046            | 04-Jun-09 |        |         |         |         |         |        |          |         |         |         | <0.020  |        |         |         |          |         |         |         |          | <0.040 |                  |         | TestAmerica |
| CT Well         | RESE-1003101            | 20-Apr-10 | <0.20  | <0.0030 | <0.0010 | 0.024   | <0.0010 | <0.20  | <0.0010  | <0.0010 | <0.0010 | 0.023   |         | <0.050 | <0.0010 | 0.031   | <0.00020 | 0.0017  | 0.0032  | <0.0020 | <0.0010  |        | <0.0010          | 0.34    | TestAmerica |
| CT Well         | RESE-1003101            | 20-Apr-10 | <0.20  | <0.0030 | <0.0010 | 0.023   | <0.0010 | <0.20  | <0.0010  | <0.0010 | <0.0010 | 0.036   | <0.020  | 0.85   | <0.0010 | 0.033   | <0.00020 | 0.0017  | 0.0035  | <0.0020 | <0.0010  | <0.050 | <0.0010          | 0.40    | TestAmerica |
| HRES-01         | RESE-1001102            | 15-Mar-04 | <0.020 | <0.0050 | <0.010  | 0.0038  | <0.0020 | <0.040 | <0.0020  | <0.0060 | <0.0060 | <0.0030 |         | 0.083  | <0.0050 | 0.0216  | <0.00020 | <0.0080 | <0.010  | <0.010  | <0.0050  |        | <u>&lt;0.010</u> | 0.0138  | SVL         |
| HRES-01         | RESE-1001103            | 18-Mar-04 | <0.020 | <0.0050 | <0.010  | 0.0037  | <0.0020 | <0.040 | <0.0020  | <0.0060 | <0.0060 | <0.0030 |         | 0.155  | <0.0050 | 0.0171  | <0.00020 | <0.0080 | <0.010  | <0.010  | <0.0050  |        | <u>&lt;0.010</u> | 0.0277  | SVL         |
| HRES-02         | RESE-1001105            | 06-Apr-04 | <0.020 | <0.0030 | 0.003   | 0.0114  | <0.0020 | <0.040 | <0.00010 | <0.0060 | <0.0060 | 0.0135  |         | 0.037  | 0.006   | 0.02    | <0.00020 | <0.0080 | <0.010  | <0.0030 | <0.00010 |        | <0.0020          | 0.0316  | SVL         |
| HRES-02         | RESE-1001108            | 08-Apr-04 | 0.143  | <0.0030 | 0.01    | 0.0038  | <0.0020 | 0.043  | <0.00010 | <0.0060 | <0.0060 | 0.0189  |         | 0.19   | <0.0030 | 0.0183  | <0.00020 | <0.0080 | <0.010  | <0.0030 | <0.00010 |        | <0.0020          | 0.0206  | SVL         |
| HRES-02         | RESE-1001109            | 10-Apr-04 | 0.062  | <0.0030 | 0.009   | <0.0020 | <0.0020 | 0.043  | <0.00010 | <0.0060 | <0.0060 | <0.0030 |         | 0.021  | <0.0030 | 0.0037  | <0.00020 | <0.0080 | <0.010  | <0.0030 | <0.00010 |        | <0.0020          | <0.0050 | SVL         |
| HRES-03d        | RESE-1001111            | 16-Apr-04 | 0.035  | <0.0030 | <0.0030 | <0.0020 | <0.0020 | 0.061  | <0.00010 | <0.0060 | <0.0060 | <0.0030 |         | 0.263  | <0.0030 | 0.006   | <0.00020 | 0.0258  | <0.010  | <0.0030 | <0.00010 |        | <0.0020          | 0.007   | SVL         |
| HRES-04         | RESE-1001110            | 15-Apr-04 | <0.020 | <0.0030 | <0.0030 | 0.0105  | <0.0020 | <0.040 | <0.00010 | <0.0060 | <0.0060 | <0.0030 |         | 0.061  | <0.0030 | 0.0775  | <0.00020 | 0.0094  | <0.010  | <0.0030 | <0.00010 |        | <0.0020          | 0.017   | SVL         |
| HRES-04         | 4531                    | 03-Nov-06 | <0.50  | <0.002  | 0.0042  | <0.010  | <0.0040 | <0.50  | <0.0050  | 0.012   | <0.050  | <0.020  |         | <0.20  | <0.001  | <0.020  | <0.00020 | <0.050  | <0.050  | <0.002  | <0.0050  |        | <0.001           | 0.057   | TestAmerica |
| HRES-04         | RESE-1001114            | 18-Jan-08 | <0.50  | <0.002  | 0.0025  | 0.010   | <0.0040 |        | <0.001   | <0.010  |         | <0.020  |         | <0.20  | 0.0016  |         |          | <0.050  | <0.050  | <0.002  | <0.001   |        | <0.001           | 0.17    | TestAmerica |
| HRES-04         | RESE-1001114            | 18-Jan-08 |        |         |         |         |         |        |          |         |         |         | <0.020  |        |         |         | <0.00020 |         |         |         |          | <0.10  |                  |         | TestAmerica |
| HRES-04         | RESE-1003021            | 03-Sep-08 | <0.20  |         |         | <0.010  | <0.0010 | <0.20  |          | <0.010  |         | <0.010  |         | <0.050 |         |         | <0.00020 | <0.010  | <0.010  |         |          |        |                  | 0.099   | TestAmerica |
| HRES-04         | RESE-1003021            | 03-Sep-08 |        | <0.0030 | 0.0035  |         |         |        | <0.0010  |         | <0.0010 |         | <0.020  |        | <0.0010 | <0.0050 |          |         |         | 0.0023  | <0.0010  | <0.040 | <0.0010          |         | TestAmerica |
| HRES-04         | RESE-1003031            | 02-Mar-09 | <0.20  | <0.0030 | 0.0036  | 0.0084  | <0.0010 | <0.20  | <0.0010  | <0.0010 | <0.0010 | 0.0018  |         | <0.050 | <0.0010 | <0.0050 | <0.00020 | 0.0030  | 0.0017  | <0.0020 | <0.0010  |        | <0.0010          | 0.15    | TestAmerica |
| HRES-04         | RESE-1003031            | 02-Mar-09 |        |         |         |         |         |        |          |         |         |         | <0.020  |        |         |         |          |         |         |         |          | <0.040 |                  |         | TestAmerica |
| HRES-04         | RESE-1003040            | 01-Jun-09 | <0.20  | <0.0030 | 0.0035  | 0.0078  | <0.0010 | <0.20  | <0.0010  | <0.0010 | <0.0010 | 0.0011  |         | <0.050 | <0.0010 | <0.0050 | <0.00020 | 0.0024  | <0.0010 | <0.0020 | <0.0010  |        | <0.0010          | 0.14    | TestAmerica |
| HRES-04         | RESE-1003040            | 01-Jun-09 |        |         |         |         |         |        |          |         |         |         | <0.020  |        |         |         |          |         |         |         |          | <0.040 |                  |         | TestAmerica |
| HRES-05         | RESE-1001104            | 02-Apr-04 | <0.020 | <0.0030 | <0.0030 | 0.028   | <0.0020 | <0.040 | <0.00010 | <0.0060 | <0.0060 | <0.0030 |         | 0.111  | <0.0030 | 0.0339  | <0.00020 | 0.0082  | <0.010  | <0.0030 | <0.00010 |        | <0.0020          | 0.0178  | SVL         |
| HRES-05         | RESE-1000264            | 27-Feb-08 | <0.20  | <0.0030 | 0.0023  | 0.030   | <0.0010 | <0.20  | <0.0010  | <0.010  | <0.0010 | <0.010  |         | <0.050 | <0.0010 | 0.015   | <0.00020 | <0.010  | <0.010  | <0.0020 | <0.0010  |        | <0.0010          | 0.059   | TestAmerica |
| HRES-05         | RESE-1000264            | 27-Feb-08 |        |         |         |         |         |        |          |         |         |         | <0.020  |        |         |         |          |         |         |         |          | <0.040 |                  |         | TestAmerica |
| HRES-05         | RESE-1003001            | 28-May-08 | <0.20  |         |         | 0.030   | <0.0010 | <0.20  |          | <0.010  |         | <0.010  |         | <0.050 |         |         |          | <0.010  | <0.010  |         |          |        |                  | 0.23    | TestAmerica |
| HRES-05         | RESE-1003001            | 28-May-08 |        | <0.0030 | 0.0023  |         |         |        | <0.0010  |         | <0.0010 |         | <0.025  |        | 0.0010  | 0.028   | <0.00020 |         |         | <0.0020 | <0.0010  | <0.040 | <0.0010          |         | TestAmerica |
| HRES-05         | RESE-1003012            | 25-Aug-08 | <0.20  |         |         | 0.032   | <0.0010 | <0.20  |          | <0.010  |         | <0.010  |         | <0.050 |         |         | <0.00020 | <0.010  | <0.010  |         |          |        |                  | 0.26    | TestAmerica |
| HRES-05         | RESE-1003012            | 25-Aug-08 |        | <0.0030 | 0.0086  |         |         |        | <0.0010  |         | <0.0010 |         | <0.025  |        | <0.0010 | 0.028   |          |         |         | 0.0058  | <0.0010  | <0.040 | <0.0010          |         | TestAmerica |
| HRES-05         | RESE-1003025            | 02-Dec-08 | <0.20  | <0.0030 | 0.0024  | 0.030   | <0.0010 |        | <0.0010  | <0.010  |         | <0.010  |         | <0.050 | <0.0010 |         | <0.00020 | <0.010  | <0.010  | <0.0020 | <0.0010  |        | <0.0010          | 0.26    | TestAmerica |
| HRES-05         | RESE-1003025            | 02-Dec-08 |        |         |         |         |         |        |          |         |         |         | < 0.025 |        |         |         |          |         |         |         |          | <0.10  |                  |         | TestAmerica |



| SAMPLE LOCATION | SAMPLE                  | SAMPLE    |       |         |        |       |         |       |         |         |         | TRACE   | CONSTIT | TUENTS <sup>a</sup> | (mg/L)b |       |          |        |         |         |         |        |         |        | ANALYTICAL  |
|-----------------|-------------------------|-----------|-------|---------|--------|-------|---------|-------|---------|---------|---------|---------|---------|---------------------|---------|-------|----------|--------|---------|---------|---------|--------|---------|--------|-------------|
|                 | IDENTIFIER/ DESCRIPTION | DATE      | Al    | Sb      | As     | Ва    | Ве      | В     | Cd      | Cr      | Со      | Cu      | CN      | Fe                  | Pb      | Mn    | Hg       | Мо     | Ni      | Se      | Ag      | S      | Ti      | Zn     | LABORATORY  |
|                 |                         | •         |       |         | 1      |       |         |       |         | Apache  | Leap T  | uff Aqu | ifer    |                     | 1       |       |          | ı      |         |         | 1       |        | 1       |        |             |
| HRES-05         | RESE-1003034            | 03-Mar-09 | <0.20 | <0.0030 | 0.0025 | 0.031 | <0.0010 | <0.20 | <0.0010 | <0.0010 | 0.0021  | 0.0015  |         | <0.050              | <0.0010 | 0.021 | <0.00020 | 0.0023 | 0.0023  | <0.0020 | <0.0010 |        | <0.0010 | 0.22   | TestAmerica |
| HRES-05         | RESE-1003034            | 03-Mar-09 |       |         |        |       |         |       |         |         |         |         | <0.020  |                     |         |       |          |        |         |         |         | <0.040 |         |        | TestAmerica |
| HRES-05         | RESE-1003043            | 03-Jun-09 | <0.20 | <0.0030 | 0.0024 | 0.031 | <0.0010 | <0.20 | <0.0010 | <0.0010 | <0.0010 | 0.0014  |         | <0.050              | <0.0010 | 0.015 | <0.00020 | 0.0020 | <0.0010 | 0.0020  | <0.0010 |        | <0.0010 | 0.22   | TestAmerica |
| HRES-05         | RESE-1003043            | 03-Jun-09 |       |         |        |       |         |       |         |         |         |         | <0.020  |                     |         |       |          |        |         |         |         | <0.040 |         |        | TestAmerica |
| HRES-06         | RESE-1000301            | 12-Jun-07 | <0.50 | <0.002  | 0.0014 | 0.027 | <0.0040 |       | <0.001  | <0.010  |         | <0.020  |         | <0.20               | 0.0011  |       |          | <0.050 | <0.050  | <0.002  | <0.001  |        | <0.001  | 0.78   | TestAmerica |
| HRES-06         | RESE-1000301            | 12-Jun-07 |       |         |        |       |         |       |         |         |         |         | <0.020  |                     |         |       |          |        |         |         |         | <0.10  |         |        | TestAmerica |
| HRES-06         | RESE-1000265            | 27-Feb-08 | <0.20 | <0.0030 | 0.0015 | 0.025 | <0.0010 | <0.20 | <0.0010 | <0.010  | <0.0010 | 0.013   |         | 1.1                 | 0.0031  | 0.040 | <0.00020 | <0.010 | <0.010  | <0.0020 | <0.0010 |        | <0.0010 | 0.96   | TestAmerica |
| HRES-06         | RESE-1000265            | 27-Feb-08 |       |         |        |       |         |       |         |         |         |         | <0.020  |                     |         |       |          |        |         |         |         | <0.040 |         |        | TestAmerica |
| HRES-06 DUP     | RESE-1000266            | 27-Feb-08 | <0.20 | <0.0030 | 0.0013 | 0.026 | <0.0010 | <0.20 | <0.0010 | <0.010  | <0.0010 | 0.010   |         | 0.23                | 0.0024  | 0.040 | <0.00020 | <0.010 | <0.010  | <0.0020 | <0.0010 |        | <0.0010 | 0.85   | TestAmerica |
| HRES-06 DUP     | RESE-1000266            | 27-Feb-08 |       |         |        |       |         |       |         |         |         |         | <0.020  |                     |         |       |          |        |         |         |         | <0.040 |         |        | TestAmerica |
| HRES-06         | RESE-1003003            | 28-May-08 | <0.20 |         |        | 0.026 | <0.0010 | <0.20 |         | <0.010  |         | <0.010  |         | <0.050              |         |       |          | <0.010 | <0.010  |         |         |        |         | 0.76   | TestAmerica |
| HRES-06         | RESE-1003003            | 28-May-08 |       | <0.0030 | 0.0014 |       |         |       | <0.0010 |         | <0.0010 |         | <0.025  |                     | <0.0010 | 0.024 | <0.00020 |        |         | <0.0020 | <0.0010 | <0.040 | <0.0010 |        | TestAmerica |
| HRES-06         | RESE-1003013            | 25-Aug-08 | <0.20 |         |        | 0.026 | <0.0010 | <0.20 |         | <0.010  |         | <0.010  |         | 0.12                |         |       | <0.00020 | <0.010 | <0.010  |         |         |        |         | 0.84   | TestAmerica |
| HRES-06         | RESE-1003013            | 25-Aug-08 |       | <0.0030 | 0.0025 |       |         |       | <0.0010 |         | <0.0010 |         | <0.025  |                     | <0.0010 | 0.020 |          |        |         | <0.0020 | <0.0010 | <0.040 | <0.0010 |        | TestAmerica |
| HRES-06         | RESE-1003026            | 03-Dec-08 | <0.20 | <0.0030 | 0.0014 | 0.024 | <0.0010 |       | <0.0010 | <0.010  |         | <0.010  |         | 0.053               | <0.0010 |       | <0.00020 | <0.010 | <0.010  | <0.0020 | <0.0010 |        | <0.0010 | 1.9    | TestAmerica |
| HRES-06         | RESE-1003026            | 03-Dec-08 |       |         |        |       |         |       |         |         |         |         | <0.025  |                     |         |       |          |        |         |         |         | <0.10  |         |        | TestAmerica |
| HRES-06 DUP     | RESE-1003027            | 03-Dec-08 | <0.20 | <0.0030 | 0.0014 | 0.025 | <0.0010 |       | <0.0010 | <0.010  |         | <0.010  |         | 0.051               | <0.0010 |       | <0.00020 | <0.010 | <0.010  | <0.0020 | <0.0010 |        | <0.0010 | 1.9    | TestAmerica |
| HRES-06 DUP     | RESE-1003027            | 03-Dec-08 |       |         |        |       |         |       |         |         |         |         | <0.025  |                     |         |       |          |        |         |         |         | <0.10  |         |        | TestAmerica |
| HRES-06         | RESE-1003035            | 04-Mar-09 | <0.20 | <0.0030 | 0.0016 | 0.025 | <0.0010 | <0.20 | <0.0010 | <0.0010 | <0.0010 | 0.0020  |         | <0.050              | <0.0010 | 0.025 | <0.00020 | 0.0024 | 0.0020  | <0.0020 | <0.0010 |        | <0.0010 | 0.87   | TestAmerica |
| HRES-06         | RESE-1003035            | 04-Mar-09 |       |         |        |       |         |       |         |         |         |         | <0.020  |                     |         |       |          |        |         |         |         | <0.040 |         |        | TestAmerica |
| HRES-06 DUP     | RESE-1003036            | 04-Mar-09 | <0.20 | <0.0030 | 0.0016 | 0.026 | <0.0010 | <0.20 | <0.0010 | <0.0010 | <0.0010 | 0.0011  |         | <0.050              | <0.0010 | 0.024 | <0.00020 | 0.0021 | 0.0021  | <0.0020 | <0.0010 |        | <0.0010 | 0.91   | TestAmerica |
| HRES-06 DUP     | RESE-1003036            | 04-Mar-09 |       |         |        |       |         |       |         |         |         |         | <0.020  |                     |         |       |          |        |         |         |         | <0.040 |         |        | TestAmerica |
| HRES-06         | RESE-1003044            | 03-Jun-09 | <0.20 | <0.0030 | 0.0016 | 0.026 | <0.0010 | <0.20 | <0.0010 | <0.0010 | <0.0010 | <0.0010 |         | <0.050              | <0.0010 | 0.019 | <0.00020 | 0.0020 | 0.0010  | <0.0020 | <0.0010 |        | <0.0010 | 0.87   | TestAmerica |
| HRES-06         | RESE-1003044            | 03-Jun-09 |       |         |        |       |         |       |         |         |         |         | <0.020  |                     |         |       |          |        |         |         |         | <0.040 |         |        | TestAmerica |
| HRES-06 DUP     | RESE-1003045            | 03-Jun-09 | <0.20 | <0.0030 | 0.0015 | 0.026 | <0.0010 | <0.20 | <0.0010 | <0.0010 | <0.0010 | <0.0010 |         | <0.050              | <0.0010 | 0.019 | <0.00020 | 0.0020 | <0.0010 | <0.0020 | <0.0010 |        | <0.0010 | 0.84   | TestAmerica |
| HRES-06 DUP     | RESE-1003045            | 03-Jun-09 |       |         |        |       |         |       |         |         |         |         | <0.020  |                     |         |       |          |        |         |         |         | <0.040 |         |        | TestAmerica |
| HRES-07         | RESE-1000262            | 26-Feb-08 | <0.20 | <0.0030 | 0.0015 | 0.019 | <0.0010 | <0.20 | <0.0010 | <0.010  | <0.0010 | <0.010  |         | 0.10                | <0.0010 | 0.059 | <0.00020 | <0.010 | <0.010  | <0.0020 | <0.0010 |        | <0.0010 | <0.050 | TestAmerica |
| HRES-07         | RESE-1000262            | 26-Feb-08 |       |         |        |       |         |       |         |         |         |         | <0.020  |                     |         |       |          |        |         |         |         | <0.040 |         |        | TestAmerica |
| HRES-07         | RESE-1003009            | 03-Jun-08 | <0.20 |         |        | 0.015 | <0.0010 | <0.20 |         | <0.010  |         | <0.010  |         | 0.50                |         |       |          | <0.010 | <0.010  |         |         |        |         | <0.050 | TestAmerica |
| HRES-07         | RESE-1003009            | 03-Jun-08 |       | <0.0030 | 0.0012 |       |         |       | <0.0010 |         | <0.0010 |         | <0.025  |                     | <0.0010 | 0.098 | <0.00020 |        |         | <0.0020 | <0.0010 | <0.040 | <0.0010 |        | TestAmerica |
| HRES-07 DUP     | RESE-1003010            | 03-Jun-08 | <0.20 |         |        | 0.014 | <0.0010 | <0.20 |         | <0.010  |         | <0.010  |         | 0.47                |         |       |          | <0.010 | <0.010  |         |         |        |         | <0.050 | TestAmerica |
| HRES-07 DUP     | RESE-1003010            | 03-Jun-08 |       | <0.0030 | 0.0012 |       |         |       | <0.0010 |         | <0.0010 |         | <0.025  |                     | <0.0010 | 0.098 | <0.00020 |        |         | <0.0020 | <0.0010 | <0.040 | <0.0010 |        | TestAmerica |
| HRES-07         | RESE-1003018            | 02-Sep-08 | <0.20 |         |        | 0.012 | <0.0010 | <0.20 |         | <0.010  |         | <0.010  |         | 0.27                |         |       | <0.00020 | <0.010 | <0.010  |         |         |        |         | <0.050 | TestAmerica |
| HRES-07         | RESE-1003018            | 02-Sep-08 |       | <0.0030 | 0.0014 |       |         |       | <0.0010 |         | 0.0016  |         | <0.020  |                     | <0.0010 | 0.092 |          |        |         | <0.0020 | <0.0010 | <0.040 | <0.0010 |        | TestAmerica |
| HRES-07         | RESE-1003022            | 01-Dec-08 | <0.20 | <0.0030 | 0.0014 | 0.015 | <0.0010 |       | <0.0010 | <0.010  |         | <0.010  |         | 0.52                | <0.0010 |       | <0.00020 | <0.010 | <0.010  | <0.0020 | <0.0010 |        | <0.0010 | <0.050 | TestAmerica |
| HRES-07         | RESE-1003022            | 01-Dec-08 |       |         |        |       |         |       |         |         |         |         | <0.025  |                     |         |       |          |        |         |         |         | <0.10  |         |        | TestAmerica |
| HRES-07         | RESE-1003032            | 03-Mar-09 | <0.20 | <0.0030 | 0.0014 | 0.015 | <0.0010 | <0.20 | <0.0010 | <0.0010 | <0.0010 | <0.0010 |         | 0.36                | <0.0010 | 0.089 | <0.00020 | 0.0016 | 0.010   | <0.0020 | <0.0010 |        | <0.0010 | 0.044  | TestAmerica |
| HRES-07         | RESE-1003032            | 03-Mar-09 |       |         |        |       |         |       |         |         |         |         | <0.020  |                     |         |       |          |        |         |         |         | <0.040 |         |        | TestAmerica |
| HRES-07         | RESE-1003041            | 02-Jun-09 | <0.20 | <0.0030 | 0.0015 | 0.015 | <0.0010 | <0.20 | <0.0010 | <0.0010 | <0.0010 | <0.0010 |         | 0.29                | <0.0010 | 0.076 | <0.00020 | 0.0014 | 0.0032  | 0.0023  | <0.0010 |        | <0.0010 | 0.036  | TestAmerica |
| HRES-07         | RESE-1003041            | 02-Jun-09 |       |         |        |       |         |       |         |         |         |         | <0.020  |                     |         |       |          |        |         |         |         | <0.040 |         |        | TestAmerica |



| SAMPLE LOCATION | SAMPLE                     | SAMPLE    |       |                  |         |       |         |       |         |         |         | TRACE   | CONSTIT | <b>UENTS</b> <sup>a</sup> | (mg/L)b |         |          |         |         |         |         |        |                   |        | <b>ANALYTICAL</b> |
|-----------------|----------------------------|-----------|-------|------------------|---------|-------|---------|-------|---------|---------|---------|---------|---------|---------------------------|---------|---------|----------|---------|---------|---------|---------|--------|-------------------|--------|-------------------|
|                 | IDENTIFIER/<br>DESCRIPTION | DATE      | Al    | Sb               | As      | Ва    | Ве      | В     | Cd      | Cr      | Со      | Cu      | CN      | Fe                        | Pb      | Mn      | Hg       | Мо      | Ni      | Se      | Ag      | S      | TI                | Zn     | LABORATORY        |
|                 | -                          | •         |       | 1                |         | 1     | '       |       |         | Apache  | Leap T  | uff Aqu | ifer    |                           |         |         | '        |         |         |         |         | 1      | 1                 | !      |                   |
| HRES-07         | RESE-1000279               | 08-Oct-09 | <0.20 | <0.0030          | 0.0019  | 0.016 | <0.0010 | <0.20 | <0.0010 | <0.0010 | <0.0010 | <0.0010 |         | 0.12                      | <0.0010 | 0.027   | <0.00020 | 0.0013  | 0.0018  | <0.0020 | <0.0010 |        | <0.0010           | <0.010 | TestAmerica       |
| HRES-07         | RESE-1000279               | 08-Oct-09 |       |                  |         |       |         |       |         |         |         |         | <0.020  |                           |         |         |          |         |         |         |         | <0.040 |                   |        | TestAmerica       |
| HRES-07         | RESE-1000280               | 15-Oct-09 | <0.20 | <0.0030          | 0.0025  | 0.016 | <0.0010 | <0.20 | <0.0010 | <0.0010 | <0.0010 | 0.0015  |         | <0.050                    | <0.0010 | 0.013   | <0.00020 | 0.0012  | 0.0013  | <0.0020 | <0.0010 |        | <0.0010           | 0.032  | TestAmerica       |
| HRES-07         | RESE-1000280               | 15-Oct-09 |       |                  |         |       |         |       |         |         |         |         | <0.020  |                           |         |         |          |         |         |         |         | <0.040 |                   |        | TestAmerica       |
| HRES-07         | RESE-1000281               | 20-Oct-09 | <0.20 | <0.0030          | 0.0022  | 0.016 | <0.0010 | <0.20 | <0.0010 | <0.0010 | <0.0010 | 0.0045  |         | <0.050                    | <0.0010 | 0.013   | <0.00020 | 0.0010  | 0.0023  | <0.0020 | <0.0010 |        | <0.0010           | 0.036  | TestAmerica       |
| HRES-07         | RESE-1000281               | 20-Oct-09 |       |                  |         |       |         |       |         |         |         |         | <0.020  |                           |         |         |          |         |         |         |         | <0.040 |                   |        | TestAmerica       |
| HRES-07         | RESE-1000282               | 28-Oct-09 | <0.20 | <0.0030          | 0.0026  | 0.015 | <0.0010 | <0.20 | <0.0010 | <0.0010 | <0.0010 | <0.0010 |         | <0.050                    | <0.0010 | 0.010   | <0.00020 | 0.0012  | 0.0014  | <0.0020 | <0.0010 |        | <0.0010           | 0.011  | TestAmerica       |
| HRES-07         | RESE-1000282               | 28-Oct-09 |       |                  |         |       |         |       |         |         |         |         | <0.020  |                           |         |         |          |         |         |         |         | <0.040 |                   |        | TestAmerica       |
| HRES-07         | RESE-1000284               | 03-Nov-09 | <0.20 | <0.0030          | 0.0023  | 0.015 | <0.0010 | <0.20 | <0.0010 | <0.0010 | <0.0010 | 0.0017  |         | <0.050                    | <0.0010 | 0.0086  | <0.00020 | <0.0010 | 0.0013  | <0.0020 | <0.0010 |        | <0.0010           | 0.015  | TestAmerica       |
| HRES-07         | RESE-1000284               | 03-Nov-09 |       |                  |         |       |         |       |         |         |         |         | <0.020  |                           |         |         |          |         |         |         |         | <0.040 |                   |        | TestAmerica       |
| HRES-07         | RESE-1000285               | 10-Nov-09 | <0.20 | <0.0030          | 0.0024  | 0.016 | <0.0010 | <0.20 | <0.0010 | <0.0010 | <0.0010 | <0.0010 |         | 0.15                      | <0.0010 | 0.0073  | <0.00020 | 0.0012  | <0.0010 | <0.0020 | <0.0010 |        | <0.0010           | 0.015  | TestAmerica       |
| HRES-07         | RESE-1000285               | 10-Nov-09 |       |                  |         |       |         |       |         |         |         |         | <0.020  |                           |         |         |          |         |         |         |         | <0.040 |                   |        | TestAmerica       |
| HRES-07         | RESE-1000286               | 17-Nov-09 | <0.20 | <0.0030          | 0.0024  | 0.015 | <0.0010 | <0.20 | <0.0010 | <0.0010 | <0.0010 | <0.0010 |         | <0.050                    | <0.0010 | 0.0062  | <0.00020 | 0.0018  | 0.0012  | <0.0020 | <0.0010 |        | <0.0010           | 0.011  | TestAmerica       |
| HRES-07         | RESE-1000286               | 17-Nov-09 |       |                  |         |       |         |       |         |         |         |         | <0.020  |                           |         |         |          |         |         |         |         | <0.050 |                   |        | TestAmerica       |
| HRES-07         | RESE-1000287               | 24-Nov-09 | <0.20 | <0.0030          | 0.0024  | 0.015 | <0.0010 | <0.20 | <0.0010 | <0.0010 | <0.0010 | <0.0010 |         | <0.050                    | <0.0010 | 0.0053  | <0.00020 | 0.0012  | 0.0012  | <0.0020 | <0.0010 |        | <0.0010           | 0.013  | TestAmerica       |
| HRES-07         | RESE-1000287               | 24-Nov-09 |       |                  |         |       |         |       |         |         |         |         | <0.020  |                           |         |         |          |         |         |         |         | <0.050 |                   |        | TestAmerica       |
| HRES-07         | RESE-1000289               | 30-Nov-09 | <0.20 | <0.0030          | 0.0023  | 0.015 | <0.0010 | <0.20 | <0.0010 | <0.0010 | <0.0010 | <0.0010 |         | <0.050                    | <0.0010 | 0.0052  | <0.00020 | <0.0010 | 0.0014  | <0.0020 | <0.0010 |        | <0.0010           | <0.010 | TestAmerica       |
| HRES-07         | RESE-1000289               | 30-Nov-09 |       |                  |         |       |         |       |         |         |         |         | <0.020  |                           |         |         |          |         |         |         |         | <0.050 |                   |        | TestAmerica       |
| HRES-07         | RESE-1000290               | 06-Dec-09 | <0.20 | <0.0030          | 0.0022  | 0.015 | <0.0010 | <0.20 | <0.0010 | <0.0010 | <0.0010 | 0.0010  |         | <0.050                    | <0.0010 | <0.0050 | <0.00020 | 0.0012  | 0.0011  | <0.0020 | <0.0010 |        | <0.0010           | 0.017  | TestAmerica       |
| HRES-07         | RESE-1000290               | 06-Dec-09 |       |                  |         |       |         |       |         |         |         |         | <0.020  |                           |         |         |          |         |         |         |         | <0.050 |                   |        | TestAmerica       |
| HRES-08         | RESE-1003149               | 21-Jul-11 | <0.20 | <0.0030          | 0.0024  | 0.053 | <0.0010 | <0.20 | <0.0010 | <0.0010 | <0.0010 | <0.0010 |         | 0.71                      | <0.0010 | 0.21    | <0.00020 | 0.0035  | 0.0048  | 0.0020  | <0.0010 |        | <0.0010           | 0.051  | TestAmerica       |
| HRES-08         | RESE-1003149               | 21-Jul-11 | <0.20 | <0.0030          | 0.0032  | 0.060 | <0.0010 | <0.20 | <0.0010 | 0.0011  | <0.0010 | 0.0019  | <0.0080 | 1.3                       | <0.0010 | 0.22    | <0.00020 | 0.0035  | 0.0061  | <0.0020 | <0.0010 | <0.050 | <0.0010           | 0.053  | TestAmerica       |
| HRES-09         | RESE-1003182               | 29-Dec-10 | <0.20 | <0.0030          | 0.0015  | 0.056 | <0.0010 | <0.20 | <0.0010 | <0.0010 | <0.0010 | <0.0010 |         | 0.30                      | <0.0010 | 0.82    | <0.00020 | 0.012   | 0.0041  | <0.0020 | <0.0010 |        | <0.0010           | 0.12   | TestAmerica       |
| HRES-09         | RESE-1003182               | 29-Dec-10 | <0.20 | <0.0030          | 0.0014  | 0.055 | <0.0010 | <0.20 | <0.0010 | <0.0010 | <0.0010 | <0.0010 | <0.0050 | 0.35                      | <0.0010 | 0.86    | <0.00020 | 0.011   | 0.0026  | <0.0020 | <0.0010 | <0.050 | <0.0010           | 0.13   | TestAmerica       |
| HRES-09         | RESE-1003133               | 12-Jun-11 | <0.20 | <0.0030          | 0.0018  | 0.045 | <0.0010 | <0.20 | <0.0010 | <0.0010 | 0.0012  | <0.0010 |         | 0.23                      | <0.0010 | 0.79    | <0.00020 | 0.0095  | 0.0022  | <0.0020 | <0.0050 |        | <0.0010           | 0.19   | TestAmerica       |
| HRES-09         | RESE-1003133               | 12-Jun-11 | <0.20 | <0.0030          | 0.0015  | 0.048 | <0.0010 | <0.20 | <0.0010 | <0.0010 | <0.0010 | 0.0058  | <0.0080 | 0.26                      | 0.0019  | 0.73    | <0.00020 | 0.010   | 0.0027  | <0.0020 | <0.0010 | <0.050 | <0.0010           | 0.15   | TestAmerica       |
| HRES-09         | RESE-1003136               | 21-Jun-11 | <0.20 | <0.0030          | 0.0018  | 0.033 | <0.0010 | <0.20 | <0.0010 | <0.0010 | 0.0019  | <0.0010 |         | 0.068                     | <0.0010 | 0.54    | <0.00020 | 0.0045  | 0.0017  | <0.0020 | <0.0010 |        | <0.0010           | 0.15   | TestAmerica       |
| HRES-09         | RESE-1003136               | 21-Jun-11 | <0.20 | <0.0030          | 0.0017  | 0.033 | <0.0010 | <0.20 | <0.0010 | <0.0010 | <0.0010 | 0.0010  | <0.0080 | <0.050                    | <0.0010 | 0.53    | <0.00020 | 0.0045  | 0.0017  | <0.0020 | <0.0010 | <0.050 | <0.0010           | 0.11   | TestAmerica       |
| HRES-09         | RESE-1003137               | 28-Jun-11 | <0.20 | <0.0030          | 0.0019  | 0.030 | <0.0010 | <0.20 | <0.0010 | <0.0010 | <0.0010 | <0.0010 |         | 0.12                      | <0.0010 | 0.46    | <0.00020 | 0.0036  | 0.0015  | <0.0020 | <0.0010 |        | <0.0010           | 0.11   | TestAmerica       |
| HRES-09         | RESE-1003137               | 28-Jun-11 | <0.20 | <0.0030          | 0.0018  | 0.028 | <0.0010 | <0.20 | <0.0010 | <0.0010 | <0.0010 | <0.0010 | <0.0080 | 0.052                     | <0.0010 | 0.46    | <0.00020 | 0.0035  | 0.0016  | <0.0020 | <0.0010 | <0.050 | <0.0010           | 0.10   | TestAmerica       |
| HRES-09         | RESE-1003143               | 04-Jul-11 | <0.20 | <0.0030          | 0.0019  | 0.028 | <0.0010 | <0.20 | <0.0010 | <0.0010 | <0.0010 | <0.0010 |         | 0.12                      | <0.0010 | 0.42    | <0.00020 | 0.0032  | 0.0016  | <0.0020 | <0.0010 |        | <0.0010           | 0.12   | TestAmerica       |
| HRES-09         | RESE-1003143               | 04-Jul-11 | <0.20 | <0.0030          | 0.0018  | 0.028 | <0.0010 | <0.20 | <0.0010 | <0.0010 | <0.0010 | <0.0010 | <0.0080 | 0.067                     | <0.0010 | 0.42    | <0.00020 | 0.0032  | 0.0012  | <0.0020 | <0.0010 | <0.050 | <0.0010           | 0.12   | TestAmerica       |
| HRES-10         | RESE-1003175               | 24-Sep-10 | <0.40 | <0.015           | <0.0050 | 0.042 | <0.0020 | <0.40 | <0.0050 | <0.0050 | <0.0050 | <0.0050 |         | 0.13                      | <0.0050 | <0.020  | <0.00020 | 0.0059  | <0.0050 | <0.010  | <0.0050 |        | <0.0050           | 0.18   | TestAmerica       |
| HRES-10         | RESE-1003175               | 24-Sep-10 | <0.20 | <0.0030          | 0.0012  | 0.042 | <0.0010 | <0.20 | <0.0010 | <0.0010 | <0.0010 | 0.0030  | <0.020  | 0.24                      | <0.0010 | <0.010  | <0.00020 | 0.0058  | 0.0011  | <0.0020 | <0.0010 | <0.050 | <0.0010           | 0.20   | TestAmerica       |
| HRES-11         | RESE-1003174               | 23-Sep-10 | <0.40 | <u>&lt;0.015</u> | <0.0050 | 0.017 | <0.0020 | <0.40 | <0.0050 | <0.0050 | <0.0050 | <0.0050 |         | 0.20                      | <0.0050 | 0.063   | <0.00020 | <0.0050 | <0.0050 | <0.010  | <0.0050 |        | <u>&lt;0.0050</u> | <0.10  | TestAmerica       |
| HRES-11         | RESE-1003174               | 23-Sep-10 | <0.20 | <0.0030          | 0.0015  | 0.017 | <0.0010 | <0.20 | <0.0010 | <0.0010 | <0.0010 | <0.0010 | <0.020  | 0.52                      | <0.0010 | 0.069   | <0.00020 | 0.0021  | 0.0012  | <0.0020 | <0.0010 | <0.050 | <0.0010           | <0.050 | TestAmerica       |
| HRES-12         | RESE-1003144               | 10-Jul-11 | <0.20 | <0.0030          | <0.0010 | 0.012 | <0.0010 | <0.20 | <0.0010 | <0.0010 | <0.0010 | <0.0010 |         | 3.2                       | <0.0010 | 0.38    | <0.00020 | 0.0063  | 0.0059  | <0.0020 | <0.0010 |        | <0.0010           | 0.43   | TestAmerica       |
| HRES-12         | RESE-1003144               | 10-Jul-11 | <0.20 | <0.0030          | <0.0010 | 0.014 | <0.0010 | <0.20 | <0.0010 | <0.0010 | <0.0010 | 0.0015  | <0.0080 | 7.9                       | 0.0032  | 0.38    | <0.00020 | 0.0063  | 0.0078  | <0.0020 | <0.0010 | <0.050 | <0.0010           | 0.77   | TestAmerica       |
|                 | RESE-1003130               |           | <0.20 | <0.0030          | 0.0021  | 0.042 | <0.0010 | <0.20 | <0.0010 | <0.0010 | <0.0010 | <0.0010 |         | <0.050                    | <0.0010 | 0.047   | <0.00020 | 0.0018  | 0.0017  | <0.0020 | <0.0010 |        | <0.0010           | 0.22   | TestAmerica       |
| HRES-13         | KESE-1003130               | 03-Jun-11 | <0.20 | <0.0030          | 0.0021  | 0.042 | <0.0010 | <0.20 |         | <0.0010 |         |         | <0.0080 | 0.13                      | <0.0010 | 0.047   | <0.00020 |         | 0.0022  |         | <0.0010 | <0.050 | <0.0010           | 0.22   | TestAmerica       |



| SAMPLE LOCATION            | SAMPLE                  | SAMPLE    |        |                  |             |        |         |        |                  |             |         | TRACE      | CONSTIT | TUENTS <sup>a</sup> | (mg/L) <sup>b</sup> |         |          |        |        |         |         |        |                   |        | ANALYTICAL  |
|----------------------------|-------------------------|-----------|--------|------------------|-------------|--------|---------|--------|------------------|-------------|---------|------------|---------|---------------------|---------------------|---------|----------|--------|--------|---------|---------|--------|-------------------|--------|-------------|
|                            | IDENTIFIER/ DESCRIPTION | DATE      | Al     | Sb               | As          | Ва     | Ве      | В      | Cd               | Cr          | Со      | Cu         | CN      | Fe                  | Pb                  | Mn      | Hg       | Мо     | Ni     | Se      | Ag      | S      | TI                | Zn     | LABORATORY  |
|                            |                         |           |        |                  | I           |        |         |        |                  | Apache      | Leap T  | uff Aqu    | ifer    |                     | 1                   |         |          |        |        |         |         | 1      |                   |        |             |
| HRES-14                    | RESE-1003147            | 15-Jul-11 | <0.20  | <0.0030          | 0.0019      | 0.011  | <0.0010 | <0.20  | <0.0010          | <0.0010     | <0.0010 | <0.0010    |         | 0.065               | <0.0010             | 0.057   | <0.00020 | 0.0026 | 0.0016 | <0.0020 | <0.0010 |        | <0.0010           | <0.010 | TestAmerica |
| HRES-14                    | RESE-1003147            | 15-Jul-11 | 0.39   | <0.0030          | 0.0024      | 0.011  | <0.0010 | <0.20  | <0.0010          | <0.0010     | <0.0010 | <0.0010    | <0.0080 | 0.37                | <0.0010             | 0.061   | <0.00020 | 0.0034 | 0.0016 | <0.0020 | <0.0010 | <0.050 | <0.0010           | <0.010 | TestAmerica |
| JI Ranch House Well        | RESE-1000303            | 21-Jun-07 | <0.050 | <0.002           | 0.0017      | 0.022  | <0.0020 | <0.050 | <0.001           | <0.0050     | <0.010  | <0.010     |         | <0.040              | <0.001              | <0.020  |          | <0.020 | <0.010 | <0.002  | <0.001  |        | <0.001            | <0.020 | TestAmerica |
| JI Ranch House Well        | RESE-1000303            | 21-Jun-07 |        |                  |             |        |         |        |                  |             |         |            | <0.020  |                     |                     |         |          |        |        |         |         | <0.10  |                   |        | TestAmerica |
| MJ-11                      | RESE-1000257            | 29-Sep-07 | <0.50  | <0.002           | 0.0021      | 0.016  | <0.0040 | <0.50  | <0.001           | <0.010      | <0.050  | <0.020     |         | <0.20               | 0.0014              | <0.020  | <0.00020 | <0.050 | <0.050 | <0.002  | <0.001  |        | <0.001            | <0.050 | TestAmerica |
| MJ-11                      | RESE-1000257            | 29-Sep-07 |        |                  |             |        |         |        |                  |             |         |            | <0.020  |                     |                     |         |          |        |        |         |         | <0.10  |                   |        | TestAmerica |
| MJ-11                      | RESE-1000261            | 20-Feb-08 | <0.50  | <0.002           | 0.0019      | 0.014  | <0.0040 | <0.20  | <0.001           | <0.010      | <0.010  | <0.020     |         | <0.20               | <0.001              | <0.010  |          | <0.050 | <0.050 | <0.002  | <0.001  |        | <0.001            | <0.050 | TestAmerica |
| MJ-11                      | RESE-1000261            | 20-Feb-08 |        |                  |             |        |         |        |                  |             |         |            | <0.020  |                     |                     |         | <0.00020 |        |        |         |         | <0.10  |                   |        | TestAmerica |
| MJ-11                      | RESE-1003007            | 02-Jun-08 | <0.20  |                  |             | 0.015  | <0.0010 | <0.20  |                  | <0.010      |         | <0.010     |         | <0.050              |                     |         |          | <0.010 | <0.010 |         |         |        |                   | <0.050 | TestAmerica |
| MJ-11                      | RESE-1003007            | 02-Jun-08 |        | <0.0030          | 0.0022      |        |         |        | <0.0010          |             | <0.0010 |            | <0.025  |                     | <0.0010             | <0.0050 | <0.00020 |        |        | <0.0020 | <0.0010 | <0.040 | <0.0010           |        | TestAmerica |
| MJ-11                      | RESE-1003015            | 26-Aug-08 | <0.20  |                  |             | 0.015  | <0.0010 | <0.20  |                  | <0.010      |         | <0.010     |         | <0.050              |                     |         | <0.00020 | <0.010 | <0.010 |         |         |        |                   | <0.050 | TestAmerica |
| MJ-11                      | RESE-1003015            | 26-Aug-08 |        | <0.0030          | 0.0018      |        |         |        | <0.0010          |             | 0.040   |            | <0.025  |                     | <0.0010             | 1.3     |          |        |        | 0.022   | <0.0010 | <0.040 | <0.0010           |        | TestAmerica |
| Oak Flat Well              | RESE-1001301            | 16-Aug-06 | <0.50  | <0.002           | 0.0031      | 0.025  | <0.0040 | <0.50  | <0.0050          | <0.010      | <0.050  | <0.020     |         | <0.20               | 0.0014              | 0.051   | <0.00020 | <0.050 | <0.050 | <0.002  | <0.0050 |        | <0.001            | <0.050 | TestAmerica |
| UA - Deep Slanted Borehole | UA - DSB Jun93          | 11-Jun-93 | <0.05  |                  |             |        |         |        |                  |             |         |            |         |                     |                     |         |          |        |        |         |         |        |                   |        | •           |
| UA - Deep Slanted Borehole | UA - DSB Jul93          | 08-Jul-93 | <0.05  |                  |             |        |         |        |                  |             |         |            |         |                     |                     |         |          |        |        |         |         |        |                   |        |             |
| UA - Deep Slanted Borehole | UA - DSB (51 700 I)     | 02-Nov-93 | ND     |                  |             |        |         |        |                  |             |         |            |         |                     |                     |         |          |        |        |         |         |        |                   |        | •           |
|                            |                         |           |        |                  |             |        |         |        | [                | Deep Gr     | oundwa  | ater Sys   | stem    |                     |                     |         |          |        |        |         |         |        |                   |        |             |
| DHRES-01                   | RESE-112808             | 28-Nov-08 | <0.20  | <0.0030          | 0.0056      | 0.48   | <0.0010 |        | <0.0010          | <0.010      |         | 0.0081     |         | 2.7                 | <0.0010             | 0.16    | <0.00020 | 0.032  | <0.010 | <0.0020 | <0.0010 |        | <0.0010           | <0.050 | TestAmerica |
| DHRES-01                   | RESE-112808             | 28-Nov-08 | <0.20  | <0.0030          | 0.0054      | 0.48   | <0.0010 |        | <0.0010          | <0.010      |         | 0.059      | <0.020  | 2.7                 | <0.0010             | 0.16    | <0.00020 | 0.031  | <0.010 | <0.0020 | <0.0010 | <0.040 | <0.0010           | <0.050 | TestAmerica |
| DHRES-02                   | RESE-1003150            | 20-Jul-11 | <0.20  | <0.0030          | 0.0031      | 0.061  | <0.0010 | 0.22   | <0.0010          | <0.0010     | <0.0010 | 0.0025     |         | 11                  | <0.0010             | 0.37    | <0.00020 | 0.013  | 0.0074 | <0.0020 | <0.0010 |        | <0.0010           | <0.010 | TestAmerica |
| DHRES-02                   | RESE-1003150            | 20-Jul-11 | <0.20  | <0.0030          | 0.0038      | 0.054  | <0.0010 | 0.29   | <0.0010          | 0.0020      | <0.0010 | 0.0054     | <0.0080 | 14                  | <0.0010             | 0.42    | <0.00020 | 0.012  | 0.016  | <0.0020 | <0.0010 | 0.26   | <0.0010           | <0.010 | TestAmerica |
| DHRES-02 DUP               | RESE-1003201            | 20-Jul-11 | <0.20  | <0.0030          | 0.0031      | 0.056  | <0.0010 | 0.27   | <0.0010          | 0.0010      | <0.0010 | 0.0018     |         | 12                  | <0.0010             | 0.35    | <0.00020 | 0.012  | 0.0070 | <0.0020 | <0.0010 |        | <0.0010           | <0.010 | TestAmerica |
| DHRES-02 DUP               | RESE-1003201            | 20-Jul-11 | <0.20  | <0.0030          | 0.0037      | 0.053  | <0.0010 | 0.26   | <0.0010          | 0.0018      | <0.0010 | 0.0044     | <0.0080 | 14                  | <0.0010             | 0.41    | <0.00020 | 0.012  | 0.012  | <0.0020 | <0.0010 | 0.27   | <0.0010           | <0.010 | TestAmerica |
| DHRES-02                   | RESE-1003218            | 22-Oct-11 | <0.20  | <0.0030          | 0.0040      | 0.052  | <0.0010 | <0.20  | <0.0010          | <0.0010     | 0.0025  | 0.0021     |         | 8.3                 | <0.0010             | 0.35    | <0.00020 | 0.0073 | 0.0072 | <0.0020 | <0.0010 |        | <0.0010           | <0.050 | TestAmerica |
| DHRES-02                   | RESE-1003218            | 22-Oct-11 | <0.20  | <0.0030          | 0.0084      | 0.049  | 0.0010  | <0.20  | <0.0010          | 0.0027      | <0.0010 | 0.0082     | <0.0080 | 11                  | <0.0010             | 0.38    | <0.00020 | 0.0080 | 0.012  | <0.0020 | <0.0010 | 0.20   | <0.0010           | <0.050 | TestAmerica |
| DHRES-02                   | RESE-1003222            | 25-Oct-11 | <0.20  | <0.0030          | 0.0026      | 0.052  | 0.0012  | <0.20  | <0.0010          | <0.0010     | <0.0010 | 0.0013     |         | 7.3                 | <0.0010             | 0.34    | <0.00020 | 0.0057 | 0.0089 | <0.0020 | <0.0010 |        | <0.0010           | <0.050 | TestAmerica |
| DHRES-02                   | RESE-1003222            | 25-Oct-11 | <0.20  | <0.0030          | 0.0064      | 0.053  | 0.0012  | <0.20  | <0.0010          | 0.0016      | <0.0010 | 0.0044     | <0.050  | 7.8                 | <0.0010             | 0.34    | <0.00020 | 0.0071 | 0.017  | <0.0020 | <0.0010 | 0.17   | <0.0010           | <0.050 | TestAmerica |
| DHRES-02                   | RESE-1003227            | 27-Oct-11 | <0.20  | <0.0030          | 0.0047      | 0.075  | <0.0010 | <0.20  | <0.0010          | <0.0010     | 0.0010  | 0.0024     |         | 11                  | <0.0010             | 1.5     | <0.00020 | 0.023  | 0.0076 | <0.0020 | <0.0010 |        | <0.0010           | <0.050 | TestAmerica |
| DHRES-02                   | RESE-1003227            | 27-Oct-11 | 4.5    | <u>&lt;0.060</u> | <u>0.13</u> | 0.16   | 0.0016  | 1.5    | <u>&lt;0.020</u> | <u>0.61</u> | 0.061   | <u>1.8</u> | <0.0080 | 1100                | 0.43                | 15      | <0.00020 | 0.27   | 0.22   | <0.040  | <0.020  | 12     | <u>&lt;0.020</u>  | 0.76   | TestAmerica |
| DHRES-04                   | RESE-1000291            | 21-Dec-09 | <0.20  | <0.0030          | 0.0032      | 0.0069 | <0.0010 | 0.39   | <0.0010          | 0.0026      | 0.0011  | 0.0049     |         | <0.050              | <0.0010             | 0.027   | <0.00020 | 0.032  | 0.021  | 0.018   | <0.0010 |        | <0.0010           | 0.017  | TestAmerica |
| DHRES-04                   | RESE-1000291            | 21-Dec-09 |        |                  |             |        |         |        |                  |             |         |            | <0.020  |                     |                     |         |          |        |        |         |         | <0.050 |                   |        | TestAmerica |
| DHRES-06 DUP               | RESE-1003184            | 09-Jan-11 | <0.20  | <0.0030          | 0.0077      | 0.19   | <0.0010 | <0.20  | <0.0010          | <0.0010     | <0.0010 | 0.0012     |         | 2.9                 | 0.0018              | 0.53    | <0.00020 | 0.032  | 0.0025 | <0.0020 | <0.0010 |        | <0.0010           | 1.6    | TestAmerica |
| DHRES-06 DUP               | RESE-1003184            | 09-Jan-11 | <0.20  | <0.0030          | 0.0076      | 0.19   | <0.0010 | <0.20  | <0.0010          | <0.0010     | <0.0010 | 0.0036     | <0.0050 | 3.1                 | 0.0025              | 0.55    | <0.00020 | 0.030  | 0.0028 | <0.0020 | <0.0010 | <0.10  | <0.0010           | 1.7    | TestAmerica |
| DHRES-06                   | RESE-1003186            | 09-Jan-11 | <0.20  | <0.0030          | 0.0070      | 0.19   | <0.0010 | <0.20  | <0.0010          | <0.0010     | <0.0010 | 0.0020     |         | 2.4                 | 0.0017              | 0.53    | <0.00020 | 0.030  | 0.0026 | <0.0020 | <0.0010 |        | <0.0010           | 1.6    | TestAmerica |
| DHRES-06                   | RESE-1003186            | 09-Jan-11 | <0.20  | <0.0030          | 0.0079      | 0.19   | <0.0010 | <0.20  | <0.0010          | <0.0010     | <0.0010 | 0.0038     | <0.0050 | 3.1                 | 0.0027              | 0.53    | <0.00020 | 0.031  | 0.0029 | <0.0020 | <0.0010 | <0.10  | <0.0010           | 1.7    | TestAmerica |
| DHRES-09                   | RESE-1003206            | 02-Sep-11 | <0.20  | <0.0030          | <0.0010     | 0.043  | <0.0010 | <0.20  | <0.0010          | <0.0010     | <0.0010 | <0.0010    |         | 0.088               | <0.0010             | 0.058   | <0.00020 | 0.0039 | 0.0033 | 0.0028  | <0.0010 |        | <0.0010           | <0.050 | TestAmerica |
| DHRES-09                   | RESE-1003206            | 02-Sep-11 | <0.20  | <0.0030          | <0.0010     | 0.041  | <0.0010 | <0.20  | <0.0010          | <0.0010     | <0.0010 | <0.0010    | <0.0080 | 0.99                | 0.0016              | 0.057   | <0.00020 | 0.042  | 0.0039 | 0.0028  | <0.0010 | <0.050 | <0.0010           | <0.050 | TestAmerica |
| DHRES-10                   | RESE-1003105            | 28-Nov-10 | <0.20  | 0.020            | 0.073       | 0.022  | <0.0010 | 0.34   | <0.0050          | <0.0050     | <0.0050 | <0.0050    |         | <0.050              | <0.0050             | 15      | <0.00020 | 0.0068 | 0.021  | <0.010  | <0.0050 |        | <0.0050           | <0.050 | TestAmerica |
| DHRES-10                   | RESE-1003105            | 28-Nov-10 | 3.8    | 0.038            | 0.55        | 0.051  | 0.0011  | 0.52   | <0.0050          | 0.017       | 0.011   | 1.0        | <0.0050 | 64                  | 0.024               | 16      | <0.00020 | 0.0095 | 0.032  | <0.010  | <0.0050 | <0.050 | <u>&lt;0.0050</u> | 0.74   | TestAmerica |



| SAMPLE LOCATION                                | SAMPLE                       | SAMPLE                 |        |                   |                |       |         |       |                  |         |         | TRACE         | CONSTIT | UENTS    | (mg/L)b  |          |          |         |         |         |          |            |                    |        | ANALYTICAL              |
|------------------------------------------------|------------------------------|------------------------|--------|-------------------|----------------|-------|---------|-------|------------------|---------|---------|---------------|---------|----------|----------|----------|----------|---------|---------|---------|----------|------------|--------------------|--------|-------------------------|
|                                                | IDENTIFIER/ DESCRIPTION      | DATE                   | Al     | Sb                | As             | Ва    | Ве      | В     | Cd               | Cr      | Со      | Cu            | CN      | Fe       | Pb       | Mn       | Hg       | Мо      | Ni      | Se      | Ag       | S          | TI                 | Zn     | LABORATORY              |
|                                                | DESCRIPTION                  |                        |        |                   |                |       |         |       |                  | Deep Gr | oundwa  | ⊥<br>ater Sys | tem     |          |          |          |          |         |         |         |          |            |                    |        |                         |
| DHRES-11                                       | RESE-1003131                 | 29-Jun-11              | <0.20  | <0.0030           | 0.0086         | 0.026 | <0.0010 | <0.20 | <0.0010          | <0.0010 | <0.0010 | <0.0010       |         | 0.26     | <0.0010  | 0.17     | <0.00020 | 0.0057  | 0.0011  | <0.0020 | <0.0010  |            | <0.0010            | <0.010 | TestAmerica             |
| DHRES-11                                       | RESE-1003131                 | 29-Jun-11              | <0.20  | <0.0030           | 0.036          | 0.026 | <0.0010 | <0.20 | <0.0010          | 0.0011  | <0.0010 | <0.0010       | <0.0080 | 3.8      | <0.0010  | 0.17     | <0.00020 | 0.0052  | <0.0010 | <0.0020 | <0.0010  | <0.050     | <0.0010            | 0.010  | TestAmerica             |
| DHRES-13                                       | RESE-1003138                 | 28-Jun-11              | <0.20  | <0.0030           | 0.0010         | 0.024 | <0.0010 | <0.20 | <0.0010          | <0.0010 | 0.0018  | <0.0010       |         | 0.30     | <0.0010  | 0.19     | <0.00020 | 0.017   | 0.0021  | <0.0020 | <0.0010  |            | <0.0010            | 0.011  | TestAmerica             |
| DHRES-13                                       | RESE-1003138                 | 28-Jun-11              | 0.54   | <0.0030           | 0.0018         | 0.025 | <0.0010 | <0.20 | <0.0010          | 0.0014  | <0.0010 | 0.0018        | <0.0080 | 2.0      | 0.0049   | 0.22     | <0.00020 | 0.016   | 0.0023  | <0.0020 | <0.0010  | <0.050     | <0.0010            | 0.019  | TestAmerica             |
| RES-09                                         | RES009-1681-2064.28          | 09-Oct-06              |        | <0.00300          | 0.0188         | 0.262 | <0.0020 |       | <0.00020         | <0.0060 |         | 0.034         |         |          | <0.00300 |          | <0.00020 |         | <0.010  |         | <0.00010 |            | <0.00200           | 0.030  | SVL                     |
| RES-09                                         | RES009-1681-2064.28          | 09-Oct-06              | <0.030 | <0.0030           | 0.0152         |       | <0.0020 | 0.19  | <0.0021          |         | <0.006  | 0.042         | <0.10   | 13.7     | 0.0344   |          | <0.00020 | 0.061   |         | <0.009  | <0.00072 | <1.0       | <u>&lt;0.0034</u>  | 0.045  | SVL                     |
| RES-09                                         | RES009-1681-2064.28          | 09-Oct-06              |        | <0.0030           | 0.0178         |       | <0.0020 |       | <0.00020         | 0.0130  |         | 0.040         |         |          | 0.0045   | 0.339    |          |         | <0.010  | <0.0030 | <0.00010 |            |                    | 0.054  | SVL                     |
|                                                |                              |                        |        |                   |                |       |         |       |                  | Mi      | ne Wor  | kings         |         |          |          |          |          |         |         |         |          |            |                    |        |                         |
| Shaft No. 9 Discharge                          | RESE-1000278                 | 22-Apr-09              | <0.20  | <0.0030           | 0.079          | 0.025 | 0.0025  | 0.68  | <0.0010          | <0.0010 | 0.19    | 0.0080        |         | 120      | 0.0010   | 120      | <0.00020 | <0.010  | 0.13    | 0.0053  | <0.0010  |            | <0.0010            | 98     | TestAmerica             |
| Shaft No. 9 Discharge                          | RESE-1000278                 | 22-Apr-09              |        |                   |                |       |         |       |                  |         |         |               | <0.020  |          |          |          |          |         |         |         |          | <0.040     |                    |        | TestAmerica             |
| Shaft No. 9 Discharge                          | RESE-1000288                 | 24-Nov-09              | <0.20  | <0.0030           | 0.057          | 0.026 | 0.0015  | 0.27  | <0.0010          | <0.0010 | 0.036   | 0.0018        |         | 47       | <0.0010  | 24       | <0.00020 | 0.0037  | 0.041   | 0.011   | <0.0010  |            | <0.0010            | 7.2    | TestAmerica             |
| Shaft No. 9 Discharge                          | RESE-1000288                 | 24-Nov-09              |        |                   |                |       |         |       |                  |         |         |               | <0.020  |          |          |          |          |         |         |         |          | <0.050     |                    |        | TestAmerica             |
| Shaft No. 9 Discharge                          | RESE-1003157                 | 25-Jun-10              | <0.20  | <0.0030           | 0.054          | 0.024 | <0.0010 | r     | <0.0010          | <0.0010 | 0.018   | 0.0029        |         | 45       | <0.0010  | 18       | <0.00020 | 0.0041  | 0.030   | <0.010  | <0.0010  |            | <0.0010            | 3.0    | TestAmerica             |
| Shaft No. 9 Discharge                          | RESE-1003157                 | 25-Jun-10              | <0.20  | <0.0030           | 0.056          | 0.024 | 0.0012  | 0.27  | <0.0010          | <0.0010 | 0.017   | 0.0051        | 0.36    | 49       | 0.0016   | 19       | <0.00020 | 0.0042  | 0.028   | 0.010   | <0.0010  | <0.050     | <0.0010            | 3.0    | TestAmerica             |
| Shaft No. 9 Discharge                          | RESE-1003169                 | 29-Jul-10              | <0.20  | <u>&lt;0.015</u>  | 0.056          | 0.032 | <0.0010 | 0.32  | <0.0050          | <0.0050 | 0.024   | <0.0050       |         | 39       | <0.0050  | 18       | <0.00020 | 0.0056  | 0.037   | <0.010  | <0.0050  |            | <u>&lt;0.0050</u>  | 3.1    | TestAmerica             |
| Shaft No. 9 Discharge                          | RESE-1003169                 | 29-Jul-10              | <0.20  | <0.0030           | 0.047          | 0.026 | <0.0010 | 0.41  | <0.0010          | <0.0010 | 0.017   | 0.0060        | <0.020  | 50       | 0.0015   | 18       | <0.00020 | 0.0043  | 0.022   | 0.0064  | <0.0010  | <0.050     | <0.0010            | 2.9    | TestAmerica             |
| Shaft No. 9 Discharge                          | RESE-1003171                 | 30-Aug-10              | <0.20  | <0.0030           | <u>0.055</u>   | 0.026 | 0.0011  | <0.20 | <0.0010          | <0.0010 | 0.024   | 0.0036        |         | 73       | <0.0010  | 21       | <0.00020 | 0.0040  | 0.038   | 0.0042  | <0.0010  |            | <0.0010            | 4.5    | TestAmerica             |
| Shaft No. 9 Discharge                          | RESE-1003162                 | 14-Sep-10              | <0.20  | <0.0030           | 0.069          | 0.024 | 0.0015  | 0.32  | <0.0010          | <0.0010 | 0.029   | 0.0030        |         | 70       | <0.0010  | 22       | <0.00020 | 0.0038  | 0.032   | 0.0073  | <0.0010  |            | <0.0010            | 4.2    | TestAmerica             |
| Shaft No. 9 Discharge                          | RESE-1003177                 | 27-Sep-10              | <0.20  | <u>&lt;0.015</u>  | <u>0.065</u>   | 0.025 | <0.0010 | 0.51  | <0.0050          | <0.0050 | 0.030   | <0.0050       |         | 66       | <0.0050  | 18       | <0.00020 | <0.0050 | 0.049   | <0.010  | <0.0050  |            | <u>&lt;0.0050</u>  | 3.4    | TestAmerica             |
| Shaft No. 9 Discharge                          | RESE-1003179                 | 11-Oct-10              | <0.20  | <0.060            | 0.057          | 0.027 | 0.0012  | 0.34  | <u>&lt;0.020</u> | <0.020  | 0.027   | <0.020        |         | 62       | <0.020   | 17       | <0.00020 | <0.020  | 0.040   | <0.040  | <0.020   |            | <u>&lt;0.020</u>   | 2.7    | TestAmerica             |
| Shaft No. 9 Discharge                          | RESE-1003180                 | 25-Oct-10              | <0.20  | <0.0030           | 0.052          | 0.025 | 0.0015  | 0.38  | <0.0010          | <0.0010 | 0.026   | 0.0031        |         | 61       | <0.0010  | 18       | <0.00020 | 0.0037  | 0.031   | 0.0028  | <0.0010  |            | <0.0010            | 2.7    | TestAmerica             |
| Shaft No. 9 Discharge                          | RESE-1003181                 | 09-Nov-10              | <0.20  | <0.0030           | 0.051          | 0.027 | 0.0010  | 0.53  | <0.0010          | <0.0010 | 0.021   | 0.0018        |         | 59       | <0.0010  | 17       | <0.00020 | 0.0037  | 0.021   | 0.0074  | <0.0010  |            | <0.0010            | 2.7    | TestAmerica             |
| Shaft No. 9 Discharge                          | RESE-1003106                 | 12-Jan-11              | <0.20  | <0.0030           | 0.044          | 0.026 | <0.0010 | 0.48  | <0.0010          | <0.0010 | 0.018   | 0.0016        |         | 48       | <0.0010  | 14       | <0.00020 | 0.0038  | 0.029   | 0.0049  | <0.0010  |            | <0.0010            | 2.0    | TestAmerica             |
| Shaft No. 9 Discharge                          | RESE-1003106                 | 12-Jan-11              | <0.20  | <0.0030           | 0.053          | 0.026 | <0.0010 | 0.57  | <0.0010          | <0.0010 | 0.017   | 0.010         |         | 53       | 0.0027   | 15       | <0.00020 | 0.0039  | 0.024   | 0.0051  | <0.0010  |            | <0.0010            | 2.2    | TestAmerica             |
| Shaft No. 9 Discharge                          | RESE-1003187                 | 25-Jan-11              | <0.20  | <0.0030           | 0.046          | 0.026 | <0.0010 | <0.20 | <0.0010          | <0.0010 | 0.015   | 0.0024        |         | 37       | <0.0010  | 12       | <0.00020 | 0.0041  | 0.023   | 0.0079  | <0.0010  |            | <0.0010            | 1.5    | TestAmerica             |
| Shaft No. 9 Discharge                          | RESE-1003187                 | 25-Jan-11              | <0.20  | <0.0030           | 0.048          | 0.026 | <0.0010 | <0.20 | <0.0010          | <0.0010 | 0.013   | 0.0036        |         | 39       | <0.0010  | 12       | <0.00020 | 0.0039  | 0.022   | 0.0062  | <0.0010  |            | <0.0010            | 1.5    | TestAmerica             |
| Shaft No. 9 Discharge                          | RESE-1003195                 | 09-Feb-11              | <0.20  | <0.0030           | 0.065          | 0.026 | 0.0027  | <0.20 | <0.0050          | <0.0050 | 0.017   | <0.0050       |         | 32       | <0.0050  | 11       | <0.00020 | <0.0050 | 0.039   | 0.014   | <0.0050  |            | <u>&lt;0.0050</u>  | 1.3    | TestAmerica             |
| Shaft No. 9 Discharge                          | RESE-1003195                 | 09-Feb-11              | <0.20  | <u>&lt;0.015</u>  | 0.078          | 0.031 | 0.0010  | 0.42  | <0.0050          | <0.0050 | 0.017   | 0.010         |         | 36       | <0.0050  | 12       | <0.00020 | 0.0057  | 0.043   | <0.010  | <0.0050  |            | <u>&lt;0.0050</u>  | 1.5    | TestAmerica             |
| Shaft No. 9 Discharge                          | RESE-1003198                 | 22-Feb-11              | <0.20  | <u>&lt;0.030</u>  | 0.057          | 0.028 | <0.0010 | 0.40  | <u>&lt;0.010</u> | <0.010  | 0.013   | <0.010        |         | 32       | <0.010   | 11       | <0.00020 | <0.010  | 0.025   | <0.020  | <0.010   |            | <u>&lt;0.010</u>   | 1.3    | TestAmerica             |
| Shaft No. 9 Discharge                          | RESE-1003198                 | 22-Feb-11              | <0.20  | <u>&lt;0.030</u>  | 0.069          | 0.029 | <0.0010 | 0.37  | <u>&lt;0.010</u> | <0.010  | 0.014   | <0.010        | <0.020  | 36       | <0.010   | 13       | <0.00020 | <0.010  | 0.029   | <0.020  | <0.010   | <0.050     | <u>&lt;0.010</u>   | 1.5    | TestAmerica             |
| Shaft No. 9 Discharge                          | RESE-1003115                 | 08-Mar-11              | <0.20  | <0.0030           | 0.060          | 0.025 | <0.0010 | 0.39  | <0.0010          | <0.0050 | 0.014   | 0.0019        |         | 29       | <0.0050  | 14       | <0.00020 | 0.0060  | 0.030   | 0.0023  | <0.0010  |            | <0.0050            | 1.1    | TestAmerica             |
| Shaft No. 9 Discharge                          | RESE-1003115                 | 08-Mar-11              | <0.20  | <0.0030           | 0.065          | 0.025 | <0.0010 | 0.41  | <0.0010          | <0.0010 | 0.012   | 0.0046        | <0.0050 | 31       | 0.0014   | 14       | <0.00020 | 0.0050  | 0.022   | 0.0038  | <0.0010  | <0.050     | <0.0010            | 1.1    | TestAmerica             |
| Shaft No. 9 Discharge                          | RESE-1003107                 | 22-Mar-11              | <0.20  | <0.015            | 0.069          | 0.026 | <0.0010 | 0.36  | <0.0050          | <0.0050 | 0.018   | <0.0050       |         | 28       | <0.0050  | 13       | <0.00020 | <0.0050 | 0.033   | <0.010  | <0.0050  | <br><0.050 | <0.0050            | 2.1    | TestAmerica             |
| Shaft No. 9 Discharge                          | RESE-1003107                 | 22-Mar-11              | <0.20  | <0.015            | 0.068          | 0.024 | <0.0010 | 0.37  | <0.0050          | <0.0050 | 0.016   | 0.0054        | <0.0050 | 30       | <0.0050  | 13       | <0.00020 | <0.0050 | 0.026   | 0.014   | <0.0050  | <0.050     | <0.0050            | 2.1    | TestAmerica             |
| Shaft No. 9 Discharge                          | RESE-1003111                 | 06-Apr-11              | 0.20   | <0.0030           | 0.056<br>0.063 | 0.027 | <0.0010 | 0.23  | <0.0010          | <0.0010 | 0.013   | 0.0021        | <0.020  | 31       | <0.0010  | 11       | <0.00020 | 0.0052  | 0.024   | 0.0058  | <0.0010  | <0.050     | <0.0010            | 1.2    | TestAmerica             |
| Shaft No. 9 Discharge                          | RESE-1003111                 | 06-Apr-11              | <0.20  | <0.0030           | 0.034          | 0.026 | <0.0010 | 0.25  | <0.0010          | <0.0010 | 0.012   | 0.0053        | <0.020  | 30       | <0.0014  | 9.7      | <0.00020 | 0.0052  | 0.021   | <0.010  | <0.0010  | <0.050     | <0.0050<br><0.0010 | 1.4    | TestAmerica TestAmerica |
| Shaft No. 9 Discharge                          | RESE-1003200                 | 19-Apr-11              | 0.21   | <0.0030           | 0.034<br>0.066 | 0.024 | <0.0010 | 0.32  | <0.0010          | <0.0010 | 0.011   | 0.0026        | <0.0080 | 18<br>32 | 0.0010   | 10<br>10 | <0.00020 | 0.0059  | 0.024   | 0.0021  | <0.0010  | <0.050     | <0.0010            | 1.1    | TestAmerica             |
| Shaft No. 9 Discharge                          | RESE-1003200                 | 19-Apr-11              | <0.20  | <0.0030<br><0.015 | 0.000          | 0.027 | <0.0010 | 0.29  | <0.0010          | <0.0010 | 0.010   | <0.0050       | ~0.0080 | 27       | <0.0050  | 11       | <0.00020 | 0.0059  | 0.026   | <0.010  | <0.0010  |            | <0.0010            | 1.8    | TestAmerica             |
| Shaft No. 9 Discharge<br>Shaft No. 9 Discharge | RESE-1003123<br>RESE-1003123 | 02-May-11<br>02-May-11 | <0.20  | <0.015<br><0.015  | 0.069          | 0.026 | <0.0010 | 0.36  | <0.0050          | <0.0050 | 0.012   | 0.0030        | <0.0080 | 30       | <0.0050  | 11       | <0.00020 | 0.0002  | 0.047   | <0.010  | <0.0050  | <0.050     | <0.0050<br><0.0050 | 1.6    | TestAmerica             |



| SAMPLE LOCATION             | SAMPLE                     | SAMPLE    |       |                  |         |       |         |       |         |          |         | TRACE    | CONSTIT | UENTS  | (mg/L) <sup>b</sup> |       |          |        |        |         |         |        |                   |        | ANALYTICAL  |
|-----------------------------|----------------------------|-----------|-------|------------------|---------|-------|---------|-------|---------|----------|---------|----------|---------|--------|---------------------|-------|----------|--------|--------|---------|---------|--------|-------------------|--------|-------------|
|                             | IDENTIFIER/<br>DESCRIPTION | DATE      | Al    | Sb               | As      | Ва    | Ве      | В     | Cd      | Cr       | Co      | Cu       | CN      | Fe     | Pb                  | Mn    | Hg       | Мо     | Ni     | Se      | Ag      | S      | TI                | Zn     | LABORATORY  |
|                             |                            |           |       |                  |         |       |         |       | -       | Mi       | ine Wor | kings    |         |        |                     |       |          |        |        |         |         |        |                   |        |             |
| Shaft No. 9 Discharge       | RESE-1003120               | 18-May-11 | <0.20 | <u>&lt;0.015</u> | 0.064   | 0.030 | <0.0010 | 0.36  | <0.0050 | <0.0050  | 0.015   | <0.0050  |         | 28     | <0.0050             | 11    | <0.00020 | 0.0061 | 0.033  | <0.010  | <0.0050 |        | <0.0050           | 1.9    | TestAmerica |
| Shaft No. 9 Discharge       | RESE-1003120               | 18-May-11 | <0.20 | <0.0030          | 0.065   | 0.028 | <0.0010 | 0.40  | <0.0010 | <0.0010  | 0.011   | 0.031    | <0.0080 | 29     | 0.0014              | 11    | <0.00020 | 0.0053 | 0.025  | 0.0022  | <0.0010 | <0.050 | <0.0010           | 1.5    | TestAmerica |
| Shaft No. 9 Discharge       | RESE-1003127               | 01-Jun-11 | <0.20 | <0.0030          | 0.053   | 0.028 | <0.0010 | 0.36  | <0.0010 | <0.0010  | 0.011   | 0.0014   |         | 25     | <0.0010             | 9.7   | <0.00020 | 0.0070 | 0.032  | 0.0025  | <0.0010 |        | <0.0010           | 1.2    | TestAmerica |
| Shaft No. 9 Discharge       | RESE-1003127               | 01-Jun-11 | 0.26  | <u>&lt;0.015</u> | 0.079   | 0.037 | <0.0010 | 0.41  | <0.0050 | <0.0050  | 0.016   | 0.044    | <0.0080 | 30     | <0.0050             | 10    | <0.00020 | 0.0091 | 0.036  | <0.010  | <0.0050 | <0.050 | <u>&lt;0.0050</u> | 2.3    | TestAmerica |
| Shaft No. 9 Discharge DUP   | RESE-1003128               | 01-Jun-11 | <0.20 | <0.0030          | 0.051   | 0.028 | <0.0010 | 0.34  | <0.0010 | <0.0010  | 0.011   | 0.0015   |         | 22     | <0.0010             | 9.4   | <0.00020 | 0.0068 | 0.035  | 0.0025  | <0.0010 |        | <0.0010           | 1.2    | TestAmerica |
| Shaft No. 9 Discharge DUP   | RESE-1003128               | 01-Jun-11 | 0.21  | <u>&lt;0.015</u> | 0.058   | 0.028 | <0.0010 | 0.36  | <0.0050 | <0.0050  | 0.012   | 0.033    | 0.017   | 26     | <0.0050             | 9.1   | <0.00020 | 0.0067 | 0.027  | <0.010  | <0.0050 | <0.050 | <u>&lt;0.0050</u> | 1.7    | TestAmerica |
| Shaft No. 9 Discharge       | RESE-1003134               | 13-Jun-11 | <0.20 | <0.0030          | 0.039   | 0.025 | <0.0010 | 0.24  | <0.0010 | <0.0010  | 0.014   | <0.0010  |         | 25     | <0.010              | 10    | <0.00020 | 0.0065 | 0.023  | <0.0020 | <0.0050 |        | <0.0010           | 2.1    | TestAmerica |
| Shaft No. 9 Discharge       | RESE-1003134               | 13-Jun-11 | 0.29  | <u>&lt;0.015</u> | 0.052   | 0.031 | <0.0010 | 0.40  | <0.0050 | <0.0050  | 0.017   | 0.0095   | 0.0098  | 30     | <0.0050             | 10    | <0.00020 | 0.0079 | 0.032  | <0.010  | <0.0050 | <0.050 | <u>&lt;0.0050</u> | 2.4    | TestAmerica |
| Shaft No. 9 Discharge       | RESE-1003140               | 30-Jun-11 | <0.20 | <0.0030          | 0.010   | 0.026 | <0.0010 | 0.32  | <0.0010 | <0.0010  | 0.0099  | <0.0010  |         | 1.7    | <0.0010             | 8.2   | <0.00020 | 0.010  | 0.024  | <0.0020 | <0.0010 |        | <0.0010           | 1.2    | TestAmerica |
| Shaft No. 9 Discharge       | RESE-1003140               | 30-Jun-11 | 0.22  | <0.0030          | 0.023   | 0.026 | <0.0010 | 0.32  | <0.0010 | <0.0010  | 0.0096  | 0.0026   | <0.0080 | 14     | 0.0016              | 8.5   | <0.00020 | 0.012  | 0.018  | <0.0020 | <0.0010 | <0.050 | <0.0010           | 1.5    | TestAmerica |
| Shaft No. 9 Discharge       | RESE-1003145               | 12-Jul-11 | <0.20 | <u>&lt;0.015</u> | 0.022   | 0.033 | <0.0010 | 0.30  | <0.0050 | <0.0050  | 0.016   | <0.0050  |         | 16     | <0.0050             | 9.0   | <0.00020 | 0.0097 | 0.039  | <0.010  | <0.0050 |        | <0.0050           | 1.8    | TestAmerica |
| Shaft No. 9 Discharge       | RESE-1003145               | 12-Jul-11 | <0.20 | <u>&lt;0.015</u> | 0.022   | 0.027 | <0.0010 | 0.27  | <0.0050 | <0.0010  | 0.013   | 0.012    | <0.0080 | 20     | <0.0050             | 9.1   | <0.00020 | 0.0078 | 0.032  | <0.010  | <0.0050 | <0.050 | <u>&lt;0.0050</u> | 1.6    | TestAmerica |
| Shaft No. 9 Discharge       | RESE-1003202               | 27-Jul-11 | <0.20 | <0.0030          | 0.013   | 0.030 | <0.0010 | 0.25  | <0.0010 | 0.0010   | 0.013   | 0.0027   |         | 5.6    | <0.0010             | 9.0   | <0.00020 | 0.011  | 0.033  | 0.0025  | <0.0010 |        | <0.0010           | 1.8    | TestAmerica |
| Shaft No. 9 Discharge       | RESE-1003202               | 27-Jul-11 | <0.20 | <u>&lt;0.015</u> | 0.019   | 0.035 | <0.0010 | 0.26  | <0.0050 | <0.0050  | <0.0050 | 0.11     | <0.0080 | 8.4    | <0.0050             | 9.1   | <0.00020 | 0.091  | 0.026  | <0.010  | <0.0050 | <0.050 | <u>&lt;0.0050</u> | 2.1    | TestAmerica |
| Shaft No. 9 Discharge       | RESE-1003204               | 12-Aug-11 | <0.20 | <u>&lt;0.015</u> | 0.0052  | 0.029 | <0.0010 | 0.24  | <0.0050 | <0.0050  | 0.017   | <0.0050  |         | 1.5    | <0.010              | 9.9   | <0.00020 | 0.011  | 0.028  | <0.010  | <0.0050 |        | <u>&lt;0.010</u>  | 3.1    | TestAmerica |
| Shaft No. 9 Discharge       | RESE-1003204               | 12-Aug-11 | <0.20 | <u>&lt;0.015</u> | 0.010   | 0.030 | <0.0010 | 0.30  | <0.0050 | <0.0050  | 0.015   | 0.043    | <0.0080 | 4.6    | <0.0050             | 10    | <0.00020 | 0.012  | 0.029  | <0.010  | <0.0050 | <0.050 | <u>&lt;0.0050</u> | 3.3    | TestAmerica |
| Shaft No. 9 Discharge       | RESE-1003209               | 25-Aug-11 | <0.20 | <u>&lt;0.015</u> | <0.0050 | 0.029 | <0.0010 | 0.24  | <0.0050 | <0.0050  | 0.033   | <0.0050  |         | 1.4    | <0.0050             | 11    | <0.00020 | 0.011  | 0.037  | <0.010  | <0.0050 |        | <u>&lt;0.0050</u> | 5.7    | TestAmerica |
| Shaft No. 9 Discharge       | RESE-1003209               | 25-Aug-11 | <0.20 | <u>&lt;0.015</u> | 0.0072  | 0.029 | <0.0010 | 0.29  | <0.0050 | <0.0050  | 0.032   | 0.050    | <0.0080 | 3.1    | <0.0050             | 13    | <0.00020 | 0.012  | 0.037  | <0.010  | <0.0050 | <0.050 | <u>&lt;0.0050</u> | 6.2    | TestAmerica |
| Shaft No. 9 Discharge       | RESE-1003210               | 07-Sep-11 | <0.20 | <u>&lt;0.015</u> | <0.0050 | 0.028 | <0.0010 | 0.23  | <0.0050 | <0.0050  | 0.011   | 0.0097   |         | 0.91   | <0.0050             | 7.9   | <0.00020 | 0.011  | 0.028  | <0.010  | <0.0050 |        | <u>&lt;0.0050</u> | 1.0    | TestAmerica |
| Shaft No. 9 Discharge       | RESE-1003210               | 07-Sep-11 | <0.20 | <0.0030          | 0.0089  | 0.029 | <0.0010 | 0.27  | <0.0010 | <0.0010  | 0.012   | 0.074    | <0.0080 | 5.5    | 0.0024              | 10    | <0.00020 | 0.011  | 0.027  | 0.0023  | <0.0010 | <0.050 | <0.0010           | 1.1    | TestAmerica |
| Shaft No. 9 Discharge       | RESE-1003212               | 20-Sep-11 | <0.20 | <0.0030          | 0.0016  | 0.030 | <0.0010 | 0.21  | 0.0021  | <0.0010  | 0.023   | 0.0031   |         | 0.078  | <0.0010             | 10    | <0.00020 | 0.013  | 0.040  | 0.0020  | <0.0010 |        | <0.0010           | 3.3    | TestAmerica |
| Shaft No. 9 Discharge       | RESE-1003212               | 20-Sep-11 | <0.20 | <0.0030          | 0.0062  | 0.028 | <0.0010 | 0.23  | 0.0024  | 0.0014   | 0.020   | 0.030    | <0.0080 | 2.4    | <0.0010             | 11    | <0.00020 | 0.013  | 0.037  | <0.0020 | <0.0010 | <0.050 | <0.0010           | 4.3    | TestAmerica |
| Shaft No. 9 Discharge       | RESE-1003225               | 26-Oct-11 | <0.20 | <0.0030          | 0.0055  | 0.027 | <0.0010 | <0.20 | 0.0032  | <0.0050  | 0.040   | 0.0038   |         | 2.7    | <0.0010             | 16    | <0.00020 | 0.0083 | 0.052  | 0.0040  | <0.0010 |        | <0.0010           | 7.5    | TestAmerica |
| Shaft No. 9 Discharge       | RESE-1003225               | 26-Oct-11 | <0.20 | <0.0030          | 0.0070  | 0.028 | <0.0010 | <0.20 | 0.0039  | 0.0014   | 0.039   | 0.072    | <0.050  | 3.1    | 0.0015              | 16    | <0.00020 | 0.0093 | 0.049  | 0.0042  | <0.0010 | <0.050 | <0.0010           | 7.4    | TestAmerica |
| Shaft No. 9 Discharge       | RESE-1003228               | 09-Nov-11 | <0.20 | <0.0030          | 0.0023  | 0.029 | <0.0010 | 0.21  | 0.0023  | <0.0010  | 0.017   | 0.0044   |         | 0.14   | <0.0010             | 9.8   | <0.00020 | 0.011  | 0.031  | 0.0021  | <0.0010 |        | <0.0010           | 2.1    | TestAmerica |
| Shaft No. 9 Discharge       | RESE-1003228               | 09-Nov-11 | <0.20 | <0.0030          | 0.0080  | 0.029 | <0.0010 | 0.21  | 0.0017  | 0.0020   | 0.016   | 0.089    | <0.0080 | 2.5    | 0.0019              | 9.7   | <0.00020 | 0.010  | 0.030  | 0.0022  | <0.0010 | <0.050 | <0.0010           | 2.3    | TestAmerica |
| Shaft No. 9 Discharge DUP   | RESE-1003229               | 09-Nov-11 | <0.20 | <0.0030          | 0.0023  | 0.027 | <0.0010 | 0.22  | 0.0026  | <0.0010  | 0.017   | 0.0045   |         | 0.13   | <0.0010             | 9.9   | <0.00020 | 0.011  | 0.030  | 0.0020  | <0.0010 |        | <0.0010           | 2.1    | TestAmerica |
| Shaft No. 9 Discharge DUP   | RESE-1003229               | 09-Nov-11 | <0.20 | <0.0030          | 0.0080  | 0.029 | <0.0010 | 0.21  | 0.0017  | 0.0023   | 0.017   | 0.093    | <0.0080 | 2.5    | 0.0020              | 9.5   | <0.00020 | 0.011  | 0.031  | 0.0020  | <0.0010 | <0.050 | <0.0010           | 2.2    | TestAmerica |
| Shaft No. 9 Discharge       | RESE-1003232               | 22-Nov-11 | <0.20 | <0.0030          | 0.0020  | 0.028 | <0.0010 | 0.23  | 0.0049  | <0.0010  | 0.018   | 0.029    |         | <0.050 | <0.0010             | 9.6   | <0.00020 | 0.015  | 0.045  | 0.0020  | <0.0010 |        | <0.0010           | 2.9    | TestAmerica |
| Shaft No. 9 Discharge       | RESE-1003232               | 22-Nov-11 | <0.20 | <u>&lt;0.015</u> | 0.0071  | 0.030 | <0.0010 | 0.25  | 0.0052  | 0.0050   | 0.022   | 0.10     | <0.050  | 1.8    | <0.0050             | 9.8   | <0.00020 | 0.016  | 0.056  | <0.010  | <0.0050 | <0.050 | <u>&lt;0.0050</u> | 3.4    | TestAmerica |
| Shaft No. 9 Discharge       | RESE-1003234               | 07-Dec-11 | <0.20 | <0.0060          | 0.0025  | 0.030 | <0.0010 | 0.25  | 0.0025  | <0.0020  | 0.024   | 0.023    |         | <0.050 | <0.0020             | 11    | <0.00020 | 0.014  | 0.058  | <0.0040 | <0.0020 |        | <0.0020           | 2.1    | TestAmerica |
| Shaft No. 9 Discharge       | RESE-1003234               | 07-Dec-11 | <0.20 | <u>&lt;0.015</u> | 0.0067  | 0.032 | <0.0010 | 0.20  | <0.0050 | 0.0027   | 0.022   | 0.063    | <0.050  | 1.8    | <0.0010             | 10    | <0.00020 | 0.013  | 0.050  | 0.0023  | <0.0010 | <0.050 | <0.0010           | 2.2    | TestAmerica |
|                             |                            |           |       |                  |         |       |         |       | Sł      | nallow ( | Froundy | vater Sy | stem    |        |                     |       |          |        |        |         |         |        |                   |        |             |
| Hackberry Windmill Well     | RESE-1000263               | 27-Feb-08 | <0.20 | <0.0030          | <0.0010 | 0.11  | <0.0010 | <0.20 | <0.0010 | <0.010   | <0.0010 | <0.010   |         | <0.050 | 0.0011              | 0.024 | <0.00020 | <0.010 | <0.010 | <0.0020 | <0.0010 |        | <0.0010           | 0.082  | TestAmerica |
| Hackberry Windmill Well     | RESE-1000263               | 27-Feb-08 |       |                  |         |       |         |       |         |          |         |          | <0.020  |        |                     |       |          |        |        |         |         | <0.040 |                   |        | TestAmerica |
| Hackberry Windmill Well     | RESE-1003011               | 03-Jun-08 | <0.20 |                  |         | 0.094 | <0.0010 | <0.20 |         | <0.010   |         | <0.010   |         | <0.050 |                     |       |          | <0.010 | <0.010 |         |         |        |                   | <0.050 | TestAmerica |
| Hackberry Windmill Well     | RESE-1003011               | 03-Jun-08 |       | <0.0030          | <0.0010 |       |         |       | <0.0010 |          | <0.0010 |          | <0.025  |        | <0.0010             | 0.074 | <0.00020 |        |        | <0.0020 | <0.0010 | <0.040 | <0.0010           |        | TestAmerica |
| Hackberry Windmill Well     | RESE-1003019               | 02-Sep-08 | <0.20 |                  |         | 0.10  | <0.0010 | <0.20 |         | <0.010   |         | <0.010   |         | <0.050 |                     |       | <0.00020 | <0.010 | <0.010 |         |         |        |                   | 0.061  | TestAmerica |
| Hackberry Windmill Well     | RESE-1003019               | 02-Sep-08 |       | <0.0030          | <0.0010 |       |         |       | <0.0010 |          | <0.0010 |          | <0.020  |        | <0.0010             | 0.078 |          |        |        | <0.0020 | <0.0010 | <0.040 | <0.0010           |        | TestAmerica |
| Hackberry Windmill Well DUP | RESE-1003020               | 02-Sep-08 | <0.20 |                  |         | 0.10  | <0.0010 | <0.20 |         | <0.010   |         | <0.010   |         | <0.050 |                     |       | <0.00020 | <0.010 | <0.010 |         |         |        |                   | 0.064  | TestAmerica |
| Hackberry Windmill Well DUP | RESE-1003020               | 02-Sep-08 |       | <0.0030          | <0.0010 |       |         |       | <0.0010 |          | <0.0010 |          | <0.020  |        | <0.0010             | 0.079 |          |        |        | <0.0020 | <0.0010 | <0.040 | <0.0010           |        | TestAmerica |



| SAMPLE LOCATION         | SAMPLE                     | SAMPLE    |        |         |         |       |         |        |         |         |         | TRACE    | CONSTIT | <b>UENTS</b> <sup>a</sup> | (mg/L) <sup>b</sup> |       |          |         |        |         |         |        |         |        | ANALYTICAL  |
|-------------------------|----------------------------|-----------|--------|---------|---------|-------|---------|--------|---------|---------|---------|----------|---------|---------------------------|---------------------|-------|----------|---------|--------|---------|---------|--------|---------|--------|-------------|
|                         | IDENTIFIER/<br>DESCRIPTION | DATE      | Al     | Sb      | As      | Ва    | Ве      | В      | Cd      | Cr      | Со      | Cu       | CN      | Fe                        | Pb                  | Mn    | Hg       | Мо      | Ni     | Se      | Ag      | S      | TI      | Zn     | LABORATORY  |
|                         |                            |           |        |         |         |       |         |        | Sh      | allow G | round   | vater Sy | stem    |                           |                     |       |          |         |        |         |         |        |         |        |             |
| Hackberry Windmill Well | RESE-1003024               | 02-Dec-08 | <0.20  | <0.0030 | <0.0010 | 0.10  | <0.0010 |        | <0.0010 | <0.010  |         | <0.010   |         | 0.51                      | <0.0010             |       | <0.00020 | <0.010  | <0.010 | <0.0020 | <0.0010 |        | <0.0010 | 0.31   | TestAmerica |
| Hackberry Windmill Well | RESE-1003024               | 02-Dec-08 |        |         |         |       |         |        |         |         |         |          | <0.025  |                           |                     |       |          |         |        |         |         | <0.10  |         |        | TestAmerica |
| Hackberry Windmill Well | RESE-1003033               | 03-Mar-09 | <0.20  | <0.0030 | <0.0010 | 0.11  | <0.0010 | <0.20  | <0.0010 | <0.0010 | <0.0010 | 0.0018   |         | 0.20                      | <0.0010             | 0.034 | <0.00020 | <0.0010 | 0.0028 | <0.0020 | <0.0010 |        | <0.0010 | 0.074  | TestAmerica |
| Hackberry Windmill Well | RESE-1003033               | 03-Mar-09 |        |         |         |       |         |        |         |         |         |          | <0.020  |                           |                     |       |          |         |        |         |         | <0.040 |         |        | TestAmerica |
| Hackberry Windmill Well | RESE-1003042               | 02-Jun-09 | <0.20  | <0.0030 | <0.0010 | 0.094 | <0.0010 | <0.20  | <0.0010 | <0.0010 | <0.0010 | <0.0010  |         | 0.27                      | <0.0010             | 0.048 | <0.00020 | <0.0010 | 0.0015 | <0.0020 | <0.0010 |        | <0.0010 | 0.095  | TestAmerica |
| Hackberry Windmill Well | RESE-1003042               | 02-Jun-09 |        |         |         |       |         |        |         |         |         |          | <0.020  |                           |                     |       |          |         |        |         |         | <0.040 |         |        | TestAmerica |
| JI Ranch Corral Well    | RESE-1000302               | 21-Jun-07 | <0.050 | <0.002  | <0.001  | 0.033 | <0.0020 | <0.050 | <0.001  | <0.0050 | 0.036   | <0.010   |         | 30                        | 0.0073              | 1.3   |          | <0.020  | 0.019  | <0.002  | <0.001  |        | <0.001  | 0.60   | TestAmerica |
| JI Ranch Corral Well    | RESE-1000302               | 21-Jun-07 |        |         |         |       |         |        |         |         |         |          | <0.020  |                           |                     |       |          |         |        |         |         | <0.10  |         |        | TestAmerica |
| JI Ranch Corral Well    | RESE-1003004               | 29-May-08 | <0.20  |         |         | 0.040 | <0.0010 | <0.20  |         | <0.010  |         | <0.010   |         | <0.050                    |                     |       |          | <0.010  | 0.019  |         |         |        |         | 0.13   | TestAmerica |
| JI Ranch Corral Well    | RESE-1003004               | 29-May-08 |        | <0.0030 | 0.0011  |       |         |        | <0.0010 |         | 0.024   |          | <0.025  |                           | <0.0010             | 0.72  | <0.00020 |         |        | 0.015   | <0.0010 | <0.040 | <0.0010 |        | TestAmerica |
| JI Ranch Corral Well    | RESE-1003005               | 29-May-08 | <0.20  |         |         | 0.039 | <0.0010 | <0.20  |         | <0.010  |         | <0.010   |         | <0.050                    |                     |       |          | <0.010  | 0.019  |         |         |        |         | 0.083  | TestAmerica |
| JI Ranch Corral Well    | RESE-1003005               | 29-May-08 |        | <0.0030 | 0.0011  |       |         |        | <0.0010 |         | 0.026   |          | <0.025  |                           | <0.0010             | 0.52  | <0.00020 |         |        | 0.013   | <0.0010 | <0.040 | <0.0010 |        | TestAmerica |
| JI Ranch Corral Well    | RESE-1003014               | 25-Aug-08 | <0.20  |         |         | 0.048 | <0.0010 | <0.20  |         | <0.010  |         | <0.010   |         | <0.050                    |                     |       | <0.00020 | <0.010  | 0.019  |         |         |        |         | 0.36   | TestAmerica |
| JI Ranch Corral Well    | RESE-1003014               | 25-Aug-08 |        | <0.0030 | 0.0015  |       |         |        | <0.0010 |         | <0.0010 |          | <0.025  |                           | <0.0010             | 0.025 |          |         |        | <0.0020 | <0.0010 | <0.040 | <0.0010 |        | TestAmerica |
| JI Ranch Corral Well    | RESE-1003029               | 03-Dec-08 | <0.20  | <0.0030 | <0.0010 | 0.027 | <0.0010 |        | <0.0010 | <0.010  |         | <0.010   |         | 8.5                       | <0.0010             |       | <0.00020 | <0.010  | 0.016  | <0.0020 | <0.0010 |        | <0.0010 | 0.093  | TestAmerica |
| JI Ranch Corral Well    | RESE-1003029               | 03-Dec-08 |        |         |         |       |         |        |         |         |         |          | <0.025  |                           |                     |       |          |         |        |         |         | <0.10  |         |        | TestAmerica |
| JI Ranch Corral Well    | RESE-1003038               | 04-Mar-09 | <0.20  | <0.0030 | 0.0011  | 0.034 | <0.0010 | <0.20  | <0.0010 | <0.0010 | 0.012   | 0.0049   |         | 2.7                       | <0.0010             | 0.50  | <0.00020 | <0.0010 | 0.014  | <0.0020 | <0.0010 |        | <0.0010 | 0.044  | TestAmerica |
| JI Ranch Corral Well    | RESE-1003038               | 04-Mar-09 |        |         |         |       |         |        |         |         |         |          | <0.020  |                           |                     |       |          |         |        |         |         | <0.040 |         |        | TestAmerica |
| JI Ranch Corral Well    | RESE-1003047               | 05-Jun-09 | <0.20  | <0.0030 | 0.0016  | 0.034 | <0.0010 | <0.20  | <0.0010 | <0.0010 | 0.015   | 0.0047   |         | 4.1                       | <0.0010             | 0.52  | <0.00020 | <0.0010 | 0.0084 | <0.0020 | <0.0010 |        | <0.0010 | 0.029  | TestAmerica |
| JI Ranch Corral Well    | RESE-1003047               | 05-Jun-09 |        |         |         |       |         |        |         |         |         |          | <0.020  |                           |                     |       |          |         |        |         |         | <0.040 |         |        | TestAmerica |
| JI Ranch Middle Well    | RESE-1003006               | 30-May-08 | <0.20  |         |         | 0.083 | <0.0010 | <0.20  |         | <0.010  |         | <0.010   |         | <0.050                    |                     |       |          | <0.010  | <0.010 |         |         |        |         | <0.050 | TestAmerica |
| JI Ranch Middle Well    | RESE-1003006               | 30-May-08 |        | <0.0030 | <0.0010 |       |         |        | <0.0010 |         | 0.0044  |          | <0.025  |                           | <0.0010             | 0.40  | <0.00020 |         |        | <0.0020 | <0.0010 | <0.040 | <0.0010 |        | TestAmerica |
| JI Ranch Middle Well    | RESE-1003017               | 27-Aug-08 | <0.20  |         |         | 0.13  | <0.0010 | <0.20  |         | <0.010  |         | <0.010   |         | <0.050                    |                     |       | <0.00020 | <0.010  | <0.010 |         |         |        |         | <0.050 | TestAmerica |
| JI Ranch Middle Well    | RESE-1003017               | 27-Aug-08 |        | <0.0030 | 0.0019  |       |         |        | <0.0010 |         | <0.0010 |          | <0.025  |                           | 0.0011              | 0.067 |          |         |        | <0.0020 | <0.0010 | <0.040 | <0.0010 |        | TestAmerica |
| JI Ranch Middle Well    | RESE-1003028               | 03-Dec-08 | <0.20  | <0.0030 | <0.0010 | 0.15  | <0.0010 |        | <0.0010 | <0.010  |         | <0.010   |         | 12                        | <0.0010             |       | <0.00020 | <0.010  | <0.010 | <0.0020 | <0.0010 |        | <0.0010 | <0.050 | TestAmerica |
| JI Ranch Middle Well    | RESE-1003028               | 03-Dec-08 |        |         |         |       |         |        |         |         |         |          | <0.025  |                           |                     |       |          |         |        |         |         | <0.10  |         |        | TestAmerica |
| JI Ranch Middle Well    | RESE-1003037               | 04-Mar-09 | <0.20  | <0.0030 | <0.0010 | 0.13  | <0.0010 | <0.20  | <0.0010 | <0.0010 | 0.0029  | 0.0015   |         | 4.6                       | <0.0010             | 0.92  | <0.00020 | <0.0010 | 0.0041 | <0.0020 | <0.0010 |        | <0.0010 | <0.010 | TestAmerica |
| JI Ranch Middle Well    | RESE-1003037               | 04-Mar-09 |        |         |         |       |         |        |         |         |         |          | <0.020  |                           |                     |       |          |         |        |         |         | <0.040 |         |        | TestAmerica |
| JI Ranch Middle Well    | RESE-1003048               | 05-Jun-09 | <0.20  | <0.0030 | <0.0010 | 0.16  | <0.0010 | <0.20  | <0.0010 | <0.0010 | <0.0010 | <0.0010  |         | 12                        | <0.0010             | 0.67  | <0.00020 | <0.0010 | 0.0025 | <0.0020 | <0.0010 |        | <0.0010 | <0.010 | TestAmerica |
| JI Ranch Middle Well    | RESE-1003048               | 05-Jun-09 |        |         |         |       |         |        |         |         |         |          | <0.020  |                           |                     |       |          |         |        |         |         | <0.040 |         |        | TestAmerica |



| SAMPLE LOCATION                                | SAMPLE      | SAMPLE |             |       |       |     |       |   |       |     |    | TRACE | CONSTIT | UENTS <sup>a</sup> | (mg/L) <sup>b</sup> |       |       |    |     |      |     |   |       |    | ANALYTICAL |
|------------------------------------------------|-------------|--------|-------------|-------|-------|-----|-------|---|-------|-----|----|-------|---------|--------------------|---------------------|-------|-------|----|-----|------|-----|---|-------|----|------------|
|                                                | IDENTIFIER/ | DATE   | Al          | Sb    | As    | Ва  | Ве    | В | Cd    | Cr  | Co | Cu    | CN      | Fe                 | Pb                  | Mn    | Hg    | Мо | Ni  | Se   | Ag  | S | TI    | Zn | LABORATORY |
|                                                | DESCRIPTION |        |             |       |       |     |       |   |       |     |    |       |         |                    |                     |       |       |    |     |      |     |   |       |    |            |
| U.S EPA National Primary Drinking Water Regul  | ations      |        |             | 0.006 | 0.010 | 2   | 0.004 |   | 0.005 | 0.1 |    | 1.3   | 0.20    |                    | 0.015               |       | 0.002 |    |     | 0.05 |     |   | 0.002 |    |            |
| U.S EPA National Secondary Drinking Water Re   | gulations   |        | 0.05 to 0.2 |       |       |     |       |   |       |     |    | 1.0   |         | 0.3                |                     | 0.050 |       |    |     |      | 0.1 |   |       | 5  |            |
| Arizona Numeric Aquifer Water Quality Standard | İs          |        |             | 0.006 | 0.05  | 2.0 | 0.004 |   | 0.005 | 0.1 |    |       | 0.20    |                    | 0.05                |       | 0.002 |    | 0.1 | 0.05 |     |   | 0.002 |    |            |

Values in bold red are out of compliance with EPA primary water quality standards

Values in red italics are out of compliance with EPA secondary water quality standards

Values in red underline are out of compliance with Arizona numeric water quality standards

Values in blue indicate that detection limit exceeds standard

--- = Not available, not applicable

-- = Not calculated due to non-detect

Shading indicates dissolved results

Shading indicates total results
Shading indicates total recoverable results
Shading indicates unknown filtration or no filtration method provided for analyses

a AI = Aluminum Sb = Antimony As = Arsenic Ba = Barium
Be = Beryllium
B = Boron Cd = Cadmium
Cr = Chromium (total)
Co = Cobalt

Cu = Copper

CN = Cyanide (amenable)

Fe = Iron
Pb = Lead
Mn = Manganese
Hg = Mercury
Mo = Molybdenum
Ni = Nickel NI = NICKEI
Se = Selenium
Ag = Silver
S = Sulfide
TI = Thallium Zn = Zinc

b mg/L = milligrams per liter

**Explanation of Codes** 

Absent = Analyte not present
ge = Greater than or equal to reported value
i = Insufficient sample
j = Estimated value

j+ = Estimated value, high bias

j- = Estimated value, low bias Lost = Sample lost in processing

n = Not measured

na = Not available ND = Not Detected

np = Analyte not applicable

Present = Analyte was detected q = Uncertain value

r = Unusable data < = Less than reported detection limit

= Less tran reported detection limit
= Greater than reported value
d = Diluted. Diluted samples are indicated only when value is estimated.
DUP = Field Duplicate

LD = Laboratory duplicate SP = Split sample

SPD = Split-Duplicate



| SAMPLE LOCATION  | SAMPLE                       | SAMPLE                 |                                        |                       | RADIOL            | OGICAL COI        | NSTITUENTS                    | а                      |                                | ANALYTICAL              |
|------------------|------------------------------|------------------------|----------------------------------------|-----------------------|-------------------|-------------------|-------------------------------|------------------------|--------------------------------|-------------------------|
|                  | IDENTIFIER/<br>DESCRIPTION   | DATE                   | Gross<br>Alpha<br>(pCi/L) <sup>b</sup> | Gross Beta<br>(pCi/L) | Ra-226<br>(pCi/L) | Ra-228<br>(pCi/L) | Ra-226 +<br>Ra-228<br>(pCi/L) | Total U<br>(pCi/L)     | Total U<br>(mg/L) <sup>c</sup> | LABORATORY              |
|                  | ·                            |                        | Apach                                  | e Leap Tuff           | Aquifer           |                   | •                             |                        |                                |                         |
| -06              | RESE-1000255                 | 24-Sep-07              | 1.8 ± 0.5                              | <2.0                  | <0.2              | <1.0              |                               | $0.7 \pm 0.5$          | 0.0004                         | Energy Labs             |
| -06 DUP          | RESE-1000256                 | 24-Sep-07              | 1.3 ± 0.5                              | <2.0                  | <0.2              | <1.0              |                               | 3.1 ± 0.7              | 0.0004                         | Energy Labs             |
| -06              | RESE-1003008                 | 02-Jun-08              | <1.6                                   | <2.7                  | 0.12 ± 0.09       | <0.85             | 0.12                          | 1.1 ± 0.3              | 0.0003                         | Energy Labs             |
| -06              | RESE-1003016                 | 28-Aug-08              | <1.5                                   | <2.7                  | <0.23             | <1.2              |                               | 0.9 ± 0.4              | <0.0003                        | Energy Labs             |
| -06              | RESE-1003030                 | 04-Dec-08              | <1.5                                   | <2.6                  | <0.17             | <1.2              |                               | $0.7 \pm 0.3$          | 0.0003                         | Energy Labs             |
| T Well           | RESE-1003102                 | 20-Apr-10              | 10.0 ± 2.6                             | 3.8 ± 1.7             | <0.19             | <1.3              |                               | 6.4                    | 0.0090                         | Energy Labs             |
| RES-04           | RESE-1001114                 | 18-Jan-08              | $2.3 \pm 0.7$                          | <2.0                  | <0.2              | <1.0              |                               | $2.8 \pm 0.7$          | 0.0022                         | Energy Labs             |
| RES-04           | RESE-1003021                 | 03-Sep-08              | 1.7 ± 1                                | <2.7                  | <0.20             | <1.2              |                               | 2.7 ± 0.6              | 0.0016                         | Energy Labs             |
| RES-05           | RESE-1000264                 | 27-Feb-08              | 5.5 ± 1                                | <2.5                  | <0.1              | <1.3              |                               | $2.9 \pm 0.5$          | 0.0012                         | Energy Labs             |
| RES-05           | RESE-1003001                 | 28-May-08              | <1.8                                   | <2.7                  | 0.13 ± 0.09       | <0.85             | 0.13                          | 2.6 ± 0.5              | 0.0010                         | Energy Labs             |
| RES-05           | RESE-1003012                 | 25-Aug-08              | 2.0 ± 1.1                              | <2.7                  | <0.22             | <1.2              |                               | 2.6 ± 0.6              | 8000.0                         | Energy Labs             |
| RES-05           | RESE-1003025                 | 02-Dec-08              | <1.6                                   | <2.6                  | <0.15             | <1.2              |                               | 2.4 ± 0.6              | 0.0009                         | Energy Labs             |
| RES-06           | RESE-1000301                 | 12-Jun-07              | <1.0                                   | <2.0                  | <0.2              | <1.0              |                               | 1.1 ± 0.6              | 0.0004                         | Energy Labs             |
| RES-06           | RESE-1000265                 | 27-Feb-08              | $2.0 \pm 0.7$                          | <2.5                  | <0.1              | <1.3              |                               | 0.4 ± 0.2              | 0.0003                         | Energy Labs             |
| RES-06 DUP       | RESE-1000266                 | 27-Feb-08              | $3.7 \pm 0.8$                          | <2.5                  | <0.1              | <1.3              |                               | 0.6 ± 0.2              | <0.0003                        | Energy Labs             |
| RES-06           | RESE-1003003                 | 28-May-08              | <1.5                                   | <2.6                  | <0.14             | 2.2 ± 0.6         | 2.20                          | 0.4 ± 0.2              | <0.0003                        | Energy Labs             |
| RES-06           | RESE-1003013                 | 25-Aug-08              | <1.4                                   | <2.7                  | <0.23             | <1.2              |                               | 0.4 ± 0.2              | <0.0003                        | Energy Labs             |
| RES-06           | RESE-1003026                 | 03-Dec-08              | <1.4                                   | <2.6                  | <0.15             | <1.2              |                               | <0.2                   | <0.0003                        | Energy Labs             |
| RES-06 DUP       | RESE-1003027                 | 03-Dec-08              | 1.5 ± 1                                | <2.6                  | <0.15             | <1.2              |                               | <0.2                   | <0.0003                        | Energy Labs             |
| RES-07           | RESE-1000262                 | 26-Feb-08              | 2.7 ± 0.8                              | 3.3 ± 1.5             | <0.1              | <1.3              |                               | 1.1 ± 0.3              | 0.0006                         | Energy Labs             |
| RES-07           | RESE-1003009                 | 03-Jun-08              | 1.6 ± 1.1                              | <2.6                  | <0.14             | 1.8 ± 0.58        | 1.80                          | 1.3 ± 0.4              | 0.0007                         | Energy Labs             |
| RES-07 DUP       | RESE-1003010                 | 03-Jun-08              | <1.6                                   | <2.6                  | 0.19 ± 0.1        | <0.85             | 0.19                          | 1.7 ± 0.5              | 0.0008                         | Energy Labs             |
| RES-07<br>RES-07 | RESE-1003018<br>RESE-1003022 | 02-Sep-08<br>01-Dec-08 | <1.4                                   | <2.7<br><2.6          | <0.23<br><0.16    | <1.2<br><1.2      |                               | 1.3 ± 0.5<br>1.7 ± 0.4 | 0.0006                         | Energy Labs             |
| RES-07           | RESE-1003022<br>RESE-1000290 | 06-Dec-09              | 2.5 ± 1.5                              | <2.7                  | <0.16             | 1.5 ± 0.9         | 1.50                          | 1.7 ± 0.4<br>1.2 ± 0.3 | 0.0007                         | Energy Labs Energy Labs |
|                  |                              |                        |                                        |                       |                   |                   |                               |                        |                                |                         |
| RES-08           | RESE-1003149                 | 21-Jul-11              | 2.2 ± 2.8                              | <4.2                  | <0.39             | <1.20             |                               |                        | 0.0008                         | ACZ                     |
| RES-09           | RESE-1003182                 | 29-Dec-10              | <2.3                                   | <4.20                 | <0.64             | <1.3              |                               |                        | 0.0016                         | ACZ                     |
| RES-09           | RESE-1003143                 | 04-Jul-11              | 4.1 ± 2.8                              | 4.6 ± 2.9             | <0.30             | 1.9 ± 0.56        | 1.90                          |                        | 0.0009                         | ACZ                     |
| RES-10           | RESE-1003175                 | 24-Sep-10              | <2.3                                   | <4.0                  | <0.40             | <1.50             |                               |                        | 0.0134                         | ACZ                     |
| RES-11           | RESE-1003174                 | 23-Sep-10              | <1.9                                   | <4.00                 | <0.21             | <1.6              |                               |                        | 0.0004                         | ACZ                     |
| RES-12           | RESE-1003144                 | 10-Jul-11              | $3.2 \pm 3.4$                          | <4.40                 | <0.29             | <1.30             |                               |                        | 0.0030                         | ACZ                     |
| RES-13           | RESE-1003130                 | 03-Jun-11              | <2.20                                  | <4.2                  | <0.32             | <1.10             |                               |                        | 0.0011                         | ACZ                     |
| RES-14           | RESE-1003147                 | 15-Jul-11              | <2.1                                   | <4.30                 | <0.46             | <1.10             |                               |                        | 0.0006                         | ACZ                     |
| Ranch House Well | RESE-1000303                 | 21-Jun-07              | <1.0                                   | <2.0                  | <0.2              | <1.0              |                               | <0.2                   | <0.0003                        | Energy Labs             |
| J-11             | RESE-1000257                 | 29-Sep-07              | 1.3 ± 0.5                              | <2.0                  | <0.2              | <1.0              |                               | 1.2 ± 0.5              | 0.0003                         | Energy Labs             |
| J-11             | RESE-1000261                 | 20-Feb-08              | $2.9 \pm 0.8$                          | <2.5                  | <0.1              | <1.3              |                               | 0.6 ± 0.3              | 0.0003                         | Energy Labs             |
| J-11             | RESE-1003007                 | 02-Jun-08              | <1.6                                   | <2.7                  | 0.17 ± 0.12       | 1.5 ± 0.79        | 1.67                          | $0.9 \pm 0.3$          | <0.0003                        | Energy Labs             |
| J-11             | RESE-1003015                 | 26-Aug-08              | <1.4                                   | <2.7                  | <0.23             | <1.2              |                               | $0.8 \pm 0.5$          | <0.0003                        | Energy Labs             |
|                  |                              |                        | Deep C                                 | Froundwater           | System            |                   |                               |                        |                                |                         |
| HRES-01          | RESE-112808                  | 28-Nov-08              | $9.5 \pm 2.3$                          | 25.0 ± 2.2            | 2.4 ± 0.31        | $2.3 \pm 0.82$    | 4.7                           | <0.2                   | <0.0003                        | Energy Labs             |
| HRES-02          | RESE-1003150                 | 20-Jul-11              | 23 ± 8.4                               | 49 ± 7.7              | 10 ± 0.5          | 0.97 ± 0.45       | 11                            |                        | <0.0001                        | ACZ                     |
| HRES-02 DUP      | RESE-1003201                 | 20-Jul-11              | 21 ± 8.4                               | 48 ± 7.9              | 10 ± 0.49         | 1.1 ± 0.5         | 11.1                          |                        | <0.0001                        | ACZ                     |
| HRES-02          | RESE-1003218                 | 22-Oct-11              | 19 ± 7.4                               | 47 ± 7                | 10 ± 0.45         | 1.5 ± 0.57        | 11.5                          |                        | <0.0001                        | ACZ                     |
| HRES-02          | RESE-1003222                 | 25-Oct-11              | 49 ± 13                                | 54 ± 9.3              | 11 ± 0.53         | 3.9 ± 0.6         | 14.9                          |                        | <0.0001                        | ACZ                     |
| HRES-02          | RESE-1003227                 | 27-Oct-11              | 28 ± 18                                | 56 ± 17               | 11 ± 0.82         | 5.3 ± 1           | 16.3                          |                        | 0.0017                         | ACZ                     |
| HRES-04          | RESE-1000291                 | 21-Dec-09              | 3.1 ± 1.3                              | <2.6                  | <0.20             | <1.5              |                               | $0.3 \pm 0.2$          | < 0.0003                       | Energy Labs             |



| SAMPLE LOCATION          | SAMPLE                     | SAMPLE    |                                        |                       | RADIOL            | OGICAL CO         | NSTITUENTS                    | а                  |                                | ANALYTICAL  |
|--------------------------|----------------------------|-----------|----------------------------------------|-----------------------|-------------------|-------------------|-------------------------------|--------------------|--------------------------------|-------------|
|                          | IDENTIFIER/<br>DESCRIPTION | DATE      | Gross<br>Alpha<br>(pCi/L) <sup>b</sup> | Gross Beta<br>(pCi/L) | Ra-226<br>(pCi/L) | Ra-228<br>(pCi/L) | Ra-226 +<br>Ra-228<br>(pCi/L) | Total U<br>(pCi/L) | Total U<br>(mg/L) <sup>c</sup> | LABORATORY  |
|                          |                            |           | Deep 0                                 | Froundwater           | System            |                   |                               |                    |                                |             |
| HRES-06 DUP              | RESE-1003184               | 09-Jan-11 | 3.2 ± 3.5                              | 6.5 ± 3.4             | 0.73 ± 0.18       | <1.7              | 0.73                          |                    | 0.0033                         | ACZ         |
| HRES-06                  | RESE-1003186               | 09-Jan-11 | <2.5                                   | 8.3 ± 3.8             | 1.5 ± 0.26        | <1.40             | 1.5                           |                    | 0.0033                         | ACZ         |
| HRES-09                  | RESE-1003206               | 02-Sep-11 | 36 ± 7.1                               | 6.9 ± 3.2             | 0.31 ± 0.1        | <0.96             | 0.31                          |                    | 0.0115                         | ACZ         |
| HRES-10                  | RESE-1003105               | 28-Nov-10 | <15.0                                  | 55 ± 22               | 1.5 ± 0.21        | 1.8 ± 0.57        | 3.3                           |                    | 0.0045                         | ACZ         |
| HRES-11                  | RESE-1003131               | 29-Jun-11 | <2.20                                  | 5.6 ± 3.1             | 0.74 ± 0.17       | 0.99 ± 0.43       | 1.73                          |                    | 0.0002                         | ACZ         |
|                          |                            |           |                                        |                       |                   |                   |                               |                    |                                |             |
| HRES-13                  | RESE-1003138               | 28-Jun-11 | <2.6                                   | 9.1 ± 3.7             | 0.67 ± 0.2        | 1.7 ± 0.54        | 2.37                          |                    | 0.0011                         | ACZ         |
| ES-09                    | RES009-1681-2064.28        | 09-Oct-06 | 21 ± 5.8                               | 26 ± 5                | 10 ± 0.67         | $3.4 \pm 0.83$    | 13.4                          |                    | 0.0001 j                       | ACZ         |
| ES-09 SP                 | RES009-1681-2064.28        | 09-Oct-06 |                                        |                       |                   |                   |                               |                    | <0.0010                        | SVL         |
|                          |                            |           | ı                                      | Mine Working          | <b>js</b>         |                   |                               |                    |                                |             |
| haft No. 9 Discharge     | RESE-1000278               | 22-Apr-09 | 27.0 ± 17.8                            | <27.6                 | 4.2 ± 0.44        | <1.4              | 4.2                           | 8.8 ± 0.9          | 0.0117                         | Energy Labs |
| naft No. 9 Discharge     | RESE-1003157               | 25-Jun-10 | 20 ± 16                                | 56 ± 20               | 6.3 ± 0.35        | 1.2 ± 0.51        | 7.5                           |                    | 0.0192                         | ACZ         |
| haft No. 9 Discharge     | RESE-1003169               | 29-Jul-10 | 22 ± 21                                | 55 ± 23               | $4.7 \pm 0.3$     | 1.2 ± 0.49        | 5.9                           |                    | 0.0177                         | ACZ         |
| naft No. 9 Discharge     | RESE-1003160               | 16-Aug-10 | 22 ± 15                                | 67 ± 18               | 0.42 ± 0.14       | 1.7 ± 0.62        | 2.12                          |                    | 0.0154                         | ACZ         |
| naft No. 9 Discharge     | RESE-1003171               | 30-Aug-10 | 21 ± 14                                | 49 ± 16               | $7.5 \pm 0.37$    | 1.2 ± 0.65        | 8.7                           |                    | 0.0146                         | ACZ         |
| naft No. 9 Discharge     | RESE-1003162               | 14-Sep-10 | 16 ± 18                                | 60 ± 23               | 5.2 ± 0.29        | 1.1 ± 0.68        | 6.3                           |                    | 0.0156                         | ACZ         |
| naft No. 9 Discharge     | RESE-1003177               | 27-Sep-10 | 26 ± 20                                | 58 ± 23               | 5.3 ± 0.28        | 1.7 ± 0.72        | 7.0                           |                    | 0.0159                         | ACZ         |
| naft No. 9 Discharge     | RESE-1003179               | 11-Oct-10 | <12.0                                  | 48 ± 16               | $4.8 \pm 0.39$    | <1.40             | 4.8                           |                    | 0.0118                         | ACZ         |
| naft No. 9 Discharge     | RESE-1003180               | 25-Oct-10 | <12.00                                 | 54 ± 19               | 5.6 ± 0.33        | 3.3 ± 0.64        | 8.9                           |                    | 0.0130                         | ACZ         |
| naft No. 9 Discharge     | RESE-1003181               | 09-Nov-10 | 34 ± 17                                | 48 ± 16               | 4.3 ± 0.29        | 1.8 ± 0.75        | 6.1                           |                    | 0.0111                         | ACZ         |
| naft No. 9 Discharge     | RESE-1003106               | 12-Jan-11 | <12.0                                  | 47 ± 17               | 4.4 ± 0.32        | 1.9 ± 0.64        | 6.3                           |                    | 0.0124                         | ACZ         |
| naft No. 9 Discharge     | RESE-1003187               | 25-Jan-11 | 12 ± 13                                | 54 ± 17               | 5.7 ± 0.42        | <1.3              | 5.7                           |                    | 0.0133                         | ACZ         |
| naft No. 9 Discharge     | RESE-1003195               | 09-Feb-11 | 29 ± 17                                | 72 ± 17               | 8.2 ± 0.35        | $3.5 \pm 0.65$    | 11.7                          |                    | 0.0122                         | ACZ         |
| naft No. 9 Discharge     | RESE-1003198               | 22-Feb-11 | <11.0                                  | 51 ± 18               | 4.1 ± 0.26        | $3.2 \pm 0.69$    | 7.3                           |                    | 0.0111                         | ACZ         |
| naft No. 9 Discharge     | RESE-1003115               | 08-Mar-11 | <12.0                                  | 33 ± 17               | 9.6 ± 0.5         | 2.5 ± 0.67        | 12.1                          |                    | 0.0108                         | ACZ         |
| haft No. 9 Discharge     | RESE-1003107               | 22-Mar-11 | 21 ± 14                                | 76 ± 19               | $7.5 \pm 0.38$    | <1.5              | 7.5                           |                    | 0.0120                         | ACZ         |
| naft No. 9 Discharge     | RESE-1003111               | 06-Apr-11 | <12.00                                 | 66 ± 18               | $4.5 \pm 0.29$    | <1.5              | 4.5                           |                    | 0.0121                         | ACZ         |
| naft No. 9 Discharge     | RESE-1003200               | 19-Apr-11 | 24 ± 15                                | 67 ± 17               | 5.7 ± 0.31        | <0.99             | 5.7                           |                    | 0.0106                         | ACZ         |
| naft No. 9 Discharge     | RESE-1003123               | 02-May-11 | 44 ± 18                                | 87 ± 18               | 4.5 ± 0.26        | <1.40             | 4.5                           |                    | 0.0121                         | ACZ         |
| naft No. 9 Discharge     | RESE-1003120               | 18-May-11 | 17 ± 17                                | 55 ± 19               | $6.4 \pm 0.4$     | 1.4 ± 0.48        | 7.8                           |                    | 0.0145                         | ACZ         |
| haft No. 9 Discharge     | RESE-1003127               | 01-Jun-11 | 42 ± 18                                | 85 ± 19               | 5.1 ± 0.37        | 1.9 ± 0.49        | 7.0                           |                    | 0.0108                         | ACZ         |
| haft No. 9 Discharge DUP | RESE-1003128               | 01-Jun-11 | 12 ± 10                                | 59 ± 14               | $5.9 \pm 0.37$    | 1.6 ± 0.49        | 7.5                           |                    | 0.0109                         | ACZ         |
| naft No. 9 Discharge     | RESE-1003134               | 13-Jun-11 | <10.0                                  | 54 ± 16               | $4.9 \pm 0.34$    | $0.73 \pm 0.51$   | 5.6                           |                    | 0.0136                         | ACZ         |
| naft No. 9 Discharge     | RESE-1003140               | 30-Jun-11 | <9.5                                   | 42 ± 14               | $5 \pm 0.29$      | $3.2 \pm 0.49$    | 8.2                           |                    | 0.0124                         | ACZ         |
| naft No. 9 Discharge     | RESE-1003145               | 12-Jul-11 | 25 ± 17                                | 73 ± 19               | $6.3 \pm 0.37$    | 1.7 ± 0.62        | 8.0                           |                    | 0.0173                         | ACZ         |
| naft No. 9 Discharge     | RESE-1003202               | 27-Jul-11 | 20 ± 16                                | 36 ± 17               | $3.7 \pm 0.27$    | $1.6 \pm 0.5$     | 5.3                           |                    | 0.0224                         | ACZ         |
| naft No. 9 Discharge     | RESE-1003204               | 12-Aug-11 | 19 ± 13                                | 52 ± 12               | $4.2 \pm 0.31$    | <0.97             | 4.2                           |                    | 0.0192                         | ACZ         |
| naft No. 9 Discharge     | RESE-1003209               | 25-Aug-11 | 15 ± 12                                | 43 ± 14               | $5.4 \pm 0.35$    | <1.10             | 5.4                           |                    | 0.0197                         | ACZ         |
| aft No. 9 Discharge      | RESE-1003210               | 07-Sep-11 | 20 ± 14                                | 65 ± 11               | 5.5 ± 0.31        | 1.4 ± 0.46        | 6.9                           |                    | 0.0138                         | ACZ         |
| aft No. 9 Discharge      | RESE-1003212               | 20-Sep-11 | 15 ± 14                                | 42 ± 13               | $4.8 \pm 0.3$     | <1.1              | 4.8                           |                    | 0.0140                         | ACZ         |
| aft No. 9 Discharge      | RESE-1003225               | 26-Oct-11 | r ± 26                                 | r ± 18                | $4.6 \pm 0.37$    | $2.4 \pm 0.52$    | 7.0                           |                    | 0.0159                         | ACZ         |
| aft No. 9 Discharge      | RESE-1003228               | 09-Nov-11 | 20 ± 13                                | 54 ± 14               | $5.8 \pm 0.37$    | $2.6 \pm 0.52$    | 8.4                           |                    | 0.0163                         | ACZ         |
| naft No. 9 Discharge DUP | RESE-1003229               | 09-Nov-11 | 55 ± 18                                | 98 ± 17               | $6.7 \pm 0.4$     | $3.2 \pm 0.55$    | 9.9                           |                    | 0.0162                         | ACZ         |
| haft No. 9 Discharge     | RESE-1003232               | 22-Nov-11 | 10 ± 11                                | 57 ± 13               | 4.2 ± 0.29        | <1.6              | 4.2                           |                    | 0.0107                         | ACZ         |
| naft No. 9 Discharge     | RESE-1003234               | 07-Dec-11 | 14 ± 12                                | 45 ± 12               | 4 ± 0.29          | <1.00             | 4                             |                    | 0.0103                         | ACZ         |
|                          |                            |           | Shallow                                | Groundwate            | r System          |                   |                               |                    |                                |             |
| ckberry Windmill Well    | RESE-1000263               | 27-Feb-08 | <1.3                                   | 2.5 ± 1.4             | <0.1              | <1.3              |                               | <0.2               | <0.0003                        | Energy Labs |
| ackberry Windmill Well   | RESE-1003011               | 03-Jun-08 | <1.5                                   | <2.6                  | 0.25 ± 0.15       | 2.8 ± 0.85        | 3.05                          | <0.2               | <0.0003                        | Energy Labs |



| SAMPLE LOCATION                                     | SAMPLE                     | SAMPLE    |                                        |                       | RADIOL            | OGICAL COI        | NSTITUENTS                    | a                  |                                | ANALYTICAL  |
|-----------------------------------------------------|----------------------------|-----------|----------------------------------------|-----------------------|-------------------|-------------------|-------------------------------|--------------------|--------------------------------|-------------|
|                                                     | IDENTIFIER/<br>DESCRIPTION | DATE      | Gross<br>Alpha<br>(pCi/L) <sup>b</sup> | Gross Beta<br>(pCi/L) | Ra-226<br>(pCi/L) | Ra-228<br>(pCi/L) | Ra-226 +<br>Ra-228<br>(pCi/L) | Total U<br>(pCi/L) | Total U<br>(mg/L) <sup>c</sup> | LABORATORY  |
|                                                     |                            |           | Shallow                                | Groundwate            | r System          |                   |                               |                    |                                |             |
| Hackberry Windmill Well                             | RESE-1003019               | 02-Sep-08 | <1.4                                   | 2.9 ± 1.7             | <0.23             | <1.2              |                               | <0.2               | <0.0003                        | Energy Labs |
| Hackberry Windmill Well DUP                         | RESE-1003020               | 02-Sep-08 | <1.4                                   | <2.7                  | <0.19             | <1.2              |                               | <0.2               | <0.0003                        | Energy Labs |
| Hackberry Windmill Well                             | RESE-1003024               | 02-Dec-08 | 3.5 ± 1.1                              | 6.0 ± 1.7             | <0.15             | <1.2              |                               | <0.2               | <0.0003                        | Energy Labs |
| JI Ranch Corral Well                                | RESE-1000302               | 21-Jun-07 | <1.0                                   | <2.0                  | $0.6 \pm 0.3$     | <1.0              | 0.6                           | <0.2               | <0.0003                        | Energy Labs |
| JI Ranch Corral Well                                | RESE-1003005               | 29-May-08 | 2.6 ± 1.6                              | <2.7                  | 0.55 ± 0.15       | 1.1 ± 0.55        | 1.65                          | <0.2               | <0.0003                        | Energy Labs |
| JI Ranch Corral Well                                | RESE-1003014               | 25-Aug-08 | <3.1                                   | <4.0                  | <0.23             | <1.2              |                               | <0.2               | <0.0003                        | Energy Labs |
| JI Ranch Corral Well                                | RESE-1003029               | 03-Dec-08 | 8.6 ± 3                                | 5.1 ± 2.8             | <0.18             | 1.7 ± 0.8         | 1.70                          | <0.2               | <0.0003                        | Energy Labs |
| JI Ranch Middle Well                                | RESE-1003006               | 30-May-08 | <1.5                                   | <2.6                  | 0.29 ± 0.11       | <0.85             | 0.29                          | <0.2               | <0.0003                        | Energy Labs |
| JI Ranch Middle Well                                | RESE-1003017               | 27-Aug-08 | <1.6                                   | <2.7                  | <0.25             | <1.2              |                               | <0.2               | <0.0003                        | Energy Labs |
| JI Ranch Middle Well                                | RESE-1003028               | 03-Dec-08 | 4.6 ± 1.5                              | 3.9 ± 1.7             | <0.16             | 2.0 ± 0.81        | 2.00                          | <0.2               | <0.0003                        | Energy Labs |
| U.S.EPA National Primary Drinking Water Regulations |                            |           | 15 pCi/L                               | 50 pCi/L d            |                   |                   | 5 pCi/L                       |                    | 0.03 mg/L                      |             |
| Arizona Numeric Aquifer Water Quality Standards     |                            |           | 15 pCi/L                               | 50 pCi/L              |                   |                   | 5 pCi/L                       |                    | 0.035 mg/L                     |             |

#### Values in bold red are out of compliance with EPA primary water quality standards Values in red italics are out of compliance with Arizona numeric water quality standards Values in blue indicate that detection limit exceeds standard

a Ra-226 = Radium 226 Ra-228 = Radium 228 U = Uranium

< = Less than reported detection limit --- = Not available, not applicable --- = Not calculated due to non-detect

b pCi/L = picocuries per liter

c mg/L = milligrams per liter

#### **Explanation of Codes**

Absent = Analyte not present ge = Greater than or equal to reported value

i = Insufficient sample

j = Estimated value

j = Estimated value, high bias j = Estimated value, low bias Lost = Sample lost in processing n = Not measured na = Not available ND = Not Detected na = Analyto not applicable in the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same

np = Analyte not applicable

Present = Analyte was detected

q = Uncertain value

r = Unusable data

= Unusable data
 = Less than reported detection limit
 = Greater than reported value
 d = Diluted. Diluted samples are indicated only when value is estimated.
 DUP = Field Duplicate
 LD = Laboratory duplicate

SP = Split sample SPD = Split-Duplicate



d pCi/L alert level for EPA and Arizona Numeric Standard of 4 mrem/year (milliroentgen equivalent man per year)

| SAMPLE LOCATION   SAMPLE DENTIFIER   DESCRIPTION   SAMPLE   DATE   So to 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | University of Arizona University of Arizona University of Arizona University of Arizona University of Arizona University of Arizona University of Arizona University of Arizona Beta Analytic Isotech University of Arizona University of Arizona University of Arizona University of Arizona |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A-06 RESE-1000255 24-Sep-07 -10.4 -70 -16.4 10.0 13.5 A-06 DUP RESE-1000256 24-Sep-07 -10.4 -71 9.2 i A-06 RESE-1000256 24-Sep-07 -10.4 -71 9.2 i A-06 RESE-1003008 02-Jun-08 -10.5 -71 -15.8 6.6 8.3 A-06 RESE-1003016 28-Aug-08 -10.5 -71 -16.3 6.2 12.5 A-06 RESE-1003009 04-De0-88 -10.4 -71 -16.0 7.1 i A-06 RESE-1003009 04-De0-88 -10.4 -71 -16.0 7.1 i A-06 RESE-1003009 04-De0-89 -10.5 -70 -15.9 6.8 6.3 A-06 RESE-1003009 05-Mar-09 -10.5 -70 -15.9 6.8 6.3 A-06 RESE-1003009 05-Mar-09 -10.5 -70 -15.9 6.8 6.3 A-06 RESE-1003009 05-Mar-09 -10.4 -70 14.0 7.6 14.1 CT Well RESE-1003102 20-Apr-10 14.0 7.8 14.1 CT Well RESE-1003102 20-Apr-10 14.0 3.6 2.1 RRESE-1003102 20-Apr-10 RESE-1003102 20-Apr-10 RESE-1003102 20-Apr-10 RESE-1003102 20-Apr-10 RESE-1003102 20-Apr-10 RESE-1003102 20-Apr-10 RESE-1003102 20-Apr-10 RESE-1003103 18-Mar-04 -9.5 -66 RRESE-1003102 RESE-1003103 18-Mar-04 -9.5 -66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | University of Arizona University of Arizona University of Arizona University of Arizona University of Arizona University of Arizona University of Arizona Beta Analytic Isotech University of Arizona University of Arizona University of Arizona University of Arizona                       |
| No Dup   RESE-1000256   24-Sep-07   -10.4   -71     9.2   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | University of Arizona University of Arizona University of Arizona University of Arizona University of Arizona University of Arizona University of Arizona Beta Analytic Isotech University of Arizona University of Arizona University of Arizona University of Arizona                       |
| RESE-1003008   Q2-Jun-08   -10.4   -70   -15.8   6.6   8.3   8.5   8.6   8.5   8.5   8.6   8.5   8.5   8.6   8.5   8.5   8.6   8.5   8.5   8.6   8.5   8.5   8.6   8.5   8.5   8.6   8.5   8.5   8.6   8.5   8.5   8.6   8.5   8.5   8.6   8.5   8.5   8.6   8.5   8.5   8.6   8.5   8.5   8.6   8.5   8.5   8.5   8.5   8.6   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5 | University of Arizona University of Arizona University of Arizona University of Arizona University of Arizona Beta Analytic Isotech University of Arizona University of Arizona University of Arizona University of Arizona                                                                   |
| RESE-1003016 28-Aug-08 -10.5 -71 -16.3 6.2 12.5   -0.66 RESE-1003030 04-Dec-08 -10.4 -71 -16.0 7.1 i   -0.66 RESE-1003039 05-Mar-09 -10.5 -70 -15.9 6.8 6.3   -0.66 RESE-1003039 05-Mar-09 -10.5 -70 -15.9 6.8 6.3   -0.66 RESE-1003046 04-Jun-09 10.4 770 - 7.6 14.1   -0.77 Well RESE-1003102 20-Apr-10 - 14.0 70 - 7.6 14.1   -0.77 Well RESE-1003102 20-Apr-10 - 8.44 -55.2 - 3.6 2.1   -0.78 RESE-1001103 18-Mar-04 -9.5 -66 3.6 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | University of Arizona University of Arizona University of Arizona University of Arizona Beta Analytic Isotech University of Arizona University of Arizona University of Arizona                                                                                                               |
| A06         RESE-1003030         0.4-be-0.8         -10.4         -71         -16.0         7.1         i           A06         RESE-1003039         0.5-Mar-09         -10.5         -70         -15.9         6.8         6.3           A06         RESE-1003046         0.4-Jun-09         -10.4         -70          7.6         14.1           DTWell         RESE-1003102         20-Apr-10           -14.0             DTWell         RESE-1003102         20-Apr-10         -8.44         -55.2          -3.6         2.1           ARES-01         RESE-1001103         18-Mar-04         -9.5         -66              ARES-02         RESE-1001108         08-Apr-04         -9.1         -64              ARES-02         RESE-1001108         08-Apr-04         -9.9         -68              ARES-02         RESE-1001109         10-Apr-04         -9.9         -68              ARES-03         RESE-1001111         16-Apr-04         -9.1         -7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | University of Arizona University of Arizona University of Arizona Beta Analytic Isotech University of Arizona University of Arizona University of Arizona                                                                                                                                     |
| RESE-1003039   05-Mar-09   -10.5   -70   -15.9   6.8   6.3   6.3     RESE-1003046   04-Jun-09   -10.4   -70   -1   7.6   14.1     RESE-1003102   20-Apr-10       -14.0         RESE-1003102   20-Apr-10   -8.44   -55.2     -3.6   2.1     RESE-01   RESE-1003102   20-Apr-10   -8.44   -55.2     -3.6   2.1     RESE-01   RESE-1001103   18-Mar-04   -9.5   -66           RESE-02   RESE-1001105   06-Apr-04   -9.1   -64           RESE-02   RESE-1001108   08-Apr-04   -9.9   -68           RESE-02   RESE-1001109   10-Apr-04   -9.9   -68           RESE-03   RESE-1001111   16-Apr-04   -11.4   -79           RESE-04   RESE-1001110   15-Apr-04   -9.6   -65   -1         RESE-04   RESE-1001114   18-Jan-08   -9.7   -66   -15.6   5.0   8.2     RESE-04   RESE-1001114   18-Jan-08   -9.7   -66   -15.1   6.3   12.0     RESE-04   RESE-1003031   03-Sep-08   -9.6   -65   -14.0   3.6   5.3     RESE-04   RESE-1003031   03-Mar-09   -9.6   -65   -14.0   3.6   5.3     RESE-05   RESE-1000104   02-Apr-04   -9.5   -65   -14.0   3.6   5.3     RESE-05   RESE-1000104   02-Apr-04   -9.5   -65   -14.0   3.6   5.3     RESE-05   RESE-1000010   28-May-08   -9.5   -65   -14.0   5.3   13.1     RESE-05   RESE-1000012   28-May-08   -9.5   -65   -14.0   5.3   13.1     RESE-05   RESE-1000015   02-Dec-08   -9.5   -65   -14.0   5.3   13.1     RESE-05   RESE-1000015   02-Dec-08   -9.5   -65   -14.0   5.3   13.1     RESE-05   RESE-1000015   02-Dec-08   -9.5   -65   -14.0   5.3   13.5     RESE-05                                                                        | University of Arizona University of Arizona Beta Analytic Isotech University of Arizona University of Arizona University of Arizona                                                                                                                                                           |
| RESE-1003146   04-Jun-09   -10.4   -70     7.6   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1   14.1    | University of Arizona  Beta Analytic Isotech  University of Arizona  University of Arizona  University of Arizona                                                                                                                                                                             |
| TWEIL RESE-1003102 20-Apr-1014.03.6 2.1  TWEIL RESE-1003102 20-Apr-10 -8.44 -55.23.6 2.1  RESE-1001103 18-Mar-04 -9.5 -66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Beta Analytic Isotech University of Arizona University of Arizona University of Arizona                                                                                                                                                                                                       |
| ET Well         RESE-1003102         20-Apr-10         -8.44         -55.2          -3.6         2.1           HRES-01         RESE-1001103         18-Mar-04         -9.5         -66              HRES-02         RESE-1001108         08-Apr-04         -9.9         -68              HRES-02         RESE-1001109         10-Apr-04         -9.9         -68              HRES-03d         RESE-1001111         16-Apr-04         -9.9         -68              HRES-04         RESE-1001111         16-Apr-04         -9.6         -65              HRES-04         RESE-1001110         15-Apr-04         -9.6         -65         -15.6         5.0         8.2           HRES-04         RESE-1001114         18-Jan-08         -9.7         -66         -15.1         6.3         12.0           HRES-04         RESE-1003021         03-Sep-08         -9.6         -65         -14.5         4.9         16.7           HRES-04         RESE-1003031         02-Mar-09         -9.6         -65         -14.0 <td< td=""><td>University of Arizona University of Arizona University of Arizona</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | University of Arizona University of Arizona University of Arizona                                                                                                                                                                                                                             |
| RES-01 RES-1001103 18-Mar-04 -9.5 -66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | University of Arizona University of Arizona University of Arizona                                                                                                                                                                                                                             |
| RES-02 RESE-1001105 06-Apr-04 -9.1 -64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | University of Arizona University of Arizona                                                                                                                                                                                                                                                   |
| RESE-1001108 08-Apr-04 -9.9 -68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | University of Arizona                                                                                                                                                                                                                                                                         |
| RESE-1001109 10-Apr-04 -9.9 -68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                               |
| RESE-1001111 16-Apr-04 -11.4 -79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                               |
| RES-04 RESE-1001110 15-Apr-04 -9.6 -65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | University of Arizona                                                                                                                                                                                                                                                                         |
| RES-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | University of Arizona                                                                                                                                                                                                                                                                         |
| RES-04       RESE-1001114       18-Jan-08       -9.7       -66       -15.1       6.3       12.0         RES-04       RESE-1003021       03-Sep-08       -9.6       -67       -14.5       4.9       16.7         RES-04       RESE-1003031       02-Mar-09       -9.6       -65       -14.0       3.6       5.3         RES-04       RESE-1003040       01-Jun-09       -9.6       -65        4.5       9.8         RES-05       RESE-1001104       02-Apr-04       -9.5       -65            RES-05       RESE-1000264       27-Feb-08       -9.7       -66       -13.3       8.5       13.5         RES-05       RESE-1003001       28-May-08       -9.5       -65       -14.0       5.3       13.1         RES-05       RESE-1003012       25-Aug-08       -9.1       -72       -14.2       7.8       7.8         RES-05       RESE-1003025       02-Dec-08       -9.5       -67       -14.7       6.6       i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | University of Arizona                                                                                                                                                                                                                                                                         |
| RESE-1003021 03-Sep-08 -9.6 -67 -14.5 4.9 16.7 RESE-04 RESE-1003031 02-Mar-09 -9.6 -65 -14.0 3.6 5.3 RESE-04 RESE-1003040 01-Jun-09 -9.6 -65 4.5 9.8 RESE-05 RESE-100104 02-Apr-04 -9.5 -65 RESE-05 RESE-1000264 27-Feb-08 -9.7 -66 -13.3 8.5 13.5 RESE-05 RESE-1003001 28-May-08 -9.5 -65 -14.0 5.3 13.1 RESE-05 RESE-1003012 25-Aug-08 -9.1 -72 -14.2 7.8 7.8 RESE-05 RESE-1003025 02-Dec-08 -9.5 -67 -14.7 6.6 i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | University of Arizona                                                                                                                                                                                                                                                                         |
| RESE-1003031 02-Mar-09 -9.6 -65 -14.0 3.6 5.3  RESE-1003040 01-Jun-09 -9.6 -65 4.5 9.8  RESE-1001104 02-Apr-04 -9.5 -65  RESE-1001064 27-Feb-08 -9.7 -66 -13.3 8.5 13.5  RESE-05 RESE-1003001 28-May-08 -9.5 -65 -14.0 5.3 13.1  RES-05 RESE-1003012 25-Aug-08 -9.1 -72 -14.2 7.8 7.8  RESE-1003025 02-Dec-08 -9.5 -67 -14.7 6.6 i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | University of Arizona                                                                                                                                                                                                                                                                         |
| RESE-1003040 01-Jun-09 -9.6 -65 4.5 9.8  RESE-1001104 02-Apr-04 -9.5 -65  RESE-05 RESE-1000264 27-Feb-08 -9.7 -66 -13.3 8.5 13.5  RESE-1003001 28-May-08 -9.5 -65 -14.0 5.3 13.1  RES-05 RESE-1003012 25-Aug-08 -9.1 -72 -14.2 7.8 7.8  RESE-05 RESE-1003025 02-Dec-08 -9.5 -67 -14.7 6.6 i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | University of Arizona                                                                                                                                                                                                                                                                         |
| RESE-1001104 02-Apr-04 -9.5 -65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | University of Arizona                                                                                                                                                                                                                                                                         |
| RESE-1000264 27-Feb-08 -9.7 -66 -13.3 8.5 13.5 RESE-1003001 28-May-08 -9.5 -65 -14.0 5.3 13.1 RES-05 RESE-1003012 25-Aug-08 -9.1 -72 -14.2 7.8 7.8 RESE-1003012 02-Dec-08 -9.5 -67 -14.7 6.6 i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | University of Arizona                                                                                                                                                                                                                                                                         |
| RES-05 RESE-1003001 28-May-08 -9.5 -65 -14.0 5.3 13.1 RES-05 RESE-1003012 25-Aug-08 -9.1 -72 -14.2 7.8 7.8 RESE-05 RESE-1003025 02-Dec-08 -9.5 -67 -14.7 6.6 i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | University of Arizona                                                                                                                                                                                                                                                                         |
| RES-05 RESE-1003012 25-Aug-08 -9.1 -72 -14.2 7.8 7.8  RES-05 RESE-1003025 02-Dec-08 -9.5 -67 -14.7 6.6 i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | University of Arizona                                                                                                                                                                                                                                                                         |
| HRES-05 RESE-1003025 02-Dec-08 -9.5 -67 -14.7 6.6 i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | University of Arizona                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | University of Arizona                                                                                                                                                                                                                                                                         |
| DECC 4000004 00 Mar-00 00 05 440 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | University of Arizona                                                                                                                                                                                                                                                                         |
| IRES-05 RESE-1003034 03-Mar-09 -9.6 -65 -14.2 8.6 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | University of Arizona                                                                                                                                                                                                                                                                         |
| RES-05 SP RESE-1003034 03-Mar-093.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Beta Analytic                                                                                                                                                                                                                                                                                 |
| RES-05 RESE-1003043 03-Jun-09 -9.7 -65 8.0 7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | University of Arizona                                                                                                                                                                                                                                                                         |
| IRES-06 RESE-1000301 12-Jun-07 -10.3 -70 -15.6 4.5 9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | University of Arizona                                                                                                                                                                                                                                                                         |
| IRES-06 RESE-1000265 27-Feb-08 -10.3 -71 -7.7 4.9 9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | University of Arizona                                                                                                                                                                                                                                                                         |
| RES-06 DUP RESE-1000266 27-Feb-08 -10.3 -71 -15.0 4.8 9.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | University of Arizona                                                                                                                                                                                                                                                                         |
| HRES-06 RESE-1003003 28-May-08 -10.1 -71 -16.5 8.5 18.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | University of Arizona                                                                                                                                                                                                                                                                         |
| IRES-06 RESE-1003013 25-Aug-08 -10.2 -72 -15.6 5.0 11.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                               |
| RES-06 RESE-1003026 03-Dec-08 -10.2 -72 -16.1 5.2 9.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | University of Arizona                                                                                                                                                                                                                                                                         |
| RES-06 DUP RESE-1003027 03-Dec-08 -10.3 -71 -15.8 4.9 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | University of Arizona University of Arizona                                                                                                                                                                                                                                                   |



| SAMPLE LOCATION  | SAMPLE IDENTIFIER/ | SAMPLE    |                                |              | ISOTOPES      |                  |                          | ANALYTICAL            |
|------------------|--------------------|-----------|--------------------------------|--------------|---------------|------------------|--------------------------|-----------------------|
|                  | DESCRIPTION        | DATE      | δ <sup>18</sup> O <sup>a</sup> | $\delta D^b$ | δ¹³C in DIC c | $\delta^{34}S^d$ | δ¹8O in SO₄ <sup>e</sup> | LABORATORY            |
|                  |                    |           | (‰)                            | (‰)          | (‰)           | (‰)              | (‰)                      |                       |
|                  |                    |           | Apache Leap                    | Tuff Aquit   | er            |                  |                          |                       |
| RES-06           | RESE-1003035       | 04-Mar-09 | -10.4                          | -70          | -15.4         | 4.5              | 8.7                      | University of Arizona |
| IRES-06 SP       | RESE-1003035       | 04-Mar-09 |                                |              | -14.5         |                  |                          | Beta Analytic         |
| HRES-06 DUP      | RESE-1003036       | 04-Mar-09 | -10.4                          | -70          | -15.3         | 5.0              | 5.6                      | University of Arizona |
| RES-06 SPD       | RESE-1003036       | 04-Mar-09 |                                |              | -15.2         |                  |                          | Beta Analytic         |
| IRES-06          | RESE-1003044       | 03-Jun-09 | -10.3                          | -71          |               | 4.8              | 9.2                      | University of Arizona |
| RES-06 DUP       | RESE-1003045       | 03-Jun-09 | -10.3                          | -70          |               | 4.7              | 9.8                      | University of Arizona |
| RES-07           | RESE-1000262       | 26-Feb-08 | -9.8                           | -67          | -14.2         | 4.5              | 17.6                     | University of Arizona |
| RES-07           | RESE-1003009       | 03-Jun-08 | -9.8                           | -70          | -13.5         | 4.6              | 9.0                      | University of Arizona |
| IRES-07 DUP      | RESE-1003010       | 03-Jun-08 | -9.8                           | -67          | -13.9         | 4.8              | 6.5                      | University of Arizona |
| IRES-07          | RESE-1003018       | 02-Sep-08 | -9.7                           | -68          | -14.3         | 4.3              | 9.0                      | University of Arizona |
| IRES-07          | RESE-1003022       | 01-Dec-08 | -9.8                           | -68          | -15.1         | 4.3              | 5.2                      | University of Arizona |
| IRES-07          | RESE-1003032       | 03-Mar-09 | -10.0                          | -67          |               | 4.3              | 5.8                      | University of Arizona |
| RES-07           | RESE-1003041       | 02-Jun-09 | -9.8                           | -69          |               | 3.9              | 10.3                     | University of Arizona |
| RES-07           | RESE-1000290       | 06-Dec-09 |                                |              | -15.1         |                  |                          | Beta Analytic         |
| RES-07           | RESE-1000290       | 06-Dec-09 | -9.60                          | -69.7        |               |                  |                          | Isotech               |
| RES-08           | RESE-1003149       | 21-Jul-11 |                                | -            | -13.0         |                  |                          | Beta Analytic         |
| RES-08           | RESE-1003149       | 21-Jul-11 | -9.61                          | -68.7        |               | Lost             | Lost                     | Isotech               |
| IRES-09          | RESE-1003182       | 29-Dec-10 |                                |              | -14.7         |                  |                          | Beta Analytic         |
| RES-09           | RESE-1003182       | 29-Dec-10 | -9.34                          | -67.5        |               | i                | i                        | Isotech               |
| RES-09           | RESE-1003143       | 04-Jul-11 |                                |              | -19.0         |                  |                          | Beta Analytic         |
| RES-09           | RESE-1003143       | 04-Jul-11 | -9.52                          | -68.0        |               | 6.5              | -0.7                     | Isotech               |
| IRES-10          | RESE-1003175       | 24-Sep-10 |                                | _            | -17.2         |                  |                          | Beta Analytic         |
| IRES-10          | RESE-1003175       | 24-Sep-10 | -8.83                          | -62.7        |               | -1.9             | 2.3                      | Isotech               |
| RES-11           | RESE-1003174       | 23-Sep-10 |                                |              | -16.6         |                  |                          | Beta Analytic         |
| RES-11           | RESE-1003174       | 23-Sep-10 | -10.21                         | -72.0        |               | 1.9              | -0.5                     | Isotech               |
| RES-12           | RESE-1003144       | 10-Jul-11 |                                |              | -15.3         |                  |                          | Beta Analytic         |
| RES-12           | RESE-1003144       | 10-Jul-11 | -9.45                          | -66.3        |               | 1.1              | 7.5                      | Isotech               |
| RES-13           | RESE-1003130       | 03-Jun-11 |                                |              | -15.2         |                  |                          | Beta Analytic         |
| IRES-13          | RESE-1003130       | 03-Jun-11 | -10.01                         | -70.2        |               | 3.8              | 1.3                      | Isotech               |
| RES-14           | RESE-1003147       | 15-Jul-11 |                                |              | -15.6         |                  |                          | Beta Analytic         |
| RES-14           | RESE-1003147       | 15-Jul-11 | -10.14                         | -70.1        |               | 5.4              | -3.9                     | Isotech               |
| Ranch House Well | RESE-1000303       | 21-Jun-07 | -10.3                          | -72          | -16.2         | 5.1              | 23.8                     | University of Arizona |
| J-11             | RESE-1000257       | 29-Sep-07 | -10.4                          | -71          | -16.7         | 8.1              | 9.8                      | University of Arizona |
|                  |                    |           |                                |              |               |                  | 9.8<br>i                 |                       |
| NJ-11            | RESE-1000261       | 20-Feb-08 | -10.4                          | -67          | -15.6         | 6.6              |                          | University of Arizona |
| IJ-11            | RESE-1003007       | 02-Jun-08 | -10.4                          | -70          | -15.6         | 6.4              | 10.6                     | University of Arizona |



| SAMPLE LOCATION      | SAMPLE IDENTIFIER/  | SAMPLE    |                          |                        | ISOTOPES                                  |                          |                                                       | ANALYTICAL            |
|----------------------|---------------------|-----------|--------------------------|------------------------|-------------------------------------------|--------------------------|-------------------------------------------------------|-----------------------|
|                      | DESCRIPTION         | DATE      | δ¹8O <sup>a</sup><br>(‰) | δD <sup>b</sup><br>(‰) | δ <sup>13</sup> C in DIC <sup>c</sup> (‰) | δ³⁴S <sup>d</sup><br>(‰) | δ <sup>18</sup> O in SO <sub>4</sub> <sup>e</sup> (‰) | LABORATORY            |
|                      |                     |           | Apache Leap              | Tuff Aquif             |                                           |                          |                                                       |                       |
| IJ-11                | RESE-1003015        | 26-Aug-08 | -10.4                    | -71                    | -15.9                                     | 5.5                      | 8.3                                                   | University of Arizona |
|                      |                     |           | Deep Ground              | lwater Syst            | em                                        |                          |                                                       |                       |
| HRES-01              | RESE-112808         | 28-Nov-08 | -11.8                    | -83                    | -7.3                                      | 7.7                      | 2.0                                                   | University of Arizona |
| HRES-02              | RESE-1003150        | 20-Jul-11 |                          |                        | -14.6                                     |                          |                                                       | Beta Analytic         |
| HRES-02              | RESE-1003150        | 20-Jul-11 | -11.52                   | -85.3                  |                                           | 9.10                     | 7.60                                                  | Isotech               |
| HRES-02 DUP          | RESE-1003201        | 20-Jul-11 |                          |                        | -17.3                                     |                          |                                                       | Beta Analytic         |
| HRES-02 DUP          | RESE-1003201        | 20-Jul-11 | -11.50                   | -85.2                  |                                           | 8.20                     | 7.09                                                  | Isotech               |
| HRES-02              | RESE-1003218        | 22-Oct-11 |                          |                        | -19.3                                     |                          |                                                       | Beta Analytic         |
| HRES-02              | RESE-1003218        | 22-Oct-11 | -11.77                   | -84.7                  |                                           | 8.0                      | 6.7                                                   | Isotech               |
| HRES-02              | RESE-1003222        | 25-Oct-11 |                          |                        | -13.0                                     |                          |                                                       | Beta Analytic         |
| HRES-02              | RESE-1003222        | 25-Oct-11 | -11.96                   | -84.7                  |                                           | 7.9                      | 6.5                                                   | Isotech               |
| HRES-02              | RESE-1003227        | 27-Oct-11 |                          |                        | -15.1                                     |                          |                                                       | Beta Analytic         |
| HRES-02              | RESE-1003227        | 27-Oct-11 | -11.89                   | -85.1                  |                                           | 9.4                      | 6.2                                                   | Isotech               |
| HRES-04              | RESE-1000291        | 21-Dec-09 |                          |                        | -13.7                                     |                          |                                                       | Beta Analytic         |
| HRES-04              | RESE-1000291        | 21-Dec-09 | -10.95                   | -82.5                  |                                           | 5.2                      | -1.0                                                  | Isotech               |
| HRES-06 DUP          | RESE-1003184        | 09-Jan-11 |                          |                        | -13.1                                     |                          |                                                       | Beta Analytic         |
| HRES-06 DUP          | RESE-1003184        | 09-Jan-11 | -11.69                   | -83.1                  |                                           | i                        | i                                                     | Isotech               |
| HRES-06              | RESE-1003186        | 09-Jan-11 |                          |                        | -16.0                                     |                          |                                                       | Beta Analytic         |
| HRES-06              | RESE-1003186        | 09-Jan-11 | -11.58                   | -84.1                  |                                           | i                        | i                                                     | Isotech               |
| HRES-09              | RESE-1003206        | 02-Sep-11 |                          |                        | -15.2                                     |                          |                                                       | Beta Analytic         |
| HRES-09              | RESE-1003206        | 02-Sep-11 | -9.24                    | -67.6                  |                                           | -1.2                     | 4.4                                                   | Isotech               |
| HRES-10              | RESE-1003105        | 28-Nov-10 |                          |                        | -23.1                                     |                          |                                                       | Beta Analytic         |
| HRES-10              | RESE-1003105        | 28-Nov-10 | -10.14                   | -72.1                  |                                           | 3.9                      | -0.7                                                  | Isotech               |
| HRES-11              | RESE-1003131        | 29-Jun-11 |                          |                        | -13.4                                     |                          |                                                       | Beta Analytic         |
| HRES-11              | RESE-1003131        | 29-Jun-11 | -10.66                   | -76.4                  |                                           | 3.7                      | 5.1                                                   | Isotech               |
| HRES-13              | RESE-1003138        | 28-Jun-11 |                          |                        | -12.3                                     |                          |                                                       | Beta Analytic         |
| HRES-13              | RESE-1003138        | 28-Jun-11 | -10.20                   | -72.2                  |                                           | i                        | i                                                     | Isotech               |
| ES-09                | RES009-1681-2064.28 | 09-Oct-06 | -10.8                    | -74                    | -17.4                                     | 14.8                     | 7.5                                                   | University of Arizona |
|                      |                     |           |                          | orkings                |                                           |                          | - 12                                                  |                       |
| haft No. 9 Discharge | RESE-1000278        | 22-Apr-09 |                          |                        | -26.1                                     |                          | <del></del>                                           | Beta Analytic         |
| naft No. 9 Discharge | RESE-1000278        | 22-Apr-09 | -9.9                     | -68                    |                                           | 1.1                      | 1.9                                                   | University of Arizona |
| haft No. 9 Discharge | RESE-1003157        | 25-Jun-10 |                          |                        | -18.7                                     |                          |                                                       | Beta Analytic         |
| haft No. 9 Discharge | RESE-1003157        | 25-Jun-10 | -10.29                   | -70.7                  |                                           | 1.2                      | -2.1                                                  | Isotech               |
| haft No. 9 Discharge | RESE-1003169        | 29-Jul-10 |                          |                        | -15.9                                     |                          |                                                       | Beta Analytic         |
| haft No. 9 Discharge | RESE-1003169        | 29-Jul-10 | -10.10                   | -71.5                  |                                           | 0.9                      | -1.1                                                  | Isotech               |



| SAMPLE LOCATION       | SAMPLE IDENTIFIER/ | SAMPLE    |                          |                        | ISOTOPES                                  |                                       |                                                       | ANALYTICAL    |
|-----------------------|--------------------|-----------|--------------------------|------------------------|-------------------------------------------|---------------------------------------|-------------------------------------------------------|---------------|
|                       | DESCRIPTION        | DATE      | δ¹8O <sup>a</sup><br>(‰) | δD <sup>b</sup><br>(‰) | δ <sup>13</sup> C in DIC <sup>c</sup> (‰) | δ³ <sup>4</sup> S <sup>d</sup><br>(‰) | δ <sup>18</sup> O in SO <sub>4</sub> <sup>e</sup> (‰) | LABORATORY    |
|                       |                    | 1         |                          | orkings                | (****)                                    | (***)                                 | (122)                                                 |               |
| naft No. 9 Discharge  | RESE-1003160       | 16-Aug-10 |                          |                        | -15.5                                     |                                       |                                                       | Beta Analytic |
| haft No. 9 Discharge  | RESE-1003160       | 16-Aug-10 | -10.11                   | -71.1                  |                                           | 0.7                                   | -1.7                                                  | Isotech       |
| shaft No. 9 Discharge | RESE-1003171       | 30-Aug-10 |                          |                        | -16.4                                     |                                       |                                                       | Beta Analytic |
| haft No. 9 Discharge  | RESE-1003171       | 30-Aug-10 | -10.03                   | -71.7                  |                                           | 0.7                                   | -1.2                                                  | Isotech       |
| haft No. 9 Discharge  | RESE-1003162       | 14-Sep-10 |                          |                        | -13.3                                     |                                       |                                                       | Beta Analytic |
| haft No. 9 Discharge  | RESE-1003162       | 14-Sep-10 | -10.12                   | -72.6                  |                                           | 1.6                                   | -2.1                                                  | Isotech       |
| haft No. 9 Discharge  | RESE-1003177       | 27-Sep-10 |                          | _                      | -20.3                                     |                                       |                                                       | Beta Analytic |
| haft No. 9 Discharge  | RESE-1003177       | 27-Sep-10 | -10.17                   | -72.2                  |                                           | 1.5                                   | -3.6                                                  | Isotech       |
| haft No. 9 Discharge  | RESE-1003179       | 11-Oct-10 |                          | _                      | -19.4                                     |                                       |                                                       | Beta Analytic |
| haft No. 9 Discharge  | RESE-1003179       | 11-Oct-10 | -10.13                   | -72.1                  |                                           | 1.2                                   | -1.6                                                  | Isotech       |
| haft No. 9 Discharge  | RESE-1003180       | 25-Oct-10 |                          | _                      | -15.9                                     |                                       |                                                       | Beta Analytic |
| haft No. 9 Discharge  | RESE-1003180       | 25-Oct-10 | -10.36                   | -73.7                  |                                           | 1.7                                   | -1.4                                                  | Isotech       |
| haft No. 9 Discharge  | RESE-1003181       | 09-Nov-10 |                          |                        | -15.9                                     |                                       |                                                       | Beta Analytic |
| haft No. 9 Discharge  | RESE-1003181       | 09-Nov-10 | -10.09                   | -72.4                  |                                           | 1.7                                   | -1.6                                                  | Isotech       |
| haft No. 9 Discharge  | RESE-1003106       | 12-Jan-11 |                          |                        | -18.0                                     |                                       |                                                       | Beta Analytic |
| haft No. 9 Discharge  | RESE-1003106       | 12-Jan-11 | -10.00                   | -73.7                  |                                           | 2.0                                   | -0.5                                                  | Isotech       |
| haft No. 9 Discharge  | RESE-1003187       | 25-Jan-11 |                          |                        | -22.5                                     |                                       |                                                       | Beta Analytic |
| haft No. 9 Discharge  | RESE-1003187       | 25-Jan-11 | -10.26                   | -73.6                  |                                           | 1.9                                   | 0.1                                                   | Isotech       |
| haft No. 9 Discharge  | RESE-1003195       | 09-Feb-11 |                          |                        | -16.9                                     |                                       |                                                       | Beta Analytic |
| haft No. 9 Discharge  | RESE-1003195       | 09-Feb-11 | -10.24                   | -75.2                  |                                           | 2.1                                   | -0.2                                                  | Isotech       |
| haft No. 9 Discharge  | RESE-1003198       | 22-Feb-11 |                          |                        | -19.4                                     |                                       |                                                       | Beta Analytic |
| haft No. 9 Discharge  | RESE-1003198       | 22-Feb-11 | -10.11                   | -71.4                  |                                           | 0.2                                   | 0.7                                                   | Isotech       |
| haft No. 9 Discharge  | RESE-1003115       | 08-Mar-11 |                          |                        | -16.9                                     |                                       |                                                       | Beta Analytic |
| haft No. 9 Discharge  | RESE-1003115       | 08-Mar-11 | -10.51                   | -74.6                  |                                           | 2.4                                   | -0.8                                                  | Isotech       |
| haft No. 9 Discharge  | RESE-1003107       | 22-Mar-11 |                          |                        | -18.6                                     |                                       |                                                       | Beta Analytic |
| haft No. 9 Discharge  | RESE-1003107       | 22-Mar-11 | -10.14                   | -73.5                  |                                           | 2.2                                   | -0.6                                                  | Isotech       |
| haft No. 9 Discharge  | RESE-1003111       | 06-Apr-11 |                          |                        | -19.6                                     |                                       |                                                       | Beta Analytic |
| haft No. 9 Discharge  | RESE-1003111       | 06-Apr-11 | -10.02                   | -71.8                  |                                           | 2.6                                   | -0.4                                                  | Isotech       |
| haft No. 9 Discharge  | RESE-1003200       | 19-Apr-11 |                          |                        | -23.4                                     |                                       |                                                       | Beta Analytic |
| naft No. 9 Discharge  | RESE-1003200       | 19-Apr-11 | -10.16                   | -73.3                  |                                           | 2.4                                   | 0.3                                                   | Isotech       |
| naft No. 9 Discharge  | RESE-1003123       | 02-May-11 |                          |                        | -19.5                                     |                                       |                                                       | Beta Analytic |
| naft No. 9 Discharge  | RESE-1003123       | 02-May-11 | -10.27                   | -73.4                  |                                           | 2.4                                   | -0.1                                                  | Isotech       |
| haft No. 9 Discharge  | RESE-1003120       | 18-May-11 |                          |                        | -17.3                                     |                                       |                                                       | Beta Analytic |
| haft No. 9 Discharge  | RESE-1003120       | 18-May-11 | -10.16                   | -74.8                  |                                           | 2.4                                   | -0.8                                                  | Isotech       |
| haft No. 9 Discharge  | RESE-1003127       | 01-Jun-11 |                          |                        | -17.0                                     |                                       |                                                       | Beta Analytic |
| haft No. 9 Discharge  | RESE-1003127       | 01-Jun-11 | -10.36                   | -75.2                  | -17.0                                     | 2.6                                   | -1.1                                                  | Isotech       |



| SAMPLE LOCATION             | SAMPLE IDENTIFIER/ | SAMPLE    |                          |                        | ISOTOPES                                  |                                       |                                                       | ANALYTICAL            |
|-----------------------------|--------------------|-----------|--------------------------|------------------------|-------------------------------------------|---------------------------------------|-------------------------------------------------------|-----------------------|
|                             | DESCRIPTION        | DATE      | δ¹8O <sup>a</sup><br>(‰) | δD <sup>b</sup><br>(‰) | δ <sup>13</sup> C in DIC <sup>c</sup> (‰) | δ <sup>34</sup> S <sup>d</sup><br>(‰) | δ <sup>18</sup> O in SO <sub>4</sub> <sup>e</sup> (‰) | LABORATORY            |
|                             |                    |           | Mine W                   | orkings                |                                           |                                       |                                                       |                       |
| haft No. 9 Discharge DUP    | RESE-1003128       | 01-Jun-11 |                          |                        | -17.2                                     |                                       |                                                       | Beta Analytic         |
| haft No. 9 Discharge DUP    | RESE-1003128       | 01-Jun-11 | -10.44                   | -76.2                  |                                           | 2.2                                   | -0.9                                                  | Isotech               |
| haft No. 9 Discharge        | RESE-1003134       | 13-Jun-11 |                          |                        | -21.4                                     |                                       |                                                       | Beta Analytic         |
| shaft No. 9 Discharge       | RESE-1003134       | 13-Jun-11 | -10.22                   | -75.1                  |                                           | 2.7                                   | -1.1                                                  | Isotech               |
| haft No. 9 Discharge        | RESE-1003140       | 30-Jun-11 |                          |                        | -18.1                                     |                                       |                                                       | Beta Analytic         |
| haft No. 9 Discharge        | RESE-1003140       | 30-Jun-11 | -10.63                   | -75.8                  |                                           | 2.9                                   | -1.0                                                  | Isotech               |
| haft No. 9 Discharge        | RESE-1003145       | 12-Jul-11 |                          |                        | -17.5                                     |                                       |                                                       | Beta Analytic         |
| haft No. 9 Discharge        | RESE-1003145       | 12-Jul-11 | -10.28                   | -74.4                  |                                           | 3.0                                   | -0.9                                                  | Isotech               |
| Shaft No. 9 Discharge       | RESE-1003202       | 27-Jul-11 |                          |                        | -21.4                                     |                                       |                                                       | Beta Analytic         |
| shaft No. 9 Discharge       | RESE-1003202       | 27-Jul-11 | -10.32                   | -75.6                  |                                           | 1.70                                  | -0.74                                                 | Isotech               |
| shaft No. 9 Discharge       | RESE-1003204       | 12-Aug-11 |                          |                        | -23.1                                     |                                       |                                                       | Beta Analytic         |
| shaft No. 9 Discharge       | RESE-1003204       | 12-Aug-11 | -10.37                   | -74.6                  |                                           | 1.5                                   | -1.5                                                  | Isotech               |
| haft No. 9 Discharge        | RESE-1003209       | 25-Aug-11 |                          |                        | -19.7                                     |                                       |                                                       | Beta Analytic         |
| haft No. 9 Discharge        | RESE-1003209       | 25-Aug-11 | -10.45                   | -75.0                  |                                           | 0.2                                   | -0.2                                                  | Isotech               |
| haft No. 9 Discharge        | RESE-1003210       | 07-Sep-11 |                          |                        | -16.0                                     |                                       |                                                       | Beta Analytic         |
| haft No. 9 Discharge        | RESE-1003210       | 07-Sep-11 | -10.56                   | -77.6                  |                                           | 1.6                                   | -0.7                                                  | Isotech               |
| haft No. 9 Discharge        | RESE-1003212       | 20-Sep-11 |                          |                        | -13.0                                     |                                       |                                                       | Beta Analytic         |
| haft No. 9 Discharge        | RESE-1003212       | 20-Sep-11 | -10.56                   | -76.1                  |                                           | 0.6                                   | -1.4                                                  | Isotech               |
| haft No. 9 Discharge        | RESE-1003225       | 26-Oct-11 |                          |                        | -18.7                                     |                                       |                                                       | Beta Analytic         |
| shaft No. 9 Discharge       | RESE-1003225       | 26-Oct-11 | -10.50                   | -74.9                  |                                           | 0.7                                   | -3.5                                                  | Isotech               |
| shaft No. 9 Discharge       | RESE-1003228       | 09-Nov-11 |                          |                        | -17.3                                     |                                       |                                                       | Beta Analytic         |
| haft No. 9 Discharge        | RESE-1003228       | 09-Nov-11 | -10.62                   | -74.7                  |                                           | 1.6                                   | -3.2                                                  | Isotech               |
| Shaft No. 9 Discharge DUP   | RESE-1003229       | 09-Nov-11 |                          |                        | -12.6                                     |                                       |                                                       | Beta Analytic         |
| Shaft No. 9 Discharge DUP   | RESE-1003229       | 09-Nov-11 | -10.69                   | -74.8                  |                                           | 1.2                                   | -2.3                                                  | Isotech               |
| shaft No. 9 Discharge       | RESE-1003232       | 22-Nov-11 |                          |                        | -21.0                                     |                                       |                                                       | Beta Analytic         |
| shaft No. 9 Discharge       | RESE-1003232       | 22-Nov-11 | -10.72                   | -76.0                  |                                           | 1.7                                   | -1.0                                                  | Isotech               |
| haft No. 9 Discharge        | RESE-1003234       | 07-Dec-11 |                          |                        | -11.1                                     |                                       |                                                       | Beta Analytic         |
| Shaft No. 9 Discharge       | RESE-1003234       | 07-Dec-11 | -10.40                   | -76.1                  |                                           | 1.0                                   | -1.2                                                  | Isotech               |
|                             |                    | Sh        | allow Grour              | dwater Sys             | stem                                      |                                       |                                                       |                       |
| lackberry Windmill Well     | WM-ALU             | 17-Jun-86 | -8.29                    | -62.05                 |                                           |                                       |                                                       |                       |
| lackberry Windmill Well     | 001225             | 04-Jun-03 | -5.6                     | -43                    |                                           |                                       |                                                       | University of Arizona |
| lackberry Windmill Well     | RESE-1000263       | 27-Feb-08 | -7.6                     | -52                    | -10.5                                     | 1.7                                   | 8.4                                                   | University of Arizona |
| lackberry Windmill Well     | RESE-1003011       | 03-Jun-08 | -7.2                     | -50                    | -14.7                                     | 3.5                                   | 12.6                                                  | University of Arizona |
| lackberry Windmill Well     | RESE-1003019       | 02-Sep-08 | -7.1                     | -52                    | -15.9                                     | 0.3                                   | 10.8                                                  | University of Arizona |
| Hackberry Windmill Well DUP | RESE-1003020       | 02-Sep-08 | -7.2                     | -52                    |                                           | 0.4                                   | 9.5                                                   | University of Arizona |
| Hackberry Windmill Well     | RESE-1003024       | 02-Dec-08 | -7.4                     | -59                    | -15.3                                     | 4.6                                   | 8.0                                                   | University of Arizona |



| SAMPLE LOCATION         | SAMPLE IDENTIFIER/ | SAMPLE    |                          |                        | ISOTOPES                                  |                          |                                 | ANALYTICAL            |
|-------------------------|--------------------|-----------|--------------------------|------------------------|-------------------------------------------|--------------------------|---------------------------------|-----------------------|
|                         | DESCRIPTION        | DATE      | δ¹8O <sup>a</sup><br>(‰) | δD <sup>b</sup><br>(‰) | δ <sup>13</sup> C in DIC <sup>c</sup> (‰) | δ³⁴S <sup>d</sup><br>(‰) | δ¹8O in SO₄ <sup>e</sup><br>(‰) | LABORATORY            |
|                         |                    | Sh        | allow Groun              | dwater Sys             | stem                                      |                          |                                 |                       |
| Hackberry Windmill Well | RESE-1003033       | 03-Mar-09 | -7.7                     | -55                    |                                           | 2.0                      | 5.6                             | University of Arizona |
| Hackberry Windmill Well | RESE-1003042       | 02-Jun-09 | -7.3                     | -54                    |                                           | 4.3                      | i                               | University of Arizona |
| JI Ranch Corral Well    | RESE-1003004       | 29-May-08 | -9.3                     | -65                    |                                           |                          |                                 | University of Arizona |
| II Ranch Corral Well    | RESE-1003005       | 29-May-08 | -9.6                     | -64                    |                                           | -5.4                     | 5.6                             | University of Arizona |
| II Ranch Corral Well    | RESE-1003014       | 25-Aug-08 | -10.4                    | -72                    | -19.4                                     | -4.9                     | -0.7                            | University of Arizona |
| II Ranch Corral Well    | RESE-1003029       | 03-Dec-08 | -10.5                    | -73                    | -20.0                                     | -4.0                     | 0.9                             | University of Arizona |
| II Ranch Corral Well    | RESE-1003038       | 04-Mar-09 | -10.3                    | -71                    | -18.0                                     | -3.4                     | -0.1                            | University of Arizona |
| II Ranch Corral Well    | RESE-1003047       | 05-Jun-09 | -10.2                    | -71                    |                                           | -2.2                     | 2.7                             | University of Arizona |
| II Ranch Middle Well    | RESE-1003006       | 30-May-08 | -9.5                     | -63                    |                                           | -2.1                     | 28.8                            | University of Arizona |
| II Ranch Middle Well    | RESE-1003017       | 27-Aug-08 | -9.9                     | -67                    | -18.9                                     | -2.7                     | 32.3                            | University of Arizona |
| II Ranch Middle Well    | RESE-1003028       | 03-Dec-08 | -10.0                    | -69                    | -18.8                                     | -2.4                     | 4.3                             | University of Arizona |
| I Ranch Middle Well     | RESE-1003037       | 04-Mar-09 | -9.8                     | -65                    | -18.9                                     | -2.0                     | 3.9                             | University of Arizona |
| I Ranch Middle Well     | RESE-1003048       | 05-Jun-09 | -10.0                    | -68                    |                                           | -1.6                     | 4.8                             | University of Arizona |

a  $\delta^{18}O$  (‰) = delta oxygen-18 (per mil)

#### **Explanation of Codes**

Absent = Analyte not present ge = Greater than or equal to reported value i = Insufficient sample

j = Estimated value

j+ = Estimated value, high bias

j- = Estimated value, low bias

Lost = Sample lost in processing

n = Not measured na = Not available

ND = Not Detected
np = Analyte not applicable

q = Uncertain value r = Unusable data

< = Less than reported detection limit

> = Greater than reported value

Present = Analyte was detected

d = Diluted. Diluted samples are indicated only when value is estimated.

DUP = Field Duplicate LD = Laboratory duplicate SP = Split sample SPD = Split-Duplicate



b δD (‰) = delta deuterium (per mil)

c  $\delta^{13}$ C in DIC (‰) = delta carbon-13 in dissolved inorganic carbon (per mil)

d  $\delta^{34}$ S (‰) = delta sulfur-34 (per mil)

e  $\delta^{18}$ O in SO<sub>4</sub> (‰) = delta oxygen-18 in sulfate (per mil)

<sup>--- =</sup> Not available, not applicable

<sup>-- =</sup> Not calculated due to non-detect

| SAMPLE LOCATION | SAMPLE                  | SAMPLE    |                      |                                    |                       | RADIOISOTO                                      | PE DATA                               |                                       |                                       |                                                 | ANALYTICAL            |
|-----------------|-------------------------|-----------|----------------------|------------------------------------|-----------------------|-------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------------------|-----------------------|
|                 | IDENTIFIER/ DESCRIPTION | DATE      | ³H (TU) <sup>a</sup> | <sup>14</sup> C (pmC) <sup>b</sup> | Sr (ppm) <sup>c</sup> | <sup>87</sup> Sr/ <sup>86</sup> Sr <sup>d</sup> | <sup>234</sup> U (pCi/L) <sup>e</sup> | <sup>235</sup> U (pCi/L) <sup>f</sup> | <sup>238</sup> U (pCi/L) <sup>g</sup> | <sup>234</sup> U/ <sup>238</sup> U <sup>h</sup> | LABORATORY            |
|                 |                         |           |                      | Apa                                | ache Leap Tu          | ıff Aquifer                                     |                                       |                                       |                                       |                                                 |                       |
| N-06            | RESE-1000255            | 24-Sep-07 |                      |                                    |                       |                                                 | 0.7 ± 0.5                             | <0.2                                  | <0.2                                  |                                                 | Energy Labs           |
| u-06            | RESE-1000255            | 24-Sep-07 |                      |                                    | 0.1271                | 0.710390 ± 0.000007                             |                                       |                                       |                                       |                                                 | Geochron              |
| u-06            | RESE-1000255            | 24-Sep-07 | <0.7                 | 63.6 ± 0.9                         |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |
| -06 DUP         | RESE-1000256            | 24-Sep-07 |                      |                                    | -                     |                                                 | 1.9 ± 0.6                             | <0.2                                  | 1.2 ± 0.4                             | 1.6                                             | Energy Labs           |
| -06 DUP         | RESE-1000256            | 24-Sep-07 |                      |                                    | 0.1281                | 0.710386 ± 0.000009                             |                                       |                                       |                                       |                                                 | Geochron              |
| -06 DUP         | RESE-1000256            | 24-Sep-07 | <0.6                 |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |
| -06             | RESE-1003008            | 02-Jun-08 |                      |                                    |                       |                                                 | 1.0 ± 0.3                             | <0.2                                  | <0.2                                  |                                                 | Energy Labs           |
| -06             | RESE-1003008            | 02-Jun-08 |                      | _                                  | 0.1279                | 0.710372 ± 0.000009                             |                                       | _                                     |                                       |                                                 | Geochron              |
| u-06            | RESE-1003008            | 02-Jun-08 | 1.6 ± 0.23           | $62.7 \pm 0.6$                     |                       |                                                 |                                       | -                                     |                                       |                                                 | University of Arizona |
| N-06            | RESE-1003016            | 28-Aug-08 |                      |                                    |                       |                                                 | $0.6 \pm 0.3$                         | <0.2                                  | 0.3 ± 0.2                             | 2.0                                             | Energy Labs           |
| A-06            | RESE-1003016            | 28-Aug-08 |                      | _                                  | 0.1281                | 0.710385 ± 0.00001                              |                                       | _                                     |                                       |                                                 | Geochron              |
| u-06            | RESE-1003016            | 28-Aug-08 | <0.7                 | 63.3 ± 1.1                         | -                     |                                                 | -                                     |                                       |                                       |                                                 | University of Arizona |
| -06             | RESE-1003030            | 04-Dec-08 |                      | -                                  | _                     |                                                 | $0.6 \pm 0.3$                         | <0.2                                  | <0.2                                  |                                                 | Energy Labs           |
| -06             | RESE-1003030            | 04-Dec-08 |                      |                                    | 0.1270                | 0.710360 ± 0.000007                             | -                                     |                                       |                                       |                                                 | Geochron              |
| -06             | RESE-1003030            | 04-Dec-08 | $3.3 \pm 0.33$       | 64.6 ± 1                           | -                     |                                                 | -                                     |                                       |                                       |                                                 | University of Arizona |
| u-06            | RESE-1003039            | 05-Mar-09 | 0.7 ± 0.28           | 64.3 ± 0.8                         | _                     |                                                 | _                                     |                                       |                                       |                                                 | University of Arizona |
| -06             | RESE-1003046            | 04-Jun-09 | 0.6 ± 0.29           |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |
| T Well          | RESE-1003102            | 20-Apr-10 |                      | 101.38 ± 0.49                      | -                     |                                                 |                                       | -                                     |                                       |                                                 | Beta Analytic         |
| T Well          | RESE-1003102            | 20-Apr-10 |                      |                                    |                       |                                                 | $3.7 \pm 0.5$                         | <0.20                                 | $2.7 \pm 0.4$                         | 1.4                                             | Energy Labs           |
| T Well          | RESE-1003102            | 20-Apr-10 |                      |                                    | 0.3494                | 0.720268 ± 0.000007                             | -                                     |                                       |                                       |                                                 | Geochron              |
| CT Well         | RESE-1003102            | 20-Apr-10 | 2.75 ± 0.26          |                                    | -                     |                                                 |                                       |                                       |                                       |                                                 | Isotech               |
| IRES-04         | 4531                    | 03-Nov-06 | <1.1                 | 55.3 ± 1                           | -                     |                                                 |                                       | _                                     |                                       |                                                 | University of Arizona |
| RES-04          | RESE-1001114            | 18-Jan-08 |                      | -                                  | _                     |                                                 | 2.0 ± 0.6                             | <0.2                                  | $0.8 \pm 0.4$                         | 2.5                                             | Energy Labs           |
| IRES-04         | RESE-1001114            | 18-Jan-08 |                      |                                    | 0.1923                | 0.710492 ± 0.000007                             | -                                     |                                       |                                       |                                                 | Geochron              |
| IRES-04         | RESE-1001114            | 18-Jan-08 | $2.5 \pm 0.29$       | $58.4 \pm 0.4$                     | -                     |                                                 | -                                     |                                       |                                       |                                                 | University of Arizona |
| IRES-04         | RESE-1003021            | 03-Sep-08 |                      |                                    | -                     |                                                 | 2.0 ± 0.5                             | <0.2                                  | 0.6 ± 0.3                             | 3.3                                             | Energy Labs           |
| IRES-04         | RESE-1003021            | 03-Sep-08 |                      |                                    | 0.1867                | 0.710550 ± 0.000011                             |                                       |                                       |                                       |                                                 | Geochron              |
| IRES-04         | RESE-1003021            | 03-Sep-08 | <0.6                 | $58.8 \pm 0.8$                     |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |
| RES-04          | RESE-1003031            | 02-Mar-09 | <0.5                 | 57.8 ± 0.3                         | -                     |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |
| IRES-04         | RESE-1003040            | 01-Jun-09 | <1.2                 |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |
| RES-05          | RESE-1000264            | 27-Feb-08 |                      | -                                  |                       |                                                 | $2.6 \pm 0.5$                         | <0.2                                  | 0.3 ± 0.2                             | 8.7                                             | Energy Labs           |
| IRES-05         | RESE-1000264            | 27-Feb-08 |                      | _                                  | 0.1979                | 0.709890 ± 0.000009                             | -                                     |                                       |                                       |                                                 | Geochron              |
| IRES-05         | RESE-1000264            | 27-Feb-08 | <0.8                 | 59.6 ± 1.5                         |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizon  |



| SAMPLE LOCATION | SAMPLE                  | SAMPLE    |                      |                                    |                       | RADIOISOTO                                      | PE DATA                               |                                       |                                       |                                                 | ANALYTICAL            |
|-----------------|-------------------------|-----------|----------------------|------------------------------------|-----------------------|-------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------------------|-----------------------|
|                 | IDENTIFIER/ DESCRIPTION | DATE      | ³H (TU) <sup>a</sup> | <sup>14</sup> C (pmC) <sup>b</sup> | Sr (ppm) <sup>c</sup> | <sup>87</sup> Sr/ <sup>86</sup> Sr <sup>d</sup> | <sup>234</sup> U (pCi/L) <sup>e</sup> | <sup>235</sup> U (pCi/L) <sup>f</sup> | <sup>238</sup> U (pCi/L) <sup>g</sup> | <sup>234</sup> U/ <sup>238</sup> U <sup>h</sup> | LABORATORY            |
|                 | 1                       | 1         |                      | Ap                                 | ache Leap Tu          | ıff Aquifer                                     |                                       | 1                                     | 1                                     | -                                               |                       |
| HRES-05         | RESE-1003001            | 28-May-08 |                      |                                    |                       |                                                 | 2.3 ± 0.5                             | <0.2                                  | 0.3 ± 0.2                             | 7.7                                             | Energy Labs           |
| HRES-05         | RESE-1003001            | 28-May-08 |                      |                                    | 0.2042                | 0.709882 ± 0.00001                              |                                       |                                       |                                       |                                                 | Geochron              |
| HRES-05         | RESE-1003001            | 28-May-08 | $0.6 \pm 0.23$       | $58.5 \pm 0.7$                     |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |
| HRES-05         | RESE-1003012            | 25-Aug-08 | -                    |                                    |                       |                                                 | 2.0 ± 0.5                             | <0.2                                  | $0.6 \pm 0.3$                         | 3.3                                             | Energy Labs           |
| HRES-05         | RESE-1003012            | 25-Aug-08 | _                    |                                    | 0.2003                | 0.709908 ± 0.000009                             |                                       |                                       |                                       |                                                 | Geochron              |
| HRES-05         | RESE-1003012            | 25-Aug-08 | <0.6                 | 59.6 ± 1                           |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |
| HRES-05         | RESE-1003025            | 02-Dec-08 |                      |                                    |                       |                                                 | 2.3 ± 0.6                             | <0.2                                  | <0.2                                  |                                                 | Energy Labs           |
| HRES-05         | RESE-1003025            | 02-Dec-08 | _                    |                                    | 0.2006                | 0.709914 ± 0.00001                              |                                       |                                       |                                       |                                                 | Geochron              |
| HRES-05         | RESE-1003025            | 02-Dec-08 | <0.9                 | $59.4 \pm 0.3$                     |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |
| HRES-05         | RESE-1003034            | 03-Mar-09 | _                    | 60.83 ± 0.3                        |                       |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic         |
| HRES-05         | RESE-1003034            | 03-Mar-09 | <0.6                 |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |
| HRES-05         | RESE-1003043            | 03-Jun-09 | <0.9                 |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |
| HRES-06         | RESE-1000301            | 12-Jun-07 |                      |                                    |                       |                                                 | 1.1 ± 0.6                             | <0.2                                  | <0.2                                  |                                                 | Energy Labs           |
| HRES-06         | RESE-1000301            | 12-Jun-07 |                      |                                    | 0.1757                | 0.710635 ± 0.000009                             |                                       |                                       |                                       |                                                 | Geochron              |
| HRES-06         | RESE-1000301            | 12-Jun-07 | <0.4                 | 81.6 ± 1.4                         |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |
| HRES-06         | RESE-1000265            | 27-Feb-08 |                      |                                    |                       |                                                 | 0.3 ± 0.2                             | <0.2                                  | <0.2                                  |                                                 | Energy Labs           |
| HRES-06         | RESE-1000265            | 27-Feb-08 |                      |                                    | 0.1645                | 0.710579 ± 0.000009                             |                                       |                                       |                                       |                                                 | Geochron              |
| HRES-06         | RESE-1000265            | 27-Feb-08 | <0.4                 | 81.3 ± 1.2                         |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |
| HRES-06 DUP     | RESE-1000266            | 27-Feb-08 |                      |                                    |                       |                                                 | 0.5 ± 0.2                             | <0.2                                  | <0.2                                  |                                                 | Energy Labs           |
| HRES-06 DUP     | RESE-1000266            | 27-Feb-08 | _                    |                                    | 0.1639                | 0.710558 ± 0.000009                             |                                       |                                       |                                       |                                                 | Geochron              |
| HRES-06 DUP     | RESE-1000266            | 27-Feb-08 | <0.8                 | 82.6 ± 1.6                         |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |
| HRES-06         | RESE-1003003            | 28-May-08 | _                    |                                    |                       |                                                 | 0.4 ± 0.2                             | <0.2                                  | <0.2                                  |                                                 | Energy Labs           |
| HRES-06         | RESE-1003003            | 28-May-08 | _                    |                                    | 0.1601                | 0.710525 ± 0.000013                             |                                       |                                       |                                       |                                                 | Geochron              |
| HRES-06         | RESE-1003003            | 28-May-08 | $0.9 \pm 0.26$       | 81.1 ± 0.9                         |                       |                                                 |                                       |                                       | _                                     | _                                               | University of Arizona |
| HRES-06         | RESE-1003013            | 25-Aug-08 | -                    |                                    |                       |                                                 | 0.4 ± 0.2                             | <0.2                                  | <0.2                                  |                                                 | Energy Labs           |
| HRES-06         | RESE-1003013            | 25-Aug-08 | _                    |                                    | 0.1586                | 0.710587 ± 0.00001                              |                                       |                                       |                                       |                                                 | Geochron              |
| HRES-06         | RESE-1003013            | 25-Aug-08 | <0.6                 | 84.0 ± 1.1                         |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |
| HRES-06         | RESE-1003026            | 03-Dec-08 |                      |                                    | -                     |                                                 | <0.2                                  | <0.2                                  | <0.2                                  |                                                 | Energy Labs           |
| HRES-06         | RESE-1003026            | 03-Dec-08 |                      |                                    | 0.1581                | 0.710571 ± 0.000011                             |                                       |                                       |                                       |                                                 | Geochron              |
| HRES-06         | RESE-1003026            | 03-Dec-08 | <1.0                 | 83.0 ± 1.2                         |                       |                                                 | -                                     |                                       |                                       |                                                 | University of Arizona |
| HRES-06 DUP     | RESE-1003027            | 03-Dec-08 |                      |                                    |                       |                                                 | <0.2                                  | <0.2                                  | <0.2                                  |                                                 | Energy Labs           |
| HRES-06 DUP     | RESE-1003027            | 03-Dec-08 |                      |                                    | 0.1581                | 0.710574 ± 0.00001                              |                                       |                                       |                                       |                                                 | Geochron              |
| HRES-06 DUP     | RESE-1003027            | 03-Dec-08 | <0.6                 | 82.6 ± 1.7                         |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |
| HRES-06         | RESE-1003035            | 04-Mar-09 | <0.6                 | 84.3 ± 1.3                         |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |
| HRES-06 SP      | RESE-1003035            | 04-Mar-09 |                      | 79.79 ± 0.4                        |                       |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic         |



| SAMPLE LOCATION | SAMPLE                                      | SAMPLE    |                |                                    |                       | RADIOISOTO                                      | PE DATA                               |                                       |                                       |                                                 | ANALYTICAL            |
|-----------------|---------------------------------------------|-----------|----------------|------------------------------------|-----------------------|-------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------------------|-----------------------|
|                 | IDENTIFIER/ DESCRIPTION                     | DATE      | ³H (TU)ª       | <sup>14</sup> C (pmC) <sup>b</sup> | Sr (ppm) <sup>c</sup> | <sup>87</sup> Sr/ <sup>86</sup> Sr <sup>d</sup> | <sup>234</sup> U (pCi/L) <sup>e</sup> | <sup>235</sup> U (pCi/L) <sup>f</sup> | <sup>238</sup> U (pCi/L) <sup>g</sup> | <sup>234</sup> U/ <sup>238</sup> U <sup>h</sup> | LABORATORY            |
|                 | ,                                           | '         |                | Apa                                | ache Leap Tu          | ıff Aquifer                                     |                                       |                                       |                                       |                                                 |                       |
| HRES-06 DUP     | RESE-1003036                                | 04-Mar-09 | <0.6           | 85.7 ± 1.2                         |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |
| HRES-06 SPD     | RESE-1003036                                | 04-Mar-09 |                | 81.5 ± 0.41                        |                       |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic         |
| HRES-06         | RESE-1003044                                | 03-Jun-09 | 1.2 ± 0.31     |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |
| HRES-06 DUP     | RESE-1003045                                | 03-Jun-09 | 0.6 ± 0.28     |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |
| HRES-07         | RESE-1000262                                | 26-Feb-08 |                |                                    |                       |                                                 | 0.8 ± 0.3                             | <0.2                                  | 0.2 ± 0.1                             | 4.0                                             | Energy Labs           |
| HRES-07         | RESE-1000262                                | 26-Feb-08 |                | _                                  | 0.1492                | 0.710245 ± 0.000009                             |                                       |                                       |                                       |                                                 | Geochron              |
| IRES-07         | RESE-1000262                                | 26-Feb-08 | 1.0 ± 0.27     | $68.5 \pm 0.7$                     |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |
| IRES-07         | RESE-1003009                                | 03-Jun-08 |                |                                    |                       |                                                 | 1.0 ± 0.3                             | <0.2                                  | $0.4 \pm 0.2$                         | 2.5                                             | Energy Labs           |
| HRES-07         | RESE-1003009                                | 03-Jun-08 |                |                                    | 0.1458                | 0.710247 ± 0.000011                             |                                       |                                       |                                       |                                                 | Geochron              |
| HRES-07         | RESE-1003009                                | 03-Jun-08 | $2.2 \pm 0.27$ | $67.8 \pm 0.6$                     |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |
| RES-07 DUP      | RESE-1003010                                | 03-Jun-08 |                |                                    |                       |                                                 | 1.3 ± 0.4                             | <0.2                                  | $0.3 \pm 0.2$                         | 4.3                                             | Energy Labs           |
| HRES-07 DUP     | RESE-1003010                                | 03-Jun-08 |                |                                    | 0.1462                | 0.710271 ± 0.000009                             |                                       |                                       |                                       |                                                 | Geochron              |
| IRES-07 DUP     | RESE-1003010                                | 03-Jun-08 | 1.4 ± 0.29     | $66.3 \pm 0.7$                     |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |
| IRES-07         | RESE-1003018                                | 02-Sep-08 |                |                                    |                       |                                                 | 1.0 ± 0.4                             | <0.2                                  | 0.2 ± 0.2                             | 5.0                                             | Energy Labs           |
| IRES-07         | RESE-1003018 02-Sep-0 RESE-1003018 02-Sep-0 |           |                |                                    | 0.1389                | 0.710209 ± 0.000011                             |                                       |                                       |                                       |                                                 | Geochron              |
| IRES-07         | RESE-1003018                                | 02-Sep-08 | <0.9           | 67.1 ± 0.6                         |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |
| RES-07 LD       | RESE-1003018                                | 02-Sep-08 |                |                                    | 0.1396                | 0.710229 ± 0.000009                             |                                       |                                       |                                       |                                                 | Geochron              |
| IRES-07         | RESE-1003022                                | 01-Dec-08 |                |                                    |                       |                                                 | 1.3 ± 0.4                             | <0.2                                  | $0.3 \pm 0.2$                         | 4.3                                             | Energy Labs           |
| HRES-07         | RESE-1003022                                | 01-Dec-08 |                |                                    | 0.1383                | 0.710237 ± 0.000009                             |                                       |                                       |                                       |                                                 | Geochron              |
| IRES-07         | RESE-1003022                                | 01-Dec-08 | <0.7           | 67.7 ± 1.1                         |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |
| IRES-07         | RESE-1003032                                | 03-Mar-09 | <0.6           |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |
| HRES-07         | RESE-1003041                                | 02-Jun-09 | <0.9           |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |
| IRES-07         | RESE-1000290                                | 06-Dec-09 |                | 68.46 ± 0.34                       |                       |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic         |
| IRES-07         | RESE-1000290                                | 06-Dec-09 | _              |                                    |                       |                                                 | $0.9 \pm 0.3$                         | <0.1                                  | $0.2 \pm 0.1$                         | 4.5                                             | Energy Labs           |
| IRES-07         | RESE-1000290                                | 06-Dec-09 |                |                                    | 0.1149                | 0.710058 ± 0.000013                             |                                       |                                       |                                       |                                                 | Geochron              |
| HRES-07         | RESE-1000290                                | 06-Dec-09 | <1.00          |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | Isotech               |
| IRES-08         | RESE-1003149                                | 21-Jul-11 |                |                                    |                       |                                                 | 1.2 ± 1.6                             | <1.10                                 | 1.67 ± 1.2                            | 0.7                                             | ACZ                   |
| IRES-08         | RESE-1003149                                | 21-Jul-11 |                | 68.66 ± 0.25                       |                       |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic         |
| IRES-08         | RESE-1003149                                | 21-Jul-11 |                |                                    | 0.233                 | 0.709809 ± 0.000007                             |                                       |                                       |                                       |                                                 | Geochron              |
| HRES-08         | RESE-1003149                                | 21-Jul-11 | <1.00          |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | Isotech               |
| IRES-09         | RESE-1003182                                | 29-Dec-10 |                |                                    | _                     |                                                 | 4.5 ± 2.1                             | <1.20                                 | 3.5 ± 1.5                             | 1.3                                             | ACZ                   |
| IRES-09         | RESE-1003182                                | 29-Dec-10 |                | 75.29 ± 0.28                       |                       |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic         |
| IRES-09         | RESE-1003182                                | 29-Dec-10 |                |                                    | 0.3537                | 0.710125 ± 0.000009                             |                                       |                                       |                                       |                                                 | Geochron              |



TABLE A-5. RADIOISOTOPE DATA
FOR GROUNDWATER SAMPLES OBTAINED IN DEVILS CANYON/UPPER QUEEN CREEK STUDY AREA

| SAMPLE LOCATION    | SAMPLE                  | SAMPLE    |                      |                                    |                       | RADIOISOTO                                      | PE DATA                               |                                       |                                       |                                                 | ANALYTICAL           |
|--------------------|-------------------------|-----------|----------------------|------------------------------------|-----------------------|-------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------------------|----------------------|
|                    | IDENTIFIER/ DESCRIPTION | DATE      | ³H (TU) <sup>a</sup> | <sup>14</sup> C (pmC) <sup>b</sup> | Sr (ppm) <sup>c</sup> | <sup>87</sup> Sr/ <sup>86</sup> Sr <sup>d</sup> | <sup>234</sup> U (pCi/L) <sup>e</sup> | <sup>235</sup> U (pCi/L) <sup>f</sup> | <sup>238</sup> U (pCi/L) <sup>g</sup> | <sup>234</sup> U/ <sup>238</sup> U <sup>h</sup> | LABORATORY           |
|                    | ,                       |           |                      | Apa                                | ache Leap Ti          | ıff Aquifer                                     |                                       |                                       |                                       |                                                 |                      |
| IRES-09            | RESE-1003143            | 04-Jul-11 |                      | _                                  | _                     |                                                 | 1.6 ± 2.4                             | <1.0                                  | <1.00                                 |                                                 | ACZ                  |
| IRES-09            | RESE-1003143            | 04-Jul-11 |                      | 66.56 ± 0.25                       | -                     |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic        |
| IRES-09            | RESE-1003143            | 04-Jul-11 |                      |                                    | 0.1954                | 0.710082 ± 0.00001                              |                                       |                                       |                                       |                                                 | Geochron             |
| RES-10             | RESE-1003175            | 24-Sep-10 |                      |                                    |                       |                                                 | 7.3 ± 2.5                             | <1.2                                  | 5.32 ± 2                              | 1.4                                             | ACZ                  |
| RES-10             | RESE-1003175            | 24-Sep-10 |                      | 104.58 ± 0.38                      |                       |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic        |
| RES-10             | RESE-1003175            | 24-Sep-10 |                      |                                    | 0.521                 | 0.732473 ± 0.000007                             |                                       |                                       |                                       |                                                 | Geochron             |
| RES-10             | RESE-1003175            | 24-Sep-10 | 3.24 ± 0.17          |                                    | -                     |                                                 |                                       |                                       |                                       |                                                 | Isotech              |
| RES-11             | RESE-1003174            | 23-Sep-10 |                      |                                    |                       |                                                 | <1.3                                  | <1.30                                 | <1.30                                 |                                                 | ACZ                  |
| IRES-11            | RESE-1003174            | 23-Sep-10 |                      | 69.18 ± 0.34                       |                       |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic        |
| IRES-11            | RESE-1003174            | 23-Sep-10 |                      |                                    | 0.140                 | 0.710463 ± 0.000009                             |                                       |                                       |                                       |                                                 | Geochron             |
| IRES-11            | RESE-1003174            | 23-Sep-10 | <1.00                |                                    |                       |                                                 |                                       | _                                     |                                       |                                                 | Isotech              |
| RES-12             | RESE-1003144            | 10-Jul-11 |                      |                                    |                       |                                                 | 2.5 ± 2.1                             | <0.97                                 | 2.22 ± 1.6                            | 1.1                                             | ACZ                  |
| RES-12             | RESE-1003144            | 10-Jul-11 |                      | 83.38 ± 0.31                       |                       |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic        |
| IRES-12            | RESE-1003144            | 10-Jul-11 |                      |                                    | 0.2544                | 0.710271 ± 0.000009                             |                                       |                                       |                                       |                                                 | Geochron             |
| RES-12             | RESE-1003144            | 10-Jul-11 | 0.84 ± 0.26          |                                    |                       |                                                 |                                       | _                                     |                                       |                                                 | Isotech              |
| RES-13             | RESE-1003130            | 03-Jun-11 |                      |                                    |                       |                                                 | 3.4 ± 2.3                             | <1.10                                 | 1.38 ± 2                              | 2.5                                             | ACZ                  |
| RES-13             | RESE-1003130            | 03-Jun-11 |                      | 58.70 ± 0.21                       |                       |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic        |
| RES-13             | RESE-1003130            | 03-Jun-11 |                      | _                                  | 0.2449                | 0.709723 ± 0.000009                             |                                       |                                       |                                       |                                                 | Geochron             |
| IRES-13            | RESE-1003130            | 03-Jun-11 | <1.00                |                                    | -                     |                                                 |                                       |                                       |                                       |                                                 | Isotech              |
| RES-14             | RESE-1003147            | 15-Jul-11 |                      |                                    |                       |                                                 | <0.99                                 | <0.99                                 | <0.99                                 |                                                 | ACZ                  |
| RES-14             | RESE-1003147            | 15-Jul-11 |                      | 62.39 ± 0.23                       |                       |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic        |
| IRES-14            | RESE-1003147            | 15-Jul-11 |                      |                                    | 0.132                 | 0.710645 ± 0.001878                             |                                       |                                       |                                       |                                                 | Geochron             |
| IRES-14            | RESE-1003147            | 15-Jul-11 | $0.80 \pm 0.26$      |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | Isotech              |
| Ranch House Well   | RESE-1000303            | 21-Jun-07 |                      |                                    | -                     |                                                 | <0.2                                  | <0.2                                  | <0.2                                  |                                                 | Energy Labs          |
| I Ranch House Well | RESE-1000303            | 21-Jun-07 |                      |                                    | 0.1299                | 0.710837 ± 0.000011                             |                                       |                                       |                                       |                                                 | Geochron             |
| I Ranch House Well | RESE-1000303            | 21-Jun-07 | <1.0                 | 81.1 ± 1.6                         | -                     |                                                 |                                       |                                       |                                       |                                                 | University of Arizon |
| J-11               | RESE-1000257            | 29-Sep-07 |                      |                                    |                       |                                                 | 1.2 ± 0.5                             | <0.2                                  | <0.2                                  |                                                 | Energy Labs          |
| J-11               | RESE-1000257            | 29-Sep-07 |                      |                                    | 0.1222                | 0.710397 ± 0.000009                             |                                       | _                                     |                                       |                                                 | Geochron             |
| IJ-11              | RESE-1000257            | 29-Sep-07 | <0.3                 | 67.1 ± 1.2                         |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizon |
| J-11               | RESE-1000261            | 20-Feb-08 |                      |                                    |                       |                                                 | $0.6 \pm 0.3$                         | <0.2                                  | <0.2                                  |                                                 | Energy Labs          |
| J-11               | RESE-1000261            | 20-Feb-08 |                      | _                                  | 0.1218                | 0.710404 ± 0.000009                             |                                       |                                       |                                       |                                                 | Geochron             |
| J-11               | RESE-1000261            | 20-Feb-08 | 0.6 ± 0.23           | 65.9 ± 1.1                         |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizon |



| SAMPLE LOCATION | SAMPLE       | SAMPLE    |                      |                                    |                       |                     |                                       |                                       |                                       |                                                 |                       |  |  |  |
|-----------------|--------------|-----------|----------------------|------------------------------------|-----------------------|---------------------|---------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------------------|-----------------------|--|--|--|
|                 | IDENTIFIER/  | DATE      | ³H (TU) <sup>a</sup> | <sup>14</sup> C (pmC) <sup>b</sup> | Sr (ppm) <sup>c</sup> | 87Sr/86Srd          | <sup>234</sup> U (pCi/L) <sup>e</sup> | <sup>235</sup> U (pCi/L) <sup>f</sup> | <sup>238</sup> U (pCi/L) <sup>g</sup> | <sup>234</sup> U/ <sup>238</sup> U <sup>h</sup> | LABORATORY            |  |  |  |
|                 | DESCRIPTION  |           |                      |                                    |                       |                     |                                       |                                       |                                       |                                                 |                       |  |  |  |
|                 |              |           |                      | Apa                                | ache Leap Tu          | ıff Aquifer         |                                       |                                       |                                       |                                                 |                       |  |  |  |
| /IJ-11          | RESE-1003007 | 02-Jun-08 |                      |                                    |                       |                     | $0.6 \pm 0.3$                         | <0.2                                  | $0.2 \pm 0.1$                         | 3.0                                             | Energy Labs           |  |  |  |
| /IJ-11          | RESE-1003007 | 02-Jun-08 |                      |                                    | 0.1212                | 0.710392 ± 0.00001  |                                       |                                       |                                       |                                                 | Geochron              |  |  |  |
| /IJ-11          | RESE-1003007 | 02-Jun-08 | $0.8 \pm 0.24$       | $66.7 \pm 0.8$                     |                       |                     |                                       |                                       |                                       |                                                 | University of Arizona |  |  |  |
| IJ-11 LD        | RESE-1003007 | 02-Jun-08 |                      |                                    | 0.1201                | 0.710403 ± 0.000009 |                                       |                                       |                                       |                                                 | Geochron              |  |  |  |
| IJ-11           | RESE-1003015 | 26-Aug-08 |                      | _                                  |                       |                     | $0.6 \pm 0.4$                         | <0.2                                  | <0.2                                  |                                                 | Energy Labs           |  |  |  |
| J-11            | RESE-1003015 | 26-Aug-08 |                      | -                                  | 0.1208                | 0.710415 ± 0.000011 |                                       |                                       |                                       |                                                 | Geochron              |  |  |  |
| IJ-11           | RESE-1003015 | 26-Aug-08 | <0.6                 | 66.4 ± 1.4                         |                       |                     |                                       |                                       |                                       |                                                 | University of Arizona |  |  |  |
|                 |              |           |                      | Dee                                | p Groundwa            | ter System          |                                       |                                       |                                       |                                                 |                       |  |  |  |
| HRES-01         | RESE-112808  | 28-Nov-08 |                      |                                    |                       |                     | <0.2                                  | <0.2                                  | <0.2                                  |                                                 | Energy Labs           |  |  |  |
| HRES-01         | RESE-112808  | 28-Nov-08 |                      |                                    | 0.6118                | 0.716824 ± 0.000009 |                                       |                                       |                                       |                                                 | Geochron              |  |  |  |
| HRES-01         | RESE-112808  | 28-Nov-08 | 1.9 q ± 0.34         | $4.9 \pm 0.2$                      |                       |                     |                                       |                                       |                                       |                                                 | University of Arizona |  |  |  |
| HRES-02         | RESE-1003150 | 20-Jul-11 |                      |                                    |                       |                     | <0.98                                 | <0.98                                 | <0.98                                 |                                                 | ACZ                   |  |  |  |
| HRES-02         | RESE-1003150 | 20-Jul-11 |                      | 39.36 ± 0.19                       |                       |                     |                                       |                                       |                                       |                                                 | Beta Analytic         |  |  |  |
| HRES-02         | RESE-1003150 | 20-Jul-11 |                      |                                    | 2.081                 | 0.720566 ± 0.000012 |                                       |                                       |                                       |                                                 | Geochron              |  |  |  |
| HRES-02         | RESE-1003150 | 20-Jul-11 | <1.00                |                                    |                       |                     |                                       |                                       |                                       |                                                 | Isotech               |  |  |  |
| HRES-02 DUP     | RESE-1003201 | 20-Jul-11 |                      |                                    |                       |                     | <1.0                                  | <1.00                                 | 1.16 ± 0.84                           |                                                 | ACZ                   |  |  |  |
| HRES-02 DUP     | RESE-1003201 | 20-Jul-11 |                      | 41.11 ± 0.2                        |                       |                     |                                       |                                       |                                       |                                                 | Beta Analytic         |  |  |  |
| HRES-02 DUP     | RESE-1003201 | 20-Jul-11 |                      |                                    | 2.085                 | 0.720514 ± 0.000007 |                                       |                                       |                                       |                                                 | Geochron              |  |  |  |
| HRES-02 DUP     | RESE-1003201 | 20-Jul-11 | <1.00                |                                    |                       |                     |                                       |                                       |                                       |                                                 | Isotech               |  |  |  |
| HRES-02         | RESE-1003218 | 22-Oct-11 |                      |                                    |                       |                     | <0.99                                 | <0.99                                 | <0.99                                 |                                                 | ACZ                   |  |  |  |
| HRES-02         | RESE-1003218 | 22-Oct-11 |                      | 40.81 ± 0.2                        |                       |                     |                                       |                                       |                                       |                                                 | Beta Analytic         |  |  |  |
| HRES-02         | RESE-1003218 | 22-Oct-11 |                      |                                    | 2.1069                | 0.720460 ± 0.00001  |                                       |                                       |                                       |                                                 | Geochron              |  |  |  |
| HRES-02         | RESE-1003218 | 22-Oct-11 | <1.00                |                                    |                       |                     |                                       |                                       |                                       |                                                 | Isotech               |  |  |  |
| HRES-02         | RESE-1003222 | 25-Oct-11 |                      |                                    |                       |                     | <0.97                                 | <0.97                                 | <0.97                                 |                                                 | ACZ                   |  |  |  |
| HRES-02         | RESE-1003222 | 25-Oct-11 |                      | 17.61 ± 0.13                       |                       |                     |                                       |                                       |                                       |                                                 | Beta Analytic         |  |  |  |
| HRES-02         | RESE-1003222 | 25-Oct-11 |                      |                                    | 2.0852                | 0.720490 ± 0.00001  |                                       |                                       |                                       |                                                 | Geochron              |  |  |  |
| HRES-02         | RESE-1003222 | 25-Oct-11 | <1.00                |                                    | -                     |                     |                                       |                                       |                                       |                                                 | Isotech               |  |  |  |
| HRES-02         | RESE-1003227 | 27-Oct-11 |                      |                                    |                       |                     | 9.7 ± 4.4                             | <2.80                                 | <2.80                                 |                                                 | ACZ                   |  |  |  |
| HRES-02         | RESE-1003227 | 27-Oct-11 |                      | 40.15 ± 0.24                       | -                     |                     |                                       |                                       |                                       |                                                 | Beta Analytic         |  |  |  |
| HRES-02         | RESE-1003227 | 27-Oct-11 |                      | _                                  | 1.8149                | 0.720476 ± 0.00001  |                                       |                                       |                                       |                                                 | Geochron              |  |  |  |
| HRES-02         | RESE-1003227 | 27-Oct-11 | <1.00                |                                    |                       |                     |                                       |                                       |                                       |                                                 | Isotech               |  |  |  |
| HRES-04         | RESE-1000291 | 21-Dec-09 |                      | 18.53 ± 0.16                       | -                     |                     |                                       |                                       |                                       |                                                 | Beta Analytic         |  |  |  |
| HRES-04         | RESE-1000291 | 21-Dec-09 |                      |                                    |                       |                     | <0.2                                  | <0.1                                  | <0.1                                  |                                                 | Energy Labs           |  |  |  |
| HRES-04         | RESE-1000291 | 21-Dec-09 |                      |                                    | 0.0287                | 0.708058 ± 0.000011 |                                       |                                       |                                       |                                                 | Geochron              |  |  |  |
| DHRES-04        | RESE-1000291 | 21-Dec-09 | <1.00                |                                    |                       |                     |                                       |                                       |                                       |                                                 | Isotech               |  |  |  |



| SAMPLE LOCATION       | SAMPLE                  | SAMPLE    |                |                                    |                       |                                                 |                                       |                                       |                                       |                                                 |                       |  |  |  |
|-----------------------|-------------------------|-----------|----------------|------------------------------------|-----------------------|-------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------------------|-----------------------|--|--|--|
|                       | IDENTIFIER/ DESCRIPTION | DATE      | ³H (TU)ª       | <sup>14</sup> C (pmC) <sup>b</sup> | Sr (ppm) <sup>c</sup> | <sup>87</sup> Sr/ <sup>86</sup> Sr <sup>d</sup> | <sup>234</sup> U (pCi/L) <sup>e</sup> | <sup>235</sup> U (pCi/L) <sup>f</sup> | <sup>238</sup> U (pCi/L) <sup>g</sup> | <sup>234</sup> U/ <sup>238</sup> U <sup>h</sup> | LABORATORY            |  |  |  |
|                       |                         |           |                | Dee                                | p Groundwa            | ter System                                      |                                       | 1                                     | 1                                     |                                                 |                       |  |  |  |
| HRES-06 DUP           | RESE-1003184            | 09-Jan-11 |                |                                    |                       |                                                 | 3.3 ± 1.8                             | <1.00                                 | 2.85 ± 1.6                            | 1.2                                             | ACZ                   |  |  |  |
| HRES-06 DUP           | RESE-1003184            | 09-Jan-11 | _              | 16.18 ± 0.14                       |                       |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic         |  |  |  |
| HRES-06 DUP           | RESE-1003184            | 09-Jan-11 | _              |                                    | 0.6181                | 0.710898 ± 0.000007                             |                                       |                                       |                                       |                                                 | Geochron              |  |  |  |
| HRES-06 DUP           | RESE-1003184            | 09-Jan-11 | <1.00          |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | Isotech               |  |  |  |
| HRES-06               | RESE-1003186            | 09-Jan-11 |                |                                    |                       |                                                 | 3.5 ± 1.3                             | <0.73                                 | 1.26 ± 0.88                           | 2.8                                             | ACZ                   |  |  |  |
| HRES-06               | RESE-1003186            | 09-Jan-11 |                | 17.33 ± 0.13                       |                       |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic         |  |  |  |
| HRES-06               | RESE-1003186            | 09-Jan-11 | _              |                                    | 0.4513                | 0.710908 ± 0.000009                             |                                       |                                       |                                       |                                                 | Geochron              |  |  |  |
| HRES-06               | RESE-1003186            | 09-Jan-11 | <1.00          |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | Isotech               |  |  |  |
| HRES-09               | RESE-1003206            | 02-Sep-11 |                |                                    |                       |                                                 | 46 ± 4.9                              | <1.00                                 | 3.68 ± 1.6                            | 12.5                                            | ACZ                   |  |  |  |
| DHRES-09              | RESE-1003206            | 02-Sep-11 |                | 81.74 ± 0.3                        |                       |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic         |  |  |  |
| DHRES-09              | RESE-1003206            | 02-Sep-11 |                |                                    | 0.550                 | 0.712401 ± 0.000011                             |                                       |                                       |                                       |                                                 | Geochron              |  |  |  |
| DHRES-09              | RESE-1003206            | 02-Sep-11 | $1.50 \pm 0.3$ |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | Isotech               |  |  |  |
| HRES-10               | RESE-1003105            | 28-Nov-10 |                |                                    |                       |                                                 | 2.7 ± 1.5                             | <1.10                                 | 2.08 ± 1.2                            | 1.3                                             | ACZ                   |  |  |  |
| HRES-10               | RESE-1003105            | 28-Nov-10 |                | 76.61 ± 0.38                       |                       |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic         |  |  |  |
| OHRES-10              | RESE-1003105 28-Nov-10  |           |                | 1.150                              | 0.718413 ± 0.000009   |                                                 |                                       |                                       |                                       | Geochron                                        |                       |  |  |  |
| DHRES-10              | RESE-1003105            | 28-Nov-10 | 1.62 ± 0.19    |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | Isotech               |  |  |  |
| HRES-11               | RESE-1003131            | 29-Jun-11 |                |                                    |                       |                                                 | <1.10                                 | <1.10                                 | <1.10                                 |                                                 | ACZ                   |  |  |  |
| DHRES-11              | RESE-1003131            | 29-Jun-11 |                | 7.48 ± 0.07                        |                       |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic         |  |  |  |
| DHRES-11              | RESE-1003131            | 29-Jun-11 |                |                                    | 0.2729                | 0.712478 ± 0.000007                             |                                       |                                       |                                       |                                                 | Geochron              |  |  |  |
| DHRES-11              | RESE-1003131            | 29-Jun-11 | <1.00          |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | Isotech               |  |  |  |
| DHRES-13              | RESE-1003138            | 28-Jun-11 |                |                                    |                       |                                                 | <0.98                                 | <0.98                                 | <0.98                                 |                                                 | ACZ                   |  |  |  |
| DHRES-13              | RESE-1003138            | 28-Jun-11 |                | 30.53 ± 0.15                       |                       |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic         |  |  |  |
| DHRES-13              | RESE-1003138            | 28-Jun-11 |                |                                    | 0.2106                | 0.710538 ± 0.000007                             |                                       |                                       |                                       |                                                 | Geochron              |  |  |  |
| OHRES-13              | RESE-1003138            | 28-Jun-11 | <1.00          |                                    | _                     |                                                 |                                       | _                                     |                                       |                                                 | Isotech               |  |  |  |
| RES-09                | RES009-1681-2064.28     | 09-Oct-06 | <1.0           | 47.2 ± 0.4                         |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |  |  |  |
|                       |                         | l         |                |                                    | Mine Work             | ings                                            |                                       |                                       |                                       |                                                 |                       |  |  |  |
| haft No. 9 Discharge  | RESE-1000278            | 22-Apr-09 |                | 61.69 ± 0.31                       |                       |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic         |  |  |  |
| Shaft No. 9 Discharge | RESE-1000278            | 22-Apr-09 |                |                                    |                       |                                                 | $4.9 \pm 0.7$                         | <0.2                                  | 3.8 ± 0.6                             | 1.3                                             | Energy Labs           |  |  |  |
| Shaft No. 9 Discharge | RESE-1000278            | 22-Apr-09 |                |                                    | 1.849                 | 0.713221 ± 0.000009                             |                                       |                                       |                                       |                                                 | Geochron              |  |  |  |
| Shaft No. 9 Discharge | RESE-1000278            | 22-Apr-09 | 2.7 ± 0.35     |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizon  |  |  |  |
| Shaft No. 9 Discharge | RESE-1003157            | 25-Jun-10 |                |                                    |                       |                                                 | 8.1 ± 2.5                             | <1.00                                 | 7.16 ± 2.1                            | 1.1                                             | ACZ                   |  |  |  |
| Shaft No. 9 Discharge | RESE-1003157            | 25-Jun-10 |                | 51.50 ± 0.25                       |                       |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic         |  |  |  |
| Shaft No. 9 Discharge | RESE-1003157            | 25-Jun-10 |                |                                    | 1.771                 | 0.714075 ± 0.000007                             |                                       |                                       |                                       |                                                 | Geochron              |  |  |  |
| Shaft No. 9 Discharge | RESE-1003157            | 25-Jun-10 | 1.26 ± 0.14    |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | Isotech               |  |  |  |



| SAMPLE LOCATION       | SAMPLE                       | SAMPLE    |             |                                    |                       | RADIOISOTO                                      | PE DATA                               |                                       |                                       |                                                 | ANALYTICAL    |
|-----------------------|------------------------------|-----------|-------------|------------------------------------|-----------------------|-------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------------------|---------------|
|                       | IDENTIFIER/ DESCRIPTION      | DATE      | ³H (TU)ª    | <sup>14</sup> C (pmC) <sup>b</sup> | Sr (ppm) <sup>c</sup> | <sup>87</sup> Sr/ <sup>86</sup> Sr <sup>d</sup> | <sup>234</sup> U (pCi/L) <sup>e</sup> | <sup>235</sup> U (pCi/L) <sup>f</sup> | <sup>238</sup> U (pCi/L) <sup>g</sup> | <sup>234</sup> U/ <sup>238</sup> U <sup>h</sup> | LABORATORY    |
|                       |                              |           |             | 1                                  | Mine Work             | kings                                           | 1                                     | I                                     | 1                                     | l .                                             |               |
| Shaft No. 9 Discharge | RESE-1003169                 | 29-Jul-10 |             |                                    |                       |                                                 | 7 ± 2.5                               | <1.50                                 | 6.14 ± 2.2                            | 1.1                                             | ACZ           |
| Shaft No. 9 Discharge | RESE-1003169                 | 29-Jul-10 |             | 55.15 ± 0.27                       |                       |                                                 |                                       | _                                     |                                       |                                                 | Beta Analytic |
| Shaft No. 9 Discharge | RESE-1003169                 | 29-Jul-10 |             |                                    | 1.857                 | 0.713905 ± 0.000009                             |                                       | _                                     |                                       |                                                 | Geochron      |
| Shaft No. 9 Discharge | RESE-1003169                 | 29-Jul-10 | 1.55 ± 0.27 |                                    |                       |                                                 |                                       | _                                     |                                       |                                                 | Isotech       |
| Shaft No. 9 Discharge | RESE-1003160                 | 16-Aug-10 |             |                                    |                       |                                                 | 6.1 ± 3.5                             | <2.0                                  | 5.13 ± 2.6                            | 1.2                                             | ACZ           |
| Shaft No. 9 Discharge | RESE-1003160                 | 16-Aug-10 |             | 49.12 ± 0.24                       |                       |                                                 |                                       | _                                     |                                       |                                                 | Beta Analytic |
| Shaft No. 9 Discharge | RESE-1003160                 | 16-Aug-10 |             |                                    | 1.770                 | 0.714098 ± 0.00001                              |                                       | _                                     |                                       |                                                 | Geochron      |
| Shaft No. 9 Discharge | RESE-1003160                 | 16-Aug-10 | 1.04 ± 0.27 |                                    |                       |                                                 |                                       | _                                     |                                       |                                                 | Isotech       |
| Shaft No. 9 Discharge | RESE-1003171                 | 30-Aug-10 |             |                                    |                       |                                                 | 8.5 ± 2.7                             | <1.00                                 | 7.91 ± 2.6                            | 1.1                                             | ACZ           |
| Shaft No. 9 Discharge | RESE-1003171                 | 30-Aug-10 |             | 55.36 ± 0.27                       |                       |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic |
| Shaft No. 9 Discharge | RESE-1003171                 | 30-Aug-10 |             |                                    | 1.809                 | 0.714166 ± 0.000009                             |                                       |                                       |                                       |                                                 | Geochron      |
| Shaft No. 9 Discharge | RESE-1003171                 | 30-Aug-10 | 1.70 ± 0.28 |                                    |                       |                                                 |                                       | _                                     |                                       |                                                 | Isotech       |
| Shaft No. 9 Discharge | RESE-1003162                 | 14-Sep-10 |             |                                    |                       |                                                 | 4.3 ± 2.4                             | <1.30                                 | 3.23 ± 2.2                            | 1.3                                             | ACZ           |
| Shaft No. 9 Discharge |                              |           |             | 48.04 ± 0.23                       |                       |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic |
| Shaft No. 9 Discharge | harge RESE-1003162 14-Sep-10 |           | 1.797       | 0.714008 ± 0.000007                |                       |                                                 |                                       |                                       | Geochron                              |                                                 |               |
| Shaft No. 9 Discharge | RESE-1003162                 | 14-Sep-10 | 1.69 ± 0.16 |                                    |                       |                                                 |                                       | _                                     |                                       |                                                 | Isotech       |
| Shaft No. 9 Discharge | RESE-1003177                 | 27-Sep-10 |             |                                    |                       |                                                 | 7.4 ± 4.7                             | <3.2                                  | <3.20                                 |                                                 | ACZ           |
| Shaft No. 9 Discharge | RESE-1003177                 | 27-Sep-10 |             | 59.65 ± 0.29                       | _                     |                                                 |                                       | _                                     |                                       |                                                 | Beta Analytic |
| Shaft No. 9 Discharge | RESE-1003177                 | 27-Sep-10 |             |                                    | 1.840                 | 0.713981 ± 0.000014                             |                                       | _                                     |                                       |                                                 | Geochron      |
| Shaft No. 9 Discharge | RESE-1003177                 | 27-Sep-10 | 1.63 ± 0.16 | _                                  | _                     |                                                 |                                       | _                                     |                                       |                                                 | Isotech       |
| Shaft No. 9 Discharge | RESE-1003179                 | 11-Oct-10 |             |                                    | -                     |                                                 | 4.1 ± 2.2                             | <1.00                                 | 3.88 ± 1.9                            | 1.1                                             | ACZ           |
| Shaft No. 9 Discharge | RESE-1003179                 | 11-Oct-10 |             | 55.91 ± 0.28                       |                       |                                                 |                                       | _                                     |                                       |                                                 | Beta Analytic |
| Shaft No. 9 Discharge | RESE-1003179                 | 11-Oct-10 |             |                                    | 1.891                 | 0.713904 ± 0.00001                              |                                       | _                                     |                                       |                                                 | Geochron      |
| Shaft No. 9 Discharge | RESE-1003179                 | 11-Oct-10 | 1.47 ± 0.17 |                                    |                       |                                                 |                                       | _                                     |                                       |                                                 | Isotech       |
| Shaft No. 9 Discharge | RESE-1003180                 | 25-Oct-10 |             |                                    |                       |                                                 | 4.8 ± 2                               | <1.10                                 | 3.49 ± 1.8                            | 1.4                                             | ACZ           |
| Shaft No. 9 Discharge | RESE-1003180                 | 25-Oct-10 |             | 51.76 ± 0.25                       |                       |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic |
| Shaft No. 9 Discharge | RESE-1003180                 | 25-Oct-10 |             |                                    | 1.821                 | 0.713979 ± 0.000016                             |                                       |                                       |                                       |                                                 | Geochron      |
| Shaft No. 9 Discharge | RESE-1003180                 | 25-Oct-10 | 1.45 ± 0.17 |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | Isotech       |
| Shaft No. 9 Discharge | RESE-1003181                 | 09-Nov-10 |             |                                    |                       |                                                 | 4.7 ± 2.1                             | <0.99                                 | 4.67 ± 1.9                            | 1.0                                             | ACZ           |
| Shaft No. 9 Discharge | RESE-1003181                 | 09-Nov-10 |             | 51.89 ± 0.25                       |                       |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic |
| Shaft No. 9 Discharge | RESE-1003181                 | 09-Nov-10 |             |                                    | 1.827                 | 0.713969 ± 0.000009                             |                                       | -                                     |                                       |                                                 | Geochron      |
| Shaft No. 9 Discharge | RESE-1003181                 | 09-Nov-10 | 1.32 ± 0.18 | _                                  |                       |                                                 |                                       |                                       |                                       |                                                 | Isotech       |
| Shaft No. 9 Discharge | RESE-1003106                 | 12-Jan-11 |             |                                    |                       |                                                 | 4.1 ± 1.6                             | <0.97                                 | 5.08 ± 1.7                            | 0.80                                            | ACZ           |
| Shaft No. 9 Discharge | RESE-1003106                 | 12-Jan-11 |             | 49.19 ± 0.24                       |                       |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic |
| Shaft No. 9 Discharge | RESE-1003106                 | 12-Jan-11 |             |                                    | 1.759                 | 0.713862 ± 0.000009                             |                                       |                                       |                                       |                                                 | Geochron      |
| Shaft No. 9 Discharge | RESE-1003106                 | 12-Jan-11 | 1.04 ± 0.18 |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | Isotech       |



| SAMPLE LOCATION       | SAMPLE                             | SAMPLE    |             |                                    |                       | RADIOISOTO                                      | PE DATA                               |                                       |                                       |                                                 | ANALYTICAL    |
|-----------------------|------------------------------------|-----------|-------------|------------------------------------|-----------------------|-------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------------------|---------------|
|                       | IDENTIFIER/ DESCRIPTION            | DATE      | ³H (TU)ª    | <sup>14</sup> C (pmC) <sup>b</sup> | Sr (ppm) <sup>c</sup> | <sup>87</sup> Sr/ <sup>86</sup> Sr <sup>d</sup> | <sup>234</sup> U (pCi/L) <sup>e</sup> | <sup>235</sup> U (pCi/L) <sup>f</sup> | <sup>238</sup> U (pCi/L) <sup>g</sup> | <sup>234</sup> U/ <sup>238</sup> U <sup>h</sup> | LABORATORY    |
|                       |                                    |           |             |                                    | Mine Work             | ings                                            |                                       | ı                                     |                                       |                                                 |               |
| Shaft No. 9 Discharge | RESE-1003187                       | 25-Jan-11 |             |                                    | _                     |                                                 | 6.8 ± 5.9                             | <3.0                                  | 4.19 ± 4.6                            | 1.6                                             | ACZ           |
| Shaft No. 9 Discharge | RESE-1003187                       | 25-Jan-11 |             | 39.07 ± 0.19                       |                       |                                                 |                                       | _                                     |                                       |                                                 | Beta Analytic |
| Shaft No. 9 Discharge | RESE-1003187                       | 25-Jan-11 |             |                                    | 1.7795                | 0.713780 ± 0.000007                             |                                       | _                                     |                                       |                                                 | Geochron      |
| Shaft No. 9 Discharge | RESE-1003187                       | 25-Jan-11 | 1.31 ± 0.33 |                                    |                       |                                                 |                                       | _                                     |                                       |                                                 | Isotech       |
| Shaft No. 9 Discharge | RESE-1003195                       | 09-Feb-11 |             |                                    |                       |                                                 | 5.7 ± 1.7                             | <0.92                                 | 4.53 ± 1.6                            | 1.3                                             | ACZ           |
| Shaft No. 9 Discharge | RESE-1003195                       | 09-Feb-11 |             | 44.58 ± 0.27                       |                       |                                                 |                                       | _                                     |                                       |                                                 | Beta Analytic |
| Shaft No. 9 Discharge | RESE-1003195                       | 09-Feb-11 |             | _                                  | 1.7360                | 0.713817 ± 0.000011                             |                                       | _                                     |                                       |                                                 | Geochron      |
| Shaft No. 9 Discharge | RESE-1003195                       | 09-Feb-11 | 1.31 ± 0.18 |                                    |                       |                                                 |                                       | _                                     |                                       |                                                 | Isotech       |
| Shaft No. 9 Discharge | RESE-1003198                       | 22-Feb-11 |             |                                    |                       |                                                 | 3.9 ± 2                               | <1.20                                 | 4.52 ± 1.7                            | 0.9                                             | ACZ           |
| Shaft No. 9 Discharge | RESE-1003198                       | 22-Feb-11 |             | 45.02 ± 0.28                       |                       |                                                 |                                       | _                                     |                                       |                                                 | Beta Analytic |
| Shaft No. 9 Discharge | RESE-1003198                       | 22-Feb-11 |             |                                    | 1.7676                | 0.713822 ± 0.000009                             |                                       | _                                     |                                       |                                                 | Geochron      |
| Shaft No. 9 Discharge | RESE-1003198                       | 22-Feb-11 | 1.38 ± 0.18 |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | Isotech       |
| Shaft No. 9 Discharge | RESE-1003115                       | 08-Mar-11 |             |                                    |                       |                                                 | 5.2 ± 1.9                             | <1.0                                  | 4.83 ± 1.6                            | 1.1                                             | ACZ           |
| Shaft No. 9 Discharge | RESE-1003115                       | 08-Mar-11 |             | 48.10 ± 0.24                       |                       |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic |
| Shaft No. 9 Discharge | 9 Discharge RESE-1003115 08-Mar-11 |           | 1.7120      | 0.713713 ± 0.000009                |                       |                                                 |                                       |                                       | Geochron                              |                                                 |               |
| Shaft No. 9 Discharge | RESE-1003115                       | 08-Mar-11 | 1.46 ± 0.26 | ± 0.26                             |                       |                                                 |                                       | _                                     |                                       |                                                 | Isotech       |
| Shaft No. 9 Discharge | RESE-1003107                       | 22-Mar-11 |             |                                    |                       |                                                 | 3.8 ± 1.8                             | <1.3                                  | 2.89 ± 1.7 1.3                        |                                                 | ACZ           |
| Shaft No. 9 Discharge | RESE-1003107                       | 22-Mar-11 |             | 50.43 ± 0.25                       |                       |                                                 |                                       | _                                     |                                       |                                                 | Beta Analytic |
| Shaft No. 9 Discharge | RESE-1003107                       | 22-Mar-11 |             |                                    | 1.6652                | 0.713698 ± 0.000009                             |                                       | _                                     |                                       |                                                 | Geochron      |
| Shaft No. 9 Discharge | RESE-1003107                       | 22-Mar-11 | 1.79 ± 0.32 | _                                  |                       |                                                 |                                       | _                                     |                                       |                                                 | Isotech       |
| Shaft No. 9 Discharge | RESE-1003111                       | 06-Apr-11 |             |                                    |                       |                                                 | 4 ± 1.9                               | <1.1                                  | 4.52 ± 1.6                            | 0.9                                             | ACZ           |
| Shaft No. 9 Discharge | RESE-1003111                       | 06-Apr-11 |             | 46.33 ± 0.23                       |                       |                                                 |                                       | _                                     |                                       |                                                 | Beta Analytic |
| Shaft No. 9 Discharge | RESE-1003111                       | 06-Apr-11 |             |                                    | 1.7046                | 0.713687 ± 0.000011                             |                                       | _                                     |                                       |                                                 | Geochron      |
| Shaft No. 9 Discharge | RESE-1003111                       | 06-Apr-11 | 1.48 ± 0.29 | _                                  |                       |                                                 |                                       | _                                     |                                       |                                                 | Isotech       |
| Shaft No. 9 Discharge | RESE-1003200                       | 19-Apr-11 |             |                                    | _                     |                                                 | 4.4 ± 2.1                             | <1.20                                 | 3.24 ± 1.4                            | 1.4                                             | ACZ           |
| Shaft No. 9 Discharge | RESE-1003200                       | 19-Apr-11 |             | 52.87 ± 0.26                       |                       |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic |
| Shaft No. 9 Discharge | RESE-1003200                       | 19-Apr-11 |             | _                                  | 1.7054                | 0.713759 ± 0.00001                              |                                       |                                       |                                       |                                                 | Geochron      |
| Shaft No. 9 Discharge | RESE-1003200                       | 19-Apr-11 | 1.86 ± 0.29 | _                                  |                       |                                                 |                                       |                                       |                                       |                                                 | Isotech       |
| Shaft No. 9 Discharge | RESE-1003123                       | 02-May-11 |             |                                    | -                     |                                                 | $6.6 \pm 2.7$                         | <1.10                                 | 5.71 ± 2.2                            | 1.2                                             | ACZ           |
| Shaft No. 9 Discharge | RESE-1003123                       | 02-May-11 |             | 55.71 ± 0.27                       |                       |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic |
| Shaft No. 9 Discharge | RESE-1003123                       | 02-May-11 |             | _                                  | 1.6269                | 0.713656 ± 0.000009                             |                                       |                                       |                                       |                                                 | Geochron      |
| Shaft No. 9 Discharge | RESE-1003123                       | 02-May-11 | 2.26 ± 0.31 |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | Isotech       |
| Shaft No. 9 Discharge | RESE-1003120                       | 18-May-11 |             |                                    |                       |                                                 | 4.4 ± 1.6                             | <0.92                                 | 4.02 ± 1.5                            | 1.1                                             | ACZ           |
| Shaft No. 9 Discharge | RESE-1003120                       | 18-May-11 |             | 57.61 ± 0.28                       |                       |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic |
| Shaft No. 9 Discharge | RESE-1003120                       | 18-May-11 |             |                                    | 1.6280                | 0.713886 ± 0.00001                              |                                       |                                       |                                       |                                                 | Geochron      |
| Shaft No. 9 Discharge | RESE-1003120                       | 18-May-11 | 2.33 ± 0.16 |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | Isotech       |



| SAMPLE LOCATION           | SAMPLE                  | SAMPLE           |             |                                    |                       | RADIOISOTO                                      | PE DATA                               |                                       |                                       |                                                 | ANALYTICAL    |
|---------------------------|-------------------------|------------------|-------------|------------------------------------|-----------------------|-------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------------------|---------------|
|                           | IDENTIFIER/ DESCRIPTION | DATE             | ³H (TU)ª    | <sup>14</sup> C (pmC) <sup>b</sup> | Sr (ppm) <sup>c</sup> | <sup>87</sup> Sr/ <sup>86</sup> Sr <sup>d</sup> | <sup>234</sup> U (pCi/L) <sup>e</sup> | <sup>235</sup> U (pCi/L) <sup>f</sup> | <sup>238</sup> U (pCi/L) <sup>g</sup> | <sup>234</sup> U/ <sup>238</sup> U <sup>h</sup> | LABORATORY    |
|                           |                         |                  |             |                                    | Mine Work             | tings                                           | l                                     |                                       |                                       |                                                 |               |
| Shaft No. 9 Discharge     | RESE-1003127            | 01-Jun-11        |             |                                    | _                     |                                                 | 1.8 ± 1.9                             | <1.10                                 | 4.39 ± 1.7                            | 0.4                                             | ACZ           |
| Shaft No. 9 Discharge     | RESE-1003127            | 01-Jun-11        |             | 51.70 ± 0.25                       |                       |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic |
| Shaft No. 9 Discharge     | RESE-1003127            | 01-Jun-11        |             |                                    | 2.0519                | 0.713654 ± 0.000007                             |                                       |                                       |                                       |                                                 | Geochron      |
| Shaft No. 9 Discharge     | RESE-1003127            | 01-Jun-11        | 1.18 ± 0.16 |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | Isotech       |
| Shaft No. 9 Discharge DUP | RESE-1003128            | 01-Jun-11        |             |                                    |                       |                                                 | 3.4 ± 2.3                             | <1.20                                 | 3.01 ± 1.4                            | 1.1                                             | ACZ           |
| Shaft No. 9 Discharge DUP | RESE-1003128            | 01-Jun-11        |             | 52.21 ± 0.26                       |                       |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic |
| Shaft No. 9 Discharge DUP | RESE-1003128            | 01-Jun-11        |             |                                    | 1.7080                | 0.713638 ± 0.000007                             |                                       | _                                     |                                       |                                                 | Geochron      |
| Shaft No. 9 Discharge DUP | RESE-1003128            | 01-Jun-11        | 1.41 ± 0.15 |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | Isotech       |
| Shaft No. 9 Discharge     | RESE-1003134            | 13-Jun-11        |             |                                    |                       |                                                 | 6.8 ± 2.5                             | <1.10                                 | 4.23 ± 2                              | 1.6                                             | ACZ           |
| Shaft No. 9 Discharge     | RESE-1003134            | 13-Jun-11        |             | 54.67 ± 0.27                       |                       |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic |
| Shaft No. 9 Discharge     | RESE-1003134            | 13-Jun-11        |             |                                    | 1.630                 | 0.713845 ± 0.00001                              |                                       |                                       |                                       |                                                 | Geochron      |
| Shaft No. 9 Discharge     | RESE-1003134            | 13-Jun-11        | 1.79 ± 0.15 |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | Isotech       |
| Shaft No. 9 Discharge     | RESE-1003140            | 30-Jun-11        |             |                                    |                       |                                                 | 4.5 ± 2                               | <1.00                                 | 3.73 ± 1.5                            | 1.2                                             | ACZ           |
| Shaft No. 9 Discharge     | -                       |                  |             | 46.51 ± 0.23                       |                       |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic |
| Shaft No. 9 Discharge     | RESE-1003140            | 003140 30-Jun-11 |             | 1.776                              | 0.713093 ± 0.000009   |                                                 |                                       |                                       |                                       | Geochron                                        |               |
| Shaft No. 9 Discharge     | RESE-1003140            | 30-Jun-11        | 1.10 ± 0.14 | 0 ± 0.14                           |                       |                                                 |                                       | _                                     |                                       |                                                 | Isotech       |
| Shaft No. 9 Discharge     | RESE-1003145            | 12-Jul-11        |             |                                    | -                     |                                                 | 4.8 ± 2.6                             | <0.99                                 | 4.97 ± 2.1                            | 1.0                                             | ACZ           |
| Shaft No. 9 Discharge     | RESE-1003145            | 12-Jul-11        |             | 49.86 ± 0.18                       |                       |                                                 |                                       | _                                     |                                       |                                                 | Beta Analytic |
| Shaft No. 9 Discharge     | RESE-1003145            | 12-Jul-11        |             |                                    | 1.785                 | 0.713489 ± 0.000013                             |                                       |                                       |                                       |                                                 | Geochron      |
| Shaft No. 9 Discharge     | RESE-1003145            | 12-Jul-11        | 1.08 ± 0.23 | _                                  | _                     |                                                 |                                       | _                                     |                                       |                                                 | Isotech       |
| Shaft No. 9 Discharge     | RESE-1003202            | 27-Jul-11        |             |                                    | -                     |                                                 | 7.3 ± 2.6                             | <1.00                                 | 6.69 ± 2.3                            | 1.1                                             | ACZ           |
| Shaft No. 9 Discharge     | RESE-1003202            | 27-Jul-11        |             | 55.98 ± 0.28                       | _                     |                                                 |                                       | _                                     |                                       |                                                 | Beta Analytic |
| Shaft No. 9 Discharge     | RESE-1003202            | 27-Jul-11        |             |                                    | 1.863                 | 0.713532 ± 0.000009                             |                                       | _                                     |                                       |                                                 | Geochron      |
| Shaft No. 9 Discharge     | RESE-1003202            | 27-Jul-11        | 0.98 ± 0.29 | _                                  | _                     |                                                 |                                       | _                                     |                                       |                                                 | Isotech       |
| Shaft No. 9 Discharge     | RESE-1003204            | 12-Aug-11        |             | -                                  | _                     |                                                 | 7.3 ± 2.4                             | <1.20                                 | 7.18 ± 2.3                            | 1.0                                             | ACZ           |
| Shaft No. 9 Discharge     | RESE-1003204            | 12-Aug-11        |             | 56.68 ± 0.28                       | -                     |                                                 |                                       | -                                     |                                       |                                                 | Beta Analytic |
| Shaft No. 9 Discharge     | RESE-1003204            | 12-Aug-11        |             |                                    | 1.762                 | 0.713673 ± 0.000009                             |                                       | -                                     |                                       |                                                 | Geochron      |
| Shaft No. 9 Discharge     | RESE-1003204            | 12-Aug-11        | 1.00 ± 0.26 |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | Isotech       |
| Shaft No. 9 Discharge     | RESE-1003209            | 25-Aug-11        |             |                                    |                       |                                                 | 8.2 ± 2.7                             | <0.98                                 | 6.18 ± 2.2                            | 1.3                                             | ACZ           |
| Shaft No. 9 Discharge     | RESE-1003209            | 25-Aug-11        |             | 55.98 ± 0.28                       |                       |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic |
| Shaft No. 9 Discharge     | RESE-1003209            | 25-Aug-11        |             |                                    | 1.772                 | 0.713740 ± 0.000007                             |                                       | -                                     |                                       |                                                 | Geochron      |
| Shaft No. 9 Discharge     | RESE-1003209            | 25-Aug-11        | 1.90 ± 0.31 | _                                  |                       |                                                 |                                       |                                       |                                       |                                                 | Isotech       |
| Shaft No. 9 Discharge     | RESE-1003210            | 07-Sep-11        |             |                                    |                       |                                                 | 4.4 ± 2.1                             | <1.10                                 | 4.01 ± 2                              | 1.1                                             | ACZ           |
| Shaft No. 9 Discharge     | RESE-1003210            | 07-Sep-11        |             | 49.62 ± 0.24                       |                       |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic |
| Shaft No. 9 Discharge     | RESE-1003210            | 07-Sep-11        |             | _                                  | 1.846                 | 0.713645 ± 0.00001                              |                                       |                                       |                                       |                                                 | Geochron      |
| Shaft No. 9 Discharge     | RESE-1003210            | 07-Sep-11        | 1.10 ± 0.29 |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | Isotech       |



| SAMPLE LOCATION              | SAMPLE                  | SAMPLE    |                      |                                    |                       | RADIOISOTO                                      | PE DATA                               |                                       |                                       |                                                 | ANALYTICAL           |
|------------------------------|-------------------------|-----------|----------------------|------------------------------------|-----------------------|-------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------------------|----------------------|
|                              | IDENTIFIER/ DESCRIPTION | DATE      | ³H (TU) <sup>a</sup> | <sup>14</sup> C (pmC) <sup>b</sup> | Sr (ppm) <sup>c</sup> | <sup>87</sup> Sr/ <sup>86</sup> Sr <sup>d</sup> | <sup>234</sup> U (pCi/L) <sup>e</sup> | <sup>235</sup> U (pCi/L) <sup>f</sup> | <sup>238</sup> U (pCi/L) <sup>g</sup> | <sup>234</sup> U/ <sup>238</sup> U <sup>h</sup> | LABORATOR'           |
|                              | 1                       |           |                      |                                    | Mine Work             | ings                                            |                                       | 1                                     | 1                                     | -                                               |                      |
| Shaft No. 9 Discharge        | RESE-1003212            | 20-Sep-11 |                      |                                    |                       |                                                 | 4.8 ± 1.8                             | <0.99                                 | 5.89 ± 1.8                            | 0.80                                            | ACZ                  |
| Shaft No. 9 Discharge        | RESE-1003212            | 20-Sep-11 |                      | 36.71 ± 0.18                       | _                     |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic        |
| Shaft No. 9 Discharge        | RESE-1003212            | 20-Sep-11 | _                    |                                    | 1.648                 | 0.713774 ± 0.000016                             |                                       |                                       |                                       |                                                 | Geochron             |
| Shaft No. 9 Discharge        | RESE-1003212            | 20-Sep-11 | 1.19 ± 0.18          |                                    | _                     |                                                 |                                       |                                       |                                       |                                                 | Isotech              |
| Shaft No. 9 Discharge        | RESE-1003225            | 26-Oct-11 |                      |                                    |                       |                                                 | 7.5 ± 2.1                             | <0.88                                 | 8 ± 2.1                               | 0.9                                             | ACZ                  |
| Shaft No. 9 Discharge        | RESE-1003225            | 26-Oct-11 | _                    | 52.67 ± 0.26                       |                       |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic        |
| Shaft No. 9 Discharge        | RESE-1003225            | 26-Oct-11 | _                    |                                    | 1.6988                | 0.713659 ± 0.000009                             |                                       |                                       |                                       |                                                 | Geochron             |
| Shaft No. 9 Discharge        | RESE-1003225            | 26-Oct-11 | 1.30 ± 0.27          |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | Isotech              |
| Shaft No. 9 Discharge        | RESE-1003228            | 09-Nov-11 |                      |                                    |                       |                                                 | 4.6 ± 2.2                             | <1.20                                 | 5.45 ± 2.4                            | 0.8                                             | ACZ                  |
| Shaft No. 9 Discharge        | RESE-1003228            | 09-Nov-11 | _                    | 52.41 ± 0.32                       |                       |                                                 | _                                     |                                       |                                       |                                                 | Beta Analytic        |
| Shaft No. 9 Discharge        | RESE-1003228            | 09-Nov-11 |                      |                                    | 1.6654                | 0.713725 ± 0.00001                              |                                       |                                       |                                       |                                                 | Geochron             |
| Shaft No. 9 Discharge        | RESE-1003228            | 09-Nov-11 | $0.93 \pm 0.28$      |                                    | _                     |                                                 |                                       |                                       |                                       |                                                 | Isotech              |
| Shaft No. 9 Discharge DUP    | RESE-1003229            | 09-Nov-11 |                      |                                    | -                     |                                                 | 5.2 ± 2.2                             | <1.20                                 | 5.06 ± 2                              | 1.0                                             | ACZ                  |
| Shaft No. 9 Discharge DUP    | RESE-1003229            | 09-Nov-11 |                      | 43.27 ± 0.26                       |                       |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic        |
| Shaft No. 9 Discharge DUP    | RESE-1003229            | 09-Nov-11 |                      |                                    | 1.6530                | 0.713706 ± 0.00001                              |                                       |                                       |                                       |                                                 | Geochron             |
| Shaft No. 9 Discharge DUP    | RESE-1003229            | 09-Nov-11 | 1.32 ± 0.32          |                                    | -                     |                                                 |                                       |                                       |                                       |                                                 | Isotech              |
| Shaft No. 9 Discharge        | RESE-1003232            | 22-Nov-11 |                      |                                    | -                     |                                                 | 3.9 ± 1.8                             | <0.99                                 | 3 ± 1.7                               | 1.3                                             | ACZ                  |
| Shaft No. 9 Discharge        | RESE-1003232            | 22-Nov-11 |                      | 19.17 ± 0.38                       | -                     |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic        |
| Shaft No. 9 Discharge        | RESE-1003232            | 22-Nov-11 |                      |                                    | 1.627                 | 0.713578 ± 0.000009                             |                                       |                                       |                                       |                                                 | Geochron             |
| Shaft No. 9 Discharge        | RESE-1003232            | 22-Nov-11 | $0.95 \pm 0.14$      |                                    | -                     |                                                 |                                       |                                       |                                       |                                                 | Isotech              |
| Shaft No. 9 Discharge        | RESE-1003234            | 07-Dec-11 |                      |                                    |                       |                                                 | 5.9 ± 2.7                             | <1.20                                 | 7.75 ± 2.8                            | 0.8                                             | ACZ                  |
| Shaft No. 9 Discharge        | RESE-1003234            | 07-Dec-11 |                      | 43.10 ± 0.21                       | -                     |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic        |
| Shaft No. 9 Discharge        | RESE-1003234            | 07-Dec-11 |                      |                                    | 1.528                 | 0.713943 ± 0.000009                             |                                       |                                       |                                       |                                                 | Geochron             |
| Shaft No. 9 Discharge        | RESE-1003234            | 07-Dec-11 | 1.27 ± 0.15          |                                    | -                     |                                                 |                                       |                                       |                                       |                                                 | Isotech              |
|                              |                         | 1         |                      | Shall                              | ow Groundw            | ater System                                     |                                       |                                       |                                       |                                                 |                      |
| Hackberry Windmill Well      | RESE-1000263            | 27-Feb-08 |                      |                                    | -                     |                                                 | <0.2                                  | <0.2                                  | <0.2                                  |                                                 | Energy Labs          |
| Hackberry Windmill Well      | RESE-1000263            | 27-Feb-08 |                      |                                    | 0.2868                | 0.709723 ± 0.000007                             |                                       |                                       |                                       |                                                 | Geochron             |
| -<br>Hackberry Windmill Well | RESE-1000263            | 27-Feb-08 | 2.7 ± 0.26           | 106.1 ± 2.6                        | _                     |                                                 |                                       |                                       |                                       |                                                 | University of Arizon |
| Hackberry Windmill Well      | RESE-1003011            | 03-Jun-08 |                      |                                    | _                     |                                                 | <0.2                                  | <0.2                                  | <0.2                                  |                                                 | Energy Labs          |
| lackberry Windmill Well      | RESE-1003011            | 03-Jun-08 |                      |                                    | 0.2395                | 0.709750 ± 0.000009                             |                                       |                                       |                                       |                                                 | Geochron             |
| Hackberry Windmill Well      | RESE-1003011            | 03-Jun-08 | $3.9 \pm 0.28$       | 108.5 ± 1.2                        | _                     |                                                 |                                       |                                       |                                       |                                                 | University of Arizon |
| Hackberry Windmill Well      | RESE-1003019            | 02-Sep-08 |                      |                                    | _                     |                                                 | <0.2                                  | <0.2                                  | <0.2                                  |                                                 | Energy Labs          |
| lackberry Windmill Well      | RESE-1003019            | 02-Sep-08 |                      |                                    | 0.2481                | 0.709744 ± 0.000014                             |                                       |                                       |                                       |                                                 | Geochron             |
| Hackberry Windmill Well      | RESE-1003019            | 02-Sep-08 | 5.8 ± 0.42           | 106.9 ± 1.3                        |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizon |



| SAMPLE LOCATION             | SAMPLE                  | SAMPLE    |                |                                    |                       | RADIOISOTO                                      | PE DATA                               |                                       |                                       |                                                 | ANALYTICAL            |
|-----------------------------|-------------------------|-----------|----------------|------------------------------------|-----------------------|-------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------------------|-----------------------|
|                             | IDENTIFIER/ DESCRIPTION | DATE      | ³H (TU)ª       | <sup>14</sup> C (pmC) <sup>b</sup> | Sr (ppm) <sup>c</sup> | <sup>87</sup> Sr/ <sup>86</sup> Sr <sup>d</sup> | <sup>234</sup> U (pCi/L) <sup>e</sup> | <sup>235</sup> U (pCi/L) <sup>f</sup> | <sup>238</sup> U (pCi/L) <sup>g</sup> | <sup>234</sup> U/ <sup>238</sup> U <sup>h</sup> | LABORATORY            |
|                             | ,                       |           |                | Shalle                             | ow Groundw            | ater System                                     |                                       | 1                                     |                                       |                                                 |                       |
| lackberry Windmill Well DUP | RESE-1003020            | 02-Sep-08 |                |                                    |                       |                                                 | <0.2                                  | <0.2                                  | <0.2                                  |                                                 | Energy Labs           |
| lackberry Windmill Well DUP | RESE-1003020            | 02-Sep-08 |                |                                    | 0.2477                | 0.709722 ± 0.000011                             |                                       |                                       |                                       |                                                 | Geochron              |
| lackberry Windmill Well DUP | RESE-1003020            | 02-Sep-08 | 5.1 ± 0.41     |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |
| lackberry Windmill Well     | RESE-1003024            | 02-Dec-08 |                |                                    |                       |                                                 | <0.2                                  | <0.2                                  | <0.2                                  |                                                 | Energy Labs           |
| lackberry Windmill Well     | RESE-1003024            | 02-Dec-08 |                |                                    | 0.2442                | 0.709737 ± 0.000009                             |                                       | -                                     |                                       |                                                 | Geochron              |
| lackberry Windmill Well     | RESE-1003024            | 02-Dec-08 | $3.8 \pm 0.35$ | 107.4 ± 1.5                        |                       |                                                 |                                       | -                                     |                                       |                                                 | University of Arizona |
| ackberry Windmill Well      | RESE-1003033            | 03-Mar-09 | $3.0 \pm 0.34$ |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |
| lackberry Windmill Well     | RESE-1003042            | 02-Jun-09 | 6.2 ± 0.3      |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |
| Ranch Corral Well           | RESE-1000302            | 21-Jun-07 |                |                                    |                       |                                                 | <0.2                                  | <0.2                                  | <0.2                                  |                                                 | Energy Labs           |
| Ranch Corral Well           | RESE-1003005            | 29-May-08 |                |                                    |                       |                                                 | <0.2                                  | <0.2                                  | <0.2                                  |                                                 | Energy Labs           |
| I Ranch Corral Well         | RESE-1003005            | 29-May-08 |                |                                    | 0.6607                | 0.710617 ± 0.000007                             |                                       |                                       |                                       |                                                 | Geochron              |
| l Ranch Corral Well         | RESE-1003005            | 29-May-08 | $3.2 \pm 0.29$ |                                    |                       |                                                 |                                       | _                                     |                                       |                                                 | University of Arizona |
| Ranch Corral Well           | RESE-1003014            | 25-Aug-08 |                |                                    |                       |                                                 | <0.2                                  | <0.2                                  | <0.2                                  |                                                 | Energy Labs           |
| Ranch Corral Well           | RESE-1003014            | 25-Aug-08 |                |                                    | 1.0042                | 0.710626 ± 0.000007                             |                                       | _                                     |                                       |                                                 | Geochron              |
| I Ranch Corral Well         | RESE-1003014            | 25-Aug-08 | $2.5 \pm 0.34$ | 91.1 ± 1.1                         |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |
| I Ranch Corral Well         | RESE-1003029            | 03-Dec-08 |                |                                    |                       |                                                 | <0.2                                  | <0.2                                  | <0.2                                  |                                                 | Energy Labs           |
| Ranch Corral Well           | RESE-1003029            | 03-Dec-08 |                |                                    | 0.6636                | 0.710609 ± 0.000009                             |                                       | _                                     |                                       |                                                 | Geochron              |
| I Ranch Corral Well         | RESE-1003029            | 03-Dec-08 | $2.3 \pm 0.34$ | 94.1 ± 0.7                         |                       |                                                 |                                       | _                                     |                                       |                                                 | University of Arizona |
| I Ranch Corral Well LD      | RESE-1003029            | 03-Dec-08 |                |                                    | 0.6642                | 0.710611 ± 0.00001                              |                                       | _                                     |                                       |                                                 | Geochron              |
| I Ranch Corral Well         | RESE-1003038            | 04-Mar-09 | $3.0 \pm 0.3$  | 91.3 ± 0.8                         |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |
| I Ranch Corral Well         | RESE-1003047            | 05-Jun-09 | 4.8 ± 0.28     |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |
| l Ranch Middle Well         | RESE-1003006            | 30-May-08 |                | -                                  |                       |                                                 | <0.2                                  | <0.2                                  | <0.2                                  |                                                 | Energy Labs           |
| I Ranch Middle Well         | RESE-1003006            | 30-May-08 |                |                                    | 0.2667                | 0.710693 ± 0.000007                             |                                       |                                       |                                       |                                                 | Geochron              |
| I Ranch Middle Well         | RESE-1003006            | 30-May-08 | $3.3 \pm 0.24$ |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |
| I Ranch Middle Well         | RESE-1003017            | 27-Aug-08 |                |                                    |                       |                                                 | <0.2                                  | <0.2                                  | <0.2                                  |                                                 | Energy Labs           |
| Ranch Middle Well           | RESE-1003017            | 27-Aug-08 |                |                                    | 0.3694                | 0.710692 ± 0.000009                             |                                       |                                       |                                       |                                                 | Geochron              |
| Ranch Middle Well           | RESE-1003017            | 27-Aug-08 | $2.5 \pm 0.46$ | $96.8 \pm 0.9$                     |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |
| Ranch Middle Well           | RESE-1003028            | 03-Dec-08 |                |                                    |                       |                                                 | <0.2                                  | <0.2                                  | <0.2                                  |                                                 | Energy Labs           |
| l Ranch Middle Well         | RESE-1003028            | 03-Dec-08 |                |                                    | 0.4056                | 0.710638 ± 0.000009                             |                                       |                                       |                                       |                                                 | Geochron              |
| I Ranch Middle Well         | RESE-1003028            | 03-Dec-08 | $3.8 \pm 0.32$ | 105.6 ± 1.6                        |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |
| I Ranch Middle Well         | RESE-1003037            | 04-Mar-09 | 4.2 ± 0.36     | 97.0 ± 1.3                         |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |
| I Ranch Middle Well         | RESE-1003048            | 05-Jun-09 | 3.8 ± 0.39     |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |



#### **TABLE A-5. RADIOISOTOPE DATA**

#### FOR GROUNDWATER SAMPLES OBTAINED IN DEVILS CANYON/UPPER QUEEN CREEK STUDY AREA

| SAMPLE LOCATION | SAMPLE      | SAMPLE | TE <sup>3</sup> H (TU) <sup>a</sup> <sup>14</sup> C (pmC) <sup>b</sup> Sr (ppm) <sup>c</sup> <sup>87</sup> Sr/ <sup>86</sup> Sr <sup>d</sup> <sup>234</sup> U (pCi/L) <sup>e</sup> <sup>235</sup> U (pCi/L) <sup>f</sup> <sup>238</sup> U (pCi/L) <sup>g</sup> <sup>234</sup> U/ <sup>238</sup> U h |                                    |  |            |                                       |                                       |                                       |                                                 |            |  |  |  |  |
|-----------------|-------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--|------------|---------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------------------|------------|--|--|--|--|
|                 | IDENTIFIER/ | DATE   | ³H (TU) <sup>a</sup>                                                                                                                                                                                                                                                                                | <sup>14</sup> C (pmC) <sup>b</sup> |  | 87Sr/86Srd | <sup>234</sup> U (pCi/L) <sup>e</sup> | <sup>235</sup> U (pCi/L) <sup>f</sup> | <sup>238</sup> U (pCi/L) <sup>g</sup> | <sup>234</sup> U/ <sup>238</sup> U <sup>h</sup> | LABORATORY |  |  |  |  |
|                 | DESCRIPTION |        |                                                                                                                                                                                                                                                                                                     |                                    |  |            |                                       |                                       |                                       |                                                 |            |  |  |  |  |

- a <sup>3</sup>H = Tritium; tritium unit (1 TU = 1 tritium atom per 10<sup>18</sup> atoms of hydrogen)
- b <sup>14</sup>C = carbon-14; pmC = percent modern carbon
- c Sr = strontium; ppm = parts per million
- d Mass of strontium-87 isotope divided by mass of strontium-86 isotope
- e Uranium-234 isotope; pCi/L = activity in picoCuries per liter
- f Uranium-235 isotope; pCi/L = activity in picoCuries per liter
- g Uranium-238 isotope; pCi/L = activity in picoCuries per liter
- h Activity of uranium-234 isotope divided by activity of uranium-238 isotope
- --- = Not available, not applicable -- = Not calculated due to non-detect

- Absent = Analyte not present ge = Greater than or equal to reported value
  - i = Insufficient sample i = Estimated value

**Explanation of Codes** 

- j+ = Estimated value, high bias j- = Estimated value, low bias
- Lost = Sample lost in processing n = Not measured na = Not available
- ND = Not Detected
- np = Analyte not applicable
- Present = Analyte was detected
  - g = Uncertain value r = Unusable data
  - < = Less than reported detection limit

  - > = Greater than reported value d = Diluted. Diluted samples are indicated only when value is estimated.
  - DUP = Field Duplicate
  - LD = Laboratory duplicates
  - SP = Split samples
  - SPD = Split-Duplicates





### **APPENDIX B**

### SURFACE WATER HYDROCHEMICAL DATA

| SAMPLE LOCATION |              |           |      |      |      | , G. , |      |        |       |                 |                  |        |       |                                   |       | ROUTINE PARAMETERS |      |                      |      |         | ANALYTICAL  |
|-----------------|--------------|-----------|------|------|------|--------|------|--------|-------|-----------------|------------------|--------|-------|-----------------------------------|-------|--------------------|------|----------------------|------|---------|-------------|
|                 | DESCRIPTION  | DATE      |      |      |      |        |      |        |       |                 |                  |        |       |                                   |       |                    | FIEL | D                    | LABO | RATORY  | LABORATORY  |
|                 |              |           | Ca   | Mg   | Na   | K      | Cl   | CO₃    | HCO₃  | SO <sub>4</sub> | SiO <sub>2</sub> | Br     | F     | NO <sub>3</sub> + NO <sub>2</sub> | TDS   | TEMP               | рН   | SC                   | рН   | SC      |             |
|                 |              |           |      |      |      |        |      |        |       |                 |                  |        |       | (as N)                            |       | (°C) <sup>c</sup>  |      | (μS/cm) <sup>d</sup> |      | (μS/cm) |             |
|                 |              |           |      |      |      |        | Sı   | urface | Water |                 |                  |        |       |                                   |       |                    |      |                      |      |         |             |
| Blue Spring     | RESE-1001087 | 26-May-04 | -    | _    | -    |        |      |        |       |                 | -                |        | _     |                                   |       | 25.8               | 7.4  | 558                  |      |         |             |
| Blue Spring     | RESE-1001087 | 26-May-04 |      |      |      |        |      |        |       |                 |                  |        |       | <0.20                             |       |                    |      |                      |      |         | Del Mar     |
| Blue Spring     | RESE-1001087 | 26-May-04 | 59.2 | 13.5 | 32.5 | 1.7    | 12.2 |        | 364.8 | 6.10            | 72.9             | 0.11   | 0.40  |                                   | 370   |                    |      |                      |      |         | SVL         |
| Blue Spring     | RESE-1001093 | 03-Aug-04 |      |      |      |        |      |        |       |                 |                  |        |       |                                   |       | 22.9               | 7.4  | 809                  |      |         |             |
| Blue Spring     | RESE-1001093 | 03-Aug-04 |      |      |      |        |      |        |       |                 |                  |        |       | <0.20                             |       |                    |      |                      |      |         | Del Mar     |
| Blue Spring     | RESE-1001093 | 03-Aug-04 | 89.4 | 23.6 | 43.4 | 3.9    | 23.8 |        | 419.7 | 123             | 69.2             | 0.19   | 0.27  |                                   | 594   |                    |      |                      |      |         | SVL         |
| Blue Spring     | RESE-1001185 | 09-Feb-05 |      |      |      |        |      |        |       |                 |                  |        |       |                                   |       | 10.3               | 7.7  | 519                  |      |         |             |
| Blue Spring     | RESE-1001185 | 09-Feb-05 |      |      |      |        |      |        |       |                 |                  |        | -     | <0.20                             |       |                    |      |                      |      |         | Del Mar     |
| Blue Spring     | RESE-1001185 | 09-Feb-05 | 63.4 | 15.3 | 24.8 | 1.48   | 16.7 | -      | 258.6 | 41.2            | 46.7             | 0.174  | 0.300 |                                   | 347   |                    |      |                      |      |         | SVL         |
| Blue Spring     | RESE-1001200 | 03-May-05 | 1    |      |      |        |      |        |       |                 |                  |        |       |                                   |       | 17.9               | 7.6  | 746                  |      |         |             |
| Blue Spring     | RESE-1001200 | 03-May-05 |      |      |      |        |      |        |       |                 |                  |        |       | <0.20                             |       |                    |      |                      |      |         | Del Mar     |
| Blue Spring     | RESE-1001200 | 03-May-05 | 103  | 27.2 | 44.5 | 1.80   | 51.4 |        | 342.8 | 107             | 57.8             | 0.38   | 0.301 |                                   | 564   |                    |      |                      |      |         | SVL         |
| Blue Spring     | RESE-1001219 | 03-Aug-05 |      |      |      |        |      |        |       |                 |                  |        |       |                                   |       | 25.6               | 7.1  | 443.6                |      |         |             |
| Blue Spring     | RESE-1001219 | 03-Aug-05 |      |      |      |        |      |        |       |                 |                  |        |       | <0.20                             |       |                    |      |                      |      |         | Del Mar     |
| Blue Spring     | RESE-1001219 | 03-Aug-05 | 57.1 | 9.68 | 23.6 | 1.75   | 10.3 |        | 253.8 | 20.1            | 64.6             | 0.124  | 0.276 |                                   | 320   |                    |      |                      |      |         | SVL         |
| Blue Spring     | RESE-1002009 | 19-Aug-08 |      |      |      |        |      |        |       |                 |                  |        |       |                                   |       | 23.6               | 7.54 | 367                  |      |         |             |
| Blue Spring     | RESE-1002009 | 19-Aug-08 | 45.7 | 9.4  | 21.9 | 1.75   | 9.58 |        |       | 12.0            | 63.2             |        |       |                                   |       |                    |      |                      |      |         | SVL         |
| Blue Spring     | RESE-1002009 | 19-Aug-08 | 50   | 9.93 | 23   | 1.95   | 9.62 |        | 237.9 | 12.0            |                  | 0.161  | 0.185 |                                   | 280 j |                    |      |                      |      |         | SVL         |
| Blue Spring     | RESE-1002009 | 19-Aug-08 |      |      |      |        |      |        |       |                 |                  |        |       | 0.70                              |       |                    |      |                      |      |         | TestAmerica |
| Blue Spring DUP | RESE-1002010 | 19-Aug-08 | 45.7 | 9.34 | 21.9 | 1.74   | 9.58 |        |       | 12.0            | 62.9             |        |       |                                   |       |                    |      |                      |      |         | SVL         |
| Blue Spring DUP | RESE-1002010 | 19-Aug-08 | 50.1 | 10   | 23   | 1.96   | 9.60 |        | 236.7 | 12.1            |                  | 0.160  | 0.186 |                                   | 280   |                    |      |                      |      |         | SVL         |
| Blue Spring DUP | RESE-1002010 | 19-Aug-08 |      |      |      |        |      |        |       |                 |                  |        |       | 0.70                              |       |                    |      |                      |      |         | TestAmerica |
| Blue Spring     | RESE-1002043 | 13-Nov-08 |      |      |      |        |      |        |       |                 |                  |        |       |                                   |       | 16.1               | 7.25 | 591                  |      |         |             |
| Blue Spring     | RESE-1002043 | 13-Nov-08 |      |      |      |        |      |        |       |                 | 67.7             |        |       |                                   |       |                    |      |                      |      |         | SVL         |
| Blue Spring     | RESE-1002043 | 13-Nov-08 |      |      |      |        | 11.2 |        | 383.1 | 2.66            |                  | <0.100 | 0.479 |                                   | 380   |                    |      |                      |      |         | SVL         |
| Blue Spring     | RESE-1002043 | 13-Nov-08 |      |      |      |        |      |        |       |                 |                  |        |       | <0.30                             |       |                    |      |                      |      |         | TestAmerica |
| Blue Spring     | RESE-1002043 | 13-Nov-08 | 70.7 | 18.0 | 32.3 | 3.25   |      |        |       |                 |                  |        |       |                                   |       |                    |      |                      |      |         | SVL         |
| Blue Spring     | RESE-1002052 | 12-Feb-09 |      |      |      |        |      |        |       |                 |                  |        |       |                                   |       | 14.0               | 7.91 | 343                  |      |         |             |
| Blue Spring     | RESE-1002052 | 12-Feb-09 |      |      |      |        |      |        |       |                 | 38.8             |        |       |                                   |       |                    |      |                      |      |         | SVL         |
| Blue Spring     | RESE-1002052 | 12-Feb-09 |      |      |      |        | 8.95 |        | 218.4 | 24.1            |                  | 0.126  | 0.198 |                                   | 242   |                    |      |                      |      |         | SVL         |
| Blue Spring     | RESE-1002052 | 12-Feb-09 | 43.5 | 8.83 | 17.0 | 1.55   |      |        |       |                 |                  |        |       |                                   |       |                    |      |                      |      |         | SVL         |
| Blue Spring     | RESE-1002088 | 13-May-09 |      |      |      |        |      |        |       |                 |                  |        |       |                                   |       | 24.4               | 7.76 | 404                  |      |         |             |
| Blue Spring     | RESE-1002088 | 13-May-09 |      |      |      |        |      |        |       |                 | 63.2             |        |       |                                   |       |                    |      |                      |      |         | SVL         |
| Blue Spring     | RESE-1002088 | 13-May-09 |      |      |      |        | 11.4 |        | 244   | 13.4            |                  | <0.100 | 0.282 |                                   | 308 j |                    |      |                      |      |         | SVL         |
| Blue Spring     | RESE-1002088 | 13-May-09 | 53.5 | 10.8 | 23.9 | 2.02   |      |        |       |                 |                  |        |       |                                   |       |                    |      |                      |      |         | SVL         |
| Blue Spring     | RESE-1002118 | 12-Feb-10 |      |      |      |        |      |        |       |                 |                  |        |       |                                   |       | 14                 | 7.95 | 517                  |      |         |             |
| Blue Spring     | RESE-1002118 | 12-Feb-10 |      |      |      |        |      |        |       |                 | 46.8             |        |       |                                   |       |                    |      |                      |      |         | SVL         |
| Blue Spring     | RESE-1002118 | 12-Feb-10 |      |      |      |        | 20.3 |        | 250.1 | 52.5            |                  | <0.100 | 0.164 |                                   | 338   |                    |      |                      |      |         | SVL         |
| Blue Spring     | RESE-1002118 | 12-Feb-10 | 64.8 | 15.1 | 28.0 | 1.96   |      |        |       |                 |                  |        |       |                                   |       |                    |      |                      |      |         | SVL         |



| SAMPLE LOCATION  | SAMPLE IDENTIFIER/ | SAMPLE    |      |      |      |      | CON  | MON      | CONSTIT | UENTS           | a (mg/L) | b      |       |                                          |     |                           | RO   | UTINE PARA                 | METERS |               | ANALYTICAL  |
|------------------|--------------------|-----------|------|------|------|------|------|----------|---------|-----------------|----------|--------|-------|------------------------------------------|-----|---------------------------|------|----------------------------|--------|---------------|-------------|
|                  | DESCRIPTION        | DATE      |      |      |      |      |      |          |         |                 |          |        |       |                                          |     |                           | FIEL | D                          | LABO   | RATORY        | LABORATORY  |
|                  |                    |           | Са   | Mg   | Na   | К    | Cl   | CO₃      | HCO₃    | SO <sub>4</sub> | SiO₂     | Br     | F     | NO <sub>3</sub> + NO <sub>2</sub> (as N) | TDS | TEMP<br>(°C) <sup>c</sup> | рН   | SC<br>(μS/cm) <sup>d</sup> | рН     | SC<br>(μS/cm) |             |
|                  |                    |           |      |      |      |      | Sı   | ırface \ | Water   |                 |          |        |       |                                          |     |                           |      |                            |        |               |             |
| Blue Spring      | RESE-1003165       | 17-Jul-10 |      |      |      |      |      |          |         |                 |          |        |       |                                          |     | 25.3                      | 7.96 | 380                        |        |               |             |
| Blue Spring      | RESE-1003165       | 17-Jul-10 | 45   | 9.4  | 22   | <2.0 |      |          |         |                 | 69       |        |       |                                          |     |                           |      |                            |        |               | TestAmerica |
| Blue Spring      | RESE-1003165       | 17-Jul-10 | 46   | 9.6  | 22   | <2.0 | 8.6  |          | 207.4   | 11              | 70       | < 0.50 | 0.55  | 0.43                                     | 270 |                           |      |                            | 8.00   | 380           | TestAmerica |
| Blue Spring      | RESE-1002153       | 08-Nov-10 |      |      |      |      |      |          |         |                 |          |        |       |                                          |     | 19.6                      | 7.46 | 345                        |        |               |             |
| Blue Spring      | RESE-1002153       | 08-Nov-10 |      |      |      |      |      |          |         |                 | 63.3     |        |       |                                          |     |                           |      |                            |        |               | SVL         |
| Blue Spring      | RESE-1002153       | 08-Nov-10 |      |      |      |      | 10.2 |          | 244     | 11.3            |          | 0.143  | 0.288 |                                          | 276 |                           |      |                            |        |               | SVL         |
| Blue Spring      | RESE-1002153       | 08-Nov-10 | 54.5 | 11.1 | 23.5 | 2.53 |      |          |         |                 |          |        |       |                                          |     |                           |      |                            |        |               | SVL         |
| Bored Spring     | RESE-1001088       | 26-May-04 |      |      |      |      |      |          |         |                 |          |        |       |                                          |     | 26.7                      | 10.1 | 446                        |        |               |             |
| Bored Spring     | RESE-1001088       | 26-May-04 |      |      |      |      |      |          |         |                 |          |        |       | <0.20                                    |     |                           |      |                            |        |               | Del Mar     |
| Bored Spring     | RESE-1001088       | 26-May-04 | 15.8 | 23.4 | 53.0 | 11.2 | 20.8 | 93.6     | 92.7    | 22.7            | 10.3     | 0.32   | 0.55  |                                          | 332 |                           |      |                            |        |               | SVL         |
| Bored Spring DUP | RESE-1001164       | 03-Nov-04 |      |      |      |      |      |          |         |                 |          |        |       | <0.20                                    |     |                           |      |                            |        |               | Del Mar     |
| Bored Spring DUP | RESE-1001164       | 03-Nov-04 | 42.3 | 33.7 | 25.8 | 5.4  | 9.77 |          | 366     | 35.0            | 41.4     | 0.14   | 0.30  |                                          | 334 |                           |      |                            |        |               | SVL         |
| Bored Spring     | RESE-1001163       | 03-Nov-04 |      |      |      |      |      |          |         |                 |          |        |       |                                          |     | 11.7                      | 7.9  | 540                        |        |               |             |
| Bored Spring     | RESE-1001163       | 03-Nov-04 |      |      |      |      |      |          |         |                 |          |        |       | <0.20                                    |     |                           |      |                            |        |               | Del Mar     |
| Bored Spring     | RESE-1001163       | 03-Nov-04 | 42.5 | 33.8 | 25.9 | 5.4  | 9.95 |          | 372.1   | 34.2            | 41.0     | 0.15   | 0.29  |                                          | 354 |                           |      |                            |        |               | SVL         |
| Bored Spring     | RESE-1001188       | 09-Feb-05 |      |      |      |      |      |          |         |                 |          |        |       |                                          |     | 18.5                      | 7.7  | 598                        |        |               |             |
| Bored Spring     | RESE-1001188       | 09-Feb-05 |      |      |      |      |      |          |         |                 |          |        |       | <0.20                                    |     |                           |      |                            |        |               | Del Mar     |
| Bored Spring     | RESE-1001188       | 09-Feb-05 | 43.6 | 35.1 | 28.3 | 3.89 | 9.37 |          | 328.2   | 44.7            | 37.2     | 0.163  | 0.405 |                                          | 353 |                           |      |                            |        |               | SVL         |
| Bored Spring     | RESE-1001204       | 03-May-05 |      |      |      |      |      |          |         |                 |          |        |       |                                          |     | 23.4                      | 7.6  | 523                        |        |               |             |
| Bored Spring     | RESE-1001204       | 03-May-05 |      |      |      |      |      |          |         |                 |          |        |       | 0.25                                     |     |                           |      |                            |        |               | Del Mar     |
| Bored Spring     | RESE-1001204       | 03-May-05 | 43.6 | 34.5 | 22.7 | 4.10 | 11.6 |          | 300.1   | 44.1            | 36.4     | 0.175  | 0.318 |                                          | 330 |                           |      |                            |        |               | SVL         |
| Bored Spring     | RESE-1001221       | 03-Aug-05 |      |      |      |      |      |          |         |                 |          |        |       |                                          |     | 24.6                      | 7.1  | 609                        |        |               |             |
| Bored Spring     | RESE-1001221       | 03-Aug-05 |      |      |      |      |      |          |         |                 |          |        |       | 0.21                                     |     |                           |      |                            |        |               | Del Mar     |
| Bored Spring     | RESE-1001221       | 03-Aug-05 | 52.0 | 36.9 | 25.5 | 5.54 | 16.2 |          | 323.3   | 51.4            | 39.2     | 0.247  | 0.304 |                                          | 383 |                           |      |                            |        |               | SVL         |
| Bored Spring     | RESE-1002044       | 13-Nov-08 |      |      |      |      |      |          |         |                 |          |        |       |                                          |     | 18.0                      | 7.88 | 642                        |        |               |             |
| Bored Spring     | RESE-1002044       | 13-Nov-08 |      |      |      |      |      |          |         |                 | 39.6     |        |       |                                          |     |                           |      |                            |        |               | SVL         |
| Bored Spring     | RESE-1002044       | 13-Nov-08 |      |      |      |      | 25.3 |          | 307.4   | 57.3            |          | 0.233  | 0.386 |                                          | 410 |                           |      |                            |        |               | SVL         |
| Bored Spring     | RESE-1002044       | 13-Nov-08 |      |      |      |      |      |          |         |                 |          |        |       | <0.30                                    |     |                           |      |                            |        |               | TestAmerica |
| Bored Spring     | RESE-1002044       | 13-Nov-08 | 50.8 | 40.1 | 26.2 | 7.55 |      |          |         |                 |          |        |       |                                          |     |                           |      |                            |        |               | SVL         |
| Bored Spring     | RESE-1002051       | 12-Feb-09 |      |      |      |      |      |          |         |                 |          |        |       |                                          |     | 11.5                      | 7.5  | 592                        |        |               |             |
| Bored Spring     | RESE-1002051       | 12-Feb-09 |      |      |      |      |      |          |         |                 | 35.7     |        |       |                                          |     |                           |      |                            |        |               | SVL         |
| Bored Spring     | RESE-1002051       | 12-Feb-09 |      |      |      |      | 24.8 |          | 346.5   | 58.3            |          | 0.327  | 0.262 |                                          | 385 |                           |      |                            |        |               | SVL         |
| Bored Spring     | RESE-1002051       | 12-Feb-09 | 46.7 | 38.2 | 23.6 | 4.76 |      |          |         |                 |          |        |       |                                          |     |                           |      |                            |        |               | SVL         |
| Bored Spring     | RESE-1002089       | 13-May-09 |      |      |      |      |      |          |         |                 |          |        |       |                                          |     | 31.6                      | 9.62 | 465                        |        |               |             |
| Bored Spring     | RESE-1002089       | 13-May-09 |      |      |      |      |      |          |         |                 | 35       |        |       |                                          |     |                           |      |                            |        |               | SVL         |
| Bored Spring     | RESE-1002089       | 13-May-09 |      |      |      |      | 31.1 | 42.5     | 103.7   | 62.3            |          | 0.309  | 0.337 |                                          | 312 |                           |      |                            |        |               | SVL         |
| Bored Spring     | RESE-1002089       | 13-May-09 | 23.7 | 36.6 | 29.1 | 6.14 |      |          |         |                 |          |        |       |                                          |     |                           |      |                            |        |               | SVL         |



| SAMPLE LOCATION  | SAMPLE IDENTIFIER/ | SAMPLE     |      |      |      |      | COI  | MMON   | CONSTI | TUENTS          | a (mg/L)         | ) <sup>b</sup> |        |                                   |      |                   | RO   | UTINE PARA           | METERS |         | ANALYTICAL |
|------------------|--------------------|------------|------|------|------|------|------|--------|--------|-----------------|------------------|----------------|--------|-----------------------------------|------|-------------------|------|----------------------|--------|---------|------------|
|                  | DESCRIPTION        | DATE       |      |      |      |      |      |        |        |                 |                  |                |        |                                   |      |                   | FIEL | D                    | LABO   | RATORY  | LABORATORY |
|                  |                    |            | Ca   | Mg   | Na   | K    | Cl   | CO₃    | HCO₃   | SO <sub>4</sub> | SiO <sub>2</sub> | Br             | F      | NO <sub>3</sub> + NO <sub>2</sub> | TDS  | TEMP              | рН   | SC                   | рН     | SC      |            |
|                  |                    |            |      |      |      |      |      |        |        |                 |                  |                |        | (as N)                            |      | (°C) <sup>c</sup> |      | (µS/cm) <sup>d</sup> |        | (µS/cm) |            |
|                  |                    |            |      |      |      |      | S    | urface | Water  |                 |                  |                |        |                                   |      |                   |      |                      |        |         |            |
| Bored Spring     | RESE-1002119       | 12-Feb-10  |      |      |      |      |      |        |        |                 |                  |                |        |                                   |      | 15.6              | 8.18 | 609                  |        |         |            |
| Bored Spring     | RESE-1002119       | 12-Feb-10  |      |      |      |      |      |        |        |                 | 36.7             |                |        |                                   |      |                   |      |                      |        |         | SVL        |
| Bored Spring     | RESE-1002119       | 12-Feb-10  |      |      |      |      | 27.3 |        | 275.7  | 69.5            |                  | 0.187          | <0.100 |                                   | 353  |                   |      |                      |        |         | SVL        |
| Bored Spring     | RESE-1002119       | 12-Feb-10  | 45.0 | 38.9 | 25.0 | 4.53 |      |        |        |                 |                  |                |        |                                   |      |                   |      |                      |        |         | SVL        |
| Bored Spring     | RESE-1002157       | 09-Nov-10  |      |      |      |      |      |        |        |                 |                  |                |        |                                   |      | 16.0              | 7.44 | 580                  |        |         |            |
| Bored Spring     | RESE-1002157       | 09-Nov-10  |      |      |      |      |      |        |        |                 | 32.9             |                |        |                                   |      |                   |      |                      |        |         | SVL        |
| Bored Spring     | RESE-1002157       | 09-Nov-10  |      |      |      |      | 37.9 |        | 407.5  | 38.7            |                  | 0.378          | 0.284  |                                   | 485  |                   |      |                      |        |         | SVL        |
| Bored Spring     | RESE-1002157       | 09-Nov-10  | 83.1 | 37.1 | 23.6 | 9.76 |      |        |        |                 |                  |                |        |                                   |      |                   |      |                      |        |         | SVL        |
| Boulder Hole     | RESE-1001008       | 22-May-03  |      |      |      |      |      |        |        |                 |                  |                |        |                                   |      | 19.8              | 7.8  | 441                  |        |         |            |
| Boulder Hole     | RESE-1001008       | 22-May-03  |      |      |      |      |      |        |        |                 |                  | 0.24           | 0.13   |                                   |      |                   |      |                      |        |         | SVL        |
| Boulder Hole     | RESE-1001008       | 22-May-03  |      |      |      |      |      |        |        |                 |                  |                |        | <0.10                             |      |                   |      |                      |        |         | Del Mar    |
| Boulder Hole     | RESE-1001008       | 22-May-03  | 74.8 | 12.0 | 16.0 | 2.5  | 13.4 |        | 292.8  | 20.7            | 41.5             |                |        |                                   | 333  |                   |      |                      |        |         | SVL        |
| Boulder Hole     | RESE-1001023       | 04-Sep-03  |      |      |      |      |      |        |        |                 |                  |                |        |                                   |      | 24.2              | 7.5  | 412                  |        |         |            |
| Boulder Hole     | RESE-1001023       | 04-Sep-03  |      |      |      |      |      |        |        |                 |                  | 0.14           | 0.12   |                                   |      |                   |      |                      |        |         | SVL        |
| Boulder Hole     | RESE-1001023       | 04-Sep-03  |      |      |      |      |      |        |        |                 |                  |                |        | 0.16                              |      |                   |      |                      |        |         | Del Mar    |
| Boulder Hole     | RESE-1001023       | 04-Sep-03  | 56.1 | 9.40 | 12.3 | 4.3  | 8.11 | _      | 212.3  | 23.0            | 33.2             |                |        |                                   | 214  |                   |      |                      |        |         | SVL        |
| Boulder Hole     | RESE-1001028       | 03-Nov-03  |      |      |      |      |      |        |        |                 |                  |                |        |                                   |      | 15.8              | 7.5  | 747                  |        |         | -          |
| Boulder Hole     | RESE-1001028       | 03-Nov-03  |      |      |      |      |      |        |        |                 |                  |                |        | <0.10                             |      |                   |      |                      |        |         | Del Mar    |
| Boulder Hole     | RESE-1001028       | 03-Nov-03  | 112  | 17.7 | 23.2 | 3.3  | 18.5 | _      | 398.9  | 62.3            | 45.2             | 0.35           | 0.14   |                                   | 473  |                   |      |                      |        |         | SVL        |
| Boulder Hole DUP | RESE-1001055       | 09-Feb-04  |      |      |      |      |      |        |        |                 |                  |                |        | 0.24                              |      |                   |      |                      |        |         | Del Mar    |
| Boulder Hole DUP | RESE-1001055       | 09-Feb-04  | 57.3 | 9.49 | 15.7 | 1.86 | 8.30 |        | 218.4  | 32.1            |                  | 0.152          | 0.161  |                                   | 281  |                   |      |                      |        |         | SVL        |
| Boulder Hole     | RESE-1001054       | 09-Feb-04  |      |      |      |      |      |        |        |                 |                  |                |        |                                   |      | 14.5              | 7.6  | 417.1                |        |         |            |
| Boulder Hole     | RESE-1001054       | 09-Feb-04  |      |      |      |      |      |        |        |                 |                  |                |        | 0.24                              |      |                   |      |                      |        |         | Del Mar    |
| Boulder Hole     | RESE-1001054       | 09-Feb-04  | 55.9 | 9.31 | 15.4 | 1.82 | 8.73 |        | 217.2  | 33.6            |                  | 0.158          | 0.156  |                                   | 276  |                   |      |                      |        |         | SVL        |
| Boulder Hole     | RESE-1001083       | 24-May-04  |      |      |      |      |      |        |        |                 |                  |                |        |                                   |      | 17.6              | 7.6  | 502                  |        |         |            |
| Boulder Hole     | RESE-1001083       | 24-May-04  |      |      |      |      |      |        |        |                 |                  |                |        | <0.20                             |      |                   |      |                      |        |         | Del Mar    |
| Boulder Hole     | RESE-1001083       | 24-May-04  | 74.8 | 11.5 | 15.2 | 2.3  | 11.0 |        | 309.9  | 15.9            | 40.0             | 0.28           | 0.15   |                                   | 320  |                   |      |                      |        |         | SVL        |
| Boulder Hole DUP | RESE-1001095       | 03-Aug-04  |      |      |      |      |      |        |        |                 |                  |                |        | <0.20                             |      |                   |      |                      |        | _       | Del Mar    |
| Boulder Hole DUP | RESE-1001095       | 03-Aug-04  | 78.0 | 13.6 | 19.0 | 6.7  | 15.0 |        | 340.4  | 19.6            | 42.7             | 0.24           | 0.21   |                                   | 361  |                   |      |                      |        |         | SVL        |
| Boulder Hole     | RESE-1001094       | 03-Aug-04  |      |      |      |      |      |        |        |                 |                  |                |        |                                   |      | 24.1              | 7.7  | 536                  |        |         |            |
| Boulder Hole     | RESE-1001094       | 03-Aug-04  |      |      |      |      |      |        |        |                 |                  |                |        | <0.20                             |      |                   |      |                      |        |         | Del Mar    |
| Boulder Hole     | RESE-1001094       | 03-Aug-04  | 78.0 | 13.6 | 19.2 | 6.8  | 14.8 |        | 339.2  | 19.5            | 42.7             | 0.22           | 0.21   |                                   | 349  |                   |      |                      |        |         | SVL        |
| Boulder Hole     | RESE-1001165       | 03-Nov-04  |      |      |      |      |      |        |        |                 |                  |                |        |                                   |      | 13.3              | 7.7  | 599                  |        |         |            |
| Boulder Hole     | RESE-1001165       | 03-Nov-04  |      |      |      |      |      |        |        |                 |                  |                |        | 1.3                               |      |                   |      |                      |        |         | Del Mar    |
| Boulder Hole     | RESE-1001165       | 03-Nov-04  | 91.7 | 14.6 | 18.2 | 5.2  | 12.7 |        | 464.8  | 64.5            | 40.2             | 0.18           | 0.12   |                                   | 408  |                   |      |                      |        |         | SVL        |
| Boulder Hole     | RESE-1001181       | 08-Feb-05  |      |      |      |      |      |        |        |                 |                  |                |        |                                   |      | 9.7               | 7.9  | 200                  |        |         |            |
| Boulder Hole     | RESE-1001181       | 08-Feb-05  |      |      |      |      |      |        |        |                 |                  |                |        | 0.94                              |      |                   |      |                      |        |         | Del Mar    |
| Boulder Hole     | RESE-1001181       | 08-Feb-05  | 30.0 | 5.10 | 7.06 | 1.51 | 6.36 |        | 91.3   | 22.0            | 28.4             | 0.112          | 0.135  |                                   | 171  |                   |      |                      |        |         | SVL        |
| Dodice Hole      | NEGE-1001101       | 00-1 60-03 | 30.0 | 5.10 | 7.00 | 1.01 | 0.30 |        | 31.3   | 22.0            | 20.4             | 0.112          | 0.133  |                                   | 17.1 |                   |      |                      |        |         | OVL        |



| SAMPLE LOCATION | SAMPLE IDENTIFIER/ | SAMPLE    |      |      |      |      | CO   | MMON   | CONSTIT | UENTS           | a (mg/L)         | b      |        |                                   |     |                   | RO    | UTINE PARA           | METERS |         | ANALYTICAL  |
|-----------------|--------------------|-----------|------|------|------|------|------|--------|---------|-----------------|------------------|--------|--------|-----------------------------------|-----|-------------------|-------|----------------------|--------|---------|-------------|
|                 | DESCRIPTION        | DATE      |      |      |      |      |      |        |         |                 |                  |        |        |                                   |     |                   | FIELI | 0                    | LABOR  | RATORY  | LABORATORY  |
|                 |                    |           | Ca   | Mg   | Na   | К    | Cl   | CO₃    | HCO₃    | SO <sub>4</sub> | SiO <sub>2</sub> | Br     | F      | NO <sub>3</sub> + NO <sub>2</sub> | TDS | TEMP              | рН    | SC                   | рН     | SC      |             |
|                 |                    |           |      |      |      |      |      |        |         |                 |                  |        |        | (as N)                            |     | (°C) <sup>c</sup> |       | (μS/cm) <sup>d</sup> |        | (μS/cm) |             |
|                 |                    |           |      |      |      |      | S    | urface | Water   |                 |                  |        |        |                                   |     |                   |       |                      |        |         |             |
| Boulder Hole    | RESE-1001205       | 04-May-05 |      |      |      |      |      |        |         |                 |                  |        |        |                                   |     | 15.9              | 7.3   | 415.4                |        |         |             |
| Boulder Hole    | RESE-1001205       | 04-May-05 |      |      |      |      |      |        |         |                 |                  |        |        | <0.20                             |     |                   |       |                      |        |         | Del Mar     |
| Boulder Hole    | RESE-1001205       | 04-May-05 | 66.2 | 10.3 | 13.1 | 2.41 | 11.2 |        | 237.9   | 29.0            | 36.5             | 0.155  | 0.105  |                                   | 243 |                   |       |                      |        |         | SVL         |
| Boulder Hole    | RESE-1002006       | 06-Aug-08 |      |      |      |      |      |        |         |                 |                  |        |        |                                   |     | 27.0              | 7.68  | 578                  |        |         |             |
| Boulder Hole    | RESE-1002006       | 06-Aug-08 | 81.6 | 13.5 | 17.6 | 3.30 | 11.3 |        |         | 16.2            | 51.2             |        |        |                                   |     |                   |       |                      |        |         | SVL         |
| Boulder Hole    | RESE-1002006       | 06-Aug-08 |      |      |      |      | 12.4 |        | 361.1   | 15.0            |                  | 0.170  | 0.278  |                                   | 390 |                   |       |                      |        |         | SVL         |
| Boulder Hole    | RESE-1002006       | 06-Aug-08 |      |      |      |      |      |        |         |                 |                  |        |        |                                   |     |                   |       |                      |        |         | TestAmerica |
| Boulder Hole    | RESE-1002006       | 06-Aug-08 | 79.3 | 12.8 | 17.5 | 3.10 |      |        |         |                 |                  |        |        |                                   |     |                   |       |                      |        |         | SVL         |
| Boulder Hole    | RESE-1002031       | 06-Nov-08 |      |      |      |      |      |        |         |                 |                  |        |        |                                   |     | 13.2              | 7.53  | 672                  |        |         |             |
| Boulder Hole    | RESE-1002031       | 06-Nov-08 |      |      |      |      |      |        |         |                 | 34.2             |        |        |                                   |     |                   |       |                      |        |         | SVL         |
| Boulder Hole    | RESE-1002031       | 06-Nov-08 |      |      |      |      | 17.5 |        | 396.5   | 28.3            |                  | 0.286  | 0.198  |                                   | 400 |                   |       |                      |        |         | SVL         |
| Boulder Hole    | RESE-1002031       | 06-Nov-08 |      |      |      |      |      |        |         |                 |                  |        |        | <0.30                             |     |                   |       |                      |        |         | TestAmerica |
| Boulder Hole    | RESE-1002031       | 06-Nov-08 | 96.2 | 17.1 | 20.0 | 5.38 |      |        |         |                 |                  |        |        |                                   |     |                   |       |                      |        |         | SVL         |
| Boulder Hole    | RESE-1002060       | 19-Feb-09 |      |      |      |      |      |        |         |                 |                  |        |        |                                   |     | 10.6              | 8.13  | 189                  |        |         |             |
| Boulder Hole    | RESE-1002060       | 19-Feb-09 |      |      |      |      |      |        |         |                 | 23.7             |        |        |                                   |     |                   |       |                      |        |         | SVL         |
| Boulder Hole    | RESE-1002060       | 19-Feb-09 |      |      |      |      | 5.73 |        | 69.4    | 18.7            |                  | <0.100 | <0.100 |                                   | 156 |                   |       |                      |        |         | SVL         |
| Boulder Hole    | RESE-1002060       | 19-Feb-09 | 21.5 | 3.93 | 5.54 | 1.55 |      |        |         |                 |                  |        |        |                                   |     |                   |       |                      |        |         | SVL         |
| Boulder Hole    | RESE-1002082       | 07-May-09 |      |      |      |      |      |        |         |                 |                  |        |        |                                   |     | 18.0              | 7.57  | 447                  |        |         |             |
| Boulder Hole    | RESE-1002082       | 07-May-09 |      |      |      |      |      |        |         |                 | 34.0             |        |        |                                   |     |                   |       |                      |        |         | SVL         |
| Boulder Hole    | RESE-1002082       | 07-May-09 |      |      |      |      | 13.3 |        | 300.1   | 12.0            |                  | 0.196  | 0.115  |                                   | 291 |                   |       |                      |        |         | SVL         |
| Boulder Hole    | RESE-1002082       | 07-May-09 | 75.7 | 12.4 | 14.8 | 2.49 |      |        |         | -               |                  |        |        |                                   |     |                   |       |                      |        |         | SVL         |
| Boulder Hole    | RESE-1002120       | 13-Feb-10 |      |      |      |      |      |        |         |                 |                  |        |        |                                   |     | 10.4              | 7.85  | 228                  |        |         |             |
| Boulder Hole    | RESE-1002120       | 13-Feb-10 |      |      |      |      |      |        |         |                 | 26.4             |        |        |                                   |     |                   |       |                      |        |         | SVL         |
| Boulder Hole    | RESE-1002120       | 13-Feb-10 |      |      |      |      | 6.88 | -      | 90.6    | 22.8            |                  | <0.100 | <0.100 |                                   | 120 |                   |       |                      |        |         | SVL         |
| Boulder Hole    | RESE-1002120       | 13-Feb-10 | 30.1 | 5.22 | 7.02 | 1.54 |      |        |         |                 |                  |        |        |                                   |     |                   |       |                      |        |         | SVL         |
| Boulder Hole    | RESE-1002140       | 01-Nov-10 |      |      |      |      |      |        |         |                 |                  |        |        |                                   |     | 17.5              | 7.68  | 735                  |        |         |             |
| Boulder Hole    | RESE-1002140       | 01-Nov-10 |      |      |      |      |      |        |         |                 | 38.1             |        |        |                                   |     |                   |       |                      |        |         | SVL         |
| Boulder Hole    | RESE-1002140       | 01-Nov-10 |      |      |      |      | 17.0 | 4.6    | 379.4   | 58.6            |                  | 0.219  | <0.100 |                                   | 442 |                   |       |                      |        |         | SVL         |
| Boulder Hole    | RESE-1002140       | 01-Nov-10 | 107  | 17.9 | 20.2 | 6.06 |      |        |         | -               |                  |        |        |                                   |     |                   |       |                      |        |         | SVL         |
| Boulder Hole    | RESE-1002167       | 16-May-11 |      |      |      |      |      |        |         |                 |                  |        |        |                                   |     | 17.6              | 7.72  | 741                  |        |         |             |
| Boulder Hole    | RESE-1002167       | 16-May-11 |      |      |      |      |      |        |         |                 | 37.6             |        |        |                                   |     |                   |       |                      |        |         | SVL         |
| Boulder Hole    | RESE-1002167       | 16-May-11 |      |      |      |      | 18.8 |        | 406.3   | 8.19            |                  | 0.21   | <0.10  |                                   | 390 |                   |       |                      |        |         | SVL         |
| Boulder Hole    | RESE-1002167       | 16-May-11 | 92.8 | 18.2 | 25.9 | 4.07 |      |        |         |                 |                  |        | -      |                                   |     |                   |       |                      |        |         | SVL         |
| Boulder Hole SP | RESE-1002167       | 16-May-11 | 89   | 18   | 27   | 4.3  |      |        |         |                 | 41               |        |        |                                   |     |                   |       |                      |        |         | TestAmerica |
| Boulder Hole SP | RESE-1002167       | 16-May-11 | 91   | 18   | 28   | 4.2  | 19   |        | 390.4   | 8.3             | 38               | <0.50  | <0.40  | <2.0                              | 420 |                   |       |                      | 8.00   | 650     | TestAmerica |
| DC 10.9 C       | RESE-1001004       | 16-May-03 |      |      |      |      |      |        |         |                 |                  |        |        |                                   |     | 18.2              | 6.6   | 79.5                 |        |         |             |
| DC 10.9 C       | RESE-1001004       | 16-May-03 |      |      |      |      |      |        |         |                 |                  | <0.10  | <0.10  |                                   |     |                   |       |                      |        |         | SVL         |
| DC 10.9 C       | RESE-1001004       | 16-May-03 |      |      |      |      |      |        |         |                 |                  |        |        | <0.10                             |     |                   |       |                      |        |         | Del Mar     |
| DC 10.9 C       | RESE-1001004       | 16-May-03 | 7.23 | 2.02 | 5.95 | 1.8  | 5.59 |        | 17.7    | 17.8            | 32.8             |        |        |                                   | 110 |                   |       |                      |        |         | SVL         |



| SAMPLE LOCATION | SAMPLE IDENTIFIER/ | SAMPLE    |      |      |      |      | CO   | MMON   | CONSTI | TUENTS          | a (mg/L)         | ) <sup>b</sup> |        |                                   |      |                   | RO    | UTINE PARA           | METERS |         | ANALYTICAL |
|-----------------|--------------------|-----------|------|------|------|------|------|--------|--------|-----------------|------------------|----------------|--------|-----------------------------------|------|-------------------|-------|----------------------|--------|---------|------------|
|                 | DESCRIPTION        | DATE      |      |      |      |      |      |        |        |                 |                  |                |        |                                   |      |                   | FIELI | D                    | LABOR  | RATORY  | LABORATORY |
|                 |                    |           | Ca   | Mg   | Na   | K    | CI   | CO₃    | HCO₃   | SO <sub>4</sub> | SiO <sub>2</sub> | Br             | F      | NO <sub>3</sub> + NO <sub>2</sub> | TDS  | TEMP              | рН    | SC                   | рН     | SC      |            |
|                 |                    |           |      |      |      |      |      |        |        |                 |                  |                |        | (as N)                            |      | (°C) <sup>c</sup> |       | (μS/cm) <sup>d</sup> |        | (µS/cm) |            |
|                 |                    |           |      |      |      |      | S    | urface | Water  |                 |                  | •              |        |                                   |      |                   |       |                      |        |         |            |
| DC 10.9 C       | RESE-1001020       | 27-Aug-03 |      |      |      |      |      |        |        |                 |                  |                |        |                                   |      | 23.2              | 5.9   | 216                  |        |         |            |
| DC 10.9 C       | RESE-1001020       | 27-Aug-03 |      |      |      |      |      |        |        |                 |                  | 0.21           | <0.10  |                                   |      |                   |       |                      |        |         | SVL        |
| DC 10.9 C       | RESE-1001020       | 27-Aug-03 |      |      |      |      |      |        |        |                 |                  |                |        | 0.79                              |      |                   |       |                      |        |         | Del Mar    |
| DC 10.9 C       | RESE-1001020       | 27-Aug-03 | 17.6 | 4.58 | 10.0 | 2.8  | 10.9 |        | 14.4   | 52.6            | 53.6             |                |        |                                   | 195  |                   |       |                      |        |         | SVL        |
| DC 10.9 C       | RESE-1001036       | 05-Nov-03 |      |      |      |      |      |        |        |                 |                  |                |        |                                   |      | 11.7              | 6.6   | 81.6                 |        |         |            |
| DC 10.9 C       | RESE-1001036       | 05-Nov-03 |      |      |      |      |      |        |        |                 |                  |                |        | <0.10                             |      |                   |       |                      |        |         | Del Mar    |
| DC 10.9 C       | RESE-1001036       | 05-Nov-03 | 6.73 | 1.83 | 5.81 | 1.6  | 5.16 |        | 34.3   | 3.58            | 34.7             | <0.10          | <0.10  |                                   | 60   |                   |       |                      |        |         | SVL        |
| DC 10.9 C       | RESE-1001060       | 11-Feb-04 |      |      |      |      |      |        |        |                 |                  |                |        |                                   |      | 11.8              | 6.7   | 93.4                 |        |         |            |
| DC 10.9 C       | RESE-1001060       | 11-Feb-04 |      |      |      |      |      |        |        |                 |                  |                |        | <0.10                             |      |                   |       |                      |        |         | Del Mar    |
| DC 10.9 C       | RESE-1001060       | 11-Feb-04 | 8.26 | 2.3  | 5.56 | 1.48 | 4.44 |        | 12.6   | 24.4            |                  | <0.10          | <0.10  |                                   | 113  |                   |       |                      |        |         | SVL        |
| DC 10.9 C       | RESE-1001091       | 27-May-04 |      |      |      |      |      |        |        |                 |                  |                |        |                                   |      | 17.9              | 6.75  | 84.1                 |        |         |            |
| DC 10.9 C       | RESE-1001091       | 27-May-04 |      |      |      |      |      |        |        |                 |                  |                |        | <0.20                             |      |                   |       |                      |        |         | Del Mar    |
| DC 10.9 C       | RESE-1001091       | 27-May-04 | 6.44 | 1.93 | 6.03 | 1.7  | 6.08 |        | 32.0   | 6.39            | 31.8             | 0.11           | <0.10  |                                   | 95   |                   |       |                      |        |         | SVL        |
| DC 10.9 C       | RESE-1001099       | 11-Aug-04 |      |      |      |      |      |        |        |                 |                  |                |        |                                   |      | 23.0              | 6.6   | 123.4                |        |         |            |
| DC 10.9 C       | RESE-1001099       | 11-Aug-04 |      |      |      |      |      |        |        |                 |                  |                |        | <0.20                             |      |                   |       |                      |        |         | Del Mar    |
| DC 10.9 C       | RESE-1001099       | 11-Aug-04 | 8.70 | 2.38 | 7.86 | 2.0  | 11.2 |        | 48.1   | 2.49            | 37.1             | 0.16           | <0.10  |                                   | 91   |                   |       |                      |        |         | SVL        |
| DC 10.9 C       | RESE-1001169       | 05-Nov-04 |      |      |      |      |      |        |        |                 |                  |                |        |                                   |      | 10.3              | 7.6   | 145.6                |        |         |            |
| DC 10.9 C       | RESE-1001169       | 05-Nov-04 |      |      |      |      |      |        |        |                 |                  |                |        | <0.20                             |      |                   |       |                      |        |         | Del Mar    |
| DC 10.9 C       | RESE-1001169       | 05-Nov-04 | 13.1 | 3.82 | 9.18 | 2.1  | 6.75 |        | 39.2   | 31.0            | 34.0             | <0.10          | <0.10  |                                   | 117  |                   |       |                      |        |         | SVL        |
| DC 10.9 C       | RESE-1001189       | 15-Feb-05 |      |      |      |      |      |        |        |                 |                  |                |        |                                   |      | 9.3               | 7.5   | 58                   |        |         |            |
| DC 10.9 C       | RESE-1001189       | 15-Feb-05 |      |      |      |      |      |        |        |                 |                  |                |        | 0.29                              |      |                   |       |                      |        |         | Del Mar    |
| DC 10.9 C       | RESE-1001189       | 15-Feb-05 | 5.47 | 1.49 | 4.02 | 1.66 | 2.87 |        | 10.58  | 10.5            | 25.1             | <0.100         | <0.100 |                                   | 70.0 |                   |       |                      |        |         | SVL        |
| DC 10.9 C       | RESE-1001208       | 09-May-05 |      |      |      |      |      |        |        |                 |                  |                |        |                                   |      | 15.8              | 6.8   | 89.1                 |        |         |            |
| DC 10.9 C       | RESE-1001208       | 09-May-05 |      |      |      |      |      |        |        |                 |                  |                |        | <0.20                             |      |                   |       |                      |        |         | Del Mar    |
| DC 10.9 C       | RESE-1001208       | 09-May-05 | 7.46 | 2.01 | 5.97 | 1.67 | 8.23 |        | 21.4   | 10.7            | 28.4             | 0.115          | <0.100 |                                   | 42   |                   |       |                      |        |         | SVL        |
| DC 10.9 C       | RESE-1001224       | 10-Aug-05 |      |      |      |      |      |        |        |                 |                  |                |        |                                   |      | 22.0              | 7.3   | 105.5                |        |         |            |
| DC 10.9 C       | RESE-1001224       | 10-Aug-05 |      |      |      |      |      |        |        |                 |                  |                |        | 0.72                              |      |                   |       |                      |        |         | Del Mar    |
| DC 10.9 C       | RESE-1001224       | 10-Aug-05 | 9.44 | 2.58 | 6.63 | 2.54 | 9.38 |        | 26.7   | 10.4            | 27.7 j           | 0.102          | <0.100 |                                   | 93   |                   |       |                      |        |         | SVL        |
| DC 13.5 C DUP   | RESE-1001012       | 30-May-03 |      |      |      |      |      |        |        |                 |                  | 0.12           | 0.18   |                                   |      |                   |       |                      |        |         | SVL        |
| DC 13.5 C DUP   | RESE-1001012       | 30-May-03 |      |      |      |      |      |        |        |                 |                  |                |        | <0.10                             |      |                   |       |                      |        |         | Del Mar    |
| DC 13.5 C DUP   | RESE-1001012       | 30-May-03 | 10.6 | 2.90 | 7.71 | 2.3  | 7.62 |        | 34.0   | 19.3 j          | 34.6 j           |                |        |                                   | 91 j |                   |       |                      |        |         | SVL        |
| DC 13.5 C       | RESE-1001011       | 30-May-03 |      |      |      |      |      |        |        |                 |                  |                |        |                                   |      | 25.0              | 8.3   | 125                  |        |         |            |
| DC 13.5 C       | RESE-1001011       | 30-May-03 |      |      |      |      |      |        |        |                 |                  | 0.35           | 0.17   |                                   |      |                   |       |                      |        |         | SVL        |
| DC 13.5 C       | RESE-1001011       | 30-May-03 |      |      |      |      |      |        |        |                 |                  |                |        | <0.10                             |      |                   |       |                      |        |         | Del Mar    |
| DC 13.5 C       | RESE-1001011       | 30-May-03 | 10.7 | 2.88 | 7.73 | 2.3  | 7.60 |        | 33.9   | 19.2 j          | 35.1 j           |                |        |                                   | 91 j |                   |       |                      |        |         | SVL        |
| DC 13.5 C       | RESE-1001021       | 27-Aug-03 |      |      |      |      |      |        |        |                 |                  |                |        |                                   |      | 26.3              | 6.6   | 139                  |        |         |            |
| DC 13.5 C       | RESE-1001021       | 27-Aug-03 |      |      |      |      |      |        |        |                 |                  | <0.10          | <0.10  |                                   |      |                   |       |                      |        |         | SVL        |
| DC 13.5 C       | RESE-1001021       | 27-Aug-03 |      |      |      |      |      |        |        |                 |                  |                |        | 1.4                               |      |                   |       |                      |        |         | Del Mar    |
| DC 13.5 C       | RESE-1001021       | 27-Aug-03 | 11.0 | 2.78 | 7.17 | 2.3  | 4.44 |        | 33.8   | 14.6            | 23.2             |                |        |                                   | 121  |                   |       |                      |        |         | SVL        |



| SAMPLE LOCATION | SAMPLE IDENTIFIER/ | SAMPLE    |      |      |      |      | CON  | MON             | CONSTIT | UENTS           | a (mg/L)         | b      |        |                                          |       |                           | RO    | UTINE PARA                 | METERS |               | ANALYTICAL  |
|-----------------|--------------------|-----------|------|------|------|------|------|-----------------|---------|-----------------|------------------|--------|--------|------------------------------------------|-------|---------------------------|-------|----------------------------|--------|---------------|-------------|
|                 | DESCRIPTION        | DATE      |      |      |      |      |      |                 |         |                 |                  |        |        |                                          |       |                           | FIELI | D                          | LABOI  | RATORY        | LABORATORY  |
|                 |                    |           | Ca   | Mg   | Na   | K    | Cl   | CO <sub>3</sub> | HCO₃    | SO <sub>4</sub> | SiO <sub>2</sub> | Br     | F      | NO <sub>3</sub> + NO <sub>2</sub> (as N) | TDS   | TEMP<br>(°C) <sup>c</sup> | рН    | SC<br>(μS/cm) <sup>d</sup> | рН     | SC<br>(μS/cm) |             |
|                 | -                  | '         |      | •    |      |      | Sı   | ırface          | Water   |                 |                  |        |        |                                          | ,     |                           |       |                            |        |               |             |
| DC 13.5 C       | RESE-1001037       | 05-Nov-03 |      |      |      |      |      |                 |         |                 |                  |        |        |                                          |       | 16.6                      | 8.0   | 110.8                      |        |               |             |
| DC 13.5 C       | RESE-1001037       | 05-Nov-03 |      |      |      |      |      |                 |         |                 |                  |        |        | <0.10                                    |       |                           |       |                            |        |               | Del Mar     |
| DC 13.5 C       | RESE-1001037       | 05-Nov-03 | 9.23 | 2.44 | 7.03 | 1.7  | 6.89 |                 | 40.9    | 8.79            | 30.6             | 0.47   | 0.12   |                                          | 96    |                           |       |                            |        |               | SVL         |
| DC 13.5 C       | RESE-1001059       | 11-Feb-04 |      |      |      |      |      |                 |         |                 |                  |        |        |                                          |       | 6.8                       | 6.5   | 80.5                       |        |               |             |
| DC 13.5 C       | RESE-1001059       | 11-Feb-04 |      |      |      |      |      |                 |         |                 |                  |        |        | <0.10                                    |       |                           |       |                            |        |               | Del Mar     |
| DC 13.5 C       | RESE-1001059       | 11-Feb-04 | 6.6  | 1.86 | 5.29 | 1.37 | 3.60 |                 | 11.15   | 20.6            |                  | <0.10  | <0.10  |                                          | 76    |                           |       |                            |        |               | SVL         |
| DC 13.5 C LD    | RESE-1001059       | 11-Feb-04 |      |      |      |      |      |                 |         |                 |                  |        |        | <1.0                                     |       |                           |       |                            |        |               | Del Mar     |
| DC 13.5 C       | RESE-1001086       | 26-May-04 |      |      |      |      |      |                 |         |                 |                  |        |        |                                          |       | 16.7                      | 7.4   | 112.9                      |        |               |             |
| DC 13.5 C       | RESE-1001086       | 26-May-04 |      |      |      |      |      |                 |         |                 |                  |        |        | <0.20                                    |       |                           |       |                            |        |               | Del Mar     |
| DC 13.5 C       | RESE-1001086       | 26-May-04 | 8.96 | 2.75 | 7.20 | 2.0  | 10.9 | -               | 33.8    | 11.5            | 33.2             | 0.14   | <0.10  |                                          | 123   |                           |       |                            |        |               | SVL         |
| DC 13.5 C       | RESE-1001190       | 15-Feb-05 |      |      |      |      |      |                 |         |                 |                  |        |        |                                          |       | 10.0                      | 7.4   | 61.6                       |        |               |             |
| DC 13.5 C       | RESE-1001190       | 15-Feb-05 |      |      |      |      |      |                 |         |                 |                  |        |        | 0.35                                     |       |                           |       |                            |        |               | Del Mar     |
| DC 13.5 C       | RESE-1001190       | 15-Feb-05 | 5.79 | 1.55 | 4.09 | 1.78 | 3.19 |                 | 11.25   | 10.9            | 26.4             | <0.100 | 0.104  |                                          | 75.0  |                           |       |                            |        |               | SVL         |
| DC 13.5 C       | RESE-1001209       | 09-May-05 |      |      |      |      |      |                 |         |                 |                  |        |        |                                          |       | 26.3                      | 7.4   | 151.2                      |        |               |             |
| DC 13.5 C       | RESE-1001209       | 09-May-05 |      |      |      |      |      |                 |         |                 |                  |        |        | <0.20                                    |       |                           |       |                            |        |               | Del Mar     |
| DC 13.5 C       | RESE-1001209       | 09-May-05 | 13.2 | 3.4  | 7.93 | 2.27 | 13.7 | -               | 20.6    | 27.4            | 28.4             | 0.116  | <0.100 |                                          | 122   |                           |       |                            |        |               | SVL         |
| DC 13.5 C       | RESE-1001225       | 10-Aug-05 |      |      |      |      |      |                 |         |                 |                  |        |        |                                          |       | 24.8                      | 7.6   | 88                         |        |               |             |
| DC 13.5 C       | RESE-1001225       | 10-Aug-05 |      |      |      |      |      |                 |         |                 |                  |        |        | 0.55                                     |       |                           |       |                            |        |               | Del Mar     |
| DC 13.5 C       | RESE-1001225       | 10-Aug-05 | 7.54 | 1.99 | 4.10 | 1.75 | 7.65 |                 | 18.8    | 6.78            | 12.9 j           | <0.100 | <0.100 |                                          | 30    |                           |       |                            |        |               | SVL         |
| DC 13.5 C       | RESE-1002014       | 21-Aug-08 |      |      |      |      |      |                 |         |                 |                  |        |        |                                          |       | 30.6                      | 8.25  | 152                        |        |               |             |
| DC 13.5 C       | RESE-1002014       | 21-Aug-08 | 13   | 3.37 | 8.99 | 2.31 | 14.6 |                 |         | 0.66            | 39.1             |        |        |                                          |       |                           |       |                            |        |               | SVL         |
| DC 13.5 C       | RESE-1002014       | 21-Aug-08 | 14   | 3.47 | 9.29 | 2.51 | 14.6 |                 | 62.3    | 0.70            |                  | 0.187  | <0.100 |                                          | 130 j |                           |       |                            |        |               | SVL         |
| DC 13.5 C       | RESE-1002014       | 21-Aug-08 |      |      |      |      |      |                 |         |                 |                  |        |        |                                          |       |                           |       |                            |        |               | TestAmerica |
| DC 13.5 C       | RESE-1002033       | 12-Nov-08 |      |      |      |      |      |                 |         |                 |                  |        |        |                                          |       | 17.0                      | 7.84  | 141.5                      |        |               |             |
| DC 13.5 C       | RESE-1002033       | 12-Nov-08 |      |      |      |      |      |                 |         |                 | 32.3             |        |        |                                          |       |                           |       |                            |        |               | SVL         |
| DC 13.5 C       | RESE-1002033       | 12-Nov-08 |      |      |      |      | 11.5 |                 | 62.7    | 1.45            |                  | 0.169  | 0.202  |                                          | 110   |                           |       |                            |        |               | SVL         |
| DC 13.5 C       | RESE-1002033       | 12-Nov-08 |      |      |      |      |      |                 |         |                 |                  |        |        | < 0.30                                   |       |                           |       |                            |        |               | TestAmerica |
| DC 13.5 C       | RESE-1002033       | 12-Nov-08 | 13.0 | 3.47 | 8.21 | 2.05 |      |                 |         |                 |                  |        |        |                                          |       |                           |       |                            |        |               | SVL         |
| DC 13.5 C DUP   | RESE-1002034       | 12-Nov-08 |      |      |      |      |      |                 |         |                 | 32.1             |        |        |                                          |       |                           |       |                            |        |               | SVL         |
| DC 13.5 C DUP   | RESE-1002034       | 12-Nov-08 |      |      |      |      | 10.9 |                 | 63.2    | 1.45            |                  | 0.208  | 0.337  |                                          | 120   |                           |       |                            |        |               | SVL         |
| DC 13.5 C DUP   | RESE-1002034       | 12-Nov-08 |      |      |      |      |      |                 |         |                 |                  |        |        | < 0.30                                   |       |                           |       |                            |        |               | TestAmerica |
| DC 13.5 C DUP   | RESE-1002034       | 12-Nov-08 | 13.3 | 3.55 | 8.31 | 2.08 |      |                 |         |                 |                  |        |        |                                          |       |                           |       |                            |        |               | SVL         |
| DC 13.5 C       | RESE-1002057       | 19-Feb-09 |      |      |      |      |      |                 |         |                 |                  |        |        |                                          |       | 7.0                       | 7.68  | 70.6                       |        |               |             |
| DC 13.5 C       | RESE-1002057       | 19-Feb-09 |      |      |      |      |      |                 |         |                 | 23.7             |        |        |                                          |       |                           |       |                            |        |               | SVL         |
| DC 13.5 C       | RESE-1002057       | 19-Feb-09 |      |      |      |      | 3.91 |                 | 9.0     | 11.2            |                  | <0.100 | <0.100 |                                          | 107   |                           |       |                            |        |               | SVL         |
| DC 13.5 C       | RESE-1002057       | 19-Feb-09 | 4.89 | 1.35 | 4.47 | 1.45 |      |                 |         |                 |                  |        |        |                                          |       |                           |       |                            |        |               | SVL         |
| DC 13.5 C       | RESE-1002103       | 21-May-09 |      |      |      |      |      |                 |         |                 |                  |        |        |                                          |       | 21.9                      | 7.22  | 136                        |        |               |             |
| DC 13.5 C       | RESE-1002103       | 21-May-09 |      |      |      |      |      |                 |         |                 | 33.3             |        |        |                                          |       |                           |       |                            |        |               | SVL         |
| DC 13.5 C       | RESE-1002103       | 21-May-09 |      |      |      |      | 14.5 |                 | 38.8    | 6.64            |                  | 0.166  | 0.574  |                                          | 104   |                           |       |                            |        |               | SVL         |
| DC 13.5 C       | RESE-1002103       | 21-May-09 | 10.2 | 2.99 | 7.74 | 2.00 |      |                 |         |                 |                  |        |        |                                          |       |                           |       |                            |        |               | SVL         |



| SAMPLE LOCATION         | SAMPLE IDENTIFIER/ | SAMPLE    |      |       |      |      | COI  | MMON   | CONSTI | UENTS           | a (mg/L)         | ) <sup>b</sup> |        |                                   |      |                   | RO    | UTINE PARA           | METERS | ;       | ANALYTICAL  |
|-------------------------|--------------------|-----------|------|-------|------|------|------|--------|--------|-----------------|------------------|----------------|--------|-----------------------------------|------|-------------------|-------|----------------------|--------|---------|-------------|
|                         | DESCRIPTION        | DATE      |      |       |      |      |      |        |        |                 |                  |                |        |                                   |      |                   | FIELI | D                    | LABO   | RATORY  | LABORATORY  |
|                         |                    |           | Ca   | Mg    | Na   | К    | Cl   | CO₃    | HCO₃   | SO <sub>4</sub> | SiO <sub>2</sub> | Br             | F      | NO <sub>3</sub> + NO <sub>2</sub> | TDS  | TEMP              | рН    | SC                   | рН     | SC      |             |
|                         |                    |           |      |       |      |      |      |        |        |                 |                  |                |        | (as N)                            |      | (°C) <sup>c</sup> |       | (μS/cm) <sup>d</sup> |        | (μS/cm) |             |
|                         |                    |           |      |       |      |      | Si   | urface | Water  |                 |                  |                |        |                                   |      |                   |       |                      |        |         |             |
| DC 13.5 C               | RESE-1002142       | 02-Nov-10 |      |       |      |      |      |        |        |                 |                  |                |        |                                   |      | 9.6               | 8.53  | 212                  |        |         |             |
| DC 13.5 C               | RESE-1002142       | 02-Nov-10 |      |       |      |      |      |        |        |                 | 35.8             |                |        |                                   |      |                   |       |                      |        |         | SVL         |
| DC 13.5 C               | RESE-1002142       | 02-Nov-10 |      |       |      |      | 27.3 | -      | 77.2   | 12.0            |                  | 0.218          | 0.125  |                                   | 158  |                   |       |                      |        |         | SVL         |
| DC 13.5 C               | RESE-1002142       | 02-Nov-10 | 22.3 | 5.81  | 12.5 | 2.69 |      |        |        |                 |                  |                |        |                                   |      |                   |       |                      |        |         | SVL         |
| DC 14.7 C /US 60 Bridge | RESE-1001069       | 05-Mar-04 |      |       |      |      |      |        |        |                 |                  |                |        |                                   |      | 4.2               | 6.8   | 48.4                 |        |         |             |
| DC 14.7 C /US 60 Bridge | RESE-1001069       | 05-Mar-04 |      |       |      |      |      |        |        |                 |                  |                |        | 0.44                              |      |                   |       |                      |        |         | Del Mar     |
| DC 14.7 C /US 60 Bridge | RESE-1001069       | 05-Mar-04 | 5.54 | 1.62  | 3.15 | 2.4  | 1.90 |        | 7.1    | 7.85            | 26.3             | <0.10          | <0.10  |                                   | 35   |                   |       |                      |        |         | SVL         |
| DC 14.7 C /US 60 Bridge | RESE-1002015       | 27-Aug-08 |      |       |      |      |      |        |        |                 |                  |                |        |                                   |      | 25.1              | 7.07  | 79                   |        |         |             |
| DC 14.7 C /US 60 Bridge | RESE-1002015       | 27-Aug-08 | 6.16 | 1.55  | 4.07 | 2.47 | 2.89 |        |        | 8.56            | 18.2             |                |        |                                   |      |                   |       |                      |        |         | SVL         |
| DC 14.7 C /US 60 Bridge | RESE-1002015       | 27-Aug-08 | 6.88 | 2.3   | 3.81 | 3.21 | 2.75 |        | 15.1   | 9.40            |                  | <0.100         | <0.100 |                                   | 94   |                   |       |                      |        |         | SVL         |
| DC 14.7 C /US 60 Bridge | RESE-1002015       | 27-Aug-08 |      |       |      |      |      |        |        |                 |                  |                |        | 0.77                              |      |                   |       |                      |        |         | TestAmerica |
| DC 14.7 C /US 60 Bridge | RESE-1002127       | 17-Feb-10 |      |       |      |      |      |        |        |                 |                  |                |        |                                   |      | 9                 | 6.92  | 57.1                 |        |         |             |
| DC 14.7 C /US 60 Bridge | RESE-1002127       | 17-Feb-10 |      |       |      |      |      |        |        |                 | 25.0             |                |        |                                   |      |                   |       |                      |        |         | SVL         |
| DC 14.7 C /US 60 Bridge | RESE-1002127       | 17-Feb-10 |      |       |      |      | 6.82 |        | 12.0   | 16.4            |                  | <0.100         | <0.100 |                                   | 48   |                   |       |                      |        |         | SVL         |
| DC 14.7 C /US 60 Bridge | RESE-1002127       | 17-Feb-10 | 6.62 | 1.89  | 5.46 | 1.60 |      |        |        |                 |                  |                |        |                                   |      |                   |       |                      |        |         | SVL         |
| DC 15.2 C               | RESE-1001191       | 15-Feb-05 |      |       |      |      |      |        |        |                 |                  |                |        |                                   |      | 10.3              | 7.6   | 64.2                 |        |         |             |
| DC 15.2 C               | RESE-1001191       | 15-Feb-05 |      |       |      |      |      |        |        |                 |                  |                |        | 0.39                              |      |                   |       |                      |        |         | Del Mar     |
| DC 15.2 C               | RESE-1001191       | 15-Feb-05 | 5.87 | 1.47  | 4.12 | 1.86 | 3.45 |        | 11.54  | 11.0            | 23.3             | <0.100         | 0.103  |                                   | 73.0 |                   |       |                      |        |         | SVL         |
| DC 15.2 C               | RESE-1001210       | 09-May-05 |      |       |      |      |      |        |        |                 |                  |                |        |                                   |      | 20.5              | 7.1   | 214.1                |        |         | -           |
| DC 15.2 C               | RESE-1001210       | 09-May-05 |      |       |      |      |      |        |        |                 |                  |                |        | <0.20                             |      |                   |       |                      |        |         | Del Mar     |
| DC 15.2 C               | RESE-1001210       | 09-May-05 | 20.6 | 5.51  | 10.9 | 2.93 | 20.2 |        | 27.8   | 47.8            | 31.0             | 0.121          | <0.100 |                                   | 146  |                   |       |                      |        |         | SVL         |
| DC 15.2 C               | RESE-1001226       | 10-Aug-05 |      |       |      |      |      |        |        |                 |                  |                |        |                                   |      | 24.3              | 6.3   | 234.9                |        |         |             |
| DC 15.2 C               | RESE-1001226       | 10-Aug-05 |      |       |      |      |      |        |        |                 |                  |                |        | 2.5                               |      |                   |       |                      |        |         | Del Mar     |
| DC 15.2 C               | RESE-1001226       | 10-Aug-05 | 21.3 | 5.74  | 9.93 | 4.11 | 14.5 |        | 13.4   | 58.0            | 28.9 j           | 0.13           | <0.100 |                                   | 156  |                   |       |                      |        |         | SVL         |
| DC 15.5 C               | RESE-1002003       | 05-Aug-08 |      |       |      |      |      |        |        |                 |                  |                |        |                                   |      | 28.9              | 7.15  | 58.8                 |        |         |             |
| DC 15.5 C               | RESE-1002003       | 05-Aug-08 | 3.77 | 1.14  | 4.34 | 1.89 | 5.38 |        |        | 0.62            | 36.5             |                |        |                                   |      |                   |       |                      |        |         | SVL         |
| DC 15.5 C               | RESE-1002003       | 05-Aug-08 |      |       |      |      | 5.78 |        | 20.0   | 0.31            |                  | 0.133          | 0.306  |                                   | 110  |                   |       |                      |        |         | SVL         |
| DC 15.5 C               | RESE-1002003       | 05-Aug-08 |      |       |      |      |      |        |        |                 |                  |                |        |                                   |      |                   |       |                      |        |         | TestAmerica |
| DC 15.5 C               | RESE-1002003       | 05-Aug-08 | 3.87 | 1.14  | 4.48 | 1.88 |      |        |        |                 |                  |                |        |                                   |      |                   |       |                      |        |         | SVL         |
| DC 15.5 C               | RESE-1002032       | 12-Nov-08 |      |       |      |      |      |        |        |                 |                  |                |        |                                   |      | 9.7               | 7.98  | 70.1                 |        |         |             |
| DC 15.5 C               | RESE-1002032       | 12-Nov-08 |      |       |      |      |      |        |        |                 | 34.8             |                |        |                                   |      |                   |       |                      |        |         | SVL         |
| DC 15.5 C               | RESE-1002032       | 12-Nov-08 |      |       |      |      | 4.60 |        | 35.1   | 0.69            |                  | 0.123          | 0.198  |                                   | 76   |                   |       |                      |        |         | SVL         |
| DC 15.5 C               | RESE-1002032       | 12-Nov-08 |      |       |      |      |      |        |        |                 |                  |                |        | <0.30                             |      |                   |       |                      |        |         | TestAmerica |
| DC 15.5 C               | RESE-1002032       | 12-Nov-08 | 5.53 | 1.67  | 5.38 | 2.06 |      |        |        |                 |                  |                |        |                                   |      |                   |       |                      |        |         | SVL         |
| DC 15.5 C               | RESE-1002069       | 26-Feb-09 |      |       |      |      |      |        |        |                 |                  |                |        |                                   |      | 10.9              | 7.57  | 57                   |        |         |             |
| DC 15.5 C               | RESE-1002069       | 26-Feb-09 |      |       |      |      |      |        |        |                 | 27.9             |                |        |                                   |      |                   |       |                      |        |         | SVL         |
| DC 15.5 C               | RESE-1002069       | 26-Feb-09 |      |       |      |      | 2.62 |        | 5.0    | 10.4            |                  | <0.100         | <0.100 |                                   | 101  |                   |       |                      |        |         | SVL         |
| DC 15.5 C               | RESE-1002069       | 26-Feb-09 | 3.14 | 0.962 | 3.24 | 1.11 |      |        |        |                 |                  |                |        |                                   |      |                   |       |                      |        |         | SVL         |



| SAMPLE LOCATION | SAMPLE IDENTIFIER/ | SAMPLE    |      |      |      |         | COI  | MMON   | CONSTI | TUENTS          | <sup>a</sup> (mg/L) | b      |        |                                          |     |                           | RO    | UTINE PARA                 | METERS |               | ANALYTICAL |
|-----------------|--------------------|-----------|------|------|------|---------|------|--------|--------|-----------------|---------------------|--------|--------|------------------------------------------|-----|---------------------------|-------|----------------------------|--------|---------------|------------|
|                 | DESCRIPTION        | DATE      |      |      |      |         |      |        |        |                 |                     |        |        |                                          |     |                           | FIELI | D                          | LABOR  | ATORY         | LABORATORY |
|                 |                    |           | Ca   | Mg   | Na   | К       | Cl   | CO₃    | HCO₃   | SO <sub>4</sub> | SiO <sub>2</sub>    | Br     | F      | NO <sub>3</sub> + NO <sub>2</sub> (as N) | TDS | TEMP<br>(°C) <sup>c</sup> | рН    | SC<br>(μS/cm) <sup>d</sup> | рН     | SC<br>(μS/cm) |            |
|                 |                    |           |      |      | ı    |         | S    | urface | Water  |                 |                     |        |        | , ,                                      |     | , , ,                     |       | ,                          |        | ,             |            |
| DC 15.5 C       | RESE-1002075       | 05-May-09 |      |      |      |         |      |        |        |                 |                     |        |        |                                          |     | 21.0                      | 6.59  | 75.4                       |        |               |            |
| DC 15.5 C       | RESE-1002075       | 05-May-09 |      |      |      |         |      |        |        |                 | 31.2                |        |        |                                          |     |                           |       |                            |        |               | SVL        |
| DC 15.5 C       | RESE-1002075       | 05-May-09 |      |      |      |         | 4.17 |        | 15.1   | 8.94            |                     | <0.100 | <0.100 |                                          | 79  |                           |       |                            |        |               | SVL        |
| DC 15.5 C       | RESE-1002075       | 05-May-09 | 4.63 | 1.43 | 4.53 | 1.63    |      |        |        |                 |                     |        |        |                                          |     |                           |       |                            |        |               | SVL        |
| DC 15.5 C       | RESE-1002152       | 08-Nov-10 |      |      |      |         |      |        |        |                 |                     |        |        |                                          |     | 11.2                      | 6.81  | 70.2                       |        |               |            |
| DC 15.5 C       | RESE-1002152       | 08-Nov-10 |      |      |      |         |      |        |        |                 | 38.5                |        |        |                                          |     |                           |       |                            |        |               | SVL        |
| DC 15.5 C       | RESE-1002152       | 08-Nov-10 |      |      |      |         | 3.92 |        | 33.2   | 2.56            |                     | 0.149  | <0.100 |                                          | 73  |                           |       |                            |        |               | SVL        |
| DC 15.5 C       | RESE-1002152       | 08-Nov-10 | 6.01 | 1.88 | 5.36 | 2.29    |      |        |        |                 |                     |        |        |                                          |     |                           |       |                            |        |               | SVL        |
| DC 15.5 C       | RESE-1002179       | 22-Aug-11 |      |      |      |         |      |        |        |                 |                     |        |        |                                          |     | 24.2                      | 7.06  | 54.1                       |        |               |            |
| DC 15.5 C       | RESE-1002179       | 22-Aug-11 |      |      |      |         |      |        |        |                 | 41.2                |        |        |                                          |     |                           |       |                            |        |               | SVL        |
| DC 15.5 C       | RESE-1002179       | 22-Aug-11 | 4.57 | 1.57 | 6.87 | 3.28    | 5.96 |        | 27.9   | 1.24            |                     | 0.15   | 0.11   |                                          | 94  |                           |       |                            |        |               | SVL        |
| DC 15.5 C       | RESE-1002191       | 29-Nov-11 |      |      |      |         |      |        |        |                 |                     |        |        |                                          |     | 10.5                      | 6.54  | 56.7                       |        |               |            |
| DC 15.5 C       | RESE-1002191       | 29-Nov-11 |      |      |      |         |      |        |        |                 | 29.5                |        |        |                                          |     |                           |       |                            |        |               | SVL        |
| DC 15.5 C       | RESE-1002191       | 29-Nov-11 | 4.10 | 1.34 | 4.11 | 1.49    | 4.60 |        | 9.6    | 12.3            |                     | <0.10  | <0.10  |                                          | 49  |                           |       |                            |        |               | SVL        |
| DC 15.5 C DUP   | RESE-1002192       | 29-Nov-11 |      |      |      |         |      |        |        |                 |                     |        |        |                                          |     | 10.5                      | 6.54  | 56.7                       |        |               |            |
| DC 15.5 C DUP   | RESE-1002192       | 29-Nov-11 |      |      |      |         |      |        |        |                 | 29.8                |        |        |                                          |     |                           |       |                            |        |               | SVL        |
| DC 15.5 C DUP   | RESE-1002192       | 29-Nov-11 | 4.14 | 1.36 | 4.13 | 1.48    | 4.63 |        | 9.8    | 12.6            |                     | <0.10  | <0.10  |                                          | 45  |                           |       |                            |        |               | SVL        |
| DC 4.1 E        | RESE-1001007       | 21-May-03 |      |      |      |         |      |        |        |                 |                     |        |        |                                          |     | 23.2                      | 8.0   | 247                        |        |               |            |
| DC 4.1 E        | RESE-1001007       | 21-May-03 |      |      |      |         |      |        |        |                 |                     | <0.10  | 0.36   |                                          |     |                           |       |                            |        |               | SVL        |
| DC 4.1 E        | RESE-1001007       | 21-May-03 |      |      |      |         |      |        |        |                 |                     |        |        | 0.48                                     |     |                           |       |                            |        |               | Del Mar    |
| DC 4.1 E        | RESE-1001007       | 21-May-03 | 28.2 | 4.47 | 22.0 | 1.0     | 4.47 |        | 159.8  | 3.12            | 68.6                |        |        |                                          | 224 |                           |       |                            |        |               | SVL        |
| DC 4.1 E        | RESE-1001019       | 26-Aug-03 |      |      |      |         |      |        |        |                 |                     |        |        |                                          |     | 24.8                      | 7.6   | 264                        |        |               |            |
| DC 4.1 E        | RESE-1001019       | 26-Aug-03 |      |      |      |         |      |        |        |                 |                     | <0.10  | 0.34   |                                          |     |                           |       |                            |        |               | SVL        |
| DC 4.1 E        | RESE-1001019       | 26-Aug-03 |      |      |      |         |      |        |        |                 |                     |        |        | 0.22                                     |     |                           |       |                            |        |               | Del Mar    |
| DC 4.1 E        | RESE-1001019       | 26-Aug-03 | 28.4 | 4.35 | 21.6 | <1.0    | 4.37 |        | 163.5  | 3.11            | 72.2                |        |        |                                          | 208 |                           |       |                            |        |               | SVL        |
| DC 4.1 E        | RESE-1001040       | 11-Nov-03 |      |      |      |         |      |        |        |                 |                     |        |        |                                          |     | 22.2                      | 7.1   | 261.3                      |        |               |            |
| DC 4.1 E        | RESE-1001040       | 11-Nov-03 |      |      |      |         |      |        |        |                 |                     |        |        | 0.32                                     |     |                           |       |                            |        |               | Del Mar    |
| DC 4.1 E        | RESE-1001040       | 11-Nov-03 | 27.5 | 4.73 | 21.6 | <1.0    | 4.62 |        | 156.2  | 3.25            | 70.1                | <0.10  | 0.35   |                                          | 175 |                           |       |                            |        |               | SVL        |
| DC 4.1 E        | RESE-1001058       | 10-Feb-04 |      |      |      |         |      |        |        |                 |                     |        |        |                                          |     | 20.0                      | 7.1   | 243                        |        |               |            |
| DC 4.1 E        | RESE-1001058       | 10-Feb-04 |      |      |      |         |      |        |        |                 |                     |        |        | 0.38                                     |     |                           |       |                            |        |               | Del Mar    |
| DC 4.1 E        | RESE-1001058       | 10-Feb-04 | 27.1 | 4.34 | 21.4 | 0.972 j | 4.29 |        | 157.4  | 3.0             |                     | 0.102  | 0.313  |                                          | 202 |                           |       |                            |        |               | SVL        |
| DC 5.5 C        | RESE-1001039       | 10-Nov-03 |      |      |      |         |      |        |        |                 |                     |        |        |                                          |     | 15.7                      | 7.4   | 341.3                      |        |               |            |
| DC 5.5 C        | RESE-1001039       | 10-Nov-03 |      |      |      |         |      |        |        |                 |                     |        |        | <0.10                                    |     |                           |       |                            |        |               | Del Mar    |
| DC 5.5 C        | RESE-1001039       | 10-Nov-03 | 46.6 | 10.5 | 26.3 | 2.2     | 11.1 |        | 202.5  | 38.5            | 46.8                | 0.15   | 0.19   |                                          | 296 |                           |       |                            |        |               | SVL        |
| DC 5.5 C        | RESE-1001067       | 25-Feb-04 |      |      |      |         |      |        |        |                 |                     |        |        |                                          |     | 9.5                       | 7.7   | 206                        |        |               |            |
| DC 5.5 C        | RESE-1001067       | 25-Feb-04 |      |      |      |         |      |        |        |                 |                     |        |        | <0.10                                    |     |                           |       |                            |        |               | Del Mar    |
| DC 5.5 C        | RESE-1001067       | 25-Feb-04 | 21.4 | 4.64 | 16.5 | 1.57    | 6.14 |        | 108.28 | 19.2            |                     | <0.10  | 0.174  |                                          | 130 |                           |       |                            |        |               | SVL        |
| DC 5.5 C        | RESE-1001076       | 20-May-04 |      |      |      |         |      |        |        |                 |                     |        |        |                                          |     | 18.3                      | 7.6   | 280                        |        |               |            |
| DC 5.5 C        | RESE-1001076       | 20-May-04 |      |      |      |         |      |        |        |                 |                     |        |        | <0.20                                    |     |                           |       |                            |        |               | Del Mar    |
| DC 5.5 C        | RESE-1001076       | 20-May-04 | 30.2 | 6.28 | 19.3 | 2.1     | 7.13 |        | 164.7  | 12.3            | 43.5                | 0.15   | 0.18   |                                          | 192 |                           |       |                            |        |               | SVL        |



| SAMPLE LOCATION                  | SAMPLE IDENTIFIER/ | SAMPLE                 |      |          |      |      | COI  | MMON   | CONSTIT | UENTS           | a (mg/L)         | ) <sup>b</sup> |        |                     |      |                           | RO   | UTINE PARA                 | METERS | 6             | ANALYTICAL |
|----------------------------------|--------------------|------------------------|------|----------|------|------|------|--------|---------|-----------------|------------------|----------------|--------|---------------------|------|---------------------------|------|----------------------------|--------|---------------|------------|
|                                  | DESCRIPTION        | DATE                   |      |          |      |      |      |        |         |                 |                  |                |        |                     |      |                           | FIEL | D                          | LABO   | RATORY        | LABORATORY |
|                                  |                    |                        | Ca   | Mg       | Na   | К    | CI   | CO₃    | HCO₃    | SO <sub>4</sub> | SiO <sub>2</sub> | Br             | F      | NO₃ + NO₂<br>(as N) | TDS  | TEMP<br>(°C) <sup>c</sup> | рН   | SC<br>(µS/cm) <sup>d</sup> | рН     | SC<br>(μS/cm) |            |
|                                  | I                  |                        |      | <u> </u> |      |      | Sı   | urface | Water   |                 | <u> </u>         |                |        | (40.11)             |      | ( -)                      |      | (507 0111)                 |        | (100)         |            |
| DC 5.5 C                         | RESE-1001158       | 23-Aug-04              |      |          |      |      |      |        |         | _               |                  |                |        |                     |      | 21.6                      | 7.2  | 466                        |        |               |            |
| DC 5.5 C                         | RESE-1001158       | 23-Aug-04              |      |          |      |      |      |        |         |                 |                  |                |        | <0.20               |      |                           |      |                            |        |               | Del Mar    |
| DC 5.5 C                         | RESE-1001158       | 23-Aug-04              | 55.9 | 11.4     | 32.2 | 3.1  | 11.0 | _      | 274.5   | 41.6            | 53.8             | 0.19           | 0.24   |                     | 321  |                           |      |                            |        |               | SVL        |
| DC 5.5 C                         | RESE-1001176       | 18-Nov-04              |      |          |      |      |      |        |         |                 |                  |                |        |                     |      | 14.6                      | 7.6  | 298.7                      |        |               |            |
| DC 5.5 C                         | RESE-1001176       | 18-Nov-04              |      |          |      |      |      |        |         |                 |                  |                |        | <0.20               |      |                           |      |                            |        |               | Del Mar    |
| DC 5.5 C                         | RESE-1001176       | 18-Nov-04              | 35.0 | 7.13     | 22.0 | 2.21 | 10.0 | _      | 157.4   | 17.7            | 42.7             | <0.10          | 0.20   |                     | 214  |                           |      |                            |        |               | SVL        |
| DC 5.5 C                         | RESE-1001198       | 28-Feb-05              |      |          |      |      |      |        |         |                 |                  |                |        |                     |      | 9.8                       | 7.9  | 87.9                       |        |               |            |
| DC 5.5 C                         | RESE-1001198       | 28-Feb-05              |      |          |      |      |      |        |         |                 |                  |                |        | <0.20               |      |                           |      |                            |        |               | Del Mar    |
| DC 5.5 C                         | RESE-1001198       | 28-Feb-05              | 7.78 | 1.82     | 5.72 | 1.43 | 3.37 | _      | 22.1    | 13.7            | 27.4             | <0.100         | <0.100 |                     | 89.0 |                           |      |                            |        |               | SVL        |
| DC 5.5 C                         | RESE-1001216       | 24-May-05              |      |          |      |      |      |        |         |                 |                  |                |        |                     |      | 19.1                      | 7.6  | 254                        |        |               |            |
| DC 5.5 C                         | RESE-1001216       | 24-May-05              |      |          |      |      |      |        |         |                 |                  |                |        | <0.20               |      |                           |      |                            |        |               | Del Mar    |
| DC 5.5 C                         | RESE-1001216       | 24-May-05              | 27.7 | 5.58     | 15.6 | 2.02 | 8.69 |        | 134.2   | 13.7            | 38.8             | 0.124          | 0.144  |                     | 200  |                           |      |                            |        |               | SVL        |
| DC 5.5 C                         | RESE-1001229       | 23-Aug-05              |      |          |      |      |      |        |         |                 |                  |                |        |                     |      | 22.4                      | 7.4  | 2061.1                     |        |               |            |
| DC 5.5 C                         | RESE-1001229       | 23-Aug-05              |      |          |      |      |      |        |         |                 |                  |                |        | <0.20               |      |                           |      |                            |        |               | Del Mar    |
| DC 5.5 C                         | RESE-1001229       | 23-Aug-05              | 23.5 | 4.64     | 14.0 | 2.28 | 6.28 |        | 103.3   | 14.5            | 44.1             | <0.100         | 0.144  |                     | 136  |                           |      |                            |        |               | SVL        |
| DC 5.5 C                         | RESE-1002180       | 26-Aug-11              |      |          |      |      |      |        |         |                 |                  |                |        |                     |      | 24.5                      | 7.49 | 415                        |        |               |            |
| DC 5.5 C                         | RESE-1002180       | 26-Aug-11              |      |          |      |      |      |        |         |                 | 47.4             |                |        |                     |      |                           |      |                            |        |               | SVL        |
| DC 5.5 C                         | RESE-1002180       | 26-Aug-11              | 50.3 | 10.1     | 30.4 | 3.66 | 9.32 |        | 247.7   | 19.2            |                  | 0.11           | 0.18   |                     | 305  |                           |      |                            |        |               | SVL        |
| DC 6.1 E (Lower Crater Tanks)    | RESE-1001077       | 20-May-04              |      |          |      |      |      |        |         |                 |                  |                |        |                     |      | 20.8                      | 8.2  | 297                        |        |               |            |
| DC 6.1 E (Lower Crater Tanks)    | RESE-1001077       | 20-May-04              |      |          |      |      |      |        |         |                 |                  |                |        | 0.65                |      |                           |      |                            |        |               | Del Mar    |
| DC 6.1 E (Lower Crater Tanks)    | RESE-1001077       | 20-May-04              | 33.6 | 5.10     | 22.2 | 1.1  | 4.78 | _      | 180.6   | 7.81            | 72.3             | 0.11           | 0.31   |                     | 234  |                           |      |                            |        |               | SVL        |
| DC 6.1 E (Lower Crater Tanks)    | RESE-1001159       | 23-Aug-04              |      |          |      |      |      |        |         |                 |                  |                |        |                     |      | 21.5                      | 8.0  | 296                        |        |               |            |
| DC 6.1 E (Lower Crater Tanks)    | RESE-1001159       | 23-Aug-04              |      |          |      |      |      |        |         |                 |                  |                |        | 0.52                |      |                           |      |                            |        |               | Del Mar    |
| DC 6.1 E (Lower Crater Tanks)    | RESE-1001159       | 23-Aug-04              | 33.1 | 5.04     | 21.1 | 1.0  | 4.97 |        | 186.7   | 7.84            | 69.8             | <0.10          | 0.31   |                     | 226  |                           |      |                            |        |               | SVL        |
| DC 6.1 E (Lower Crater Tanks)    | RESE-1001177       | 18-Nov-04              |      |          |      |      |      |        |         |                 |                  |                |        |                     |      | 18.2                      | 8.1  | 273.9                      |        |               |            |
| DC 6.1 E (Lower Crater Tanks)    | RESE-1001177       | 18-Nov-04              |      |          |      |      |      |        |         |                 |                  |                |        | 0.51                |      |                           |      |                            |        |               | Del Mar    |
| DC 6.1 E (Lower Crater Tanks)    | RESE-1001177       | 18-Nov-04              | 33.7 | 5.09     | 22.4 | 1.10 | 4.97 |        | 161     | 7.66            | 67.0             | <0.10          | 0.32   |                     | 226  |                           |      |                            |        |               | SVL        |
| DC 6.1 E (Lower Crater Tanks)    | RESE-1001199       | 28-Feb-05              |      |          |      |      |      |        |         |                 |                  |                |        |                     |      | 18.9                      | 7.8  | 374                        |        |               |            |
| DC 6.1 E (Lower Crater Tanks)    | RESE-1001199       | 28-Feb-05              |      |          |      |      |      |        |         |                 |                  |                |        | 1.5                 |      |                           |      |                            |        |               | Del Mar    |
| DC 6.1 E (Lower Crater Tanks)    | RESE-1001199       | 28-Feb-05              | 43.8 | 6.28     | 22.9 | 1.13 | 6.56 |        | 176.9   | 31.5            | 70.3             | <0.100         | 0.230  |                     | 275  |                           |      |                            |        |               | SVL        |
| DC 6.1 E (Lower Crater Tanks)    | RESE-1001217       | 24-May-05              |      |          |      |      |      |        |         |                 |                  |                |        |                     |      | 20.7                      | 8.0  | 299.6                      |        |               |            |
| DC 6.1 E (Lower Crater Tanks)    | RESE-1001217       | 24-May-05              |      |          |      |      |      |        |         |                 |                  |                |        | 0.77                |      |                           |      |                            |        |               | Del Mar    |
| DC 6.1 E (Lower Crater Tanks)    | RESE-1001217       | 24-May-05              | 34.9 | 5.02     | 21.1 | 1.05 | 5.53 | _      | 170.8   | 13.0            | 69.2             | 0.102          | 0.272  |                     | 240  |                           |      |                            |        |               | SVL        |
| DC 6.1 E (Lower Crater Tanks)    | RESE-1001230       | 23-Aug-05              |      |          |      |      |      |        |         |                 |                  |                |        |                     |      | 24.7                      |      | 302.3                      |        |               | 3.2        |
| DC 6.1 E (Lower Cratter Tanks)   | RESE-1001230       | 23-Aug-05              |      |          |      |      |      |        |         |                 |                  |                |        | 0.70                |      |                           |      |                            |        |               | Del Mar    |
| DC 6.1 E (Lower Crater Tanks)    | RESE-1001230       | 23-Aug-05<br>23-Aug-05 | 36.2 | 5.36     | 22.5 | 1.13 | 5.20 |        | 173.2   | 10.2            | 72.7             | <0.100         | 0.295  |                     | 220  |                           |      |                            |        |               | SVL        |
| DO U. 1 E (EOWOL OLIGICAL FULLY) | NEOL 1001200       | 20 / lug 00            | 00.2 | 0.00     | 22.0 | 1.10 | 0.20 |        | 170.2   | 10.2            | 12.1             | -0.100         | 0.200  |                     | 220  |                           |      |                            |        |               | OVL        |



| SAMPLE LOCATION                   | SAMPLE IDENTIFIER/ | SAMPLE    |      |      |      |      | CON      | MON             | CONSTIT | UENTS           | a (mg/L)         | ) <sup>b</sup> |          |                                          |        |                           | RO    | UTINE PARA                 | METERS | ;             | ANALYTICAL  |
|-----------------------------------|--------------------|-----------|------|------|------|------|----------|-----------------|---------|-----------------|------------------|----------------|----------|------------------------------------------|--------|---------------------------|-------|----------------------------|--------|---------------|-------------|
|                                   | DESCRIPTION        | DATE      |      |      |      |      |          |                 |         |                 |                  |                |          |                                          |        |                           | FIELI | D                          | LABO   | RATORY        | LABORATORY  |
|                                   |                    |           | Ca   | Mg   | Na   | K    | Cl       | CO <sub>3</sub> | HCO₃    | SO <sub>4</sub> | SiO <sub>2</sub> | Br             | F        | NO <sub>3</sub> + NO <sub>2</sub> (as N) | TDS    | TEMP<br>(°C) <sup>c</sup> | рН    | SC<br>(μS/cm) <sup>d</sup> | рН     | SC<br>(µS/cm) |             |
|                                   |                    |           |      |      |      |      | Sı       | ırface '        | Water   |                 |                  |                |          |                                          |        |                           |       |                            |        |               |             |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002007       | 07-Aug-08 |      |      |      |      |          |                 |         |                 |                  |                |          |                                          |        | 22.6                      | 8.48  | 298.5                      |        |               |             |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002007       | 07-Aug-08 | 32.7 | 5.02 | 21.5 | 1.14 | 5.32     |                 |         | 11.2            | 73.3             |                |          |                                          |        |                           |       |                            |        |               | SVL         |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002007       | 07-Aug-08 |      |      |      |      | 5.35     | 1.7             | 170.8   | 10.2            |                  | <0.100         | 0.385    |                                          | 250    |                           |       |                            |        |               | SVL         |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002007       | 07-Aug-08 |      |      |      |      |          |                 |         |                 |                  |                |          | 0.69                                     |        |                           |       |                            |        |               | TestAmerica |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002007       | 07-Aug-08 | 32.2 | 4.86 | 21.4 | 0.97 |          |                 |         |                 |                  |                | -        |                                          |        |                           |       |                            |        |               | SVL         |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002036       | 06-Nov-08 |      |      |      |      |          |                 |         |                 |                  |                |          |                                          |        | 15.6                      | 8.2   | 274                        |        |               |             |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002036       | 06-Nov-08 |      |      |      |      |          |                 |         |                 | 68.4             |                |          |                                          |        |                           |       |                            |        |               | SVL         |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002036       | 06-Nov-08 |      |      |      |      | 5.12     |                 | 176.9   | 9.45            |                  | <0.100         | 0.373    |                                          | 260    |                           |       |                            |        |               | SVL         |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002036       | 06-Nov-08 |      |      |      |      |          |                 |         |                 |                  |                |          | 0.65                                     |        |                           |       |                            |        |               | TestAmerica |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002036       | 06-Nov-08 | 34.1 | 5.11 | 22.6 | 1.19 |          |                 |         |                 |                  |                |          |                                          |        |                           |       |                            |        |               | SVL         |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002064       | 25-Feb-09 |      |      |      |      |          |                 |         |                 |                  |                |          |                                          |        | 20.5                      | 8.18  | 291                        |        |               |             |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002064       | 25-Feb-09 |      |      |      |      |          |                 |         |                 | 71.3             |                |          |                                          |        |                           |       |                            |        |               | SVL         |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002064       | 25-Feb-09 |      |      |      |      | 5.28     |                 | 167.1   | 9.52            |                  | <0.100         | 0.247    |                                          | 266    |                           |       |                            |        |               | SVL         |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002064       | 25-Feb-09 | 30.5 | 4.57 | 20.2 | 0.97 |          |                 |         |                 |                  |                |          |                                          |        |                           |       |                            |        |               | SVL         |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002099       | 20-May-09 |      |      |      |      |          |                 |         |                 |                  |                |          |                                          |        | 21.8                      | 8.04  | 300                        |        |               |             |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002099       | 20-May-09 |      |      |      |      |          |                 |         |                 | 75.5             |                |          |                                          |        |                           |       |                            |        |               | SVL         |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002099       | 20-May-09 |      |      |      |      | 6.11     |                 | 168.4   | 9.52            |                  | 0.100          | 0.490    |                                          | 218    |                           |       |                            |        |               | SVL         |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002099       | 20-May-09 | 32.5 | 5.07 | 22.4 | 1.04 |          |                 |         |                 |                  |                |          |                                          |        |                           |       |                            |        |               | SVL         |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002135       | 19-Mar-10 |      |      |      |      |          |                 |         |                 |                  |                |          |                                          |        | 16.9                      | 8.18  | 287                        |        |               |             |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002135       | 19-Mar-10 |      |      |      |      |          |                 |         |                 | 69.4             |                |          |                                          |        |                           |       |                            |        |               | SVL         |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002135       | 19-Mar-10 |      |      |      |      | 6.67     |                 | 181.8   | 29.6            |                  | <0.100         | 0.193    |                                          | 290    |                           |       |                            |        |               | SVL         |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002135       | 19-Mar-10 | 45.1 | 6.77 | 24.2 | 1.22 |          |                 |         |                 |                  |                |          |                                          |        |                           |       |                            |        |               | SVL         |
| DC 6.1 E (Lower Crater Tanks) DUP | RESE-1002136       | 19-Mar-10 |      |      |      |      |          |                 |         |                 | 69.3             |                |          |                                          |        |                           |       |                            |        |               | SVL         |
| DC 6.1 E (Lower Crater Tanks) DUP | RESE-1002136       | 19-Mar-10 |      |      |      |      | 6.68     |                 | 181.8   | 30.2            |                  | <0.100         | 0.196    |                                          | 292    |                           |       |                            |        |               | SVL         |
| DC 6.1 E (Lower Crater Tanks) DUP | RESE-1002136       | 19-Mar-10 | 43.4 | 6.51 | 23.5 | 1.17 |          |                 |         |                 |                  |                |          |                                          |        |                           |       |                            |        |               | SVL         |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002138       | 19-Oct-10 | -    |      |      |      |          |                 |         |                 |                  |                | -        |                                          |        | 22.4                      | 7.33  | 332.4                      |        |               |             |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002138       | 19-Oct-10 |      |      |      |      |          |                 |         |                 | 75.2             |                |          |                                          |        |                           |       |                            |        |               | SVL         |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002138       | 19-Oct-10 |      |      |      |      | 5.72     |                 | 168.4   | 10.8            |                  | 0.102          | 0.217    |                                          | 244    |                           |       |                            |        |               | SVL         |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002138       | 19-Oct-10 | 35.6 | 5.37 | 21.9 | 1.09 |          |                 |         |                 |                  |                |          |                                          |        |                           |       |                            |        |               | SVL         |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002161       | 10-Nov-10 |      |      |      |      |          |                 |         |                 |                  |                |          |                                          |        | 15.2                      | 7.39  | 245.5                      |        |               |             |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002161       | 10-Nov-10 |      |      |      |      |          |                 |         |                 | 43.9             |                |          |                                          |        |                           |       |                            |        |               | SVL         |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002161       | 10-Nov-10 |      |      |      |      | 12.8 j-d |                 | 141.5   | 0.59 j-         |                  | 0.136 j-       | 0.130 j- |                                          | 174 j- |                           |       |                            |        |               | SVL         |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002161       | 10-Nov-10 | 26.3 | 6.25 | 18.6 | 2.28 |          |                 |         |                 |                  |                |          | -                                        |        |                           |       |                            |        |               | SVL         |
| DC 6.14 C (Upper Crater Tank)     | RESE-1002013       | 20-Aug-08 |      |      |      |      |          |                 |         |                 |                  |                |          |                                          |        | 26.1                      | 8.68  | 244                        |        |               |             |
| DC 6.14 C (Upper Crater Tank)     | RESE-1002013       | 20-Aug-08 | 23.9 | 5.58 | 17   | 2.35 | 9.52     |                 |         | 3.54            | 38.5             |                |          |                                          |        |                           |       |                            |        |               | SVL         |
| DC 6.14 C (Upper Crater Tank)     | RESE-1002013       | 20-Aug-08 | 26.1 | 5.81 | 17.9 | 2.64 | 9.64     | 1.1             | 137.9   | 3.53            |                  | 0.573          | <0.100   |                                          | 160    |                           |       |                            |        |               | SVL         |
| DC 6.14 C (Upper Crater Tank)     | RESE-1002013       | 20-Aug-08 |      |      |      |      |          |                 |         |                 |                  |                |          |                                          |        |                           |       |                            |        |               | TestAmerica |



| SAMPLE LOCATION               | SAMPLE IDENTIFIER/ | SAMPLE    |      |      |      |      | COI  | MMON   | CONSTI | TUENTS          | a (mg/L)         | b      |        |                     |       |                           | RO   | UTINE PARA                 | METERS |               | ANALYTICAL  |
|-------------------------------|--------------------|-----------|------|------|------|------|------|--------|--------|-----------------|------------------|--------|--------|---------------------|-------|---------------------------|------|----------------------------|--------|---------------|-------------|
|                               | DESCRIPTION        | DATE      |      |      |      |      |      |        |        |                 |                  |        |        |                     |       |                           | FIEL | D                          | LABO   | RATORY        | LABORATORY  |
|                               |                    |           | Са   | Mg   | Na   | К    | Cl   | CO₃    | HCO₃   | SO <sub>4</sub> | SiO <sub>2</sub> | Br     | F      | NO₃ + NO₂<br>(as N) | TDS   | TEMP<br>(°C) <sup>c</sup> | рН   | SC<br>(μS/cm) <sup>d</sup> | рН     | SC<br>(μS/cm) |             |
|                               |                    |           |      |      |      |      | Sı   | urface | Water  |                 |                  |        |        |                     |       |                           |      |                            |        |               |             |
| DC 6.14 C (Upper Crater Tank) | RESE-1002037       | 12-Nov-08 |      |      |      |      |      |        |        |                 |                  |        |        |                     |       | 13.3                      | 7.71 | 223                        |        |               |             |
| DC 6.14 C (Upper Crater Tank) | RESE-1002037       | 12-Nov-08 |      |      |      |      |      |        |        |                 | 43.8             |        |        |                     |       |                           |      |                            |        |               | SVL         |
| DC 6.14 C (Upper Crater Tank) | RESE-1002037       | 12-Nov-08 |      |      |      |      | 9.64 |        | 137.9  | 0.45            |                  | 0.131  | 0.283  |                     | 160   |                           |      |                            |        |               | SVL         |
| DC 6.14 C (Upper Crater Tank) | RESE-1002037       | 12-Nov-08 |      |      |      |      |      |        |        |                 |                  |        |        | <0.30               |       |                           |      |                            |        |               | TestAmerica |
| DC 6.14 C (Upper Crater Tank) | RESE-1002037       | 12-Nov-08 | 24.7 | 5.68 | 17.3 | 2.30 |      |        |        |                 |                  |        |        |                     |       |                           |      |                            |        |               | SVL         |
| DC 6.14 C (Upper Crater Tank) | RESE-1002056       | 18-Feb-09 |      |      |      |      |      |        |        |                 |                  |        |        |                     |       | 9.5                       | 7.59 | 71.7                       |        |               |             |
| DC 6.14 C (Upper Crater Tank) | RESE-1002056       | 18-Feb-09 |      |      |      |      | -    |        |        |                 | 21.3             |        |        |                     |       |                           |      |                            |        |               | SVL         |
| DC 6.14 C (Upper Crater Tank) | RESE-1002056       | 18-Feb-09 |      |      |      |      | 3.02 |        | 11.8   | 10.7            |                  | <0.100 | <0.100 |                     | 99    |                           |      |                            |        |               | SVL         |
| DC 6.14 C (Upper Crater Tank) | RESE-1002056       | 18-Feb-09 | 5.13 | 1.33 | 4.59 | 1.35 |      |        |        |                 |                  |        |        |                     |       |                           |      |                            |        |               | SVL         |
| DC 6.14 C (Upper Crater Tank) | RESE-1002078       | 06-May-09 |      |      |      |      |      |        |        |                 |                  |        |        |                     |       | 18.9                      | 7.02 | 191                        |        |               |             |
| DC 6.14 C (Upper Crater Tank) | RESE-1002078       | 06-May-09 |      |      |      |      |      |        |        |                 | 34.1             |        |        |                     |       |                           |      |                            |        |               | SVL         |
| DC 6.14 C (Upper Crater Tank) | RESE-1002078       | 06-May-09 |      |      |      |      | 8.24 |        | 116.8  | 1.81            |                  | <0.100 | <0.100 |                     | 114   |                           |      |                            |        |               | SVL         |
| DC 6.14 C (Upper Crater Tank) | RESE-1002078       | 06-May-09 | 20.6 | 4.83 | 16.1 | 2.05 |      |        |        |                 |                  |        |        |                     |       |                           |      |                            |        |               | SVL         |
| DC 6.14 C (Upper Crater Tank) | RESE-1002196       | 30-Nov-11 |      |      |      |      |      |        |        |                 |                  |        |        |                     |       | 13.0                      | 7.53 | 278                        |        |               |             |
| DC 6.14 C (Upper Crater Tank) | RESE-1002196       | 30-Nov-11 |      |      |      |      |      |        |        |                 | 33.8             |        |        |                     |       |                           |      |                            |        |               | SVL         |
| DC 6.14 C (Upper Crater Tank) | RESE-1002196       | 30-Nov-11 | 29.3 | 6.89 | 24.5 | 2.20 | 12.4 |        | 169.6  | 15.1            |                  | 0.10   | 0.19   |                     | 184   |                           |      |                            |        |               | SVL         |
| DC 6.6 W                      | RESE-1001010       | 29-May-03 |      |      |      |      |      |        |        |                 |                  |        |        |                     |       | 25.4                      | 8.0  | 325                        |        |               |             |
| DC 6.6 W                      | RESE-1001010       | 29-May-03 |      |      |      |      |      |        |        |                 |                  | <0.10  | 0.42   |                     |       |                           |      |                            |        |               | SVL         |
| DC 6.6 W                      | RESE-1001010       | 29-May-03 |      |      |      |      |      |        |        |                 |                  |        |        | <0.10               |       |                           |      |                            |        |               | Del Mar     |
| DC 6.6 W                      | RESE-1001010       | 29-May-03 | 32.7 | 7.70 | 26.6 | 1.6  | 7.85 |        | 190.3  | 7.09 j          | 83.1 j           |        |        |                     | 258 j |                           |      |                            |        |               | SVL         |
| DC 6.6 W                      | RESE-1001022       | 03-Sep-03 |      |      |      |      |      |        |        |                 |                  |        |        |                     |       | 22.6                      | 6.6  | 362                        |        |               |             |
| DC 6.6 W                      | RESE-1001022       | 03-Sep-03 |      |      |      |      |      |        |        |                 |                  | 0.12   | 0.42   |                     |       |                           |      |                            |        |               | SVL         |
| DC 6.6 W                      | RESE-1001022       | 03-Sep-03 |      |      |      |      |      |        |        |                 |                  |        |        | <0.10               |       |                           |      |                            |        |               | Del Mar     |
| DC 6.6 W                      | RESE-1001022       | 03-Sep-03 | 36.1 | 8.27 | 26.8 | 1.8  | 7.96 |        | 200.1  | 11.6            | 93.3             |        |        |                     | 200   |                           |      |                            |        |               | SVL         |
| DC 6.6 W                      | RESE-1001033       | 04-Nov-03 |      |      |      |      |      |        |        |                 |                  |        |        |                     |       | 18.3                      | 6.8  | 412                        |        |               |             |
| DC 6.6 W                      | RESE-1001033       | 04-Nov-03 |      |      |      |      |      |        |        |                 |                  |        |        | <0.10               |       |                           |      |                            |        |               | Del Mar     |
| DC 6.6 W                      | RESE-1001033       | 04-Nov-03 | 40.0 | 9.40 | 33.4 | 1.5  | 9.26 |        | 234.2  | 13.3            | 98.9             | 0.28   | 0.50   |                     | 293   |                           |      |                            |        |               | SVL         |
| DC 6.6 W                      | RESE-1001064       | 18-Feb-04 |      |      |      |      |      |        |        |                 |                  |        |        |                     |       | 15.7                      | 7.1  | 155                        |        |               |             |
| DC 6.6 W                      | RESE-1001064       | 18-Feb-04 |      |      |      |      |      |        |        |                 |                  |        |        |                     | 164   |                           |      |                            |        |               | SVL         |
| DC 6.6 W                      | RESE-1001064       | 18-Feb-04 |      |      |      |      |      |        |        |                 |                  |        |        | <0.10               |       |                           |      |                            |        |               | Del Mar     |
| DC 6.6 W                      | RESE-1001064       | 18-Feb-04 | 29   | 6.48 | 25.9 | 1.21 | 7.41 |        | 179.3  | 5.18            |                  | 0.127  | 0.407  |                     | 235   |                           |      |                            |        |               | SVL         |
| DC 6.6 W                      | RESE-1001074       | 05-May-04 |      |      |      |      |      |        |        |                 |                  |        |        |                     |       | 17.7                      | 7.6  | 318                        |        |               |             |
| DC 6.6 W                      | RESE-1001074       | 05-May-04 |      |      |      |      |      |        |        |                 |                  |        |        | <0.10               |       |                           |      |                            |        |               | Del Mar     |
| DC 6.6 W                      | RESE-1001074       | 05-May-04 | 31.2 | 7.00 | 26.4 | 1.2  | 7.80 |        | 197.6  | 4.39            | 89.8             | <0.10  | 0.30   |                     | 228   |                           |      |                            |        |               | SVL         |
| DC 6.6 W                      | RESE-1001155       | 19-Aug-04 |      |      |      |      |      |        |        |                 |                  |        |        |                     |       | 21.5                      | 7.1  | 224                        |        |               |             |
| DC 6.6 W                      | RESE-1001155       | 19-Aug-04 |      |      |      |      |      |        |        |                 |                  |        |        | <0.20               |       |                           |      |                            |        |               | Del Mar     |
| DC 6.6 W                      | RESE-1001155       | 19-Aug-04 | 34.3 | 7.79 | 28.0 | 1.5  | 10.2 |        | 202.5  | 17.4            | 92.0             | 0.11   | 0.41   |                     | 305   |                           |      |                            |        |               | SVL         |
| DC 6.6 W                      | RESE-1001170       | 12-Nov-04 |      |      |      |      |      |        |        |                 |                  |        |        |                     |       | 17.5                      | 7.2  | 178.6                      |        |               |             |
| DC 6.6 W                      | RESE-1001170       | 12-Nov-04 |      |      |      |      |      |        |        |                 |                  |        |        | <0.20               |       |                           |      |                            |        |               | Del Mar     |
| DC 6.6 W                      | RESE-1001170       | 12-Nov-04 | 30.8 | 7.28 | 27.9 | 1.2  | 7.77 |        | 190.3  | 5.02            | 89.9             | <0.10  | 0.44   |                     | 245   |                           |      |                            |        |               | SVL         |



| SAM      | IPLE LOCATION | SAMPLE IDENTIFIER/ | SAMPLE    |      |      |      |      | COI  | MMON   | CONSTI | TUENTS          | a (mg/L)         | ) <sup>b</sup> |        |                                   |       |                   | RC   | UTINE PARA           | METERS |         | ANALYTICAL |
|----------|---------------|--------------------|-----------|------|------|------|------|------|--------|--------|-----------------|------------------|----------------|--------|-----------------------------------|-------|-------------------|------|----------------------|--------|---------|------------|
|          |               | DESCRIPTION        | DATE      |      |      |      |      |      |        |        |                 |                  |                |        |                                   |       |                   | FIEL | D                    | LABO   | RATORY  | LABORATORY |
|          |               |                    |           | Ca   | Mg   | Na   | K    | Cl   | CO₃    | HCO₃   | SO <sub>4</sub> | SiO <sub>2</sub> | Br             | F      | NO <sub>3</sub> + NO <sub>2</sub> | TDS   | TEMP              | рН   | SC                   | рН     | SC      |            |
|          |               |                    |           |      |      |      |      |      |        |        |                 |                  |                |        | (as N)                            |       | (°C) <sup>c</sup> |      | (μS/cm) <sup>d</sup> |        | (μS/cm) |            |
|          |               |                    |           |      |      |      |      | Sı   | urface | Water  |                 |                  |                |        |                                   |       |                   |      |                      |        |         |            |
| DC 6.6 W |               | RESE-1001192       | 16-Feb-05 |      |      |      |      |      |        |        |                 |                  |                |        |                                   |       | 11.9              | 7.5  | 101.2                |        |         |            |
| DC 6.6 W |               | RESE-1001192       | 16-Feb-05 |      |      |      |      |      |        |        |                 |                  |                |        | <0.20                             |       |                   |      |                      |        |         | Del Mar    |
| DC 6.6 W |               | RESE-1001192       | 16-Feb-05 | 8.97 | 2.37 | 6.78 | 1.38 | 3.26 |        | 28.5   | 19.2            | 31.5             | <0.100         | 0.125  |                                   | 68.0  |                   |      |                      |        |         | SVL        |
| DC 6.6 W |               | RESE-1001214       | 17-May-05 |      |      |      |      |      |        |        |                 |                  |                |        |                                   |       | 18.1              | 7.3  | 303.2                |        |         |            |
| DC 6.6 W |               | RESE-1001214       | 17-May-05 |      |      |      |      |      |        |        |                 |                  |                |        | <0.20                             |       |                   |      |                      |        |         | Del Mar    |
| DC 6.6 W |               | RESE-1001214       | 17-May-05 | 30.5 | 6.97 | 26.1 | 1.5  | 8.15 |        | 181.8  | 4.82            | 86.2             | <0.100         | 0.249  |                                   | 245   |                   |      |                      |        |         | SVL        |
| DC 6.6 W |               | RESE-1001232       | 07-Sep-05 |      |      |      |      |      |        |        |                 |                  |                |        |                                   |       | 23.5              | 6.8  | 297.6                |        |         |            |
| DC 6.6 W |               | RESE-1001232       | 07-Sep-05 |      |      |      |      |      |        |        |                 |                  |                |        | <0.20                             |       |                   |      |                      |        |         | Del Mar    |
| DC 6.6 W |               | RESE-1001232       | 07-Sep-05 | 29.0 | 6.70 | 25.0 | 1.64 | 7.56 |        | 173.2  | 7.40            | 85.3             | 0.113          | 0.37   |                                   | 239   |                   |      |                      |        |         | SVL        |
| DC 7.1 C |               | RESE-1001009       | 29-May-03 |      |      |      |      |      |        |        |                 |                  |                |        |                                   |       | 24.6              | 8.1  | 287                  |        |         |            |
| DC 7.1 C |               | RESE-1001009       | 29-May-03 |      |      |      |      |      |        |        |                 |                  | 0.15           | 0.21   |                                   |       |                   |      |                      |        |         | SVL        |
| DC 7.1 C |               | RESE-1001009       | 29-May-03 |      |      |      |      |      |        |        |                 |                  |                |        | <0.10                             |       |                   |      |                      |        |         | Del Mar    |
| DC 7.1 C |               | RESE-1001009       | 29-May-03 | 31.2 | 6.72 | 21.7 | 2.4  | 7.92 |        | 180.6  | 0.92 j          | 51.5 j           |                |        |                                   | 199 j |                   |      |                      |        |         | SVL        |
| DC 7.1 C |               | RESE-1001034       | 04-Nov-03 |      |      |      |      |      |        |        |                 |                  |                |        |                                   |       | 15.6              | 7.8  | 352                  |        |         |            |
| DC 7.1 C |               | RESE-1001034       | 04-Nov-03 |      |      |      |      |      |        |        |                 |                  |                |        | <0.10                             |       |                   |      |                      |        |         | Del Mar    |
| DC 7.1 C |               | RESE-1001034       | 04-Nov-03 | 33.6 | 7.17 | 30.0 | 2.2  | 9.71 | _      | 179.3  | 24.8            | 52.4             | 0.15           | 0.35   |                                   | 218   |                   |      |                      |        |         | SVL        |
| DC 7.1 C |               | RESE-1001065       | 18-Feb-04 |      |      |      |      |      |        |        |                 |                  |                |        |                                   |       | 9.0               | 7.4  | 184.3                |        |         |            |
| DC 7.1 C |               | RESE-1001065       | 18-Feb-04 |      |      |      |      |      |        |        |                 |                  |                |        |                                   | 110   |                   |      |                      |        |         | SVL        |
| DC 7.1 C |               | RESE-1001065       | 18-Feb-04 |      |      |      |      |      |        |        |                 |                  |                |        | <0.10                             |       |                   |      |                      |        |         | Del Mar    |
| DC 7.1 C |               | RESE-1001065       | 18-Feb-04 | 18.6 | 3.86 | 16.4 | 1.1  | 5.32 |        | 97.6   | 16.8            |                  | 0.104          | 0.227  |                                   | 138   |                   |      |                      |        |         | SVL        |
| DC 7.1 C |               | RESE-1001065       | 18-Feb-04 |      |      |      |      |      |        |        |                 |                  |                |        |                                   | 110   |                   |      |                      |        |         | SVL        |
| DC 7.1 C |               | RESE-1001075       | 05-May-04 |      |      |      |      |      |        |        |                 |                  |                |        |                                   |       | 20.0              | 8.1  | 204                  |        |         |            |
| DC 7.1 C |               | RESE-1001075       | 05-May-04 |      |      |      |      |      |        |        |                 |                  |                |        | <0.10                             |       |                   |      |                      |        |         | Del Mar    |
| DC 7.1 C |               | RESE-1001075       | 05-May-04 | 20.6 | 4.21 | 17.0 | 1.5  | 6.44 |        | 111.0  | 9.89            | 42.9             | <0.10          | 0.17   |                                   | 126   |                   |      |                      |        |         | SVL        |
| DC 7.1 C |               | RESE-1001156       | 19-Aug-04 |      |      |      |      |      |        |        |                 |                  |                |        |                                   |       | 23.8              | 7.8  | 378.5                |        |         |            |
| DC 7.1 C |               | RESE-1001156       | 19-Aug-04 |      |      |      |      |      |        |        |                 |                  |                |        | 0.90                              |       |                   |      |                      |        |         | Del Mar    |
| DC 7.1 C |               | RESE-1001156       | 19-Aug-04 | 41.4 | 8.82 | 28.4 | 3.1  | 10.7 |        | 154.9  | 71.1            | 50.7             | 0.12           | 0.22   |                                   | 320   |                   |      |                      |        |         | SVL        |
| DC 7.1 C |               | RESE-1001171       | 12-Nov-04 |      |      |      |      |      |        |        |                 |                  |                |        |                                   |       | 12.4              | 8.0  | 279                  |        |         |            |
| DC 7.1 C |               | RESE-1001171       | 12-Nov-04 |      |      |      |      |      |        |        |                 |                  |                |        | <0.20                             |       |                   |      |                      |        |         | Del Mar    |
| DC 7.1 C |               | RESE-1001171       | 12-Nov-04 | 29.8 | 6.44 | 28.5 | 1.7  | 8.69 |        | 175.7  | 7.94            | 49.8             | <0.10          | 0.36   |                                   | 186   |                   |      |                      |        |         | SVL        |
| DC 7.1 C |               | RESE-1001193       | 16-Feb-05 |      |      |      |      |      |        |        |                 |                  |                |        |                                   |       | 10.5              | 7.7  | 72.1                 |        |         |            |
| DC 7.1 C |               | RESE-1001193       | 16-Feb-05 |      |      |      |      |      |        |        |                 |                  |                |        | 0.28                              |       |                   |      |                      |        |         | Del Mar    |
| DC 7.1 C |               | RESE-1001193       | 16-Feb-05 | 6.67 | 1.62 | 4.67 | 1.51 | 3.02 | _      | 15.5   | 12.6            | 25.0             | <0.100         | <0.100 |                                   | 80.0  |                   |      |                      |        |         | SVL        |
| DC 7.1 C |               | RESE-1001215       | 17-May-05 |      |      |      |      |      |        |        |                 |                  |                |        |                                   |       | 19.2              | 8.0  | 205.1                |        |         |            |
| DC 7.1 C |               | RESE-1001215       | 17-May-05 |      |      |      |      |      |        |        |                 |                  |                |        | <0.20                             |       |                   |      |                      |        |         | Del Mar    |
| DC 7.1 C |               | RESE-1001215       | 17-May-05 | 20.3 | 4.31 | 18.1 | 1.80 | 8.30 | _      | 113.3  | 6.33            | 39.3             | <0.100         |        |                                   | 161   |                   |      |                      |        |         | SVL        |
| DC 7.1 C |               | RESE-1001231       | 07-Sep-05 |      |      |      |      |      |        |        |                 |                  |                |        |                                   |       | 25.4              | 8.0  | 242.9                |        |         |            |
| DC 7.1 C |               | RESE-1001231       | 07-Sep-05 |      |      |      |      |      |        |        |                 |                  |                |        | <0.20                             |       |                   |      |                      |        |         | Del Mar    |
| DC 7.1 C |               | RESE-1001231       | 07-Sep-05 | 24.1 | 5.28 | 18.9 | 2.53 | 8.21 |        | 145.2  | 1.38            | 48.3             | 0.165          | 0.209  |                                   | 173   |                   |      |                      |        |         | SVL        |



| SAMPLE LOCATION | SAMPLE IDENTIFIER/ | SAMPLE    |      |      |      |      | CO      | MMON            | CONSTI | UENTS           | a (mg/L) | b      |          |                                   |        |                   | RO    | UTINE PARA           | METERS |         | ANALYTICAL  |
|-----------------|--------------------|-----------|------|------|------|------|---------|-----------------|--------|-----------------|----------|--------|----------|-----------------------------------|--------|-------------------|-------|----------------------|--------|---------|-------------|
|                 | DESCRIPTION        | DATE      |      |      |      |      |         |                 |        |                 |          |        |          |                                   |        |                   | FIELI | 0                    | LABOR  | RATORY  | LABORATORY  |
|                 |                    |           | Ca   | Mg   | Na   | К    | CI      | CO <sub>3</sub> | HCO₃   | SO <sub>4</sub> | SiO₂     | Br     | F        | NO <sub>3</sub> + NO <sub>2</sub> | TDS    | TEMP              | рН    | SC                   | рН     | SC      |             |
|                 |                    |           |      |      |      |      |         |                 |        |                 |          |        |          | (as N)                            |        | (°C) <sup>c</sup> |       | (μS/cm) <sup>a</sup> |        | (μS/cm) |             |
|                 |                    |           |      |      |      |      | S       | urface          | Water  |                 |          |        |          |                                   |        |                   |       |                      |        |         |             |
| DC 7.1 C        | RESE-1002195       | 30-Nov-11 |      |      |      |      |         |                 |        |                 |          |        |          |                                   |        | 11.3              | 8.3   | 297                  |        |         |             |
| DC 7.1 C        | RESE-1002195       | 30-Nov-11 |      |      |      |      |         |                 |        |                 | 43.7     |        |          |                                   |        |                   |       |                      |        |         | SVL         |
| DC 7.1 C        | RESE-1002195       | 30-Nov-11 | 30.8 | 7.05 | 29.6 | 1.53 | 11.1    |                 | 200.1  | 9.27            |          | <0.10  | 0.33     |                                   | 207    |                   |       |                      |        |         | SVL         |
| DC 8.1 C        | RESE-1002005       | 06-Aug-08 |      |      |      |      |         |                 |        |                 |          |        |          |                                   |        | 24.4              | 7.92  | 265.3                |        |         |             |
| DC 8.1 C        | RESE-1002005       | 06-Aug-08 | 26.6 | 5.41 | 21.9 | 1.53 | 7.00    |                 |        | 2.76            | 68.1     |        |          |                                   |        |                   |       |                      |        |         | SVL         |
| DC 8.1 C        | RESE-1002005       | 06-Aug-08 |      |      |      |      | 7.52    |                 | 165.9  | 2.37            |          | <0.100 | 0.509    |                                   | 230    |                   |       |                      |        |         | SVL         |
| DC 8.1 C        | RESE-1002005       | 06-Aug-08 |      |      |      |      |         |                 |        |                 |          |        |          | 0.21                              |        |                   |       |                      |        |         | TestAmerica |
| DC 8.1 C        | RESE-1002005       | 06-Aug-08 | 26.4 | 5.21 | 21.6 | 1.38 |         |                 |        |                 |          |        |          |                                   |        |                   |       |                      |        |         | SVL         |
| DC 8.1 C        | RESE-1002026       | 05-Nov-08 |      |      |      |      |         |                 |        |                 |          |        |          |                                   |        | 16.9              | 7.51  | 270.8                |        |         |             |
| DC 8.1 C        | RESE-1002026       | 05-Nov-08 |      |      |      |      |         |                 |        |                 | 57.6     |        |          |                                   |        |                   |       |                      |        |         | SVL         |
| DC 8.1 C        | RESE-1002026       | 05-Nov-08 |      |      |      |      | 6.40    |                 | 163.5  | 3.94            |          | <0.100 | 0.356    |                                   | 180    |                   |       |                      |        |         | SVL         |
| DC 8.1 C        | RESE-1002026       | 05-Nov-08 |      |      |      |      |         |                 |        |                 |          |        |          | < 0.30                            |        |                   |       |                      |        |         | TestAmerica |
| DC 8.1 C        | RESE-1002026       | 05-Nov-08 | 26.0 | 5.24 | 22.6 | 1.56 |         |                 |        |                 |          |        |          |                                   |        |                   |       |                      |        |         | SVL         |
| DC 8.1 C        | RESE-1002062       | 24-Feb-09 |      |      |      |      |         |                 |        |                 |          |        |          |                                   |        | 15.0              | 7.7   | 90                   |        |         |             |
| DC 8.1 C        | RESE-1002062       | 24-Feb-09 |      |      |      |      |         |                 |        |                 | 28.8     |        |          |                                   |        |                   |       |                      |        |         | SVL         |
| DC 8.1 C        | RESE-1002062       | 24-Feb-09 |      |      |      |      | 4.46    |                 | 17.6   | 13.5            |          | <0.100 | <0.100   |                                   | 143    |                   |       |                      |        |         | SVL         |
| DC 8.1 C        | RESE-1002062       | 24-Feb-09 | 6.25 | 1.62 | 5.34 | 1.23 |         |                 |        |                 |          |        |          |                                   |        |                   |       |                      |        |         | SVL         |
| DC 8.1 C        | RESE-1002098       | 19-May-09 |      |      |      |      |         |                 |        |                 |          |        |          |                                   |        | 24.0              | 8.12  | 262                  |        |         |             |
| DC 8.1 C        | RESE-1002098       | 19-May-09 |      |      |      |      |         |                 |        |                 | 64.1     |        |          |                                   |        |                   |       |                      |        |         | SVL         |
| DC 8.1 C        | RESE-1002098       | 19-May-09 |      |      |      |      | 7.34    |                 | 152.5  | 2.80            |          | <0.100 | 0.556    |                                   | 205    |                   |       |                      |        |         | SVL         |
| DC 8.1 C        | RESE-1002098       | 19-May-09 | 25.8 | 5.23 | 21.5 | 1.37 |         |                 |        |                 |          |        |          |                                   |        |                   |       |                      |        |         | SVL         |
| DC 8.1 C        | RESE-1002160       | 10-Nov-10 |      |      |      |      |         |                 |        |                 |          |        |          |                                   |        | 13.8              | 7.41  | 270.7                |        |         |             |
| DC 8.1 C        | RESE-1002160       | 10-Nov-10 |      |      |      |      |         |                 |        |                 | 64.8     |        |          |                                   |        |                   |       |                      |        |         | SVL         |
| DC 8.1 C        | RESE-1002160       | 10-Nov-10 |      |      |      |      | 7.77 j- |                 | 173.2  | 4.08 j-         |          | <0.100 | 0.243 j- |                                   | 219 j- |                   |       |                      |        |         | SVL         |
| DC 8.1 C        | RESE-1002160       | 10-Nov-10 | 29.6 | 6.08 | 24.8 | 1.66 |         |                 |        |                 |          |        |          |                                   |        |                   |       |                      |        |         | SVL         |
| DC 8.1 C        | RESE-1002187       | 31-Aug-11 |      |      |      |      |         |                 |        |                 |          |        |          |                                   |        | 24                | 8.05  | 276                  |        |         |             |
| DC 8.1 C        | RESE-1002187       | 31-Aug-11 |      |      |      |      |         |                 |        |                 | 71.4     |        |          |                                   |        |                   |       |                      |        |         | SVL         |
| DC 8.1 C        | RESE-1002187       | 31-Aug-11 | 32.9 | 6.07 | 25.4 | 1.16 | 7.42    |                 | 169.6  | 3.83            |          | 0.14   | 0.33     |                                   | 224    |                   |       |                      |        |         | SVL         |
| DC 8.1 C        | RESE-1002194       | 30-Nov-11 |      |      |      |      |         |                 |        |                 |          |        |          |                                   |        | 11.7              | 7.79  | 287                  |        |         |             |
| DC 8.1 C        | RESE-1002194       | 30-Nov-11 |      |      |      |      |         |                 |        |                 | 58.7     |        |          |                                   |        |                   |       |                      |        |         | SVL         |
| DC 8.1 C        | RESE-1002194       | 30-Nov-11 | 30.6 | 6.47 | 28.1 | 1.42 | 8.86    |                 | 198.9  | 6.26            |          | <0.10  | 0.26     |                                   | 231    |                   |       |                      |        |         | SVL         |
| DC 8.2 W        | RESE-1001006       | 20-May-03 |      |      |      |      |         |                 |        |                 |          |        |          |                                   |        | 23.6              | 7.6   | 266                  |        |         |             |
| DC 8.2 W        | RESE-1001006       | 20-May-03 |      |      |      |      |         |                 |        |                 |          | <0.10  | 0.34     |                                   |        |                   |       |                      |        |         | SVL         |
| DC 8.2 W        | RESE-1001006       | 20-May-03 |      |      |      |      |         |                 |        |                 |          |        |          | 0.49                              |        |                   |       |                      |        |         | Del Mar     |
| DC 8.2 W        | RESE-1001006       | 20-May-03 | 29.3 | 5.50 | 22.1 | 1.0  | 4.77    |                 | 165.9  | 4.14            | 70.4     |        |          |                                   | 231    |                   |       |                      |        |         | SVL         |
| DC 8.2 W        | RESE-1001017       | 21-Aug-03 |      |      |      |      |         |                 |        |                 |          |        |          |                                   |        | 23.4              | 7.2   | 229                  |        |         |             |
| DC 8.2 W        | RESE-1001017       | 21-Aug-03 |      |      |      |      |         |                 |        |                 |          | <0.10  | 0.37     |                                   |        |                   |       |                      |        |         | SVL         |
| DC 8.2 W        | RESE-1001017       | 21-Aug-03 |      |      |      |      |         |                 |        |                 |          |        |          | 0.38                              |        |                   |       |                      |        |         | Del Mar     |
| DC 8.2 W        | RESE-1001017       | 21-Aug-03 | 29.6 | 6.05 | 22.1 | <1.0 | 4.70    |                 | 175.7  | 3.63            | 76.1     |        |          |                                   | 218    |                   |       |                      |        |         | SVL         |



| SAMPLE LOCATION |              |           |      |      |      |      | COI  | MMON   | CONSTIT | UENTS           | <sup>a</sup> (mg/L) | ) <sup>b</sup> |        |                                          |     |                           | RO   | UTINE PARA                 | METERS | j             | ANALYTICAL  |
|-----------------|--------------|-----------|------|------|------|------|------|--------|---------|-----------------|---------------------|----------------|--------|------------------------------------------|-----|---------------------------|------|----------------------------|--------|---------------|-------------|
|                 | DESCRIPTION  | DATE      |      |      |      |      |      |        |         |                 |                     |                |        |                                          |     |                           | FIEL | D                          | LABO   | RATORY        | LABORATORY  |
|                 |              |           | Ca   | Mg   | Na   | K    | Cl   | CO₃    | HCO₃    | SO <sub>4</sub> | SiO <sub>2</sub>    | Br             | F      | NO <sub>3</sub> + NO <sub>2</sub> (as N) | TDS | TEMP<br>(°C) <sup>c</sup> | рН   | SC<br>(µS/cm) <sup>d</sup> | рН     | SC<br>(μS/cm) |             |
|                 | ·            |           |      | •    |      |      | Sı   | urface | Water   |                 | •                   | •              | •      |                                          |     |                           |      |                            |        |               |             |
| DC 8.2 W        | RESE-1001044 | 12-Nov-03 |      |      |      |      |      |        |         |                 |                     |                |        |                                          |     | 22.7                      | 7.1  | 273.6                      |        |               |             |
| DC 8.2 W        | RESE-1001044 | 12-Nov-03 |      |      |      |      |      |        |         |                 |                     |                |        | 0.30                                     |     |                           |      |                            |        |               | Del Mar     |
| DC 8.2 W        | RESE-1001044 | 12-Nov-03 | 29.2 | 5.97 | 22.2 | 1.0  | 4.90 |        | 163.5   | 4.11            | 72.8                | <0.10          | 0.39   |                                          | 197 |                           |      |                            |        |               | SVL         |
| DC 8.2 W        | RESE-1001063 | 17-Feb-04 |      |      |      |      |      |        |         |                 |                     |                |        |                                          |     | 22.8                      | 7.2  | 244                        |        |               |             |
| DC 8.2 W        | RESE-1001063 | 17-Feb-04 |      |      |      |      |      |        |         |                 |                     |                |        |                                          | 146 |                           |      |                            |        |               | SVL         |
| DC 8.2 W        | RESE-1001063 | 17-Feb-04 |      |      |      |      |      |        |         |                 |                     |                |        | 0.57                                     |     |                           |      |                            |        |               | Del Mar     |
| DC 8.2 W        | RESE-1001063 | 17-Feb-04 | 28.3 | 5.07 | 21.1 | 1.01 | 4.77 |        | 164.7   | 4.0             |                     | <0.10          | 0.343  |                                          | 180 |                           |      |                            |        |               | SVL         |
| DC 8.2 W        | RESE-1001079 | 21-May-04 |      |      |      |      |      |        |         |                 |                     |                |        |                                          |     | 23.1                      | 7.6  | 276                        |        |               |             |
| DC 8.2 W        | RESE-1001079 | 21-May-04 |      |      |      |      |      |        |         |                 |                     |                |        | 0.40                                     |     |                           |      |                            |        |               | Del Mar     |
| DC 8.2 W        | RESE-1001079 | 21-May-04 | 28.1 | 5.26 | 21.7 | <1.0 | 4.65 | -      | 174.5   | 3.98            | 71.3                | 0.12           | 0.35   |                                          | 198 |                           |      |                            |        |               | SVL         |
| DC 8.2 W        | RESE-1001152 | 16-Aug-04 |      |      |      |      |      |        |         |                 |                     |                |        |                                          |     | 23.3                      | 7.4  | 274                        |        |               |             |
| DC 8.2 W        | RESE-1001152 | 16-Aug-04 |      |      |      |      |      |        |         |                 |                     |                |        | 0.34                                     |     |                           |      |                            |        |               | Del Mar     |
| DC 8.2 W        | RESE-1001152 | 16-Aug-04 | 28.1 | 5.15 | 21.2 | <1.0 | 4.94 |        | 178.1   | 4.09            | 70.7                | <0.10          | 0.35   |                                          | 210 |                           |      |                            |        |               | SVL         |
| DC 8.2 W        | RESE-1001175 | 16-Nov-04 |      |      |      |      |      |        |         |                 |                     |                |        |                                          |     | 15.5                      | 7.3  | 311                        |        |               |             |
| DC 8.2 W        | RESE-1001175 | 16-Nov-04 |      |      |      |      |      |        |         |                 |                     |                |        | <0.20                                    |     |                           |      |                            |        |               | Del Mar     |
| DC 8.2 W        | RESE-1001175 | 16-Nov-04 | 30.6 | 5.93 | 24.0 | 1.02 | 5.64 |        | 178.1   | 5.45            | 70.0                | <0.10          | 0.32   |                                          | 221 |                           |      |                            |        |               | SVL         |
| DC 8.2 W        | RESE-1001196 | 25-Feb-05 |      |      |      |      |      |        |         |                 |                     |                |        |                                          |     | 22.4                      | 7.5  | 273.8                      |        |               |             |
| DC 8.2 W        | RESE-1001196 | 25-Feb-05 |      |      |      |      |      |        |         |                 |                     |                |        | 0.51                                     |     |                           |      |                            |        |               | Del Mar     |
| DC 8.2 W        | RESE-1001196 | 25-Feb-05 | 28.8 | 5.30 | 21.5 | 1.11 | 4.61 |        | 158.6   | 4.65            | 70.2                | <0.100         | 0.282  |                                          | 201 |                           |      |                            |        |               | SVL         |
| DC 8.2 W        | RESE-1001212 | 11-May-05 |      |      |      |      |      |        |         |                 |                     |                |        |                                          |     | 22.7                      | 7.4  | 205.6                      |        |               |             |
| DC 8.2 W        | RESE-1001212 | 11-May-05 |      |      |      |      |      |        |         |                 |                     |                |        | 0.49                                     |     |                           |      |                            |        |               | Del Mar     |
| DC 8.2 W        | RESE-1001212 | 11-May-05 | 28.5 | 5.20 | 20.7 | 0.87 | 5.04 |        | 159.8   | 4.17            | 67.3                | <0.100         | 0.293  |                                          | 158 |                           |      |                            |        |               | SVL         |
| DC 8.2 W        | RESE-1001227 | 16-Aug-05 |      |      |      |      |      |        |         |                 |                     |                |        |                                          |     | 23.4                      | 7.4  | 267.7                      |        |               |             |
| DC 8.2 W        | RESE-1001227 | 16-Aug-05 |      |      |      |      |      |        |         |                 |                     |                |        | 0.46                                     |     |                           |      |                            |        |               | Del Mar     |
| DC 8.2 W        | RESE-1001227 | 16-Aug-05 | 27.9 | 5.27 | 21.6 | 1.03 | 4.80 |        | 162.3   | 4.02            | 72.7                | 0.117          | 0.266  |                                          | 212 |                           |      |                            |        |               | SVL         |
| DC 8.2 W        | RESE-1000260 | 19-Feb-08 | 29   | 5.6  | 25   | 1.3  |      |        |         |                 | 71                  |                |        |                                          |     |                           |      |                            |        |               | TestAmerica |
| DC 8.2 W        | RESE-1000260 | 19-Feb-08 |      |      |      |      | 4.9  |        | 170.8   | 4.7             |                     | <0.50          | 0.40   | 0.65                                     | 230 |                           |      |                            |        |               | TestAmerica |
| DC 8.2 W        | RESE-1003002 | 27-May-08 |      |      |      |      |      |        |         |                 |                     |                |        |                                          |     |                           | 6.8  | 274.8                      |        |               |             |
| DC 8.2 W        | RESE-1003002 | 27-May-08 | 28   | 5.3  | 21   | <2.0 |      |        |         |                 | 69                  |                |        |                                          |     |                           |      |                            |        |               | TestAmerica |
| DC 8.2 W        | RESE-1003002 | 27-May-08 |      |      |      |      | 4.8  |        | 134.2   | 4.0             |                     | < 0.50         | < 0.40 | 0.60                                     | 230 |                           |      |                            | 7.32   | 270           | TestAmerica |
| DC 8.2 W        | RESE-1002004 | 06-Aug-08 |      |      |      |      |      |        |         |                 |                     |                |        |                                          |     | 23.5                      | 7.57 | 264                        |        |               |             |
| DC 8.2 W        | RESE-1002004 | 06-Aug-08 | 27.4 | 5.15 | 21.3 | 1.04 | 4.97 |        |         | 4.67            | 73.5                |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| DC 8.2 W        | RESE-1002004 | 06-Aug-08 |      |      |      |      | 5.13 |        | 163.5   | 4.06            |                     | <0.100         | 0.429  |                                          | 230 |                           |      |                            |        |               | SVL         |
| DC 8.2 W        | RESE-1002004 | 06-Aug-08 |      |      |      |      |      |        |         |                 |                     |                |        | 0.57                                     |     |                           |      |                            |        |               | TestAmerica |
| DC 8.2 W        | RESE-1002004 | 06-Aug-08 | 27.5 | 5.13 | 21.5 | 0.92 |      |        |         |                 |                     |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| DC 8.2 W        | RESE-1002027 | 05-Nov-08 |      |      |      |      |      |        |         |                 |                     |                |        |                                          |     | 21.6                      | 7.27 | 281.7                      |        |               |             |
| DC 8.2 W        | RESE-1002027 | 05-Nov-08 |      |      |      |      |      |        |         |                 | 69.5                |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| DC 8.2 W        | RESE-1002027 | 05-Nov-08 |      |      |      |      | 5.06 |        | 168.4   | 4.12            |                     | <0.100         | 0.427  |                                          | 210 |                           |      |                            |        |               | SVL         |
| DC 8.2 W        | RESE-1002027 | 05-Nov-08 |      |      |      |      |      |        |         |                 |                     |                |        | 0.47                                     |     |                           |      |                            |        |               | TestAmerica |
| DC 8.2 W        | RESE-1002027 | 05-Nov-08 | 28.0 | 5.20 | 22.5 | 1.07 |      |        |         |                 |                     |                |        |                                          |     |                           |      |                            |        |               | SVL         |



| SAMPLE LOCATION |              |           |      |      |      |      | COI     | MMON   | CONSTI | UENTS           | a (mg/L)         | ) <sup>b</sup> |          |                                          |        |                           | RO   | UTINE PARA                 | METERS | j             | ANALYTICAL  |
|-----------------|--------------|-----------|------|------|------|------|---------|--------|--------|-----------------|------------------|----------------|----------|------------------------------------------|--------|---------------------------|------|----------------------------|--------|---------------|-------------|
|                 | DESCRIPTION  | DATE      |      |      |      |      |         |        |        |                 |                  |                |          |                                          |        |                           | FIEL | D                          | LABO   | RATORY        | LABORATORY  |
|                 |              |           | Ca   | Mg   | Na   | К    | Cl      | CO₃    | HCO₃   | SO <sub>4</sub> | SiO <sub>2</sub> | Br             | F        | NO <sub>3</sub> + NO <sub>2</sub> (as N) | TDS    | TEMP<br>(°C) <sup>c</sup> | рН   | SC<br>(μS/cm) <sup>d</sup> | рН     | SC<br>(μS/cm) |             |
|                 |              |           |      |      |      |      | Sı      | urface | Water  |                 |                  |                |          |                                          |        |                           |      |                            |        |               |             |
| DC 8.2 W        | RESE-1003023 | 02-Dec-08 |      |      |      |      |         |        |        |                 |                  |                |          |                                          |        | 23.1                      | 6.87 | 271.1                      |        |               |             |
| DC 8.2 W        | RESE-1003023 | 02-Dec-08 | 30   | 5.8  | 21   | <2.0 |         |        |        |                 | 73               |                |          |                                          |        |                           |      |                            |        |               | TestAmerica |
| DC 8.2 W        | RESE-1003023 | 02-Dec-08 |      |      |      |      | 5.1     |        | 170.8  | 4.0             |                  | < 0.50         | 0.45     | 0.62                                     | 210    |                           |      |                            | 7.25   | 280           | TestAmerica |
| DC 8.2 W        | RESE-1002063 | 24-Feb-09 |      |      |      |      |         |        |        |                 |                  |                |          |                                          |        | 24.6                      | 7.31 | 263                        |        |               |             |
| DC 8.2 W        | RESE-1002063 | 24-Feb-09 |      |      |      |      |         |        |        |                 | 65.5             |                |          |                                          |        |                           |      |                            |        |               | SVL         |
| DC 8.2 W        | RESE-1002063 | 24-Feb-09 |      |      |      |      | 5.11    | -      | 147.6  | 5.61            |                  | <0.100         | 0.269    |                                          | 240    |                           |      |                            |        |               | SVL         |
| DC 8.2 W        | RESE-1002063 | 24-Feb-09 | 24.8 | 4.65 | 19.4 | 1.01 |         |        |        |                 |                  |                |          |                                          |        |                           |      |                            |        |               | SVL         |
| DC 8.2 W        | RESE-1002097 | 19-May-09 |      |      |      |      |         |        |        |                 |                  |                |          |                                          |        | 24.8                      | 6.88 | 243                        |        |               |             |
| DC 8.2 W        | RESE-1002097 | 19-May-09 |      |      |      |      |         |        |        |                 | 75.5             |                |          |                                          |        |                           |      |                            |        |               | SVL         |
| DC 8.2 W        | RESE-1002097 | 19-May-09 |      |      |      |      | 6.41    |        | 158.6  | 4.32            |                  | 0.114          | 0.717    |                                          | 214    |                           |      |                            |        |               | SVL         |
| DC 8.2 W        | RESE-1002097 | 19-May-09 | 28.7 | 5.47 | 23.0 | 0.96 |         |        |        |                 |                  |                |          |                                          |        |                           |      |                            |        |               | SVL         |
| DC 8.2 W        | RESE-1002159 | 10-Nov-10 |      |      |      |      |         |        |        |                 |                  |                |          |                                          |        | 20.1                      | 7.19 | 260.4                      |        |               |             |
| DC 8.2 W        | RESE-1002159 | 10-Nov-10 |      |      |      |      |         |        |        |                 | 78.5             |                |          |                                          |        |                           |      |                            |        |               | SVL         |
| DC 8.2 W        | RESE-1002159 | 10-Nov-10 |      |      |      |      | 5.13 j- |        | 170.8  | 3.49 j-         |                  | <0.100         | 0.274 j- |                                          | 226 j- |                           |      |                            |        |               | SVL         |
| DC 8.2 W        | RESE-1002159 | 10-Nov-10 | 33   | 6.27 | 22.9 | 1.32 |         |        |        |                 |                  |                |          |                                          |        |                           |      |                            |        |               | SVL         |
| DC 8.8 C        | RESE-1001005 | 20-May-03 |      |      |      |      |         |        |        |                 |                  |                |          |                                          |        | 17.2                      | 7.9  | 218                        |        |               | •           |
| DC 8.8 C        | RESE-1001005 | 20-May-03 |      |      |      |      |         |        |        |                 |                  | 0.12           | 0.23     |                                          |        |                           |      |                            |        |               | SVL         |
| DC 8.8 C        | RESE-1001005 | 20-May-03 |      |      |      |      |         |        |        |                 |                  |                |          | <0.10                                    |        |                           |      |                            |        |               | Del Mar     |
| DC 8.8 C        | RESE-1001005 | 20-May-03 | 22.5 | 4.50 | 19.0 | 1.2  | 6.02    | -      | 117.2  | 12.8            | 56.0             |                |          |                                          | 241    |                           |      |                            |        |               | SVL         |
| DC 8.8 C        | RESE-1001018 | 21-Aug-03 |      |      |      |      |         |        |        |                 |                  |                |          |                                          |        | 22.4                      | 7.6  | 302                        |        |               |             |
| DC 8.8 C        | RESE-1001018 | 21-Aug-03 |      |      |      |      |         |        |        |                 |                  | <0.10          | 0.42     |                                          |        |                           |      |                            |        |               | SVL         |
| DC 8.8 C        | RESE-1001018 | 21-Aug-03 |      |      |      |      |         |        |        |                 |                  |                |          | <0.10                                    |        |                           |      |                            |        |               | Del Mar     |
| DC 8.8 C        | RESE-1001018 | 21-Aug-03 | 31.3 | 6.28 | 27.5 | <1.0 | 5.95    |        | 198.9  | 4.71            | 82.3             |                |          |                                          | 241    |                           |      |                            |        |               | SVL         |
| DC 8.8 C        | RESE-1001042 | 12-Nov-03 |      |      |      |      |         |        |        |                 |                  |                |          |                                          |        | 14.5                      | 6.8  | 232.5                      |        |               |             |
| DC 8.8 C        | RESE-1001042 | 12-Nov-03 |      |      |      |      |         |        |        |                 |                  |                |          | <0.10                                    |        |                           |      |                            |        |               | Del Mar     |
| DC 8.8 C        | RESE-1001042 | 12-Nov-03 | 28.4 | 6.20 | 25.0 | 1.3  | 7.02    |        | 154.9  | 15.7            | 66.9             | <0.10          | 0.35     |                                          | 198    |                           |      |                            |        |               | SVL         |
| DC 8.8 C        | RESE-1001062 | 17-Feb-04 |      |      |      |      |         |        |        |                 |                  |                |          |                                          |        | 7.0                       | 7.0  | 128.6                      |        |               |             |
| DC 8.8 C        | RESE-1001062 | 17-Feb-04 |      |      |      |      |         |        |        |                 |                  |                |          |                                          | 75.5   |                           |      |                            |        |               | SVL         |
| DC 8.8 C        | RESE-1001062 | 17-Feb-04 |      |      |      |      |         |        |        |                 |                  |                |          | <0.10                                    |        |                           |      |                            |        |               | Del Mar     |
| DC 8.8 C        | RESE-1001062 | 17-Feb-04 | 12.3 | 2.57 | 10.6 | 1.08 | 4.50    |        | 52.7   | 18.2            |                  | <0.10          | 0.137    |                                          | 73.0   |                           |      |                            |        |               | SVL         |
| DC 8.8 C        | RESE-1001078 | 21-May-04 |      |      |      |      |         |        |        |                 |                  |                |          |                                          |        | 15.8                      | 8.0  | 220                        |        |               |             |
| DC 8.8 C        | RESE-1001078 | 21-May-04 |      |      |      |      |         |        |        |                 |                  |                |          | <0.20                                    |        |                           |      |                            |        |               | Del Mar     |
| DC 8.8 C        | RESE-1001078 | 21-May-04 | 22.3 | 4.40 | 19.3 | 1.2  | 5.95    |        | 133    | 7.06            | 59.2             | 0.13           | 0.29     |                                          | 190    |                           |      |                            |        |               | SVL         |
| DC 8.8 C LD     | RESE-1001078 | 21-May-04 |      |      |      |      |         |        |        |                 |                  |                |          | <2.0                                     |        |                           |      |                            |        |               | Del Mar     |
| DC 8.8 C        | RESE-1001151 | 16-Aug-04 |      |      |      |      |         |        |        |                 |                  |                |          |                                          |        | 19.9                      | 7.8  | 337.5                      |        |               |             |
| DC 8.8 C        | RESE-1001151 | 16-Aug-04 |      |      |      |      |         |        |        |                 |                  |                |          | <0.20                                    |        |                           |      |                            |        |               | Del Mar     |
| DC 8.8 C        | RESE-1001151 | 16-Aug-04 | 32.7 | 6.03 | 30.6 | 1.4  | 9.85    |        | 214.7  | 9.06            | 70.1             | <0.10          | 0.39     |                                          | 256    |                           |      |                            |        |               | SVL         |
| DC 8.8 C        | RESE-1001174 | 16-Nov-04 |      |      |      |      |         |        |        |                 |                  |                |          |                                          |        | 10.7                      | 7.6  | 297                        |        |               |             |
| DC 8.8 C        | RESE-1001174 | 16-Nov-04 |      |      |      |      |         |        |        |                 |                  |                |          | <0.20                                    |        |                           |      |                            |        |               | Del Mar     |
| DC 8.8 C        | RESE-1001174 | 16-Nov-04 | 30.8 | 6.10 | 27.8 | 1.22 | 6.42    |        | 180.6  | 5.34            | 70.0             | 0.12           | 0.35     |                                          | 242    |                           |      |                            |        |               | SVL         |



| SAMPLE LOCATION            | SAMPLE IDENTIFIER/ | SAMPLE    |      |      |      |      | CON  | MON      | CONSTIT | UENTS           | a (mg/L)         | ) <sup>b</sup> |        |                                          |       |                           | RO   | UTINE PARA                 | METERS |               | ANALYTICAL  |
|----------------------------|--------------------|-----------|------|------|------|------|------|----------|---------|-----------------|------------------|----------------|--------|------------------------------------------|-------|---------------------------|------|----------------------------|--------|---------------|-------------|
|                            | DESCRIPTION        | DATE      |      |      |      |      |      |          |         |                 |                  |                |        |                                          |       |                           | FIEL | D                          | LABO   | RATORY        | LABORATORY  |
|                            |                    |           | Са   | Mg   | Na   | K    | Cl   | CO₃      | HCO₃    | SO <sub>4</sub> | SiO <sub>2</sub> | Br             | F      | NO <sub>3</sub> + NO <sub>2</sub> (as N) | TDS   | TEMP<br>(°C) <sup>c</sup> | рН   | SC<br>(μS/cm) <sup>d</sup> | рН     | SC<br>(μS/cm) |             |
|                            |                    |           |      |      |      |      | Sı   | ırface \ | Water   |                 |                  |                |        |                                          |       |                           |      |                            |        |               |             |
| DC 8.8 C                   | RESE-1001197       | 25-Feb-05 |      |      |      |      |      |          |         |                 |                  |                |        |                                          |       | 11.0                      | 7.8  | 66.7                       |        |               |             |
| DC 8.8 C                   | RESE-1001197       | 25-Feb-05 |      |      |      |      |      |          |         |                 |                  |                |        | 0.22                                     |       |                           |      |                            |        |               | Del Mar     |
| DC 8.8 C                   | RESE-1001197       | 25-Feb-05 | 5.68 | 1.50 | 4.50 | 1.46 | 2.81 | -        | 13.1    | 10.8            | 25.9             | <0.100         | <0.100 |                                          | 76.0  |                           |      |                            |        |               | SVL         |
| DC 8.8 C                   | RESE-1001211       | 11-May-05 |      |      |      |      |      |          |         |                 |                  |                |        |                                          |       | 13.7                      | 7.7  | 170.1                      |        |               |             |
| DC 8.8 C                   | RESE-1001211       | 11-May-05 |      |      |      |      |      |          |         |                 |                  |                |        | <0.20                                    |       |                           |      |                            |        |               | Del Mar     |
| DC 8.8 C                   | RESE-1001211       | 11-May-05 | 17.0 | 3.46 | 13.6 | 1.22 | 7.38 | -        | 86.1    | 9.69            | 43.9             | 0.115          | 0.164  |                                          | 96    |                           |      |                            |        |               | SVL         |
| DC 8.8 C                   | RESE-1001228       | 16-Aug-05 |      |      |      |      |      |          |         |                 |                  |                |        |                                          |       | 22.3                      | 7.8  | 116                        |        |               |             |
| DC 8.8 C                   | RESE-1001228       | 16-Aug-05 |      |      |      |      |      |          |         |                 |                  |                |        | 0.33                                     |       |                           |      |                            |        |               | Del Mar     |
| DC 8.8 C                   | RESE-1001228       | 16-Aug-05 | 9.79 | 2.39 | 7.92 | 2.21 | 5.37 |          | 37.2    | 14.9            | 35.0             | <0.100         | <0.100 |                                          | 111   |                           |      |                            |        |               | SVL         |
| Government Springs         | RESE-1002112       | 15-Dec-09 |      |      |      |      |      |          |         |                 |                  |                |        |                                          |       |                           | 7.23 |                            |        |               |             |
| Government Springs         | RESE-1002112       | 15-Dec-09 |      |      |      |      |      |          |         |                 | 41.6             |                |        |                                          |       |                           |      |                            |        |               | SVL         |
| Government Springs         | RESE-1002112       | 15-Dec-09 |      |      |      |      | 17.9 | -        | 370.9   | 49.3            |                  | 0.134          | 0.386  |                                          | 423   |                           |      |                            |        |               | SVL         |
| Government Springs         | RESE-1002112       | 15-Dec-09 | 78.3 | 28.7 | 27.3 | 1.90 |      |          |         |                 |                  |                |        |                                          |       |                           |      |                            |        |               | SVL         |
| Government Springs         | RESE-1002130       | 18-Mar-10 |      |      |      |      |      |          |         |                 |                  |                |        |                                          |       | 21.9                      | 6.94 | 583                        |        |               |             |
| Government Springs         | RESE-1002181       | 29-Aug-11 |      |      |      |      |      |          |         |                 |                  |                |        |                                          |       | 21.9                      | 7.23 | 612                        |        |               |             |
| Government Springs         | RESE-1002181       | 29-Aug-11 |      |      |      |      |      |          |         |                 | 38.6             |                |        |                                          |       |                           |      |                            |        |               | SVL         |
| Government Springs         | RESE-1002181       | 29-Aug-11 | 79.8 | 27.8 | 26.9 | 2.41 | 15.6 |          | 381.9   | 44.7            |                  | 0.15           | 0.35   |                                          | 437   |                           |      |                            |        |               | SVL         |
| Government Springs         | RESE-1002199       | 08-Dec-11 |      |      |      |      |      |          |         |                 |                  |                |        |                                          |       | 21.3                      | 7.28 | 565                        |        |               |             |
| Government Springs         | RESE-1002199       | 08-Dec-11 |      |      |      |      |      |          |         |                 | 39.7             |                |        |                                          |       |                           |      |                            |        |               | SVL         |
| Government Springs         | RESE-1002199       | 08-Dec-11 | 85.4 | 30.5 | 28.7 | 2.45 | 19.0 | -        | 377     | 49.9            |                  | 0.12           | 0.59   |                                          | 424   |                           |      |                            |        |               | SVL         |
| H 0.1 C (Hackberry Canyon) | RESE-1002011       | 19-Aug-08 |      |      |      |      |      |          |         |                 |                  |                |        |                                          |       | 33.1                      | 9.52 | 172                        |        |               |             |
| H 0.1 C (Hackberry Canyon) | RESE-1002011       | 19-Aug-08 | 16.7 | 2.87 | 10.9 | 2.11 | 5.78 | 24.2     |         | 7.54            | 33.5             |                |        |                                          |       |                           |      |                            |        |               | SVL         |
| H 0.1 C (Hackberry Canyon) | RESE-1002011       | 19-Aug-08 | 18   | 2.94 | 11.3 | 2.3  | 5.92 |          | 41.2    | 7.55            |                  | <0.100         | <0.100 |                                          | 120 j |                           |      |                            |        |               | SVL         |
| H 0.1 C (Hackberry Canyon) | RESE-1002011       | 19-Aug-08 |      |      |      |      |      |          |         |                 |                  |                |        |                                          |       |                           |      |                            |        |               | TestAmerica |
| H 0.1 C (Hackberry Canyon) | RESE-1002028       | 05-Nov-08 |      |      |      |      |      |          |         |                 |                  |                |        |                                          |       | 11.7                      | 7.83 | 298                        |        |               |             |
| H 0.1 C (Hackberry Canyon) | RESE-1002028       | 05-Nov-08 |      |      |      |      |      |          |         |                 | 31.7             |                |        |                                          |       |                           |      |                            |        |               | SVL         |
| H 0.1 C (Hackberry Canyon) | RESE-1002028       | 05-Nov-08 |      |      |      |      | 6.52 |          | 170.8   | 12.5            |                  | <0.100         | 0.315  |                                          | 190   |                           |      |                            |        |               | SVL         |
| H 0.1 C (Hackberry Canyon) | RESE-1002028       | 05-Nov-08 |      |      |      |      |      |          |         |                 |                  |                |        | <0.30                                    |       |                           |      |                            |        |               | TestAmerica |
| H 0.1 C (Hackberry Canyon) | RESE-1002028       | 05-Nov-08 | 30.5 | 6.64 | 20.8 | 2.28 |      |          |         |                 |                  |                |        |                                          |       |                           |      |                            |        |               | SVL         |
| H 0.1 C (Hackberry Canyon) | RESE-1002061       | 24-Feb-09 |      |      |      |      |      |          |         |                 |                  |                |        |                                          |       | 13.1                      | 7.63 | 102                        |        |               |             |
| H 0.1 C (Hackberry Canyon) | RESE-1002061       | 24-Feb-09 |      |      |      |      |      |          |         |                 | 25.1             |                |        |                                          |       |                           |      |                            |        | _             | SVL         |
| H 0.1 C (Hackberry Canyon) | RESE-1002061       | 24-Feb-09 |      |      |      |      | 3.68 |          | 20.4    | 18.5            |                  | <0.100         | <0.100 |                                          | 142   |                           |      |                            |        |               | SVL         |
| H 0.1 C (Hackberry Canyon) | RESE-1002061       | 24-Feb-09 | 7.53 | 1.68 | 5.32 | 1.38 |      |          |         |                 |                  |                |        |                                          |       |                           |      |                            |        |               | SVL         |
| H 0.1 C (Hackberry Canyon) | RESE-1002096       | 19-May-09 |      |      |      |      |      |          |         |                 |                  |                |        |                                          |       | 28.5                      | 8.74 | 269                        |        |               |             |
| H 0.1 C (Hackberry Canyon) | RESE-1002096       | 19-May-09 |      |      |      |      |      |          |         |                 | 56.3             |                |        |                                          |       |                           |      |                            |        |               | SVL         |
| H 0.1 C (Hackberry Canyon) | RESE-1002096       | 19-May-09 |      |      |      |      | 8.87 | -        | 142.7   | 12.0            |                  | 0.126          | 0.477  |                                          | 214   |                           |      |                            |        |               | SVL         |
| H 0.1 C (Hackberry Canyon) | RESE-1002096       | 19-May-09 | 25.6 | 6.82 | 26.6 | 2.35 |      |          |         |                 |                  |                |        |                                          |       |                           |      |                            |        |               | SVL         |



| SAMPLE LOCATION                | SAMPLE IDENTIFIER/ | SAMPLE    |      |      |      |         | COI  | MMON   | CONSTIT | UENTS           | a (mg/L)         | b      |       |                                   |     |                   | RO   | UTINE PARA           | METERS |         | ANALYTICAL         |
|--------------------------------|--------------------|-----------|------|------|------|---------|------|--------|---------|-----------------|------------------|--------|-------|-----------------------------------|-----|-------------------|------|----------------------|--------|---------|--------------------|
|                                | DESCRIPTION        | DATE      |      |      |      |         |      |        |         |                 |                  |        |       |                                   |     |                   | FIEL | D                    | LABOI  | RATORY  | LABORATORY         |
|                                |                    |           | Ca   | Mg   | Na   | K       | Cl   | CO₃    | HCO₃    | SO <sub>4</sub> | SiO <sub>2</sub> | Br     | F     | NO <sub>3</sub> + NO <sub>2</sub> | TDS | TEMP              | рН   | SC                   | рН     | SC      |                    |
|                                |                    |           |      |      |      |         |      |        |         |                 |                  |        |       | (as N)                            |     | (°C) <sup>c</sup> | -    | (µS/cm) <sup>d</sup> | •      | (µS/cm) |                    |
|                                |                    |           |      | •    | •    |         | Sı   | urface | Water   |                 | •                |        |       |                                   |     |                   |      |                      |        | 1       |                    |
| H 0.1 C (Hackberry Canyon)     | RESE-1002158       | 10-Nov-10 |      |      |      |         |      |        |         |                 |                  |        |       |                                   |     | 8.1               | 6.8  | 206.0                |        |         |                    |
| H 0.1 C (Hackberry Canyon)     | RESE-1002158       | 10-Nov-10 |      |      |      |         |      |        |         |                 | 35.4             |        |       |                                   |     |                   |      |                      |        |         | SVL                |
| H 0.1 C (Hackberry Canyon)     | RESE-1002158       | 10-Nov-10 |      |      |      |         | 5.85 |        | 112.7   | 10.0            |                  | <0.100 | 0.210 |                                   | 153 |                   |      |                      |        |         | SVL                |
| H 0.1 C (Hackberry Canyon)     | RESE-1002158       | 10-Nov-10 | 21.8 | 5.57 | 16.0 | 2.22    |      |        |         |                 |                  |        |       |                                   |     |                   |      |                      |        |         | SVL                |
| H 0.1 C (Hackberry Canyon)     | RESE-1002188       | 31-Aug-11 |      |      |      |         |      |        |         |                 |                  |        |       |                                   |     | 25.9              | 7.51 | 130.9                |        |         |                    |
| H 0.1 C (Hackberry Canyon)     | RESE-1002188       | 31-Aug-11 |      |      |      |         |      |        |         |                 | 38.4             |        |       |                                   |     |                   |      |                      |        |         | SVL                |
| H 0.1 C (Hackberry Canyon)     | RESE-1002188       | 31-Aug-11 | 14.9 | 4.17 | 13.6 | 3.55    | 5.54 |        | 85.0    | 8.85            |                  | <0.10  | 0.25  |                                   | 157 |                   |      |                      |        |         | SVL                |
| H 0.1 C (Hackberry Canyon) DUP | RESE-1002189       | 31-Aug-11 |      |      |      |         |      |        |         |                 |                  |        |       |                                   |     | 25.9              | 7.51 | 130.9                |        |         |                    |
| H 0.1 C (Hackberry Canyon) DUP | RESE-1002189       | 31-Aug-11 |      |      |      |         |      |        |         |                 | 38.6             |        |       |                                   |     |                   |      |                      |        |         | SVL                |
| H 0.1 C (Hackberry Canyon) DUP | RESE-1002189       | 31-Aug-11 | 14.6 | 4.10 | 13.1 | 3.36    | 5.02 |        | 87.4    | 8.87            |                  | <0.10  | 0.26  |                                   | 139 |                   |      |                      |        |         | SVL                |
| H 0.1 C (Hackberry Canyon)     | RESE-1002193       | 30-Nov-11 |      |      |      |         |      |        |         |                 |                  |        |       |                                   |     | 7.4               | 7.79 | 129.7                |        |         |                    |
| H 0.1 C (Hackberry Canyon)     | RESE-1002193       | 30-Nov-11 |      |      |      |         |      |        |         |                 | 20.8             |        |       |                                   |     |                   |      |                      |        |         | SVL                |
| H 0.1 C (Hackberry Canyon)     | RESE-1002193       | 30-Nov-11 | 14.3 | 3.30 | 9.41 | 1.62    | 3.63 |        | 72.3    | 12.5            |                  | <0.10  | <0.10 |                                   | 93  |                   |      |                      |        |         | SVL                |
| Hidden Spring                  | RESE-1001003       | 15-May-03 |      |      |      |         |      |        |         |                 |                  |        |       |                                   |     | 18.3              | 7.6  | 642                  |        |         |                    |
| Hidden Spring                  | RESE-1001003       | 15-May-03 |      |      |      |         |      |        |         |                 |                  | 0.15   | 0.21  |                                   |     |                   |      |                      |        |         | SVL                |
| Hidden Spring                  | RESE-1001003       | 15-May-03 |      |      |      |         |      |        |         |                 |                  |        |       | 0.78                              |     |                   |      |                      |        |         | Del Mar            |
| Hidden Spring                  | RESE-1001003       | 15-May-03 | 90.2 | 34.4 | 13.4 | <1.0    | 14.1 |        | 320.9   | 81.8            | 24.6             |        |       |                                   | 447 |                   |      |                      |        |         | SVL                |
| Hidden Spring                  | RESE-1001015       | 20-Aug-03 |      |      |      |         |      |        |         |                 |                  |        |       |                                   |     | 23.1              | 7.4  | 710                  |        |         | -                  |
| Hidden Spring                  | RESE-1001015       | 20-Aug-03 |      |      |      |         |      |        |         |                 |                  | 0.16   | 0.21  |                                   |     |                   |      |                      |        |         | SVL                |
| Hidden Spring                  | RESE-1001015       | 20-Aug-03 |      |      |      |         |      |        |         |                 |                  |        |       | 0.30                              |     |                   |      |                      |        |         | Del Mar            |
| Hidden Spring                  | RESE-1001015       | 20-Aug-03 | 93.3 | 34.0 | 13.7 | 1.5     | 12.1 |        | 375.8   | 75.3            | 26.5             |        |       |                                   | 442 |                   |      |                      |        |         | SVL                |
| Hidden Spring DUP              | RESE-1001016       | 20-Aug-03 |      |      |      |         |      |        |         |                 |                  | 0.15   | 0.21  |                                   |     |                   |      |                      |        |         | SVL                |
| Hidden Spring DUP              | RESE-1001016       | 20-Aug-03 |      |      |      |         |      |        |         |                 |                  |        |       | 0.32                              |     |                   |      |                      |        |         | Del Mar            |
| Hidden Spring DUP              | RESE-1001016       | 20-Aug-03 | 80.0 | 34.5 | 13.1 | <1.0    | 12.1 |        | 378.2   | 74.3            | 26.7             |        |       |                                   | 440 |                   |      |                      |        |         | SVL                |
| Hidden Spring                  | RESE-1001027       | 03-Nov-03 |      |      |      |         |      |        |         |                 |                  |        |       |                                   |     | 18.0              | 7.4  | 767                  |        |         |                    |
| Hidden Spring                  | RESE-1001027       | 03-Nov-03 |      |      |      |         |      |        |         |                 |                  |        |       | 0.13                              |     |                   |      |                      |        |         | Del Mar            |
| Hidden Spring                  | RESE-1001027       | 03-Nov-03 | 93.6 | 33.9 | 13.0 | <1.0    | 12.3 |        | 386.7   | 75.3            | 25.6             | 0.15   | 0.22  |                                   | 410 |                   |      |                      |        |         | SVL                |
| Hidden Spring                  | RESE-1001052       | 09-Feb-04 |      |      |      |         |      |        |         |                 |                  |        |       |                                   |     | 11.5              | 8.0  | 485                  |        |         |                    |
| Hidden Spring                  | RESE-1001052       | 09-Feb-04 |      |      |      |         |      |        |         |                 |                  |        |       |                                   | 440 |                   |      |                      |        |         | SVL                |
| Hidden Spring                  | RESE-1001052       | 09-Feb-04 |      |      |      |         |      |        |         |                 |                  |        |       | 0.70                              |     |                   |      |                      |        |         | Del Mar            |
| Hidden Spring                  | RESE-1001052       | 09-Feb-04 | 86.5 | 34.2 | 13.2 | 0.502 j | 12.3 |        | 372.1   | 79.6            | 24.7             | 0.169  | 0.213 |                                   | 413 |                   |      |                      |        |         | SVL                |
| Hidden Spring                  | RESE-1001082       | 24-May-04 |      |      |      |         |      |        |         |                 |                  |        |       |                                   |     | 17.6              | 7.4  | 716                  |        |         | - · · <del>-</del> |
| Hidden Spring                  | RESE-1001082       | 24-May-04 |      |      |      |         |      |        |         |                 |                  |        |       | 0.78                              |     |                   |      |                      |        |         | Del Mar            |
| Hidden Spring                  | RESE-1001082       | 24-May-04 | 90.7 | 33.9 | 12.7 | <1.0    | 11.8 |        | 403.8   | 75.9            | 23.7             | 0.14   | 0.24  |                                   | 427 |                   |      |                      |        |         | SVL                |
| Hidden Spring LD               | RESE-1001082       | 24-May-04 |      |      |      |         |      |        |         |                 |                  |        |       | <2.0                              |     |                   |      |                      |        |         | Del Mar            |
| Hidden Spring                  | RESE-1001097       | 04-Aug-04 |      |      |      |         |      |        |         |                 |                  |        |       |                                   |     | 23.3              | 7.8  | 342                  |        |         | - 1100             |
| Hidden Spring                  | RESE-1001097       | 04-Aug-04 |      |      |      |         |      |        |         |                 |                  |        |       | <0.20                             |     |                   |      |                      |        |         | Del Mar            |
| Hidden Spring                  | RESE-1001097       | 04-Aug-04 | 91.6 | 35.8 | 13.8 | <1.0    | 12.2 |        | 438     | 76.2            | 25.1             | 0.14   | 0.22  |                                   | 435 |                   |      |                      |        |         | SVL                |



| SAMPLE LOCATION                       | SAMPLE IDENTIFIER/ | SAMPLE    |      |      |      |         | COI  | MMON   | CONSTI | TUENTS          | a (mg/L)         | ) <sup>b</sup> |       |                                   |     |                   | RO    | UTINE PARA           | METERS |         | ANALYTICAL  |
|---------------------------------------|--------------------|-----------|------|------|------|---------|------|--------|--------|-----------------|------------------|----------------|-------|-----------------------------------|-----|-------------------|-------|----------------------|--------|---------|-------------|
|                                       | DESCRIPTION        | DATE      |      |      |      |         |      |        |        |                 |                  |                |       |                                   |     |                   | FIELI | D                    | LABOI  | RATORY  | LABORATORY  |
|                                       |                    |           | Ca   | Mg   | Na   | K       | Cl   | CO₃    | HCO₃   | SO <sub>4</sub> | SiO <sub>2</sub> | Br             | F     | NO <sub>3</sub> + NO <sub>2</sub> | TDS | TEMP              | рН    | SC                   | рН     | SC      |             |
|                                       |                    |           |      |      |      |         |      |        |        |                 |                  |                |       | (as N)                            |     | (°C) <sup>c</sup> |       | (μS/cm) <sup>d</sup> |        | (µS/cm) |             |
|                                       |                    |           |      |      |      |         | Sı   | urface | Water  |                 |                  | •              |       |                                   |     |                   |       |                      |        |         |             |
| Hidden Spring                         | RESE-1001162       | 03-Nov-04 |      |      |      |         | _    |        |        |                 |                  |                |       |                                   |     | 15.6              | 7.4   | 694                  |        |         |             |
| Hidden Spring                         | RESE-1001162       | 03-Nov-04 |      |      |      |         | -    |        |        |                 |                  |                |       | <0.20                             |     |                   |       |                      |        |         | Del Mar     |
| Hidden Spring                         | RESE-1001162       | 03-Nov-04 | 84.6 | 33.9 | 13.1 | <1.0    | 11.2 |        | 422.1  | 74.5            | 27.3             | 0.13           | 0.20  |                                   | 420 |                   |       |                      |        |         | SVL         |
| Hidden Spring                         | RESE-1001187       | 09-Feb-05 |      |      |      |         |      |        |        |                 |                  |                |       |                                   |     | 14.9              | 7.5   | 709                  |        |         |             |
| Hidden Spring                         | RESE-1001187       | 09-Feb-05 |      |      |      |         |      |        |        |                 |                  |                |       | 1.3                               |     |                   |       |                      |        |         | Del Mar     |
| Hidden Spring                         | RESE-1001187       | 09-Feb-05 | 86.7 | 32.0 | 12.3 | <0.500  | 11.6 |        | 356.2  | 74.3            | 24.3             | 0.179          | 0.254 |                                   | 431 |                   |       |                      |        |         | SVL         |
| Hidden Spring DUP                     | RESE-1001203       | 03-May-05 |      |      |      |         |      |        |        |                 |                  |                |       | 1.8                               |     |                   |       |                      |        |         | Del Mar     |
| Hidden Spring DUP                     | RESE-1001203       | 03-May-05 | 86.9 | 29.9 | 11.9 | <0.500  | 11.0 |        | 337.9  | 69.8            | 24               | 0.134          | 0.23  |                                   | 396 |                   |       |                      |        |         | SVL         |
| Hidden Spring                         | RESE-1001202       | 03-May-05 |      |      |      |         |      |        |        |                 |                  |                |       |                                   |     | 21.6              | 7.3   | 628                  |        |         |             |
| Hidden Spring                         | RESE-1001202       | 03-May-05 |      |      |      |         |      |        |        |                 |                  |                |       | 1.8                               |     |                   |       |                      |        |         | Del Mar     |
| Hidden Spring                         | RESE-1001202       | 03-May-05 | 88.0 | 30.4 | 12.0 | <0.500  | 10.9 |        | 339.2  | 69.7            | 24.3             | 0.156          | 0.234 |                                   | 389 |                   |       |                      |        |         | SVL         |
| Hidden Spring                         | RESE-1001220       | 03-Aug-05 |      |      |      |         |      |        |        |                 |                  |                |       |                                   |     | 22.8              | 7.1   | 663                  |        |         |             |
| Hidden Spring                         | RESE-1001220       | 03-Aug-05 |      |      |      |         |      |        |        |                 |                  |                |       | 1.3                               |     |                   |       |                      |        |         | Del Mar     |
| Hidden Spring                         | RESE-1001220       | 03-Aug-05 | 88.8 | 30.7 | 11.7 | <0.500  | 10.9 |        | 352.6  | 65.8            | 25.3             | 0.15           | 0.208 |                                   | 412 |                   |       |                      |        |         | SVL         |
| Hidden Spring                         | RESE-1002008       | 19-Aug-08 |      |      |      |         |      |        |        |                 |                  |                |       |                                   |     | 24.5              | 7.16  | 678                  |        |         |             |
| Hidden Spring                         | RESE-1002008       | 19-Aug-08 | 84.1 | 30.6 | 10.9 | 0.252 j | 11.4 |        |        | 67.7            | 25.1             |                |       |                                   |     |                   |       |                      |        |         | SVL         |
| Hidden Spring                         | RESE-1002008       | 19-Aug-08 | 142  | 35.1 | 11.4 | 1.06    | 11.3 |        | 378.2  | 67.8            |                  | <0.100         | 0.171 |                                   | 390 |                   |       |                      |        |         | SVL         |
| Hidden Spring                         | RESE-1002008       | 19-Aug-08 |      |      |      |         |      |        |        |                 |                  |                |       | 1.6                               |     |                   |       |                      |        |         | TestAmerica |
| Hidden Spring                         | RESE-1002030       | 06-Nov-08 |      |      |      |         |      |        |        |                 |                  |                |       |                                   |     | 19.1              | 7.08  | 716                  |        |         |             |
| Hidden Spring                         | RESE-1002030       | 06-Nov-08 |      |      |      |         |      |        |        |                 | 24.9             |                |       |                                   |     |                   |       |                      |        |         | SVL         |
| Hidden Spring                         | RESE-1002030       | 06-Nov-08 |      |      |      |         | 11.0 |        | 378.2  | 69.7            |                  | <0.100         | 0.251 |                                   | 410 |                   |       |                      |        |         | SVL         |
| Hidden Spring                         | RESE-1002030       | 06-Nov-08 |      |      |      |         |      |        |        |                 |                  |                |       | 1.3                               |     |                   |       |                      |        |         | TestAmerica |
| Hidden Spring                         | RESE-1002030       | 06-Nov-08 | 87.1 | 32.2 | 11.8 | <0.50   |      |        |        |                 |                  |                |       |                                   |     |                   |       |                      |        |         | SVL         |
| Hidden Spring                         | RESE-1002045       | 10-Feb-09 |      |      |      |         |      |        |        |                 |                  |                |       |                                   |     | 19.4              | 7.41  | 637                  |        |         |             |
| Hidden Spring                         | RESE-1002045       | 10-Feb-09 |      |      |      |         |      |        |        |                 | 23.3             |                |       |                                   |     |                   |       |                      |        |         | SVL         |
| Hidden Spring                         | RESE-1002045       | 10-Feb-09 |      |      |      |         | 11.0 |        | 402.6  | 66.6            |                  | 0.129          | 0.151 |                                   | 420 |                   |       |                      |        |         | SVL         |
| Hidden Spring                         | RESE-1002045       | 10-Feb-09 | 82.7 | 29.7 | 10.5 | <0.50   |      |        |        |                 |                  |                |       |                                   |     |                   |       |                      |        |         | SVL         |
| Hidden Spring                         | RESE-1002086       | 12-May-09 |      |      |      |         |      |        |        |                 |                  |                |       |                                   |     | 20.6              | 7.23  | 673                  |        |         |             |
| Hidden Spring                         | RESE-1002086       | 12-May-09 |      |      |      |         |      |        |        |                 | 25.5             |                |       |                                   |     |                   |       |                      |        |         | SVL         |
| Hidden Spring                         | RESE-1002086       | 12-May-09 |      |      |      |         | 11.4 |        | 353.8  | 70.2            |                  | 0.128          | 0.307 |                                   | 393 |                   |       |                      |        |         | SVL         |
| Hidden Spring                         | RESE-1002086       | 12-May-09 | 90.1 | 31.7 | 11.5 | <0.50   |      |        |        |                 |                  |                |       |                                   |     |                   |       |                      |        |         | SVL         |
| Hidden Spring                         | RESE-1002116       | 12-Feb-10 |      |      |      |         |      |        |        |                 |                  |                |       |                                   |     | 21.6              | 7.33  | 619                  |        |         |             |
| Hidden Spring                         | RESE-1002116       | 12-Feb-10 |      |      |      |         |      |        |        |                 | 25.1             |                |       |                                   |     |                   |       |                      |        |         | SVL         |
| Hidden Spring                         | RESE-1002116       | 12-Feb-10 |      |      |      |         | 10.5 |        | 345.3  | 64.9            |                  | <0.100         | 0.127 |                                   | 358 |                   |       |                      |        |         | SVL         |
| Hidden Spring                         | RESE-1002116       | 12-Feb-10 | 87.4 | 31.2 | 11.2 | <0.50   |      |        |        |                 |                  |                |       |                                   |     |                   |       |                      |        |         | SVL         |
| Hidden Spring                         | RESE-1003163       | 17-Jul-10 |      |      |      |         |      |        |        |                 |                  |                |       |                                   |     | 25.8              | 6.81  | 667.3                |        |         |             |
| Hidden Spring                         | RESE-1003163       | 17-Jul-10 | 86   | 30   | 10   | <2.0    |      |        |        |                 | 26               |                |       |                                   |     |                   |       |                      |        |         | TestAmerica |
| Hidden Spring                         | RESE-1003163       | 17-Jul-10 | 90   | 31   | 11   | <2.0    | 10   |        | 329.4  | 68              | 26               | <0.50          | <0.40 | 2.4                               | 490 |                   |       |                      | 7.49   | 680     | TestAmerica |
| · · · · · · · · · · · · · · · · · · · | 0_ 1000100         | 541 10    |      | ٥,   |      |         |      |        | 0_0.1  |                 |                  | 3.00           | 5.10  |                                   | .50 |                   |       |                      | 0      | 550     | . 555       |



| SAMPLE LOCATION        | SAMPLE IDENTIFIER/ | SAMPLE    |      |      |      |       | CO   | MMON   | CONSTIT | UENTS           | a (mg/L)         | ) <sup>b</sup> |        |                                   |     |                   | RO   | UTINE PARA           | METERS |         | ANALYTICAL  |
|------------------------|--------------------|-----------|------|------|------|-------|------|--------|---------|-----------------|------------------|----------------|--------|-----------------------------------|-----|-------------------|------|----------------------|--------|---------|-------------|
|                        | DESCRIPTION        | DATE      |      |      |      |       |      |        |         |                 |                  |                |        |                                   |     |                   | FIEL | D                    | LABOI  | RATORY  | LABORATORY  |
|                        |                    |           | Ca   | Mg   | Na   | К     | Cl   | CO₃    | HCO₃    | SO <sub>4</sub> | SiO <sub>2</sub> | Br             | F      | NO <sub>3</sub> + NO <sub>2</sub> | TDS | TEMP              | рΗ   | SC                   | рН     | SC      |             |
|                        |                    |           |      |      |      |       |      |        |         |                 |                  |                |        | (as N)                            |     | (°C) <sup>c</sup> |      | (μS/cm) <sup>d</sup> |        | (μS/cm) |             |
|                        |                    |           |      |      |      |       | S    | urface | Water   |                 |                  |                |        |                                   |     |                   |      |                      |        |         |             |
| Hidden Spring          | RESE-1002155       | 09-Nov-10 |      | _    |      |       |      | _      |         |                 |                  | -              | _      |                                   |     | 19.2              | 7.09 | 639                  |        |         |             |
| Hidden Spring          | RESE-1002155       | 09-Nov-10 |      |      |      |       |      |        |         |                 | 24.5             |                |        |                                   |     |                   |      |                      |        |         | SVL         |
| Hidden Spring          | RESE-1002155       | 09-Nov-10 |      |      |      |       | 11.1 |        | 366     | 66.6            |                  | 0.127          | 0.271  |                                   | 434 |                   |      |                      |        |         | SVL         |
| Hidden Spring          | RESE-1002155       | 09-Nov-10 | 94.1 | 33.0 | 10.8 | <0.50 |      |        |         |                 |                  |                |        |                                   |     |                   |      |                      |        |         | SVL         |
| Hidden Spring DUP      | RESE-1002156       | 09-Nov-10 |      |      |      |       |      |        |         |                 |                  |                |        |                                   |     | 19.2              | 7.09 | 639                  |        |         |             |
| Hidden Spring DUP      | RESE-1002156       | 09-Nov-10 |      |      |      |       |      |        |         |                 | 24.5             |                |        |                                   |     |                   |      |                      |        |         | SVL         |
| Hidden Spring DUP      | RESE-1002156       | 09-Nov-10 |      |      |      |       | 11.2 |        | 366     | 66.9            |                  | 0.154          | 0.270  |                                   | 420 |                   |      |                      |        |         | SVL         |
| Hidden Spring DUP      | RESE-1002156       | 09-Nov-10 | 94.1 | 32.7 | 10.7 | <0.50 |      |        |         |                 |                  |                |        |                                   |     |                   |      |                      |        |         | SVL         |
| IC 1.0 C (Iron Canyon) | RESE-1002019       | 28-Aug-08 |      |      |      |       |      |        |         |                 |                  |                |        |                                   |     | 27.6              | 6.88 | 264                  |        |         |             |
| IC 1.0 C (Iron Canyon) | RESE-1002019       | 28-Aug-08 | 23.6 | 5.69 | 14.9 | 4.41  | 23.2 |        |         | 45.4            | 35.5             |                |        |                                   |     |                   |      |                      |        |         | SVL         |
| IC 1.0 C (Iron Canyon) | RESE-1002019       | 28-Aug-08 | 21.1 | 5.09 | 13.5 | 4.2   | 22.5 |        | 48.7    | 49.4            |                  | <0.100         | <0.100 |                                   | 192 |                   |      |                      |        |         | SVL         |
| IC 1.0 C (Iron Canyon) | RESE-1002019       | 28-Aug-08 |      |      |      |       |      |        |         |                 |                  |                |        | 0.97                              |     |                   |      |                      |        |         | TestAmerica |
| IC 1.0 C (Iron Canyon) | RESE-1002055       | 17-Feb-09 |      |      |      |       |      |        |         |                 |                  |                |        |                                   |     | 10.6              | 7.65 | 90.9                 |        |         | <u> </u>    |
| IC 1.0 C (Iron Canyon) | RESE-1002055       | 17-Feb-09 |      |      |      |       |      |        |         |                 | 21.6             |                |        |                                   |     |                   |      |                      |        |         | SVL         |
| IC 1.0 C (Iron Canyon) | RESE-1002055       | 17-Feb-09 |      |      |      |       | 5.55 |        | 14.8    | 12.2            |                  | <0.100         | <0.100 |                                   | 126 |                   |      |                      |        |         | SVL         |
| IC 1.0 C (Iron Canyon) | RESE-1002055       | 17-Feb-09 | 6.64 | 1.75 | 5.72 | 2.39  |      |        |         |                 |                  |                |        |                                   |     |                   |      |                      |        |         | SVL         |
| IC 1.0 C (Iron Canyon) | RESE-1002085       | 12-May-09 |      |      |      |       |      |        |         |                 |                  |                |        |                                   |     | 21.5              | 6.80 | 384                  |        |         |             |
| IC 1.0 C (Iron Canyon) | RESE-1002085       | 12-May-09 |      |      |      |       |      |        |         |                 | 34.0             |                |        |                                   |     |                   |      |                      |        |         | SVL         |
| IC 1.0 C (Iron Canyon) | RESE-1002085       | 12-May-09 |      |      |      |       | 43.4 |        | 39.2    | 75.0            |                  | 0.118          | 0.267  |                                   | 238 |                   |      |                      |        |         | SVL         |
| IC 1.0 C (Iron Canyon) | RESE-1002085       | 12-May-09 | 33.1 | 7.97 | 20.6 | 2.39  |      |        |         |                 |                  |                |        |                                   |     |                   |      |                      |        |         | SVL         |
| IC 1.0 C (Iron Canyon) | RESE-1002109       | 07-Aug-09 |      |      |      |       |      |        |         |                 |                  |                |        |                                   |     | 20.7              | 6.95 | 348.7                |        |         |             |
| IC 1.0 C (Iron Canyon) | RESE-1002109       | 07-Aug-09 |      |      |      |       |      |        |         |                 | 40.3             |                |        |                                   |     |                   |      |                      |        |         | SVL         |
| IC 1.0 C (Iron Canyon) | RESE-1002109       | 07-Aug-09 |      |      |      |       | 42.1 |        | 62.6    | 72.6            |                  | 0.106          | 0.184  |                                   | 281 |                   |      |                      |        |         | SVL         |
| IC 1.0 C (Iron Canyon) | RESE-1002109       | 07-Aug-09 | 36.8 | 9.02 | 22.9 | 4.42  |      |        |         |                 |                  |                |        |                                   |     |                   |      |                      |        |         | SVL         |
| IC 1.0 C (Iron Canyon) | RESE-1002115       | 16-Dec-09 |      |      |      |       |      |        |         |                 |                  |                |        |                                   |     | 6.9               | 6.80 | 370                  |        |         |             |
| IC 1.0 C (Iron Canyon) | RESE-1002115       | 16-Dec-09 |      |      |      |       |      |        |         |                 | 36.1             |                |        |                                   |     |                   |      |                      |        |         | SVL         |
| IC 1.0 C (Iron Canyon) | RESE-1002115       | 16-Dec-09 |      |      |      |       | 51.4 |        | 29.0    | 70.3            |                  | 0.121          | <0.100 |                                   | 260 |                   |      |                      |        |         | SVL         |
| IC 1.0 C (Iron Canyon) | RESE-1002115       | 16-Dec-09 | 31.3 | 8.12 | 22.5 | 1.44  |      |        |         |                 |                  |                |        |                                   |     |                   |      |                      |        |         | SVL         |
| IC 1.0 C (Iron Canyon) | RESE-1002126       | 17-Feb-10 |      |      |      |       |      |        |         |                 |                  |                |        |                                   |     | 6                 | 7.49 | 273.8                |        |         |             |
| IC 1.0 C (Iron Canyon) | RESE-1002126       | 17-Feb-10 |      |      |      |       |      |        |         |                 | 27.4             |                |        |                                   |     |                   |      |                      |        |         | SVL         |
| IC 1.0 C (Iron Canyon) | RESE-1002126       | 17-Feb-10 |      |      |      |       | 25.2 |        | 32.0    | 55.7            |                  | <0.100         | <0.100 |                                   | 162 |                   |      |                      |        |         | SVL         |
| IC 1.0 C (Iron Canyon) | RESE-1002126       | 17-Feb-10 | 26.3 | 6.13 | 16.1 | 4.09  |      |        |         |                 |                  |                | -      |                                   |     | -                 |      |                      |        |         | SVL         |
| IC 1.0 C (Iron Canyon) | RESE-1002204       | 09-Dec-11 |      |      |      |       |      |        |         |                 |                  |                |        |                                   |     | 4.8               | 7.35 | 474                  |        |         |             |
| IC 1.0 C (Iron Canyon) | RESE-1002204       | 09-Dec-11 |      |      |      |       |      |        |         |                 | 28.8             |                |        |                                   |     |                   |      |                      |        |         | SVL         |
| IC 1.0 C (Iron Canyon) | RESE-1002204       | 09-Dec-11 | 48.0 | 11.9 | 31.3 | 2.76  | 78.8 |        | 39.2    | 82.1            |                  | 0.30           | 0.17   |                                   | 292 |                   |      |                      |        |         | SVL         |
| Kane Spring            | RESE-1001002       | 15-May-03 |      |      |      |       |      |        |         |                 |                  |                |        |                                   |     | 27.7              | 8.5  | 397                  |        |         |             |
| Kane Spring            | RESE-1001002       | 15-May-03 |      |      |      |       |      |        |         |                 |                  | 0.21           | 0.37   |                                   |     |                   |      |                      |        |         | SVL         |
| Kane Spring            | RESE-1001002       | 15-May-03 |      |      |      |       |      |        |         |                 |                  |                |        | <0.10                             |     |                   |      |                      |        |         | Del Mar     |
| Kane Spring            | RESE-1001002       | 15-May-03 | 52.4 | 54.3 | 24.2 | <1.0  | 32.6 | 41.3   | 274.5   | 29.4            | 29.8             |                |        |                                   | 420 |                   |      |                      |        |         | SVL         |



| SAMPLE LOCATION | SAMPLE IDENTIFIER/ | SAMPLE    |      |      |      |      | COI  | MMON   | CONSTI | TUENTS          | a (mg/L          | ) <sup>b</sup> |       |                                          |     |                           | RO   | UTINE PARA                 | METERS |               | ANALYTICAL  |
|-----------------|--------------------|-----------|------|------|------|------|------|--------|--------|-----------------|------------------|----------------|-------|------------------------------------------|-----|---------------------------|------|----------------------------|--------|---------------|-------------|
|                 | DESCRIPTION        | DATE      |      |      |      |      |      |        |        |                 |                  |                |       |                                          |     |                           | FIEL | D                          | LABO   | RATORY        | LABORATORY  |
|                 |                    |           | Ca   | Mg   | Na   | К    | Cl   | CO₃    | HCO₃   | SO <sub>4</sub> | SiO <sub>2</sub> | Br             | F     | NO <sub>3</sub> + NO <sub>2</sub> (as N) | TDS | TEMP<br>(°C) <sup>c</sup> | рН   | SC<br>(μS/cm) <sup>d</sup> | рН     | SC<br>(μS/cm) |             |
|                 |                    |           |      |      |      |      | Sı   | urface | Water  |                 |                  |                |       |                                          |     |                           |      |                            |        |               |             |
| Kane Spring     | RESE-1001014       | 20-Aug-03 |      |      |      |      |      |        |        |                 |                  |                |       |                                          |     | 22.7                      | 8.1  | 790                        |        |               |             |
| Kane Spring     | RESE-1001014       | 20-Aug-03 |      |      |      |      |      |        |        |                 |                  | 0.23           | 0.30  |                                          |     |                           |      |                            |        |               | SVL         |
| Kane Spring     | RESE-1001014       | 20-Aug-03 |      |      |      |      |      |        |        |                 |                  |                |       | <0.10                                    |     |                           |      |                            |        |               | Del Mar     |
| Kane Spring     | RESE-1001014       | 20-Aug-03 | 47.6 | 63.6 | 26.4 | 2.2  | 30.3 |        | 484.3  | 25.0            | 40.7             |                |       |                                          | 476 |                           |      |                            |        |               | SVL         |
| Kane Spring     | RESE-1001026       | 03-Nov-03 |      |      |      |      |      |        |        |                 |                  |                |       |                                          |     | 14.6                      | 8.1  | 903                        |        |               |             |
| Kane Spring     | RESE-1001026       | 03-Nov-03 |      |      |      |      |      |        |        |                 |                  |                |       | <0.10                                    |     |                           |      |                            |        |               | Del Mar     |
| Kane Spring     | RESE-1001026       | 03-Nov-03 | 43.5 | 75.6 | 35.0 | 5.1  | 44.1 |        | 478.2  | 62.4            | 33.2             | 0.12           | 0.34  |                                          | 528 |                           |      |                            |        |               | SVL         |
| Kane Spring     | RESE-1001051       | 09-Feb-04 |      |      |      |      |      |        |        |                 |                  |                |       |                                          |     | 4.2                       | 7.6  | 771                        |        |               |             |
| Kane Spring     | RESE-1001051       | 09-Feb-04 |      |      |      |      |      |        |        |                 |                  |                |       |                                          | 474 |                           |      |                            |        |               | SVL         |
| Kane Spring     | RESE-1001051       | 09-Feb-04 |      |      |      |      |      |        |        |                 |                  |                |       | <0.10                                    |     |                           |      |                            |        |               | Del Mar     |
| Kane Spring     | RESE-1001051       | 09-Feb-04 | 59.4 | 56.6 | 23.1 | 7.47 | 30.2 |        | 435.5  | 46.5            | 28.7             | 0.117          | 0.277 |                                          | 440 |                           |      |                            |        |               | SVL         |
| Kane Spring     | 04Aug04ALKS        | 04-Aug-04 |      |      |      |      |      |        |        |                 |                  |                |       |                                          |     | 24.5                      | 8.1  | 785                        |        |               |             |
| Kane Spring     | RESE-1001161       | 03-Nov-04 |      |      |      |      |      |        |        |                 |                  |                |       |                                          |     | 6.9                       | 8.2  | 757                        |        |               |             |
| Kane Spring     | RESE-1001161       | 03-Nov-04 |      |      |      |      |      |        |        |                 |                  |                |       | <0.20                                    |     |                           |      |                            |        |               | Del Mar     |
| Kane Spring     | RESE-1001161       | 03-Nov-04 | 45.8 | 63.6 | 30.1 | 7.8  | 34.0 |        | 480.7  | 54.7            | 31.4             | <0.10          | 0.33  |                                          | 501 |                           |      |                            |        |               | SVL         |
| Kane Spring     | RESE-1001186       | 09-Feb-05 |      |      |      |      |      |        |        |                 |                  |                |       |                                          |     | 6.9                       | 8.3  | 698                        |        |               |             |
| Kane Spring     | RESE-1001186       | 09-Feb-05 |      |      |      |      |      |        |        |                 |                  |                |       | <0.20                                    |     |                           |      |                            |        |               | Del Mar     |
| Kane Spring     | RESE-1001186       | 09-Feb-05 | 53.0 | 51.2 | 18.1 | 2.23 | 21.8 | 2.39   | 408.7  | 29.3            | 23.3             | 0.151          | 0.388 |                                          | 416 |                           |      |                            |        |               | SVL         |
| Kane Spring     | RESE-1001201       | 03-May-05 |      |      |      |      |      |        |        |                 |                  |                |       |                                          |     | 15.8                      | 8.1  | 752                        |        |               |             |
| Kane Spring     | RESE-1001201       | 03-May-05 |      |      |      |      |      |        |        |                 |                  |                |       | <0.20                                    |     |                           |      |                            |        |               | Del Mar     |
| Kane Spring     | RESE-1001201       | 03-May-05 | 76.1 | 54.9 | 23.1 | 0.68 | 28.3 |        | 452.6  | 45.7            | 26.3             | 0.204          | 0.35  |                                          | 460 |                           |      |                            |        |               | SVL         |
| Kane Spring     | RESE-1001218       | 03-Aug-05 |      |      |      |      |      |        |        |                 |                  |                |       |                                          |     | 22.7                      | 7.8  | 1019                       |        |               |             |
| Kane Spring     | RESE-1001218       | 03-Aug-05 |      |      |      |      |      |        |        |                 |                  |                |       | <0.20                                    |     |                           |      |                            |        |               | Del Mar     |
| Kane Spring     | RESE-1001218       | 03-Aug-05 | 62.1 | 78.3 | 51.0 | 5.17 | 72.4 |        | 491.7  | 102             | 34.7             | 0.275          | 0.269 |                                          | 713 |                           |      |                            |        |               | SVL         |
| Kane Spring     | RESE-1002022       | 29-Aug-08 |      |      |      |      |      |        |        |                 |                  |                |       |                                          |     | 23.7                      | 7.91 | 707                        |        |               |             |
| Kane Spring     | RESE-1002022       | 29-Aug-08 | 74.8 | 42.5 | 17.2 | 1.87 | 20.2 |        |        | 31.0            | 22.4             |                |       |                                          |     |                           |      |                            |        |               | SVL         |
| Kane Spring     | RESE-1002022       | 29-Aug-08 | 66.9 | 37.6 | 15.5 | 1.72 | 18.6 |        | 427    | 33.6            |                  | 0.207          | 0.274 |                                          | 366 |                           |      |                            |        |               | SVL         |
| Kane Spring     | RESE-1002022       | 29-Aug-08 |      |      |      |      |      |        |        |                 |                  |                |       | 0.99                                     |     |                           |      |                            |        |               | TestAmerica |
| Kane Spring     | RESE-1002035       | 05-Nov-08 |      |      |      |      |      |        |        |                 |                  |                |       |                                          |     | 20.7                      | 6.96 | 654                        |        |               |             |
| Kane Spring     | RESE-1002035       | 05-Nov-08 |      |      |      |      |      |        |        |                 | 21.0             |                |       |                                          |     |                           |      |                            |        |               | SVL         |
| Kane Spring     | RESE-1002035       | 05-Nov-08 |      |      |      |      | 18.7 |        | 430.7  | 29.6            |                  | 0.153          | 0.282 |                                          | 420 |                           |      |                            |        |               | SVL         |
| Kane Spring     | RESE-1002035       | 05-Nov-08 |      |      |      |      |      |        |        |                 |                  |                |       | 0.82                                     |     |                           |      |                            |        |               | TestAmerica |
| Kane Spring     | RESE-1002035       | 05-Nov-08 | 74.3 | 41.5 | 17.2 | 1.96 |      |        |        |                 |                  |                |       |                                          |     |                           |      |                            |        |               | SVL         |
| Kane Spring     | RESE-1002046       | 10-Feb-09 |      |      |      |      |      |        |        |                 |                  |                |       |                                          |     | 20.7                      | 7.37 | 613                        |        |               |             |
| Kane Spring     | RESE-1002046       | 10-Feb-09 |      |      |      |      |      |        |        |                 | 19.6             |                |       |                                          |     |                           |      |                            |        |               | SVL         |
| Kane Spring     | RESE-1002046       | 10-Feb-09 |      |      |      |      | 18.4 |        | 436.8  | 28.8            |                  | 0.146          | 0.229 |                                          | 374 |                           |      |                            |        |               | SVL         |
| Kane Spring     | RESE-1002046       | 10-Feb-09 | 67.4 | 36.6 | 15.5 | 1.71 |      |        |        |                 |                  |                |       |                                          |     |                           |      |                            |        |               | SVL         |



| SAMPLE LOCATION                           | SAMPLE IDENTIFIER/ | SAMPLE    |      |      |      |      | COI  | MMON   | CONSTIT | UENTS           | a (mg/L)         | ) <sup>b</sup> |        |                                          |     |                           | RO   | UTINE PARA                 | METERS | i             | ANALYTICAL  |
|-------------------------------------------|--------------------|-----------|------|------|------|------|------|--------|---------|-----------------|------------------|----------------|--------|------------------------------------------|-----|---------------------------|------|----------------------------|--------|---------------|-------------|
|                                           | DESCRIPTION        | DATE      |      |      |      |      |      |        |         |                 |                  |                |        |                                          |     |                           | FIEL | D                          | LABO   | RATORY        | LABORATORY  |
|                                           |                    |           | Ca   | Mg   | Na   | К    | Cl   | CO₃    | HCO₃    | SO <sub>4</sub> | SiO <sub>2</sub> | Br             | F      | NO <sub>3</sub> + NO <sub>2</sub> (as N) | TDS | TEMP<br>(°C) <sup>c</sup> | рН   | SC<br>(μS/cm) <sup>d</sup> | рН     | SC<br>(μS/cm) |             |
|                                           |                    |           |      |      |      |      | S    | urface | Water   |                 |                  |                |        |                                          |     |                           |      |                            |        |               |             |
| Kane Spring                               | RESE-1002087       | 13-May-09 |      |      |      |      |      |        |         |                 |                  |                |        |                                          |     | 21.8                      | 7.27 | 650                        |        |               |             |
| Kane Spring                               | RESE-1002087       | 13-May-09 |      |      |      |      |      |        |         |                 | 20.1             |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| Kane Spring                               | RESE-1002087       | 13-May-09 |      |      |      |      | 20.1 |        | 396.5   | 30.0            |                  | 0.172          | 0.337  |                                          | 386 |                           |      |                            |        |               | SVL         |
| Kane Spring                               | RESE-1002087       | 13-May-09 | 70.5 | 38.6 | 16   | 1.82 |      |        |         |                 |                  |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| Kane Spring                               | RESE-1002117       | 12-Feb-10 |      |      |      |      |      |        |         |                 |                  |                |        |                                          |     | 18.6                      | 7.54 | 653                        |        |               |             |
| Kane Spring                               | RESE-1002117       | 12-Feb-10 |      |      |      |      |      |        |         |                 | 21.4             |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| Kane Spring                               | RESE-1002117       | 12-Feb-10 |      |      |      |      | 22.2 |        | 379.4   | 31.9            |                  | 0.142          | 0.246  |                                          | 356 |                           |      |                            |        |               | SVL         |
| Kane Spring                               | RESE-1002117       | 12-Feb-10 | 73.6 | 39.8 | 16.7 | 1.63 |      |        |         |                 |                  |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| Kane Spring                               | RESE-1003164       | 17-Jul-10 |      |      |      |      |      |        |         |                 |                  |                |        |                                          |     | 24.4                      | 7.36 | 730.0                      |        |               |             |
| Kane Spring                               | RESE-1003164       | 17-Jul-10 | 72   | 42   | 18   | <2.0 |      |        |         |                 | 23               |                |        |                                          |     |                           |      |                            |        |               | TestAmerica |
| Kane Spring                               | RESE-1003164       | 17-Jul-10 | 76   | 43   | 19   | <2.0 | 24   |        | 390.4   | 38              | 24               | <0.50          | < 0.40 | 0.87                                     | 440 |                           |      |                            | 7.45   | 730           | TestAmerica |
| Kane Spring                               | RESE-1002154       | 09-Nov-10 |      |      |      |      |      |        |         |                 |                  |                |        |                                          |     | 20.3                      | 6.65 | 318.3                      |        |               |             |
| Kane Spring                               | RESE-1002154       | 09-Nov-10 |      |      |      |      |      |        |         |                 | 20.2             |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| Kane Spring                               | RESE-1002154       | 09-Nov-10 |      |      |      |      | 22.3 |        | 409.9   | 32.8            |                  | 0.259          | 0.370  |                                          | 392 |                           |      |                            |        |               | SVL         |
| Kane Spring                               | RESE-1002154       | 09-Nov-10 | 78.0 | 41.0 | 17.0 | 1.88 |      |        |         |                 |                  |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)    | RESE-1002039       | 13-Nov-08 |      |      |      |      |      |        |         |                 |                  |                |        |                                          |     | 19.3                      | 6.87 | 651                        |        |               |             |
| LF 0.2 C (Lyons Fork Headwater Spring)    | RESE-1002039       | 13-Nov-08 |      |      |      |      |      |        |         |                 | 39.8             |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)    | RESE-1002039       | 13-Nov-08 |      |      |      |      | 18.7 | -      | 133     | 141             |                  | 0.164          | 0.436  |                                          | 460 |                           |      |                            |        |               | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)    | RESE-1002039       | 13-Nov-08 |      |      |      |      |      |        |         |                 |                  |                |        | <0.30                                    |     |                           |      |                            |        |               | TestAmerica |
| LF 0.2 C (Lyons Fork Headwater Spring)    | RESE-1002039       | 13-Nov-08 | 83.0 | 18.9 | 37.1 | 1.33 |      |        |         |                 |                  |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)    | RESE-1002072       | 05-Mar-09 |      |      |      |      |      |        |         |                 |                  |                |        |                                          |     | 17.7                      | 7.51 | 519                        |        |               |             |
| LF 0.2 C (Lyons Fork Headwater Spring)    | RESE-1002072       | 05-Mar-09 |      |      |      |      |      |        |         |                 | 29.1             |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)    | RESE-1002072       | 05-Mar-09 |      |      |      |      | 14.2 |        | 175.7   | 123             |                  | 0.117          | 0.320  |                                          | 361 |                           |      |                            |        |               | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)    | RESE-1002072       | 05-Mar-09 | 61.0 | 15.9 | 30.2 | 1.03 |      |        |         |                 |                  |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)    | RESE-1002093       | 14-May-09 |      |      |      |      |      |        |         |                 |                  |                |        |                                          |     | 20.3                      | 6.85 | 594                        |        |               |             |
| LF 0.2 C (Lyons Fork Headwater Spring)    | RESE-1002093       | 14-May-09 |      |      |      |      |      |        |         |                 | 35.3             |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)    | RESE-1002093       | 14-May-09 |      |      |      |      | 14.0 | -      | 228.1   | 125             |                  | 0.117          | 0.342  |                                          | 414 |                           |      |                            |        |               | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)    | RESE-1002093       | 14-May-09 | 70.1 | 17.4 | 35.4 | 1.01 |      |        |         |                 |                  |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)    | RESE-1002106       | 06-Aug-09 |      |      |      |      |      |        |         |                 |                  |                |        |                                          |     | 23.6                      | 6.79 | 658                        |        |               |             |
| LF 0.2 C (Lyons Fork Headwater Spring)    | RESE-1002106       | 06-Aug-09 |      |      |      |      |      |        |         |                 | 39.1             |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)    | RESE-1002106       | 06-Aug-09 |      |      |      |      | 13.7 | -      | 222     | 120             |                  | <0.100         | 0.304  |                                          | 404 |                           |      |                            |        |               | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)    | RESE-1002106       | 06-Aug-09 | 69.9 | 16.1 | 36   | 1.5  |      |        |         |                 |                  |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)    | RESE-1002111       | 15-Dec-09 |      |      |      |      |      |        |         |                 |                  |                |        |                                          |     | 16.7                      | 7.00 | 533                        |        |               |             |
| LF 0.2 C (Lyons Fork Headwater Spring)    | RESE-1002111       | 15-Dec-09 |      |      |      |      |      |        |         |                 | 37.4             |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)    | RESE-1002111       | 15-Dec-09 |      |      |      |      | 12.8 |        | 159.8   | 117             |                  | <0.100         | 0.229  |                                          | 410 |                           |      |                            |        |               | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)    | RESE-1002111       | 15-Dec-09 | 58.5 | 13.9 | 30.9 | 0.95 |      |        |         |                 |                  |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)    | RESE-1002124       | 15-Feb-10 |      |      |      |      |      |        |         |                 |                  |                |        |                                          |     | 15.6                      | 7.65 | 449.4                      |        |               |             |
| LF 0.2 C (Lyons Fork Headwater Spring)    | RESE-1002124       | 15-Feb-10 |      |      |      |      |      |        |         |                 | 32.9             |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)    | RESE-1002124       | 15-Feb-10 |      |      |      |      | 10.2 |        | 144     | 93.3            |                  | <0.100         | 0.207  |                                          | 286 |                           |      |                            |        |               | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)    | RESE-1002124       | 15-Feb-10 | 48.9 | 12.9 | 24.9 | 1.24 |      |        |         |                 |                  |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| ( ) - · · · · · · · · · · · · · · · · · · |                    |           |      |      |      |      |      |        |         |                 |                  |                |        |                                          |     |                           |      |                            |        |               |             |



| SAMPLE LOCATION                            | SAMPLE IDENTIFIER/ | SAMPLE    |          |      |      |      | cor  | MMON   | CONSTIT | UENTS           | a (mg/L)         | ) <sup>b</sup> |       |                                          |     |                           | RO   | UTINE PARA                 | METERS | ì             | ANALYTICAL  |
|--------------------------------------------|--------------------|-----------|----------|------|------|------|------|--------|---------|-----------------|------------------|----------------|-------|------------------------------------------|-----|---------------------------|------|----------------------------|--------|---------------|-------------|
|                                            | DESCRIPTION        | DATE      | <u> </u> |      |      |      |      |        |         |                 |                  |                |       |                                          |     |                           | FIEL | D                          | LABO   | RATORY        | LABORATORY  |
|                                            |                    |           | Ca       | Mg   | Na   | K    | Cl   | CO₃    | HCO₃    | SO <sub>4</sub> | SiO <sub>2</sub> | Br             | F     | NO <sub>3</sub> + NO <sub>2</sub> (as N) | TDS | TEMP<br>(°C) <sup>c</sup> | pН   | SC<br>(μS/cm) <sup>d</sup> | рН     | SC<br>(μS/cm) |             |
|                                            |                    |           |          |      |      |      | Sı   | urface | Water   |                 |                  |                |       |                                          |     |                           |      |                            |        |               |             |
| LF 0.2 C (Lyons Fork Headwater Spring)     | RESE-1002133       | 18-Mar-10 |          |      |      |      |      |        |         |                 |                  |                |       |                                          |     | 17.5                      | 7.74 | 384.4                      |        |               |             |
| LF 0.2 C (Lyons Fork Headwater Spring)     | RESE-1002149       | 04-Nov-10 |          |      |      |      |      |        |         |                 |                  |                |       |                                          |     | 20.8                      | 6.92 | 686                        |        |               |             |
| LF 0.2 C (Lyons Fork Headwater Spring)     | RESE-1002149       | 04-Nov-10 |          |      |      |      |      |        |         |                 | 41.5             |                |       |                                          |     |                           |      |                            |        |               | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)     | RESE-1002149       | 04-Nov-10 |          |      |      |      | 18.7 |        | 323.3   | 138             |                  | 0.221          | 0.468 |                                          | 470 |                           |      |                            |        |               | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)     | RESE-1002149       | 04-Nov-10 | 89.4     | 21.4 | 40.4 | 1.21 |      |        |         |                 |                  |                |       |                                          |     |                           |      |                            |        |               | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)     | RESE-1002165       | 24-Feb-11 |          |      |      |      |      |        |         |                 |                  |                |       |                                          |     | 14.9                      | 7.77 | 542                        |        |               |             |
| LF 0.2 C (Lyons Fork Headwater Spring)     | RESE-1002165       | 24-Feb-11 |          |      |      |      |      |        |         |                 | 38.7             |                |       |                                          |     |                           |      |                            |        |               | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)     | RESE-1002165       | 24-Feb-11 |          |      |      |      | 12.4 |        | 209.8   | 99.6            |                  | 0.13           | 0.26  |                                          | 365 |                           |      |                            |        |               | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)     | RESE-1002165       | 24-Feb-11 | 64.4     | 15.1 | 31.6 | 1.07 |      |        |         |                 |                  |                |       |                                          |     |                           |      |                            |        |               | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)     | RESE-1002174       | 31-May-11 |          |      |      |      |      |        |         |                 |                  |                |       |                                          |     | 20.8                      | 7    | 673                        |        |               |             |
| LF 0.2 C (Lyons Fork Headwater Spring)     | RESE-1002174       | 31-May-11 |          |      |      |      |      |        |         |                 | 38.9             |                |       |                                          |     |                           |      |                            |        |               | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)     | RESE-1002174       | 31-May-11 |          |      |      |      | 14.0 |        | 223.3   | 112             |                  | 0.26           | 0.29  |                                          | 425 |                           |      |                            |        |               | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)     | RESE-1002174       | 31-May-11 | 75.5     | 16.6 | 35.6 | 1.33 |      |        |         |                 |                  |                |       |                                          |     |                           |      |                            |        |               | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)     | RESE-1002182       | 29-Aug-11 |          |      |      |      |      |        |         |                 |                  |                |       |                                          |     | 24.3                      | 7.13 | 539                        |        |               |             |
| LF 0.2 C (Lyons Fork Headwater Spring)     | RESE-1002182       | 29-Aug-11 |          |      |      |      |      |        |         |                 | 40.0             |                |       |                                          |     |                           |      |                            |        |               | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)     | RESE-1002182       | 29-Aug-11 | 72.1     | 16.1 | 35.0 | 2.28 | 12.1 |        | 234.2   | 105             |                  | 0.12           | 0.26  |                                          | 405 |                           |      |                            |        |               | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring) DUP | RESE-1002183       | 29-Aug-11 |          |      |      |      |      |        |         |                 |                  |                |       |                                          |     | 24.3                      | 7.13 | 539                        |        |               |             |
| LF 0.2 C (Lyons Fork Headwater Spring) DUP | RESE-1002183       | 29-Aug-11 |          |      |      |      |      |        |         |                 | 39.9             |                |       |                                          |     |                           |      |                            |        |               | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring) DUP | RESE-1002183       | 29-Aug-11 | 72.2     | 16.0 | 35.3 | 2.16 | 13.3 |        | 233     | 111             |                  | 0.12           | 0.30  |                                          | 420 |                           |      |                            |        |               | SVL         |
| MC 3.3 C                                   | RESE-1002040       | 13-Nov-08 |          |      |      |      |      |        |         |                 |                  |                |       |                                          |     | 15.8                      | 8.22 | 448                        |        |               | •           |
| MC 3.3 C                                   | RESE-1002040       | 13-Nov-08 |          |      |      |      |      |        |         |                 | 56.5             |                |       |                                          |     |                           |      |                            |        |               | SVL         |
| MC 3.3 C                                   | RESE-1002040       | 13-Nov-08 |          |      |      |      | 11.6 |        | 246.4   | 44.7            |                  | <0.100         | 0.532 |                                          | 310 |                           |      |                            |        |               | SVL         |
| MC 3.3 C                                   | RESE-1002040       | 13-Nov-08 |          |      |      |      |      |        |         |                 |                  |                |       | <0.30                                    |     |                           |      |                            |        |               | TestAmerica |
| MC 3.3 C                                   | RESE-1002040       | 13-Nov-08 | 54.6     | 14.5 | 25.5 | 1.26 |      |        |         |                 |                  |                |       |                                          |     |                           |      |                            |        |               | SVL         |
| MC 3.3 C                                   | RESE-1002074       | 05-Mar-09 |          |      |      |      |      |        |         |                 |                  |                |       |                                          |     | 18.1                      | 8.33 | 460                        |        |               |             |
| MC 3.3 C                                   | RESE-1002074       | 05-Mar-09 |          |      |      |      |      |        |         |                 | 41.7             |                |       |                                          |     |                           |      |                            |        |               | SVL         |
| MC 3.3 C                                   | RESE-1002074       | 05-Mar-09 |          |      |      |      | 12.9 |        | 213.5   | 74.1            |                  | <0.100         | 0.287 |                                          | 321 |                           |      |                            |        |               | SVL         |
| MC 3.3 C                                   | RESE-1002074       | 05-Mar-09 | 53.1     | 14.4 | 23.8 | 1.13 |      |        |         |                 |                  |                |       |                                          |     |                           |      |                            |        |               | SVL         |
| MC 3.3 C                                   | RESE-1002095       | 14-May-09 |          |      |      |      |      |        |         |                 |                  |                |       |                                          |     | 25.9                      | 8.38 | 494                        |        |               |             |
| MC 3.3 C                                   | RESE-1002095       | 14-May-09 |          |      |      |      |      |        |         |                 | 49.4             |                |       |                                          |     |                           |      |                            |        |               | SVL         |
| MC 3.3 C                                   | RESE-1002095       | 14-May-09 |          |      |      |      | 13.4 | 4.3    | 242.8   | 56.7            |                  | <0.100         | 0.319 |                                          | 342 |                           |      |                            |        |               | SVL         |
| MC 3.3 C                                   | RESE-1002095       | 14-May-09 | 60.2     | 16.7 | 28.5 | 1.37 |      |        |         |                 |                  |                |       |                                          |     |                           |      |                            |        |               | SVL         |
| MC 3.3 C                                   | RESE-1002104       | 06-Aug-09 |          |      |      |      |      |        |         |                 |                  |                |       |                                          |     | 30.9                      | 7.98 | 379.6                      |        |               |             |
| MC 3.3 C                                   | RESE-1002104       | 06-Aug-09 |          |      |      |      |      |        |         |                 | 63.8             |                |       |                                          |     |                           |      |                            |        |               | SVL         |
| MC 3.3 C                                   | RESE-1002104       | 06-Aug-09 |          |      |      |      | 9.19 |        | 224.5   | 21.6            |                  | <0.100         | 0.324 |                                          | 266 |                           |      |                            |        |               | SVL         |
| MC 3.3 C                                   | RESE-1002104       | 06-Aug-09 | 47.1     | 11.8 | 23.8 | 1.56 |      |        |         |                 |                  |                |       |                                          |     |                           |      |                            |        |               | SVL         |
| MC 3.3 C                                   | RESE-1002114       | 15-Dec-09 |          |      |      |      |      |        |         |                 |                  |                |       |                                          |     | 14.7                      | 7.98 | 448.6                      |        |               |             |
| MC 3.3 C                                   | RESE-1002114       | 15-Dec-09 |          |      |      |      |      |        |         |                 | 64.0             |                |       |                                          |     |                           |      |                            |        |               | SVL         |
| MC 3.3 C                                   | RESE-1002114       | 15-Dec-09 |          |      |      |      | 13.2 |        | 224.5   | 41.7            |                  | <0.100         | 0.177 |                                          | 335 |                           |      |                            |        |               | SVL         |
| MC 3.3 C                                   | RESE-1002114       | 15-Dec-09 | 49.3     | 12.4 | 26.4 | 1.09 |      |        |         |                 |                  |                |       |                                          |     |                           |      |                            |        |               | SVL         |



| SAMPLE LOCATION           | SAMPLE IDENTIFIER/ | SAMPLE    |      |      |      |         | COI  | MON      | CONSTIT | UENTS           | a (mg/L)         | ) <sup>b</sup> |       |                                          |       |                           | RO   | UTINE PARA                 | METERS |               | ANALYTICAL  |
|---------------------------|--------------------|-----------|------|------|------|---------|------|----------|---------|-----------------|------------------|----------------|-------|------------------------------------------|-------|---------------------------|------|----------------------------|--------|---------------|-------------|
|                           | DESCRIPTION        | DATE      |      |      |      |         |      |          |         |                 |                  |                |       |                                          |       |                           | FIEL | D                          | LABO   | RATORY        | LABORATORY  |
|                           |                    |           | Ca   | Mg   | Na   | K       | Cl   | CO₃      | HCO₃    | SO <sub>4</sub> | SiO <sub>2</sub> | Br             | F     | NO <sub>3</sub> + NO <sub>2</sub> (as N) | TDS   | TEMP<br>(°C) <sup>c</sup> | рН   | SC<br>(μS/cm) <sup>d</sup> | рН     | SC<br>(μS/cm) |             |
|                           |                    |           |      |      |      |         | Sı   | ırface \ | Water   |                 |                  |                |       |                                          |       |                           |      |                            |        |               |             |
| MC 3.3 C                  | RESE-1002121       | 15-Feb-10 |      | _    |      |         |      |          |         | -               |                  |                | _     |                                          |       | 15.5                      | 8.2  | 440                        |        |               |             |
| MC 3.3 C                  | RESE-1002121       | 15-Feb-10 |      |      |      |         |      |          |         |                 | 40.4             |                |       |                                          |       |                           |      |                            |        |               | SVL         |
| MC 3.3 C                  | RESE-1002121       | 15-Feb-10 |      |      |      |         | 11.5 |          | 213.5   | 70.9            |                  | <0.100         | 0.216 |                                          | 305   |                           |      |                            |        |               | SVL         |
| MC 3.3 C                  | RESE-1002121       | 15-Feb-10 | 57.6 | 16.3 | 26.5 | 1.47    |      |          |         |                 |                  |                |       |                                          |       |                           |      |                            |        |               | SVL         |
| MC 3.3 C                  | RESE-1002131       | 18-Mar-10 |      |      |      |         |      |          |         |                 |                  |                |       |                                          |       | 17.4                      | 8.38 | 379.1                      |        |               |             |
| MC 3.3 C                  | RESE-1002151       | 04-Nov-10 |      |      |      |         |      |          |         |                 |                  |                |       |                                          |       | 21.8                      | 7.62 | 233.4                      |        |               |             |
| MC 3.3 C                  | RESE-1002151       | 04-Nov-10 |      |      |      |         |      |          |         |                 | 83.5             |                |       |                                          |       |                           |      |                            |        |               | SVL         |
| MC 3.3 C                  | RESE-1002151       | 04-Nov-10 |      |      |      |         | 5.29 |          | 157.4   | 4.86            |                  | <0.100         | 0.385 |                                          | 208   |                           |      |                            |        |               | SVL         |
| MC 3.3 C                  | RESE-1002151       | 04-Nov-10 | 30.1 | 5.39 | 21.4 | 0.65    |      |          |         |                 |                  |                |       |                                          |       |                           |      |                            |        |               | SVL         |
| MC 3.3 C                  | RESE-1002163       | 24-Feb-11 |      |      |      |         |      |          |         |                 |                  |                |       |                                          |       | 13.8                      | 8.27 | 426.7                      |        |               |             |
| MC 3.3 C                  | RESE-1002163       | 24-Feb-11 |      |      |      |         |      |          |         | -               | 48.0             |                |       |                                          |       |                           |      |                            |        |               | SVL         |
| MC 3.3 C                  | RESE-1002163       | 24-Feb-11 |      |      |      |         | 10.7 | -        | 228.1   | 46.8            |                  | 0.12           | 0.28  |                                          | 303   |                           |      |                            |        |               | SVL         |
| MC 3.3 C                  | RESE-1002163       | 24-Feb-11 | 51.0 | 14.8 | 26.0 | 1.07    |      |          |         |                 |                  |                |       |                                          |       |                           |      |                            |        |               | SVL         |
| MC 3.3 C                  | RESE-1002172       | 31-May-11 |      |      |      |         |      |          |         |                 |                  |                |       |                                          |       | 23.5                      | 8.07 | 433                        |        |               |             |
| MC 3.3 C                  | RESE-1002172       | 31-May-11 |      |      |      |         |      |          |         |                 | 63.3             |                |       |                                          |       |                           |      |                            |        |               | SVL         |
| MC 3.3 C                  | RESE-1002172       | 31-May-11 |      |      |      |         | 8.90 |          | 203.7   | 28.6            |                  | <0.10          | 0.29  |                                          | 305   |                           |      |                            |        |               | SVL         |
| MC 3.3 C                  | RESE-1002172       | 31-May-11 | 46.3 | 11.5 | 24.4 | 0.72    |      |          |         |                 |                  |                |       |                                          |       |                           |      |                            |        |               | SVL         |
| MC 3.3 C                  | RESE-1002186       | 29-Aug-11 |      |      |      |         |      |          |         |                 |                  |                |       |                                          |       | 29.9                      | 7.97 | 345                        |        |               |             |
| MC 3.3 C                  | RESE-1002186       | 29-Aug-11 |      |      |      |         |      |          |         |                 | 63.6             |                |       |                                          |       |                           |      |                            |        |               | SVL         |
| MC 3.3 C                  | RESE-1002186       | 29-Aug-11 | 44.0 | 10.1 | 22.3 | 1.66    | 8.17 | 2.4      | 209.8   | 16.9            |                  | 0.13           | 0.27  |                                          | 272   |                           |      |                            |        |               | SVL         |
| MC 3.4 W (Wet Leg Spring) | RESE-1002041       | 13-Nov-08 |      |      |      |         |      |          |         |                 |                  |                |       |                                          |       | 15.5                      | 8.08 | 268                        |        |               |             |
| MC 3.4 W (Wet Leg Spring) | RESE-1002041       | 13-Nov-08 |      |      |      |         |      |          |         |                 | 79.8             |                |       |                                          |       |                           |      |                            |        |               | SVL         |
| MC 3.4 W (Wet Leg Spring) | RESE-1002041       | 13-Nov-08 |      |      |      |         | 5.22 |          | 245.2   | 4.40            |                  | <0.100         | 0.519 |                                          | 220   |                           |      |                            |        |               | SVL         |
| MC 3.4 W (Wet Leg Spring) | RESE-1002041       | 13-Nov-08 |      |      |      |         |      |          |         |                 |                  |                |       | <0.30                                    |       |                           |      |                            |        |               | TestAmerica |
| MC 3.4 W (Wet Leg Spring) | RESE-1002041       | 13-Nov-08 | 31.2 | 5.53 | 22.6 | <0.50   |      |          |         |                 |                  |                |       |                                          |       |                           |      |                            |        |               | SVL         |
| MC 3.4 W (Wet Leg Spring) | RESE-1002073       | 05-Mar-09 |      |      |      |         |      |          |         |                 |                  |                |       |                                          |       | 21.4                      | 7.62 | 235                        |        |               |             |
| MC 3.4 W (Wet Leg Spring) | RESE-1002073       | 05-Mar-09 |      |      |      |         |      |          |         |                 | 69.0             |                |       |                                          |       |                           |      |                            |        |               | SVL         |
| MC 3.4 W (Wet Leg Spring) | RESE-1002073       | 05-Mar-09 |      |      |      |         | 4.64 |          | 144     | 4.59            |                  | <0.100         | 0.217 |                                          | 187   |                           |      |                            |        |               | SVL         |
| MC 3.4 W (Wet Leg Spring) | RESE-1002073       | 05-Mar-09 | 26.2 | 4.56 | 18.2 | 1.09    |      |          |         |                 |                  |                |       |                                          |       |                           |      |                            |        |               | SVL         |
| MC 3.4 W (Wet Leg Spring) | RESE-1002094       | 14-May-09 |      |      |      |         |      |          |         |                 |                  |                |       |                                          |       | 24.1                      | 7.62 | 263                        |        |               |             |
| MC 3.4 W (Wet Leg Spring) | RESE-1002094       | 14-May-09 |      |      |      |         |      |          |         |                 | 81               |                |       |                                          |       |                           |      |                            |        |               | SVL         |
| MC 3.4 W (Wet Leg Spring) | RESE-1002094       | 14-May-09 |      |      |      |         | 5.58 |          | 159.8   | 4.24            |                  | <0.100         | 0.256 |                                          | 218 j |                           |      |                            |        |               | SVL         |
| MC 3.4 W (Wet Leg Spring) | RESE-1002094       | 14-May-09 | 29   | 5.24 | 22.2 | 0.193 j |      |          |         |                 |                  |                |       |                                          |       |                           |      |                            |        |               | SVL         |
| MC 3.4 W (Wet Leg Spring) | RESE-1002105       | 06-Aug-09 |      |      |      |         |      |          |         |                 |                  |                |       |                                          |       | 25.0                      | 7.68 | 278.2                      |        |               |             |
| MC 3.4 W (Wet Leg Spring) | RESE-1002105       | 06-Aug-09 |      |      |      |         |      |          |         |                 | 83.1             |                |       |                                          |       |                           |      |                            |        |               | SVL         |
| MC 3.4 W (Wet Leg Spring) | RESE-1002105       | 06-Aug-09 |      |      |      |         | 5.67 |          | 174.5   | 3.28            |                  | <0.100         | 0.418 |                                          | 219 j |                           |      |                            |        |               | SVL         |
| MC 3.4 W (Wet Leg Spring) | RESE-1002105       | 06-Aug-09 | 31.7 | 5.68 | 22.9 | 0.419   |      |          |         |                 |                  |                |       |                                          |       |                           |      |                            |        |               | SVL         |



| SAMPLE LOCATION              | SAMPLE IDENTIFIER/           | SAMPLE                 |          |      |      |          | COI  | MMON   | CONSTIT | UENTS           | <sup>a</sup> (mg/L) | b         |       |                                          |     |                           | RO    | UTINE PARA                 | METERS |               | ANALYTICAL  |
|------------------------------|------------------------------|------------------------|----------|------|------|----------|------|--------|---------|-----------------|---------------------|-----------|-------|------------------------------------------|-----|---------------------------|-------|----------------------------|--------|---------------|-------------|
|                              | DESCRIPTION                  | DATE                   |          |      |      |          |      |        |         |                 |                     |           |       |                                          |     |                           | FIELD | )                          | LABO   | RATORY        | LABORATORY  |
|                              |                              |                        | Ca       | Mg   | Na   | К        | Cl   | CO₃    | HCO₃    | SO <sub>4</sub> | SiO <sub>2</sub>    | Br        | F     | NO <sub>3</sub> + NO <sub>2</sub> (as N) | TDS | TEMP<br>(°C) <sup>c</sup> | рН    | SC<br>(μS/cm) <sup>d</sup> | рН     | SC<br>(μS/cm) |             |
|                              |                              |                        |          |      |      |          | Sı   | urface | Water   |                 |                     |           |       |                                          |     |                           |       |                            |        |               |             |
| MC 3.4 W (Wet Leg Spring)    | RESE-1002113                 | 15-Dec-09              |          |      |      |          |      |        |         |                 |                     |           |       |                                          |     | 18.7                      | 7.88  | 254.5                      |        |               |             |
| MC 3.4 W (Wet Leg Spring)    | RESE-1002113                 | 15-Dec-09              |          |      |      |          |      |        |         |                 | 76.4                |           |       |                                          |     |                           |       |                            |        |               | SVL         |
| MC 3.4 W (Wet Leg Spring)    | RESE-1002113                 | 15-Dec-09              |          |      |      |          | 5.07 |        | 153.7   | 4.13            |                     | <0.100    | 0.188 |                                          | 174 |                           |       |                            |        |               | SVL         |
| MC 3.4 W (Wet Leg Spring)    | RESE-1002113                 | 15-Dec-09              | 27.5     | 4.90 | 20.1 | 0.97     |      |        |         |                 |                     |           |       |                                          |     |                           |       |                            |        |               | SVL         |
| MC 3.4 W (Wet Leg Spring)    | RESE-1002122                 | 15-Feb-10              |          |      |      |          |      |        |         |                 |                     |           |       |                                          |     | 21.4                      | 7.85  | 245                        |        |               |             |
| MC 3.4 W (Wet Leg Spring)    | RESE-1002122                 | 15-Feb-10              |          |      |      |          |      |        |         |                 | 72.3                |           |       |                                          |     |                           |       |                            |        |               | SVL         |
| MC 3.4 W (Wet Leg Spring)    | RESE-1002122                 | 15-Feb-10              |          |      |      |          | 4.77 | -      | 144     | 6.09            |                     | <0.100    | 0.147 |                                          | 179 |                           |       |                            |        |               | SVL         |
| MC 3.4 W (Wet Leg Spring)    | RESE-1002122                 | 15-Feb-10              | 26.9     | 4.63 | 18.7 | 1.16     |      |        |         |                 |                     |           |       |                                          |     |                           |       |                            |        |               | SVL         |
| MC 3.4 W (Wet Leg Spring)    | RESE-1002132                 | 18-Mar-10              |          |      |      |          |      |        |         |                 |                     |           |       |                                          |     | 22.4                      | 7.81  | 220.9                      |        |               | <u>'</u>    |
| MC 3.4 W (Wet Leg Spring)    | RESE-1002150                 | 04-Nov-10              |          |      |      |          |      |        |         |                 |                     |           |       |                                          |     | 18.9                      | 7.96  | 372.0                      |        |               |             |
| MC 3.4 W (Wet Leg Spring)    | RESE-1002150                 | 04-Nov-10              |          |      |      |          |      |        |         |                 | 61.8                |           |       |                                          |     |                           |       |                            |        |               | SVL         |
| MC 3.4 W (Wet Leg Spring)    | RESE-1002150                 | 04-Nov-10              |          |      |      |          | 11.3 |        | 231.8   | 47.4            |                     | 0.107     | 0.278 |                                          | 314 |                           |       |                            |        |               | SVL         |
| MC 3.4 W (Wet Leg Spring)    | RESE-1002150                 | 04-Nov-10              | 58.1     | 15.3 | 26.8 | 1.38     |      |        |         |                 |                     |           |       |                                          |     |                           |       |                            |        |               | SVL         |
| MC 3.4 W (Wet Leg Spring)    | RESE-1002164                 | 24-Feb-11              |          |      |      |          |      |        |         |                 |                     |           |       |                                          |     | 20.3                      | 8.11  | 230                        |        |               |             |
| MC 3.4 W (Wet Leg Spring)    | RESE-1002164                 | 24-Feb-11              |          |      |      |          |      |        |         |                 | 73.3                |           |       |                                          |     |                           |       |                            |        |               | SVL         |
| MC 3.4 W (Wet Leg Spring)    | RESE-1002164                 | 24-Feb-11              |          |      |      |          | 4.47 |        | 146.4   | 4.28            |                     | <0.10     | 0.32  |                                          | 212 |                           |       |                            |        |               | SVL         |
| MC 3.4 W (Wet Leg Spring)    | RESE-1002164                 | 24-Feb-11              | 26.7     | 4.77 | 19.5 | 1.16     |      |        |         |                 |                     |           |       |                                          |     |                           |       |                            |        |               | SVL         |
| MC 3.4 W (Wet Leg Spring)    | RESE-1002173                 | 31-May-11              |          |      |      |          |      |        |         |                 |                     |           |       |                                          |     | 23.3                      | 7.62  | 309                        |        |               |             |
| MC 3.4 W (Wet Leg Spring)    | RESE-1002173                 | 31-May-11              |          |      |      |          |      |        |         |                 | 77.8                |           |       |                                          |     |                           |       |                            |        |               | SVL         |
| MC 3.4 W (Wet Leg Spring)    | RESE-1002173                 | 31-May-11              |          |      |      |          | 5.30 |        | 159.8   | 4.17            |                     | <0.10     | 0.30  |                                          | 237 |                           |       |                            |        |               | SVL         |
| MC 3.4 W (Wet Leg Spring)    | RESE-1002173                 | 31-May-11              | 30.2     | 5.20 | 21.8 | <0.50    |      |        |         |                 |                     |           |       |                                          |     |                           |       |                            |        |               | SVL         |
| MC 3.4 W (Wet Leg Spring) SP | RESE-1002173                 | 31-May-11              | 28       | 5.1  | 21   | <2.0     |      |        |         |                 | 79                  |           |       |                                          |     |                           |       |                            |        |               | TestAmerica |
| MC 3.4 W (Wet Leg Spring) SP | RESE-1002173                 | 31-May-11              | 28       | 5.2  | 21   | <2.0     | 5.1  |        | 158.6   | 4.4             | 77                  | <0.50     | <0.40 |                                          | 210 |                           |       |                            | 8.16   | 260           | TestAmerica |
| MC 3.4 W (Wet Leg Spring)    | RESE-1002185                 | 29-Aug-11              |          |      |      |          |      |        |         |                 |                     |           |       |                                          |     | 26.1                      | 7.41  | 244                        |        |               |             |
| MC 3.4 W (Wet Leg Spring)    | RESE-1002185                 | 29-Aug-11              |          |      |      |          |      |        |         |                 | 77.7                |           |       |                                          |     |                           |       |                            |        |               | SVL         |
| MC 3.4 W (Wet Leg Spring)    | RESE-1002185                 | 29-Aug-11              | 30.4     | 5.29 | 22.3 | 0.67     | 6.01 |        | 167.1   | 4.01            |                     | <0.10     | 0.33  |                                          | 234 |                           |       |                            |        |               | SVL         |
| MC 5.2 C                     | RESE-1002171                 | 31-May-11              |          |      |      |          |      |        |         |                 |                     |           |       |                                          |     | 22.9                      | 6.91  | 535                        |        |               | 0.12        |
| MC 5.2 C                     | RESE-1002171                 | 31-May-11              |          |      |      |          |      |        |         |                 | 53.0                |           |       |                                          |     | 22.0                      | 0.01  |                            |        |               | SVL         |
| MC 5.2 C                     | RESE-1002171                 | 31-May-11              |          |      |      |          | 11.6 | 4.6    | 226.9   | 49.8            |                     | <0.10     | 0.25  |                                          | 355 |                           |       |                            |        |               | SVL         |
| MC 5.2 C                     | RESE-1002171                 | 31-May-11              | 60.9     | 15.6 | 26.6 | 1.26     |      |        | 220.9   |                 |                     |           | 0.23  |                                          |     |                           |       |                            |        |               | SVL         |
| MC 5.2 C SP                  | RESE-1002171                 | 31-May-11              | 54       | 15.0 | 24   | <2.0     |      |        |         |                 | 52                  |           |       |                                          |     |                           |       |                            |        |               | TestAmerica |
| MC 5.2 C SP                  | RESE-1002171                 | · ·                    | 54       | 15   | 24   | <2.0     | 10   |        | 219.6   | 51              | 52                  | <0.50     | <0.40 | <2.0                                     | 330 |                           |       |                            | 8.42   | 490           |             |
| MC 5.2 C SP                  | RESE-1002171<br>RESE-1002184 | 31-May-11<br>29-Aug-11 |          |      |      | <2.0<br> |      |        | 219.0   | 51              | 52                  | <0.50     | <0.40 | <2.0<br>                                 | 330 | 26.8                      | 8.3   | 413                        | 0.42   | 490           | TestAmerica |
| MC 5.2 C                     | RESE-1002184                 | 29-Aug-11<br>29-Aug-11 |          |      |      |          |      |        |         |                 | 53.8                |           |       |                                          |     | 20.0                      | 0.3   | 413                        |        |               | SVL         |
| MC 5.2 C                     | RESE-1002184                 | 29-Aug-11<br>29-Aug-11 | 55.3     | 13.1 | 23.1 | 1.54     | 11.4 | 2.9    | 229.4   | 44.6            | 55.6                | 0.11      | 0.24  |                                          | 343 |                           |       |                            |        |               | SVL         |
| MC 5.2 C                     |                              | 08-Dec-11              |          | 13.1 | 23.1 | 1.04     | 11.4 | 2.9    | 229.4   | 44.0            |                     | 0.11      | 0.24  |                                          |     | 11.7                      | 8.1   | 397                        |        |               | SVL         |
|                              | RESE-1002201                 |                        |          |      |      |          |      |        |         |                 |                     |           |       |                                          |     | 11.7                      | 0.1   | 397                        |        |               | 6)//        |
| MC 5.2 C                     | RESE-1002201                 | 08-Dec-11              | <br>57 5 | 12.7 | 22.7 | 1 20     | 11.7 |        | 222.2   | <br>52.5        | 55.1                | <br><0.10 | 0.24  |                                          | 220 |                           |       |                            |        |               | SVL         |
| MC 5.2 C                     | RESE-1002201                 | 08-Dec-11              | 57.5     | 13.7 | 23.7 | 1.28     | 11.7 | -      | 223.3   | 52.5            |                     | <0.10     | 0.24  |                                          | 339 |                           |       |                            |        |               | SVL         |



| SAMPLE LOCATION                                                                 | SAMPLE IDENTIFIER/           | SAMPLE                 |      |      |      |      | СО   | MMON   | CONSTIT | UENTS           | a (mg/L)         | ) <sup>b</sup> |       |                                   |     |                   | RO   | UTINE PARA           | METERS |         | ANALYTICAL  |
|---------------------------------------------------------------------------------|------------------------------|------------------------|------|------|------|------|------|--------|---------|-----------------|------------------|----------------|-------|-----------------------------------|-----|-------------------|------|----------------------|--------|---------|-------------|
|                                                                                 | DESCRIPTION                  | DATE                   |      |      |      |      |      |        |         |                 |                  |                |       |                                   |     |                   | FIEL | D                    | LABOI  | RATORY  | LABORATORY  |
|                                                                                 |                              |                        | Са   | Mg   | Na   | К    | CI   | CO₃    | HCO₃    | SO <sub>4</sub> | SiO <sub>2</sub> | Br             | F     | NO <sub>3</sub> + NO <sub>2</sub> | TDS | TEMP              | рН   | SC                   | рН     | SC      |             |
|                                                                                 |                              |                        |      |      |      |      |      |        |         |                 |                  |                |       | (as N)                            |     | (°C) <sup>c</sup> |      | (µS/cm) <sup>d</sup> |        | (µS/cm) |             |
|                                                                                 |                              |                        |      |      |      |      | S    | urface | Water   |                 |                  |                |       |                                   |     |                   |      |                      |        |         |             |
| MC 8.4 C (Ranch Fork Headwaters Spring)                                         | RESE-1002038                 | 13-Nov-08              |      |      |      |      |      |        |         |                 |                  |                |       |                                   |     | 19.1              | 6.68 | 750                  |        |         |             |
| MC 8.4 C (Ranch Fork Headwaters Spring)                                         | RESE-1002038                 | 13-Nov-08              |      |      |      |      |      |        |         |                 | 39.7             |                |       |                                   |     |                   |      |                      |        |         | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)                                         | RESE-1002038                 | 13-Nov-08              |      |      |      |      | 18.9 |        | 444.1   | 63.5            |                  | 0.158          | 0.468 |                                   | 480 |                   |      |                      |        |         | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)                                         | RESE-1002038                 | 13-Nov-08              |      |      |      |      |      |        |         |                 |                  |                |       | 0.36                              |     |                   |      |                      |        |         | TestAmerica |
| MC 8.4 C (Ranch Fork Headwaters Spring)                                         | RESE-1002038                 | 13-Nov-08              | 92.7 | 31.8 | 34.0 | 1.33 |      |        |         |                 |                  |                |       |                                   |     |                   |      |                      |        |         | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)                                         | RESE-1002071                 | 05-Mar-09              |      |      |      |      |      |        |         |                 |                  |                |       |                                   |     | 18.7              | 6.97 | 657                  |        |         |             |
| MC 8.4 C (Ranch Fork Headwaters Spring)                                         | RESE-1002071                 | 05-Mar-09              |      |      |      |      |      |        |         |                 | 37.8             |                |       |                                   |     |                   |      |                      |        |         | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)                                         | RESE-1002071                 | 05-Mar-09              |      |      |      |      | 17.1 |        | 385.5   | 50.2            |                  | 0.150          | 0.373 |                                   | 431 |                   |      |                      |        |         | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)                                         | RESE-1002071                 | 05-Mar-09              | 79.7 | 27.5 | 29.9 | 1.26 |      |        |         |                 |                  |                |       |                                   |     |                   |      |                      |        |         | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)                                         | RESE-1002090                 | 14-May-09              |      |      |      |      |      |        |         |                 |                  |                |       |                                   |     | 22.8              | 7.14 | 757                  |        |         |             |
| MC 8.4 C (Ranch Fork Headwaters Spring)                                         | RESE-1002090                 | 14-May-09              |      |      |      |      |      |        |         |                 | 38               |                |       |                                   |     |                   |      |                      |        |         | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)                                         | RESE-1002090                 | 14-May-09              |      |      |      |      | 20.5 |        | 405     | 73.5            |                  | 0.166          | 0.367 |                                   | 474 |                   |      |                      |        |         | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)                                         | RESE-1002090                 | 14-May-09              | 90.3 | 31.6 | 34   | 1.52 |      |        |         |                 |                  |                |       |                                   |     |                   |      |                      |        |         | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring) DUP                                     | RESE-1002091                 | 14-May-09              |      |      |      |      |      |        |         |                 | 38.4             |                |       |                                   |     |                   |      |                      |        |         | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring) DUP                                     | RESE-1002091                 | 14-May-09              |      |      |      |      | 20.4 |        | 412.4   | 72.6            |                  | 0.175          | 0.373 |                                   | 498 |                   |      |                      |        |         | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring) DUP                                     | RESE-1002091                 | 14-May-09              | 91.6 | 32.1 | 34.9 | 1.54 |      |        |         |                 |                  |                |       |                                   |     |                   |      |                      |        |         | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)                                         | RESE-1002107                 | 06-Aug-09              |      |      |      |      |      |        |         |                 |                  |                |       |                                   |     | 22.7              | 6.74 | 736                  |        |         |             |
| MC 8.4 C (Ranch Fork Headwaters Spring)                                         | RESE-1002107                 | 06-Aug-09              |      |      |      |      |      |        |         |                 | 39.7             |                |       |                                   |     |                   |      |                      |        |         | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)                                         | RESE-1002107                 | 06-Aug-09              |      |      |      |      | 16.9 |        | 441.6   | 65.2            |                  | <0.100         | 0.358 |                                   | 489 |                   |      |                      |        |         | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)                                         | RESE-1002107                 | 06-Aug-09              | 93.3 | 32.9 | 35.5 | 1.54 |      |        |         |                 |                  |                |       |                                   |     |                   |      |                      |        |         | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring) DUP                                     | RESE-1002108                 | 06-Aug-09              |      |      |      |      |      |        |         |                 | 39.5             |                |       |                                   |     |                   |      |                      |        |         | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring) DUP                                     | RESE-1002108                 | 06-Aug-09              |      |      |      |      | 16.6 |        | 433.1   | 63.9            |                  | <0.100         | 0.394 |                                   | 490 |                   |      |                      |        |         | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring) DUP                                     | RESE-1002108                 | 06-Aug-09              | 94.2 | 32.8 | 36.5 | 1.54 |      |        |         |                 |                  |                |       |                                   |     |                   |      |                      |        |         | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)                                         | RESE-1002110                 | 15-Dec-09              |      |      |      |      |      |        |         |                 |                  |                |       |                                   |     | 15.2              | 6.90 | 692                  |        |         | 2.2         |
| MC 8.4 C (Ranch Fork Headwaters Spring)                                         | RESE-1002110                 | 15-Dec-09              |      |      |      |      |      |        |         |                 | 38.8             |                |       |                                   |     |                   |      |                      |        |         | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)                                         | RESE-1002110                 | 15-Dec-09              |      |      |      |      | 18.2 |        | 373.3   | 59.9            |                  | 0.120          | 0.322 |                                   | 456 |                   |      |                      |        |         | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)                                         | RESE-1002110                 | 15-Dec-09              | 81.3 | 28.7 | 30.9 | 1.18 |      |        |         |                 |                  |                |       |                                   |     |                   |      |                      |        |         | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)                                         | RESE-1002123                 | 15-Feb-10              |      |      |      |      |      |        |         |                 |                  |                |       |                                   |     | 14.3              | 7.68 | 577                  |        |         | 072         |
| MC 8.4 C (Ranch Fork Headwaters Spring)                                         | RESE-1002123                 | 15-Feb-10              |      |      |      |      |      |        |         |                 | 33.9             |                |       |                                   |     |                   |      |                      |        |         | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)                                         | RESE-1002123                 | 15-Feb-10              |      |      |      |      | 14.2 |        | 275.7   | 63.3            |                  | <0.100         | 0.382 |                                   | 344 |                   |      |                      |        |         | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)                                         | RESE-1002123                 | 15-Feb-10              | 66.5 | 22.5 | 27.0 | 1.11 |      |        |         |                 |                  | -0.100         | 0.002 |                                   |     |                   |      |                      |        |         | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)                                         | RESE-1002134                 | 18-Mar-10              |      | 22.0 | 27.0 |      |      |        |         |                 |                  |                |       |                                   |     | 16.4              | 7.83 | 385.8                |        |         | OVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)                                         |                              | 04-Nov-10              |      |      |      |      |      |        |         |                 |                  |                |       |                                   |     | 18.7              | 6.88 | 752.2                |        |         |             |
| MC 8.4 C (Ranch Fork Headwaters Spring)                                         | RESE-1002148<br>RESE-1002148 | 04-Nov-10              |      |      |      |      |      |        |         |                 | 42.3             |                |       |                                   |     | 10.7              | 0.00 | 102.2                |        |         | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)                                         | RESE-1002148                 | 04-Nov-10              |      |      |      |      | 17.3 |        | 411.1   | 57.8            | 42.3             | 0.173          | 0.413 |                                   | 442 |                   |      |                      |        |         | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)                                         | RESE-1002148                 | 04-Nov-10              | 91.6 | 30.8 | 32.7 | 1.40 |      |        |         | 37.0            |                  | 0.173          | 0.413 |                                   |     |                   |      |                      |        |         | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)                                         | RESE-1002146<br>RESE-1002166 | 24-Feb-11              |      |      |      |      |      |        |         |                 |                  |                |       |                                   |     | 15.1              | 7.21 | 622.3                |        |         | JVL         |
|                                                                                 | RESE-1002166                 | 24-Feb-11<br>24-Feb-11 |      |      |      |      |      |        |         |                 | 27.0             |                |       |                                   |     | 13.1              | 1.21 | 022.3                |        |         | 6//         |
| MC 8.4 C (Ranch Fork Headwaters Spring) MC 8.4 C (Ranch Fork Headwaters Spring) | RESE-1002166<br>RESE-1002166 | 24-Feb-11<br>24-Feb-11 |      |      |      |      | 14.7 |        | 394.2   | 43.3            | 37.9             | 0.22           | 0.30  |                                   | 410 |                   |      |                      |        |         | SVL         |
| , , , , , , , , , , , , , , , , , , , ,                                         |                              |                        | 76.1 | 26.4 | 20.1 | 1.00 | 14.7 |        | 384.3   | 43.3            |                  | 0.22           | 0.30  |                                   | 410 |                   |      |                      |        |         | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)                                         | RESE-1002166                 | 24-Feb-11              | 76.1 | 26.4 | 30.1 | 1.29 |      |        |         |                 |                  |                |       |                                   |     |                   |      |                      |        |         | SVL         |



| SAMPLE LOCATION                             | SAMPLE IDENTIFIER/ | SAMPLE    |      |      |      |      | cor  | MMON   | CONSTIT | UENTS           | a (mg/L)         | b      |        |                                   |     |                   | RO    | UTINE PARA           | METERS | ,       | ANALYTICAL  |
|---------------------------------------------|--------------------|-----------|------|------|------|------|------|--------|---------|-----------------|------------------|--------|--------|-----------------------------------|-----|-------------------|-------|----------------------|--------|---------|-------------|
|                                             | DESCRIPTION        | DATE      |      |      |      |      |      |        |         |                 |                  |        |        |                                   |     |                   | FIELI | D                    | LABO   | RATORY  | LABORATORY  |
|                                             |                    |           | Ca   | Mg   | Na   | K    | Cl   | CO₃    | HCO₃    | SO <sub>4</sub> | SiO <sub>2</sub> | Br     | F      | NO <sub>3</sub> + NO <sub>2</sub> | TDS | TEMP              | рН    | SC                   | рН     | SC      |             |
|                                             |                    |           |      |      |      |      |      |        |         |                 |                  |        |        | (as N)                            |     | (°C) <sup>c</sup> |       | (μS/cm) <sup>d</sup> |        | (μS/cm) |             |
|                                             |                    |           |      |      |      |      | Sı   | urface | Water   |                 |                  |        |        |                                   |     |                   |       |                      |        |         |             |
| MC 8.4 C (Ranch Fork Headwaters Spring) DUP | RESE-1002162       | 24-Feb-11 |      |      |      |      |      |        |         |                 |                  |        | _      |                                   |     | 15.1              | 7.21  | 622.3                |        |         |             |
| MC 8.4 C (Ranch Fork Headwaters Spring) DUP | RESE-1002162       | 24-Feb-11 |      |      |      |      |      |        |         |                 | 38.5             |        |        |                                   |     |                   |       |                      |        |         | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring) DUP | RESE-1002162       | 24-Feb-11 |      |      |      |      | 14.9 |        | 377     | 43.3            |                  | 0.14   | 0.29   |                                   | 420 |                   |       |                      |        |         | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring) DUP | RESE-1002162       | 24-Feb-11 | 78.4 | 27.1 | 30.5 | 1.20 |      |        |         |                 |                  |        |        |                                   |     |                   |       |                      |        |         | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)     | RESE-1002169       | 31-May-11 |      |      |      |      |      |        |         |                 |                  |        |        |                                   |     | 20.2              | 7.06  | 789                  |        |         |             |
| MC 8.4 C (Ranch Fork Headwaters Spring)     | RESE-1002169       | 31-May-11 |      |      |      |      |      |        |         |                 | 40.3             |        |        |                                   |     |                   |       |                      |        |         | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)     | RESE-1002169       | 31-May-11 |      |      |      |      | 17.7 |        | 397.7   | 42.7            |                  | 0.18   | 0.35   |                                   | 442 |                   |       |                      |        |         | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)     | RESE-1002169       | 31-May-11 | 87.4 | 29.2 | 32.6 | 1.42 |      |        |         |                 |                  |        |        |                                   |     |                   |       |                      |        |         | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring) DUP | RESE-1002170       | 31-May-11 |      |      |      |      |      |        |         |                 |                  |        |        |                                   |     | 20.2              | 7.06  | 789                  |        |         |             |
| MC 8.4 C (Ranch Fork Headwaters Spring) DUP | RESE-1002170       | 31-May-11 |      |      |      |      |      |        |         |                 | 39.4             |        |        |                                   |     |                   |       |                      |        |         | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring) DUP | RESE-1002170       | 31-May-11 |      |      |      |      | 17.7 |        | 395.3   | 43.3            |                  | 0.18   | 0.34   |                                   | 448 |                   |       |                      |        |         | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring) DUP | RESE-1002170       | 31-May-11 | 84.2 | 28.2 | 31.4 | 1.42 |      |        |         |                 |                  |        |        |                                   |     |                   |       |                      |        |         | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)     | RESE-1002200       | 08-Dec-11 |      |      |      |      |      |        |         |                 |                  |        |        |                                   |     | 14.1              | 7.2   | 574                  |        |         |             |
| MC 8.4 C (Ranch Fork Headwaters Spring)     | RESE-1002200       | 08-Dec-11 |      |      |      |      |      |        |         |                 | 38.1             |        |        |                                   |     |                   |       |                      |        |         | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)     | RESE-1002200       | 08-Dec-11 | 86.3 | 28.7 | 30.9 | 2.22 | 17.9 | -      | 386.7   | 43.4            |                  | 0.12   | 0.36   |                                   | 423 |                   |       |                      |        |         | SVL         |
| Mineral Creek Post-Fire                     | RESE-1003170       | 28-Jul-10 |      |      |      |      |      |        |         |                 |                  |        |        |                                   |     | 33.0              | 7.65  | 682.7                |        |         |             |
| Mineral Creek Post-Fire                     | RESE-1003170       | 28-Jul-10 | 75   | 28   | 30   | <2.0 |      |        |         |                 | 37               |        |        |                                   |     |                   |       |                      |        |         | TestAmerica |
| Mineral Creek Post-Fire                     | RESE-1003170       | 28-Jul-10 | 83   | 29   | 31   | <2.0 | 16   |        | 341.6   | 65              | 41               | <0.50  | 0.56   | 0.22                              | 450 |                   |       |                      | 7.54   | 680     | TestAmerica |
| Number Nine                                 | RESE-1002020       | 28-Aug-08 |      |      |      |      |      |        |         |                 |                  |        |        |                                   |     | 27.6              | 7.11  | 85.5                 |        |         |             |
| Number Nine                                 | RESE-1002020       | 28-Aug-08 | 7.25 | 1.7  | 5.25 | 2.18 | 3.40 |        |         | 15.4            | 24.2             |        |        |                                   |     |                   |       |                      |        |         | SVL         |
| Number Nine                                 | RESE-1002020       | 28-Aug-08 | 6.42 | 1.54 | 4.71 | 2.09 | 2.48 |        | 13.5    | 16.1            |                  | <0.100 | <0.100 |                                   | 93  |                   |       |                      |        |         | SVL         |
| Number Nine                                 | RESE-1002020       | 28-Aug-08 |      |      |      |      |      |        |         |                 |                  |        |        | 0.64                              |     |                   |       |                      |        |         | TestAmerica |
| Number Nine                                 | RESE-1002042       | 12-Nov-08 | -    |      |      |      |      |        |         |                 |                  |        |        |                                   |     | 14.5              | 8.56  | 210.9                |        |         |             |
| Number Nine                                 | RESE-1002042       | 12-Nov-08 |      |      |      |      |      |        |         |                 | 25.9             |        |        |                                   |     |                   |       |                      |        |         | SVL         |
| Number Nine                                 | RESE-1002042       | 12-Nov-08 |      |      |      |      | 12.3 |        | 93.7    | 7.14            |                  | 0.153  | 0.369  |                                   | 200 |                   |       |                      |        |         | SVL         |
| Number Nine                                 | RESE-1002042       | 12-Nov-08 |      |      |      |      |      |        |         |                 |                  |        |        | <0.30                             |     |                   |       |                      |        |         | TestAmerica |
| Number Nine                                 | RESE-1002042       | 12-Nov-08 | 18.7 | 5.34 | 17.1 | 3.65 |      |        |         |                 |                  |        |        |                                   |     |                   |       |                      |        |         | SVL         |
| Number Nine                                 | RESE-1002058       | 19-Feb-09 |      |      |      |      |      |        |         |                 |                  |        |        |                                   |     | 9.9               | 7.64  | 71                   |        |         |             |
| Number Nine                                 | RESE-1002058       | 19-Feb-09 |      |      |      |      |      |        |         |                 | 21.6             |        |        |                                   |     |                   |       |                      |        |         | SVL         |
| Number Nine                                 | RESE-1002058       | 19-Feb-09 |      |      |      |      | 2.34 |        | 8.3     | 14.2            |                  | <0.100 | <0.100 |                                   | 114 |                   |       |                      |        |         | SVL         |
| Number Nine                                 | RESE-1002058       | 19-Feb-09 | 5.17 | 1.31 | 4.99 | 1.19 |      |        |         |                 |                  |        |        |                                   |     |                   |       |                      |        |         | SVL         |
| Number Nine DUP                             | RESE-1002059       | 19-Feb-09 |      |      |      |      |      |        |         |                 | 20.5             |        |        |                                   |     |                   |       |                      |        |         | SVL         |
| Number Nine DUP                             | RESE-1002059       | 19-Feb-09 |      |      |      |      | 2.36 |        | 8.4     | 14.2            |                  | <0.100 | <0.100 |                                   | 93  |                   |       |                      |        |         | SVL         |
| Number Nine DUP                             | RESE-1002059       | 19-Feb-09 | 4.87 | 1.25 | 4.74 | 1.16 |      |        |         |                 |                  |        |        |                                   |     |                   |       |                      |        |         | SVL         |
| Number Nine                                 | RESE-1002077       | 05-May-09 |      |      |      |      |      |        |         |                 |                  |        |        |                                   |     | 24.2              | 7.72  | 101.2                |        |         |             |
| Number Nine                                 | RESE-1002077       | 05-May-09 |      |      |      |      |      |        |         |                 | 25.2             |        |        |                                   |     |                   |       |                      |        |         | SVL         |
| Number Nine                                 | RESE-1002077       | 05-May-09 |      |      |      |      | 4.67 |        | 32.3    | 8.82            |                  | 0.169  | <0.100 |                                   | 85  |                   |       |                      |        |         | SVL         |
|                                             |                    |           |      |      |      |      |      |        |         |                 |                  |        |        |                                   |     |                   |       |                      |        |         |             |



| SAMPLE LOCATION    | SAMPLE IDENTIFIER/ | SAMPLE    |      |      |      |      | COI  | MMON            | CONSTIT | UENTS           | a (mg/L)         | ) <sup>b</sup> |        |                                          |     |                           | RO   | UTINE PARA                 | METERS |               | ANALYTICAL  |
|--------------------|--------------------|-----------|------|------|------|------|------|-----------------|---------|-----------------|------------------|----------------|--------|------------------------------------------|-----|---------------------------|------|----------------------------|--------|---------------|-------------|
|                    | DESCRIPTION        | DATE      |      |      |      |      |      |                 |         |                 |                  |                |        |                                          |     |                           | FIEL | D                          | LABOI  | RATORY        | LABORATORY  |
|                    |                    |           | Са   | Mg   | Na   | К    | Cl   | CO <sub>3</sub> | HCO₃    | SO <sub>4</sub> | SiO <sub>2</sub> | Br             | F      | NO <sub>3</sub> + NO <sub>2</sub> (as N) | TDS | TEMP<br>(°C) <sup>c</sup> | рН   | SC<br>(μS/cm) <sup>d</sup> | рН     | SC<br>(μS/cm) |             |
|                    |                    |           |      |      |      |      | Sı   | urface          | Water   |                 |                  |                |        |                                          |     |                           |      |                            |        |               |             |
| Number Nine        | RESE-1002139       | 01-Nov-10 |      |      |      |      |      |                 |         |                 |                  |                |        |                                          |     | 12.9                      | 7.88 | 125.6                      |        |               |             |
| Number Nine        | RESE-1002139       | 01-Nov-10 |      |      |      |      |      |                 |         |                 | 26.4             |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| Number Nine        | RESE-1002139       | 01-Nov-10 |      |      |      |      | 3.47 |                 | 38.9    | 12.8            |                  | <0.100         | 0.103  |                                          | 76  |                           |      |                            |        |               | SVL         |
| Number Nine        | RESE-1002139       | 01-Nov-10 | 8.33 | 2.16 | 9.04 | 0.95 |      |                 |         |                 |                  |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| Number Nine        | RESE-1002147       | 03-Nov-10 |      |      |      |      |      |                 |         |                 |                  |                |        |                                          |     | 19.9                      | 7.91 | 240                        |        |               |             |
| Number Nine        | RESE-1002147       | 03-Nov-10 |      |      |      |      |      |                 |         |                 | 7.59             |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| Number Nine        | RESE-1002147       | 03-Nov-10 |      |      |      |      | 2.08 |                 | 148.8   | 2.36            |                  | <0.100         | 0.163  |                                          | 148 |                           |      |                            |        |               | SVL         |
| Number Nine        | RESE-1002147       | 03-Nov-10 | 39.6 | 4.12 | 2.81 | 5.56 |      |                 |         |                 |                  |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| Number Nine        | RESE-1002178       | 19-Aug-11 |      |      |      |      |      |                 |         |                 |                  |                |        |                                          |     | 24.7                      | 7.55 | 114.1                      |        |               |             |
| Number Nine        | RESE-1002178       | 19-Aug-11 |      |      |      |      |      |                 |         |                 | 12.8             |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| Number Nine        | RESE-1002178       | 19-Aug-11 | 12.7 | 3.28 | 7.29 | 3.26 | 5.24 |                 | 33.2    | 22.2            |                  | <0.10          | 0.18   |                                          | 99  |                           |      |                            |        |               | SVL         |
| Number Nine        | RESE-1002198       | 01-Dec-11 |      |      |      |      |      |                 |         |                 |                  |                |        |                                          |     | 9.1                       | 8.68 | 148.4                      |        |               |             |
| Number Nine        | RESE-1002198       | 01-Dec-11 |      |      |      |      |      |                 |         |                 | 20.6             |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| Number Nine        | RESE-1002198       | 01-Dec-11 | 13.2 | 3.45 | 11.7 | 1.32 | 9.41 |                 | 15.1    | 48.8            |                  | <0.10          | <0.10  |                                          | 131 |                           |      |                            |        |               | SVL         |
| Oak Flat Tributary | RESE-1002016       | 27-Aug-08 |      |      |      |      |      |                 |         |                 |                  |                |        |                                          |     | 24.3                      | 7.25 | 99.5                       |        |               |             |
| Oak Flat Tributary | RESE-1002016       | 27-Aug-08 | 12.4 | 2    | 3.86 | 3.43 | 2.80 |                 |         | 10.9            | 18.9             |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| Oak Flat Tributary | RESE-1002016       | 27-Aug-08 | 11.3 | 1.85 | 3.55 | 3.37 | 2.50 |                 | 33.2    | 11.2            |                  | <0.100         | <0.100 |                                          | 104 |                           |      |                            |        |               | SVL         |
| Oak Flat Tributary | RESE-1002016       | 27-Aug-08 |      |      |      |      |      |                 |         |                 |                  |                |        | 1.9                                      |     |                           |      |                            |        |               | TestAmerica |
| Oak Flat Tributary | RESE-1002068       | 26-Feb-09 |      |      |      |      |      |                 |         |                 |                  |                |        |                                          |     | 17.7                      | 7.25 | 123.9                      |        |               |             |
| Oak Flat Tributary | RESE-1002068       | 26-Feb-09 |      |      |      |      |      |                 |         |                 | 22.7             |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| Oak Flat Tributary | RESE-1002068       | 26-Feb-09 |      |      |      |      | 4.19 |                 | 40.5    | 14.6            |                  | <0.100         | <0.100 |                                          | 145 |                           |      |                            |        |               | SVL         |
| Oak Flat Tributary | RESE-1002068       | 26-Feb-09 | 11.2 | 2.17 | 4.84 | 1.78 |      |                 |         |                 |                  |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| Oak Flat Tributary | RESE-1002076       | 05-May-09 |      |      |      |      |      |                 |         |                 |                  |                |        |                                          |     | 17.15                     | 7.08 | 182                        |        |               |             |
| Oak Flat Tributary | RESE-1002076       | 05-May-09 |      |      |      |      |      |                 |         |                 | 27.9             |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| Oak Flat Tributary | RESE-1002076       | 05-May-09 |      |      |      |      | 9.76 |                 | 71.0    | 24.9            |                  | 0.146          | <0.100 |                                          | 119 |                           |      |                            |        |               | SVL         |
| Oak Flat Tributary | RESE-1002076       | 05-May-09 | 22.4 | 4.37 | 9.26 | 3.80 |      |                 |         |                 |                  |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| Oak Flat Tributary | RESE-1002176       | 19-Aug-11 |      |      |      |      |      |                 |         |                 |                  |                |        |                                          |     | 21.4                      | 6.4  | 48.3                       |        |               |             |
| Oak Flat Tributary | RESE-1002176       | 19-Aug-11 |      |      |      |      |      |                 |         |                 | 10.0             |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| Oak Flat Tributary | RESE-1002176       | 19-Aug-11 | 4.43 | 1.08 | 2.67 | 2.94 | 1.70 |                 | 4.6     | 6.83            |                  | <0.10          | 0.13   |                                          | 63  |                           |      |                            |        |               | SVL         |
| Oak Flat Tributary | RESE-1002205       | 09-Dec-11 |      |      |      |      |      |                 |         |                 |                  |                |        |                                          |     | 6.3                       | 7.12 | 116.2                      |        |               |             |
| Oak Flat Tributary | RESE-1002205       | 09-Dec-11 |      |      |      |      |      |                 |         |                 | 21.6             |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| Oak Flat Tributary | RESE-1002205       | 09-Dec-11 | 11.5 | 2.95 | 6.97 | 2.28 | 7.10 |                 | 13.3    | 33.3            |                  | 0.10           | <0.10  |                                          | 114 |                           |      |                            |        |               | SVL         |
| Patterson Spring   | RESE-1002137       | 18-May-10 |      |      |      |      |      |                 |         |                 |                  |                |        |                                          |     | 18.7                      | 6.55 | 668                        |        |               |             |
| Patterson Spring   | RESE-1002137       | 18-May-10 |      |      |      |      |      |                 |         |                 | 31.0             |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| Patterson Spring   | RESE-1002137       | 18-May-10 |      |      |      |      | 5.58 |                 | 206.2   | 274             |                  | <0.100         | 0.279  |                                          | 600 |                           |      |                            |        |               | SVL         |
| Patterson Spring   | RESE-1002137       | 18-May-10 |      |      |      |      |      |                 |         |                 |                  |                |        |                                          |     |                           |      |                            |        |               | TestAmerica |
| Patterson Spring   | RESE-1002137       | 18-May-10 | 109  | 29.9 | 18.9 | 1.49 |      |                 |         |                 |                  |                |        |                                          |     |                           |      |                            |        |               | SVL         |



| Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   Section Series   Part   | SAMPLE LOCATION         | SAMPLE IDENTIFIER/ | SAMPLE    |      |      |      |      | COI  | MMON   | CONSTIT | UENTS           | a (mg/L)         | ) <sup>b</sup> |       |           |       |      | RO   | UTINE PARA | METERS |        | ANALYTICAL |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------|-----------|------|------|------|------|------|--------|---------|-----------------|------------------|----------------|-------|-----------|-------|------|------|------------|--------|--------|------------|
| Pump States   Sept      |                         | DESCRIPTION        | DATE      |      |      |      |      |      |        |         |                 |                  |                |       |           |       |      | FIEL | D          | LABO   | RATORY | LABORATORY |
| Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Wate   |                         |                    |           | Ca   | Mg   | Na   | K    | Cl   | CO₃    | HCO₃    | SO <sub>4</sub> | SiO <sub>2</sub> | Br             | F     |           | TDS   |      | рН   |            | рН     | 1      |            |
| File Possibles Spring FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 FRES-Fro100091 |                         |                    |           |      |      |      |      | Sı   | urface | Water   |                 |                  |                |       |           |       |      |      |            |        |        |            |
| Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp Station Spring Purp S | Pump Station Spring     | RESE-1001001       | 15-May-03 |      |      |      |      |      |        |         |                 |                  |                |       |           |       | 14.8 | 7.6  | 746        |        |        |            |
| Purp Statish Spring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pump Station Spring     | RESE-1001001       | 15-May-03 |      |      |      |      |      |        |         |                 |                  | 0.13           | 0.23  |           |       |      |      |            |        |        | SVL        |
| Purp States Segret   Section   Sec   | Pump Station Spring     | RESE-1001001       | 15-May-03 |      |      |      |      |      |        |         |                 |                  |                |       | 2.7       |       |      |      |            |        |        | Del Mar    |
| Pump Salatine Spring RESE -1019/224   04 Surption   RESE -1019/224   04 Surption   RESE -1019/224   04 Surption   RESE -1019/224   04 Surption   RESE -1019/224   04 Surption   RESE -1019/224   04 Surption   RESE -1019/224   04 Surption   RESE -1019/224   04 Surption   RESE -1019/224   04 Surption   RESE -1019/224   04 Surption   RESE -1019/224   04 Surption   RESE -1019/224   04 Surption   RESE -1019/224   04 Surption   RESE -1019/224   04 Surption   RESE -1019/224   04 Surption   RESE -1019/224   04 Surption   RESE -1019/224   05 Surption   RESE -1019/224   05 Surption   RESE -1019/224   05 Surption   RESE -1019/224   05 Surption   RESE -1019/224   05 Surption   RESE -1019/224   05 Surption   RESE -1019/224   05 Surption   RESE -1019/224   05 Surption   RESE -1019/224   05 Surption   RESE -1019/224   05 Surption   RESE -1019/224   05 Surption   RESE -1019/224   05 Surption   RESE -1019/224   05 Surption   RESE -1019/224   05 Surption   RESE -1019/224   05 Surption   RESE -1019/224   05 Surption   RESE -1019/224   05 Surption   RESE -1019/224   05 Surption   RESE -1019/224   05 Surption   RESE -1019/224   05 Surption   RESE -1019/224   05 Surption   RESE -1019/224   05 Surption   RESE -1019/224   05 Surption   RESE -1019/224   05 Surption   RESE -1019/224   05 Surption   RESE -1019/224   05 Surption   RESE -1019/224   05 Surption   RESE -1019/224   05 Surption   RESE -1019/224   05 Surption   RESE -1019/224   05 Surption   RESE -1019/224   05 Surption   RESE -1019/224   05 Surption   RESE -1019/224   05 Surption   RESE -1019/224   05 Surption   RESE -1019/224   05 Surption   RESE -1019/224   05 Surption   RESE -1019/224   05 Surption   RESE -1019/224   05 Surption   RESE -1019/224   05 Surption   Surption   Surption   Surption   Surption   Surption   Surption   Surption   Surption   Surption   Surption   Surption   Surption   Surption   Surption   Surption   Surption   Surption   Surption   Surption   Surption   Surption   Surption   Surption   Surption   Surption   Surption   Surption   Surption   Surption   S | Pump Station Spring     | RESE-1001001       | 15-May-03 | 123  | 29.1 | 11.3 | 1.4  | 9.81 |        | 394.1   | 54.2            | 43.8             |                |       |           | 523   |      |      |            |        |        | SVL        |
| Purp Delian Spring   RESE-1010124   OR-Sep-35   Color   Colo   | Pump Station Spring LD  | RESE-1001001       | 15-May-03 |      |      |      |      |      |        |         |                 |                  |                |       | 2.5       |       |      |      |            |        |        | Del Mar    |
| Pump Salanto Spring   RSS-6-1001024   Ok-8-pum   Ok-8   | Pump Station Spring     | RESE-1001024       | 04-Sep-03 |      |      |      |      |      |        |         |                 |                  |                |       |           |       | 18.7 | 7.4  | 770        |        |        |            |
| Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   Number   N   | Pump Station Spring     | RESE-1001024       | 04-Sep-03 |      |      |      |      |      |        |         |                 |                  | 0.17           | 0.25  |           |       |      |      |            |        |        | SVL        |
| Pump Selation Spring   RESE-1010/126   03-Nov-125   1.0   2.0   1.0   1.2   1.0   1.0   3.0   5.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0      | Pump Station Spring     | RESE-1001024       | 04-Sep-03 |      |      |      |      |      |        |         |                 |                  |                |       | 9.2       |       |      |      |            |        |        | Del Mar    |
| Pump Salation Spring   RESE-1010/22   03-Nov-24   03   | Pump Station Spring     | RESE-1001024       | 04-Sep-03 | 151  | 30.3 | 11.2 | 1.4  | 10.2 |        | 456.3   | 56.8            | 49.5             |                |       |           | 496   |      |      |            |        |        | SVL        |
| Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP Pump Sation Soring DUP | Pump Station Spring     | RESE-1001029       | 03-Nov-03 |      |      |      |      |      |        |         |                 |                  |                |       |           |       | 13.6 | 7.5  | 872        |        |        |            |
| Pump Station Spring DLP RESE 1001050 03 New 3 132 82 11.1 12 12.1 11.1 12.1 11.1 12.1 11.1 12.1 11.1 12.1 11.1 12.1 11.1 12.1 11.1 12.1 11.1 12.1 11.1 12.1 11.1 12.1 11.1 12.1 11.1 12.1 11.1 12.1 11.1 12.1 11.1 12.1 11.1 12.1 11.1 12.1 11.1 12.1 11.1 12.1 11.1 12.1 11.1 12.1 11.1 12.1 11.1 12.1 11.1 12.1 11.1 12.1 11.1 12.1 11.1 12.1 11.1 12.1 11.1 12.1 11.1 12.1 11.1 12.1 11.1 12.1 11.1 12.1 11.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1  | Pump Station Spring     | RESE-1001029       | 03-Nov-03 |      |      |      |      |      |        |         |                 |                  |                |       | <u>11</u> |       |      |      |            |        |        | Del Mar    |
| Pump Station Spring DVP RESE-1001050 03-No-V0-2 12 03-02 11.1 12 10.1 - 467.5 69.8 40.1 0.10 0.20 - 568 0.3 7.4 02.0 - 0.0 1.2 1.2 1.2 1.2 1.2 1.3 1.2 1.3 1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pump Station Spring     | RESE-1001029       | 03-Nov-03 | 130  | 29.9 | 11.0 | 1.2  | 10.1 |        | 335.5   | 60.8            | 45.7             | 0.17           | 0.24  |           | 602   |      |      |            |        |        | SVL        |
| Pump Station Spring     RESE-1011056     OB-Fie-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pump Station Spring DUP | RESE-1001030       | 03-Nov-03 |      |      |      |      |      |        |         |                 |                  |                |       | <u>11</u> |       |      |      |            |        |        | Del Mar    |
| Pump Station Spring RESE-1001056 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09-Feb-04 09- | Pump Station Spring DUP | RESE-1001030       | 03-Nov-03 | 132  | 30.2 | 11.1 | 1.2  | 10.1 |        | 457.5   | 59.8            | 46.1             | 0.16           | 0.26  |           | 558   |      |      |            |        |        | SVL        |
| Pump Slation Spring Pump Slation Spring Pump Slation Spring DUP RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001084 RESE-1001084 RESE-1001084 RESE-1001084 RESE-1001084 RESE-1001084 RESE-1001084 RESE-1001084 RESE-1001084 RESE-1001084 RESE-1001084 RESE-1001084 RESE-1001084 RESE-1001084 RESE-1001084 RESE-1001084 RESE-1001084 RESE-1001084 RESE-1001084 RESE-1001084 RESE-1001084 RESE-1001084 RESE-1001084 RESE-1001084 RESE-1001084 RESE-1001084 RESE-1001084 RESE-1001084 RESE-1001084 RESE-1001084 RESE-1001084 RESE-1001084 RESE-1001084 RESE-1001084 RESE-1001084 RESE-1001085 RESE-1001084 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1001085 RESE-1 | Pump Station Spring     | RESE-1001056       | 09-Feb-04 |      |      |      |      |      |        |         |                 |                  |                |       |           |       | 9.3  | 7.4  | 820        |        |        |            |
| Pump Station Spring DUP RESE-1001085 25-May-04 19 29.8 10.6 1.1 11.0 - 477 57.0 45.5 0.18 0.27 - 571 6.8 7.3 645 - 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pump Station Spring     | RESE-1001056       | 09-Feb-04 |      |      |      |      |      |        |         |                 |                  |                |       | 9.8       |       |      |      |            |        |        | Del Mar    |
| Pump Station Spring DUP RESE-1001084 25-May-04 119 29.8 10.8 1.1 11.0 - 477 57.0 45.8 0.18 0.27 - 571                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pump Station Spring     | RESE-1001056       | 09-Feb-04 | 104  | 31   | 10.9 | 1.06 | 11.2 |        | 469.7   | 61.8            |                  | 0.192          | 0.240 |           | 545   |      |      |            |        |        | SVL        |
| Pump Station Spring DUP RESE-1001084 25-May-04 119 29.8 10.8 1.1 11.0 - 477 57.0 45.8 0.18 0.27 - 571                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pump Station Spring DUP | RESE-1001085       | 25-May-04 |      |      |      |      |      |        |         |                 |                  |                |       | 9.8       |       |      |      |            |        |        | Del Mar    |
| Pump Station Spring RESE-1001084 RESE-1001084 RESE-1001084 RESE-1001084 RESE-1001084 RESE-1001084 RESE-1001084 RESE-1001084 RESE-1001084 RESE-1001084 RESE-1001086 RESE-1001086 RESE-1001096 RESE-1001096 RESE-1001096 RESE-1001096 RESE-1001096 RESE-1001096 RESE-1001096 RESE-1001096 RESE-1001096 RESE-1001096 RESE-1001096 RESE-1001096 RESE-1001096 RESE-1001096 RESE-1001096 RESE-1001096 RESE-1001096 RESE-1001096 RESE-1001096 RESE-1001096 RESE-1001096 RESE-1001096 RESE-1001096 RESE-1001096 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-1001108 RESE-100110 | Pump Station Spring DUP | RESE-1001085       |           | 119  | 29.8 | 10.6 | 1.1  | 11.0 |        | 477     | 57.0            | 45.5             | 0.18           | 0.27  |           | 571   |      |      |            |        |        | SVL        |
| Pump Station Spring LD RESE-1001084 25-May-Vol RESE-1001096 25-May-Vol RESE-1001096 30-May-Vol RESE-1001098 30-May-Vol RESE-1001098 30-May-Vol RESE-1001098 30-May-Vol RESE-1001098 30-May-Vol RESE-1001098 30-May-Vol RESE-1001098 30-May-Vol RESE-1001098 30-May-Vol RESE-1001098 30-May-Vol RESE-1001098 30-May-Vol RESE-1001098 30-May-Vol RESE-1001098 30-May-Vol RESE-1001098 30-May-Vol RESE-1001098 30-May-Vol RESE-1001098 30-May-Vol RESE-1001098 30-May-Vol RESE-1001098 30-May-Vol RESE-1001098 30-May-Vol RESE-1001098 30-May-Vol RESE-1001098 30-May-Vol RESE-1001098 30-May-Vol RESE-1001098 30-May-Vol RESE-1001098 30-May-Vol RESE-1001208 30-May-Vol RESE-1001208 30-May-Vol Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla Sulla S | Pump Station Spring     | RESE-1001084       | 25-May-04 |      |      |      |      |      |        |         |                 |                  |                |       |           |       | 16.8 | 7.3  | 845        |        |        |            |
| Pump Station Spring LD RESE-1001084 25-May-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pump Station Spring     | RESE-1001084       | 25-May-04 |      |      |      |      |      |        |         |                 |                  |                |       | 9.8       |       |      |      |            |        |        | Del Mar    |
| Pump Station Spring RESE-1001096 03-Aug-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pump Station Spring     | RESE-1001084       | 25-May-04 | 85.4 | 29.8 | 10.8 | 1.1  | 10.6 |        | 479.5   | 58.8            | 45.6             | 0.13           | 0.25  |           | 544   |      |      |            |        |        | SVL        |
| Pump Station Spring RESE-10011996 03-Aug-04 77.8 29.9 11.6 1.3 11.9 - 479.5 60.1 45.1 0.18 0.26 - 536                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pump Station Spring LD  | RESE-1001084       | 25-May-04 |      |      |      |      |      |        |         |                 |                  |                |       | 9.2       |       |      |      |            |        |        | Del Mar    |
| Pump Station Spring         RESE-1001096         03-Aug-04         77.8         29.9         11.6         1.3         11.9         - 479.5         60.1         45.1         0.18         0.26         - 536                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pump Station Spring     | RESE-1001096       | 03-Aug-04 |      |      |      |      |      |        |         |                 |                  |                |       |           |       | 18.0 | 7.7  | 830        |        |        |            |
| Pump Station Spring RESE-1001166 03-Nov-04 Pump Station Spring RESE-1001166 03-Nov-04 Pump Station Spring RESE-1001166 03-Nov-04 Pump Station Spring Pump Station Spring Pump Station Spring Pump Station Spring Pump Station Spring Pump Station Spring Pump Station Spring Pump Station Spring Pump Station Spring Pump Station Spring Pump Station Spring Pump Station Spring Pump Station Spring Pump Station Spring Pump Station Spring RESE-1001182 08-Feb-05 Pump Station Spring Pump Station Spring RESE-1001182 08-Feb-05 Pump Station Spring RESE-1001182 08-Feb-05 Pump Station Spring RESE-1001182 08-Feb-05 Pump Station Spring RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-10011 | Pump Station Spring     | RESE-1001096       | 03-Aug-04 |      |      |      |      |      |        |         |                 |                  |                |       | <u>12</u> |       |      |      |            |        |        | Del Mar    |
| Pump Station Spring RESE-1001166 03-Nov-04 Pump Station Spring RESE-1001166 03-Nov-04 Pump Station Spring RESE-1001166 03-Nov-04 Pump Station Spring Pump Station Spring Pump Station Spring Pump Station Spring Pump Station Spring Pump Station Spring Pump Station Spring Pump Station Spring Pump Station Spring Pump Station Spring Pump Station Spring Pump Station Spring Pump Station Spring Pump Station Spring Pump Station Spring RESE-1001182 08-Feb-05 Pump Station Spring Pump Station Spring RESE-1001182 08-Feb-05 Pump Station Spring RESE-1001182 08-Feb-05 Pump Station Spring RESE-1001182 08-Feb-05 Pump Station Spring RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 08-Feb-05 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-1001182 RESE-10011 | Pump Station Spring     | RESE-1001096       | 03-Aug-04 | 77.8 | 29.9 | 11.6 | 1.3  | 11.9 |        | 479.5   | 60.1            | 45.1             | 0.18           | 0.26  |           | 536   |      |      |            |        |        | SVL        |
| Pump Station Spring DUP RESE-1001166 03-Nov-04 90.5 30.9 11.3 1.1 17.8 - 481.9 76.1 47.0 0.31 0.22 - 554 SVL Pump Station Spring DUP RESE-1001183 08-Feb-05 85.3 21.7 6.41 1.99 11.4 - 285.5 48.8 40.6 0.149 0.346 - 430 430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pump Station Spring     | RESE-1001166       | 03-Nov-04 |      |      |      |      |      |        |         |                 |                  |                |       |           |       | 12.3 | 7.3  | 857        |        |        |            |
| Pump Station Spring DUP RESE-1001183 08-Feb-05 85.3 21.7 6.41 1.99 11.4 - 285.5 48.8 40.6 0.149 0.346 - 430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pump Station Spring     | RESE-1001166       | 03-Nov-04 |      |      |      |      |      |        |         |                 |                  |                |       | <u>12</u> |       |      |      |            |        |        | Del Mar    |
| Pump Station Spring DUP         RESE-1001183         08-Feb-05         85.3         21.7         6.41         1.99         11.4         -         285.5         48.8         40.6         0.149         0.346          430             SVL           Pump Station Spring         RESE-1001182         08-Feb-05                   SVL           Pump Station Spring         RESE-1001182         08-Feb-05         84.4         21.6         6.45         2.00         11.4          298.9         48.8         40.5         0.155         0.343             SVL           Pump Station Spring         RESE-1001206         04-May-05                SVL           Pump Station Spring         RESE-1001206         04-May-05                         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pump Station Spring     | RESE-1001166       | 03-Nov-04 | 90.5 | 30.9 | 11.3 | 1.1  | 17.8 |        | 481.9   | 76.1            | 47.0             | 0.31           | 0.22  |           | 554   |      |      |            |        |        | SVL        |
| Pump Station Spring       RESE-1001182       08-Feb-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pump Station Spring DUP | RESE-1001183       | 08-Feb-05 |      |      |      |      |      |        |         |                 |                  |                |       | <u>26</u> |       |      |      |            |        |        | Del Mar    |
| Pump Station Spring         RESE-1001182         08-Feb-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pump Station Spring DUP | RESE-1001183       | 08-Feb-05 | 85.3 | 21.7 | 6.41 | 1.99 | 11.4 |        | 285.5   | 48.8            | 40.6             | 0.149          | 0.346 |           | 430   |      |      |            |        |        | SVL        |
| Pump Station Spring         RESE-1001182         08-Feb-05         84.4         21.6         6.45         2.00         11.4          298.9         48.8         40.5         0.155         0.343          440              SVL           Pump Station Spring         RESE-1001206         04-May-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pump Station Spring     | RESE-1001182       | 08-Feb-05 |      |      |      |      |      |        |         |                 |                  |                |       |           |       | 9.0  | 7.9  | 634        |        |        |            |
| Pump Station Spring         RESE-1001182         08-Feb-05         84.4         21.6         6.45         2.00         11.4          298.9         48.8         40.5         0.155         0.343          440              SVL           Pump Station Spring         RESE-1001206         04-May-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pump Station Spring     | RESE-1001182       | 08-Feb-05 |      |      |      |      |      |        |         |                 |                  |                |       | <u>26</u> |       |      |      |            |        |        | Del Mar    |
| Pump Station Spring       RESE-1001206       04-May-05                                                                                                                  -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pump Station Spring     | RESE-1001182       | 08-Feb-05 | 84.4 | 21.6 | 6.45 | 2.00 | 11.4 |        | 298.9   | 48.8            | 40.5             | 0.155          | 0.343 |           | 440   |      |      |            |        |        | SVL        |
| Pump Station Spring       RESE-1001206       04-May-05                                                                                                                  -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pump Station Spring     | RESE-1001206       | 04-May-05 |      |      |      |      |      |        |         |                 |                  |                |       |           |       | 16.3 | 7.9  | 710        |        |        |            |
| Pump Station Spring         RESE-1001206         04-May-05         104         32.6         9.64         2.73         16.0          336.7         74.4         38.9         0.172         0.254          453             SVL           Pump Station Spring         RESE-1001222         08-Aug-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pump Station Spring     |                    |           |      |      |      |      |      |        |         |                 |                  |                |       | <u>11</u> |       |      |      |            |        |        | Del Mar    |
| Pump Station Spring RESE-1001222 08-Aug-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pump Station Spring     | RESE-1001206       |           | 104  | 32.6 | 9.64 | 2.73 | 16.0 |        | 336.7   | 74.4            | 38.9             | 0.172          | 0.254 |           | 453   |      |      |            |        |        | SVL        |
| Pump Station Spring RESE-1001222 08-Aug-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pump Station Spring     | RESE-1001222       | 08-Aug-05 |      |      |      |      |      |        |         |                 |                  |                |       |           |       | 21.3 | 7.5  | 832        |        |        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pump Station Spring     | RESE-1001222       |           |      |      |      |      |      |        |         |                 |                  |                |       | <u>20</u> |       |      |      |            |        |        | Del Mar    |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pump Station Spring     | RESE-1001222       | 08-Aug-05 | 114  | 36.2 | 11.4 | 2.67 | 17.7 |        | 348.9   | 82.4            | 66.5 j           | 0.217 j        | 0.28  |           | 541 j |      |      |            |        |        | SVL        |



| SAMPLE LOCATION         | SAMPLE IDENTIFIER/ | SAMPLE    |      |      |      |      | COI  | MMON            | CONSTIT | UENTS           | a (mg/L)         | b      |        |                                          |       |                           | RO    | UTINE PARA                 | METERS |               | ANALYTICAL  |
|-------------------------|--------------------|-----------|------|------|------|------|------|-----------------|---------|-----------------|------------------|--------|--------|------------------------------------------|-------|---------------------------|-------|----------------------------|--------|---------------|-------------|
|                         | DESCRIPTION        | DATE      |      |      |      |      |      |                 |         |                 |                  |        |        |                                          |       |                           | FIELD | )                          | LABOR  | ATORY         | LABORATORY  |
|                         |                    |           | Са   | Mg   | Na   | K    | Cl   | CO <sub>3</sub> | HCO₃    | SO <sub>4</sub> | SiO <sub>2</sub> | Br     | F      | NO <sub>3</sub> + NO <sub>2</sub> (as N) | TDS   | TEMP<br>(°C) <sup>c</sup> | рН    | SC<br>(μS/cm) <sup>d</sup> | рН     | SC<br>(µS/cm) |             |
|                         |                    |           |      |      |      |      | S    | urface          | Water   |                 |                  |        |        |                                          |       |                           |       |                            |        |               |             |
| Pump Station Spring DUP | RESE-1001223       | 08-Aug-05 |      |      |      |      |      |                 |         |                 |                  |        |        | <u>18</u>                                |       |                           |       |                            |        |               | Del Mar     |
| Pump Station Spring DUP | RESE-1001223       | 08-Aug-05 | 109  | 34.8 | 10.8 | 2.57 | 17.9 |                 | 351.4   | 82.5            | 63.5 j           | 0.21   | 0.269  |                                          | 540 j |                           |       |                            |        |               | SVL         |
| Pump Station Spring     | RESE-1002001       | 05-Aug-08 |      |      |      |      |      |                 |         |                 |                  |        |        |                                          |       | 20.5                      | 7.54  | 851                        |        |               |             |
| Pump Station Spring     | RESE-1002001       | 05-Aug-08 | 118  | 29.3 | 11.3 | 2.38 | 14.3 |                 |         | 68.7            | 49.4             |        |        |                                          |       |                           |       |                            |        |               | SVL         |
| Pump Station Spring     | RESE-1002001       | 05-Aug-08 |      |      |      |      | 15.0 |                 | 450.2   | 64.4            |                  | 0.135  | 0.344  |                                          | 570   |                           |       |                            |        |               | SVL         |
| Pump Station Spring     | RESE-1002001       | 05-Aug-08 |      |      |      |      |      |                 |         |                 |                  |        |        | 7.3                                      |       |                           |       |                            |        |               | TestAmerica |
| Pump Station Spring     | RESE-1002001       | 05-Aug-08 | 113  | 27.3 | 11.0 | 2.12 |      |                 |         |                 |                  |        |        |                                          |       |                           |       |                            |        |               | SVL         |
| Pump Station Spring     | RESE-1002023       | 04-Nov-08 |      |      |      |      |      |                 |         |                 |                  |        |        |                                          |       | 14.7                      | 7.06  | 891                        |        |               | -           |
| Pump Station Spring     | RESE-1002023       | 04-Nov-08 |      |      |      |      |      |                 |         |                 | 45.8             |        |        |                                          |       |                           |       |                            |        |               | SVL         |
| Pump Station Spring     | RESE-1002023       | 04-Nov-08 |      |      |      |      | 14.8 |                 | 442.9   | 65.9            |                  | 0.149  | 0.259  |                                          | 540   |                           |       |                            |        |               | SVL         |
| Pump Station Spring     | RESE-1002023       | 04-Nov-08 |      |      |      |      |      |                 |         |                 |                  |        |        | 10                                       |       |                           |       |                            |        |               | TestAmerica |
| Pump Station Spring     | RESE-1002023       | 04-Nov-08 | 121  | 30.9 | 10.7 | 1.84 |      |                 |         |                 |                  |        |        |                                          |       |                           |       |                            |        |               | SVL         |
| Pump Station Spring     | RESE-1002053       | 17-Feb-09 |      |      |      |      |      |                 |         |                 |                  |        |        |                                          |       | 9.1                       | 8.22  | 147                        |        |               | -           |
| Pump Station Spring     | RESE-1002053       | 17-Feb-09 |      |      |      |      |      |                 |         |                 | 25.7             |        |        |                                          |       |                           |       |                            |        |               | SVL         |
| Pump Station Spring     | RESE-1002053       | 17-Feb-09 |      |      |      |      | 3.16 |                 | 66.7    | 12.8            |                  | <0.100 | <0.100 |                                          | 145   |                           |       |                            |        |               | SVL         |
| Pump Station Spring     | RESE-1002053       | 17-Feb-09 | 23.2 | 5.67 | 3.92 | 2.83 |      |                 |         |                 |                  |        |        |                                          |       |                           |       |                            |        |               | SVL         |
| Pump Station Spring     | RESE-1002080       | 12-May-09 |      |      |      |      |      |                 |         |                 |                  |        |        |                                          |       | 16.5                      | 7.32  | 8.41                       |        |               | -           |
| Pump Station Spring     | RESE-1002080       | 12-May-09 |      |      |      |      |      |                 |         |                 | 40.6             |        |        |                                          |       |                           |       |                            |        |               | SVL         |
| Pump Station Spring     | RESE-1002080       | 12-May-09 |      |      |      |      | 13.4 |                 | 392.8   | 55.9            |                  | 0.151  | 0.278  |                                          | 457   |                           |       |                            |        |               | SVL         |
| Pump Station Spring     | RESE-1002080       | 12-May-09 | 104  | 26.5 | 11.0 | 2.70 |      |                 |         |                 |                  |        |        |                                          |       |                           |       |                            |        |               | SVL         |
| Pump Station Spring DUP | RESE-1002084       | 12-May-09 |      |      |      |      |      |                 |         |                 | 43.0             |        |        |                                          |       |                           |       |                            |        |               | SVL         |
| Pump Station Spring DUP | RESE-1002084       | 12-May-09 |      |      |      |      | 14.4 |                 | 386.7   | 57.1            |                  | 0.155  | 0.275  |                                          | 458   |                           |       |                            |        |               | SVL         |
| Pump Station Spring DUP | RESE-1002084       | 12-May-09 | 107  | 27.0 | 11.1 | 2.77 |      |                 |         |                 |                  |        |        |                                          |       |                           |       |                            |        |               | SVL         |
| Pump Station Spring     | RESE-1002125       | 16-Feb-10 |      |      |      |      |      |                 |         |                 |                  |        |        |                                          |       | 11.6                      | 7.67  | 374.9                      |        |               |             |
| Pump Station Spring     | RESE-1002125       | 16-Feb-10 |      |      |      |      |      |                 |         |                 | 40.8             |        |        |                                          |       |                           |       |                            |        |               | SVL         |
| Pump Station Spring     | RESE-1002125       | 16-Feb-10 |      |      |      |      | 10.5 |                 | 269.6   | 38.4            |                  | <0.100 | <0.100 |                                          | 296   |                           |       |                            |        |               | SVL         |
| Pump Station Spring     | RESE-1002125       | 16-Feb-10 | 76.5 | 18.1 | 8.48 | 1.89 |      |                 |         |                 |                  |        |        |                                          |       |                           |       |                            |        |               | SVL         |
| Pump Station Spring     | RESE-1002144       | 03-Nov-10 |      |      |      |      |      |                 |         |                 |                  |        |        |                                          |       | 13.5                      | 7.04  | 784                        |        |               |             |
| Pump Station Spring     | RESE-1002144       | 03-Nov-10 |      |      |      |      |      |                 |         |                 | 46.8             |        |        |                                          |       |                           |       |                            |        |               | SVL         |
| Pump Station Spring     | RESE-1002144       | 03-Nov-10 |      |      |      |      | 14.2 |                 | 425.8   | 59.2            |                  | 0.188  | 0.206  |                                          | 494   |                           |       |                            |        |               | SVL         |
| Pump Station Spring     | RESE-1002144       | 03-Nov-10 | 116  | 27.4 | 11.2 | 1.68 |      |                 |         |                 |                  |        |        |                                          |       |                           |       |                            |        |               | SVL         |
| Pump Station Spring DUP | RESE-1002145       | 03-Nov-10 |      |      |      |      |      |                 |         |                 |                  |        |        |                                          |       | 13.5                      | 7.04  | 784                        |        |               |             |
| Pump Station Spring DUP | RESE-1002145       | 03-Nov-10 |      |      |      |      |      |                 |         |                 | 46.5             |        |        |                                          |       |                           |       |                            |        |               | SVL         |
| Pump Station Spring DUP | RESE-1002145       | 03-Nov-10 |      |      |      |      | 14.5 |                 | 427     | 60.0            |                  | 0.169  | 0.228  |                                          | 497   |                           |       |                            |        |               | SVL         |
| Pump Station Spring DUP | RESE-1002145       | 03-Nov-10 | 118  | 27.6 | 11.4 | 1.52 |      |                 |         |                 |                  |        |        |                                          |       |                           |       |                            |        |               | SVL         |



| SAMPLE LOCATION                    | SAMPLE IDENTIFIER/ | SAMPLE    |      |      |      |      | CON  | MON             | CONSTIT | UENTS           | a (mg/L)         | b     |        |                                          |     |                           | RO    | UTINE PARA                 | METERS |               | ANALYTICAL  |
|------------------------------------|--------------------|-----------|------|------|------|------|------|-----------------|---------|-----------------|------------------|-------|--------|------------------------------------------|-----|---------------------------|-------|----------------------------|--------|---------------|-------------|
|                                    | DESCRIPTION        | DATE      |      |      |      |      |      |                 |         |                 |                  |       |        |                                          |     |                           | FIELI | 0                          | LABO   | RATORY        | LABORATORY  |
|                                    |                    |           | Ca   | Mg   | Na   | K    | Cl   | CO <sub>3</sub> | HCO₃    | SO <sub>4</sub> | SiO <sub>2</sub> | Br    | F      | NO <sub>3</sub> + NO <sub>2</sub> (as N) | TDS | TEMP<br>(°C) <sup>c</sup> | рН    | SC<br>(μS/cm) <sup>d</sup> | рН     | SC<br>(μS/cm) |             |
|                                    |                    |           |      |      |      |      | Sı   | ırface          | Water   |                 |                  |       |        |                                          |     |                           |       |                            |        |               |             |
| Pump Station Spring                | RESE-1002168       | 17-May-11 |      |      |      |      |      |                 |         |                 |                  |       |        |                                          |     | 12.7                      | 7.3   | 876                        |        |               |             |
| Pump Station Spring                | RESE-1002168       | 17-May-11 |      |      |      |      |      |                 |         |                 | 46.1             |       |        |                                          |     |                           |       |                            |        |               | SVL         |
| Pump Station Spring                | RESE-1002168       | 17-May-11 |      |      |      |      | 13.8 |                 | 441.6   | 55.1            |                  | 0.14  | 0.19   |                                          | 517 |                           |       |                            |        |               | SVL         |
| Pump Station Spring                | RESE-1002168       | 17-May-11 | 124  | 29.1 | 10.2 | 1.61 |      |                 |         |                 |                  |       |        |                                          |     |                           |       |                            |        |               | SVL         |
| Pump Station Spring SP             | RESE-1002168       | 17-May-11 | 120  | 30   | 11   | <2.0 |      |                 |         |                 | 49               |       |        |                                          |     |                           |       |                            |        |               | TestAmerica |
| Pump Station Spring SP             | RESE-1002168       | 17-May-11 | 120  | 28   | 11   | <2.0 | 13   |                 | 427     | 57              | 48               | <0.50 | <0.40  | 3.8                                      | 540 |                           |       |                            | 7.77   | 790           | TestAmerica |
| QC 19.7 C (Queen above Magma Wash) | RESE-1002021       | 28-Aug-08 |      |      |      |      |      |                 |         |                 |                  |       |        |                                          |     | 28.9                      | 8.29  | 438                        |        |               |             |
| QC 19.7 C (Queen above Magma Wash) | RESE-1002021       | 28-Aug-08 | 57   | 12.4 | 14.5 | 4.17 | 12.6 |                 |         | 56.9            | 30               |       |        |                                          |     |                           |       |                            |        |               | SVL         |
| QC 19.7 C (Queen above Magma Wash) | RESE-1002021       | 28-Aug-08 | 50.7 | 11   | 13   | 3.93 | 11.8 |                 | 170.8   | 58.2            |                  | 0.111 | 0.159  |                                          | 292 |                           |       |                            |        |               | SVL         |
| QC 19.7 C (Queen above Magma Wash) | RESE-1002021       | 28-Aug-08 |      |      |      |      |      |                 |         |                 |                  |       |        | 4.6                                      |     |                           |       |                            |        |               | TestAmerica |
| QC 19.7 C (Queen above Magma Wash) | RESE-1002048       | 11-Feb-09 |      |      |      |      |      |                 |         |                 |                  |       |        |                                          |     | 11.6                      | 8.11  | 188                        |        |               | -           |
| QC 19.7 C (Queen above Magma Wash) | RESE-1002048       | 11-Feb-09 |      |      |      |      |      |                 |         |                 | 22.8             |       |        |                                          |     |                           |       |                            |        |               | SVL         |
| QC 19.7 C (Queen above Magma Wash) | RESE-1002048       | 11-Feb-09 |      |      |      |      | 5.95 |                 | 75.4    | 21.9            |                  | 0.236 | <0.100 |                                          | 147 |                           |       |                            |        |               | SVL         |
| QC 19.7 C (Queen above Magma Wash) | RESE-1002048       | 11-Feb-09 | 21.0 | 4.08 | 6.27 | 1.48 |      |                 |         |                 |                  |       |        |                                          |     |                           |       |                            |        |               | SVL         |
| QC 19.7 C (Queen above Magma Wash) | RESE-1002206       | 14-Dec-11 |      |      |      |      |      |                 |         |                 |                  |       |        |                                          |     | 9.1                       | 8.19  | 127.2                      |        |               |             |
| QC 19.7 C (Queen above Magma Wash) | RESE-1002206       | 14-Dec-11 |      |      |      |      |      |                 |         |                 | 20.0             |       | -      |                                          |     |                           |       |                            |        |               | SVL         |
| QC 19.7 C (Queen above Magma Wash) | RESE-1002206       | 14-Dec-11 | 18.1 | 3.43 | 5.93 | 1.99 | 4.84 |                 | 45.8    | 20.7            |                  | <0.10 | 0.13   |                                          | 122 |                           |       |                            |        |               | SVL         |
| QC 21.7 C (Magma Avenue)           | RESE-1002018       | 28-Aug-08 |      |      |      |      |      |                 |         |                 |                  |       |        |                                          |     | 26.2                      | 8.27  | 335                        |        |               |             |
| QC 21.7 C (Magma Avenue)           | RESE-1002018       | 28-Aug-08 |      |      |      |      |      |                 |         |                 |                  |       |        | 5.6                                      |     |                           |       |                            |        |               | TestAmerica |
| QC 21.7 C (Magma Avenue) LD        | RESE-1002018       | 28-Aug-08 | 45.4 | 8.48 | 8.69 | 3.09 | 8.82 |                 |         | 29.6            | 30.7             |       |        |                                          |     |                           |       |                            |        |               | SVL         |
| QC 21.7 C (Magma Avenue) LD        | RESE-1002018       | 28-Aug-08 | 41.1 | 7.59 | 7.94 | 2.93 | 8.23 | -               | 136.6   | 32.3            |                  | 0.116 | 0.122  |                                          | 236 |                           |       |                            |        |               | SVL         |
| QC 21.7 C (Magma Avenue)           | RESE-1002025       | 04-Nov-08 |      |      |      |      |      |                 |         |                 |                  |       |        |                                          |     | 16.5                      | 8.3   | 405                        |        |               |             |
| QC 21.7 C (Magma Avenue)           | RESE-1002025       | 04-Nov-08 |      |      |      |      |      |                 |         |                 | 24.5             |       |        |                                          |     |                           |       |                            |        |               | SVL         |
| QC 21.7 C (Magma Avenue)           | RESE-1002025       | 04-Nov-08 |      |      |      |      | 21.4 |                 | 191.5   | 24.3            |                  | 0.213 | 0.290  |                                          | 250 |                           |       |                            |        |               | SVL         |
| QC 21.7 C (Magma Avenue)           | RESE-1002025       | 04-Nov-08 |      |      |      |      |      |                 |         |                 |                  |       |        | <0.30                                    |     |                           |       |                            |        |               | TestAmerica |
| QC 21.7 C (Magma Avenue)           | RESE-1002025       | 04-Nov-08 | 43.6 | 12.2 | 19.4 | 5.43 |      |                 |         |                 |                  |       |        |                                          |     |                           |       |                            |        |               | SVL         |
| QC 21.7 C (Magma Avenue)           | RESE-1002047       | 11-Feb-09 |      |      |      |      |      |                 |         |                 |                  |       |        |                                          |     | 6.5                       | 8.13  | 168                        |        |               |             |
| QC 21.7 C (Magma Avenue)           | RESE-1002047       | 11-Feb-09 |      |      |      |      |      |                 |         |                 | 22.9             |       |        |                                          |     |                           |       |                            |        |               | SVL         |
| QC 21.7 C (Magma Avenue)           | RESE-1002047       | 11-Feb-09 |      |      |      |      | 5.41 |                 | 64.1    | 17.4            |                  | 0.214 | <0.100 |                                          | 141 |                           |       |                            |        |               | SVL         |
| QC 21.7 C (Magma Avenue)           | RESE-1002047       | 11-Feb-09 | 18.4 | 3.31 | 5.31 | 1.41 |      |                 |         |                 |                  |       |        |                                          |     |                           |       |                            |        |               | SVL         |
| QC 21.7 C (Magma Avenue)           | RESE-1002083       | 07-May-09 |      |      |      |      |      |                 |         |                 |                  |       |        |                                          |     | 22.2                      | 8.44  | 307                        |        |               |             |
| QC 21.7 C (Magma Avenue)           | RESE-1002083       | 07-May-09 |      |      |      |      |      |                 |         |                 | 3.56             |       |        |                                          |     |                           |       |                            |        |               | SVL         |
| QC 21.7 C (Magma Avenue)           | RESE-1002083       | 07-May-09 |      |      |      |      | 21.0 |                 | 116.1   | 45.5            |                  | 0.180 | 0.229  |                                          | 224 |                           |       |                            |        |               | SVL         |
| QC 21.7 C (Magma Avenue)           | RESE-1002083       | 07-May-09 | 31.6 | 10.6 | 20.3 | 6.21 |      |                 |         |                 |                  |       | _      |                                          |     |                           |       |                            |        |               | SVL         |
| QC 21.7 C (Magma Avenue)           | RESE-1002141       | 01-Nov-10 |      |      |      |      |      |                 |         |                 |                  |       |        |                                          |     | 18.3                      | 7.78  | 449.8                      |        |               |             |
| QC 21.7 C (Magma Avenue)           | RESE-1002141       | 01-Nov-10 |      |      |      |      |      |                 |         |                 | 7.55             |       |        |                                          |     |                           |       |                            |        |               | SVL         |
| QC 21.7 C (Magma Avenue)           | RESE-1002141       | 01-Nov-10 |      |      |      |      | 24.2 |                 | 156.2   | 61.5            |                  | 0.152 | 0.196  |                                          | 273 |                           |       |                            |        |               | SVL         |
| QC 21.7 C (Magma Avenue)           | RESE-1002141       | 01-Nov-10 | 49.2 | 13.7 | 15.9 | 6.47 |      |                 |         |                 |                  |       |        |                                          |     |                           |       |                            |        |               | SVL         |



| SAMPLE LOCATION              | SAMPLE IDENTIFIER/ | SAMPLE    |      |      |      |      | CON    | MON    | CONSTIT | UENTS           | a (mg/L) | ) <sup>b</sup> |        |                                   |     |                   | RO   | UTINE PARA           | METERS | <b>i</b> | ANALYTICAL  |
|------------------------------|--------------------|-----------|------|------|------|------|--------|--------|---------|-----------------|----------|----------------|--------|-----------------------------------|-----|-------------------|------|----------------------|--------|----------|-------------|
|                              | DESCRIPTION        | DATE      |      |      |      |      |        |        |         |                 |          |                |        |                                   |     |                   | FIEL | D                    | LABO   | RATORY   | LABORATORY  |
|                              |                    |           | Ca   | Mg   | Na   | K    | Cl     | CO₃    | HCO₃    | SO <sub>4</sub> | SiO₂     | Br             | F      | NO <sub>3</sub> + NO <sub>2</sub> | TDS | TEMP              | рΗ   | SC                   | рН     | SC       |             |
|                              |                    |           |      |      |      |      |        |        |         |                 |          |                |        | (as N)                            |     | (°C) <sup>c</sup> |      | (μS/cm) <sup>a</sup> |        | (μS/cm)  |             |
|                              |                    |           |      |      |      |      | Sı     | ırface | Water   |                 |          |                |        |                                   |     |                   |      |                      |        |          |             |
| QC 21.7 C (Magma Avenue)     | RESE-1002177       | 19-Aug-11 |      |      |      |      |        |        |         |                 |          |                |        |                                   |     | 27.1              | 7.51 | 249                  |        |          |             |
| QC 21.7 C (Magma Avenue)     | RESE-1002177       | 19-Aug-11 |      |      |      |      |        |        |         |                 | 10.6     |                |        |                                   |     |                   |      |                      |        |          | SVL         |
| QC 21.7 C (Magma Avenue)     | RESE-1002177       | 19-Aug-11 | 37.5 | 7.56 | 4.55 | 7.30 | 3.32   |        | 64.1    | 46.8            |          | <0.10          | 0.20   |                                   | 220 |                   |      |                      |        |          | SVL         |
| QC 21.7 C (Magma Avenue)     | RESE-1002190       | 28-Nov-11 |      |      |      |      |        |        |         |                 |          |                |        |                                   |     | 8.0               | 8.45 | 279                  |        |          |             |
| QC 21.7 C (Magma Avenue)     | RESE-1002190       | 28-Nov-11 |      |      |      |      |        |        |         |                 | 9.31     |                |        |                                   |     |                   |      |                      |        |          | SVL         |
| QC 21.7 C (Magma Avenue)     | RESE-1002190       | 28-Nov-11 | 40.3 | 8.05 | 6.28 | 4.76 | 4.92   |        | 130.5   | 50.3            |          | <0.10          | 0.20   |                                   | 186 |                   |      |                      |        |          | SVL         |
| QC 22.6 E (Karst Spring)     | RESE-1001180       | 08-Feb-05 |      |      |      |      |        |        |         |                 |          |                |        |                                   |     | 15.2              | 7.5  | 366                  |        |          |             |
| QC 22.6 E (Karst Spring)     | RESE-1001180       | 08-Feb-05 |      |      |      |      |        |        |         |                 |          |                |        | 0.84                              |     |                   |      |                      |        |          | Del Mar     |
| QC 22.6 E (Karst Spring)     | RESE-1001180       | 08-Feb-05 | 53.1 | 8.96 | 9.75 | 2.15 | 8.39   |        | 179.3   | 27.4            | 29.6     | 0.135          | 0.162  |                                   | 254 |                   |      |                      |        |          | SVL         |
| QC 22.6 E (Karst Spring)     | RESE-1002017       | 28-Aug-08 |      |      |      |      |        |        |         |                 |          |                |        |                                   |     | 19.4              | 7.14 | 570                  |        |          |             |
| QC 22.6 E (Karst Spring)     | RESE-1002017       | 28-Aug-08 | 84.2 | 14.6 | 20   | 3.07 | 15.2   |        |         | 38.2            | 35.3     |                |        |                                   |     |                   |      |                      |        |          | SVL         |
| QC 22.6 E (Karst Spring)     | RESE-1002017       | 28-Aug-08 | 76   | 13   | 18.3 | 2.9  | 13.9   |        | 322.1   | 41.4            |          | 0.143          | 0.166  |                                   | 359 |                   |      |                      |        |          | SVL         |
| QC 22.6 E (Karst Spring)     | RESE-1002017       | 28-Aug-08 |      |      |      |      |        |        |         |                 |          |                |        | 1.6                               |     |                   |      |                      |        |          | TestAmerica |
| QC 22.6 E (Karst Spring) DUP | RESE-1002050       | 11-Feb-09 |      |      |      |      |        |        |         |                 | 28.2     |                |        |                                   |     |                   |      |                      |        |          | SVL         |
| QC 22.6 E (Karst Spring) DUP | RESE-1002050       | 11-Feb-09 |      |      |      |      | 10.4   |        | 241.6   | 31.1            |          | 0.189          | <0.100 |                                   | 257 |                   |      |                      |        |          | SVL         |
| QC 22.6 E (Karst Spring) DUP | RESE-1002050       | 11-Feb-09 | 54.5 | 9.26 | 12.7 | 2.17 |        |        |         |                 |          |                |        |                                   |     |                   |      |                      |        |          | SVL         |
| QC 22.6 E (Karst Spring)     | RESE-1002049       | 11-Feb-09 |      |      |      |      |        |        |         |                 |          |                |        |                                   |     | 17.0              | 7.29 | 392                  |        |          | <u> </u>    |
| QC 22.6 E (Karst Spring)     | RESE-1002049       | 11-Feb-09 |      |      |      |      |        |        |         |                 | 27.6     |                |        |                                   |     |                   |      |                      |        |          | SVL         |
| QC 22.6 E (Karst Spring)     | RESE-1002049       | 11-Feb-09 |      |      |      |      | <0.200 |        | 244     | 31.0            |          | <0.100         | <0.100 |                                   | 267 |                   |      |                      |        |          | SVL         |
| QC 22.6 E (Karst Spring)     | RESE-1002049       | 11-Feb-09 | 56.1 | 9.56 | 13.0 | 2.21 |        |        |         |                 |          |                |        |                                   |     |                   |      |                      |        |          | SVL         |
| QC 27.3 C (Upper QC)         | RESE-1001184       | 08-Feb-05 |      |      |      |      |        |        |         |                 |          |                |        |                                   |     | 10.4              | 8.3  | 336                  |        |          |             |
| QC 27.3 C (Upper QC)         | RESE-1001184       | 08-Feb-05 |      |      |      |      |        |        |         |                 |          |                |        | 2.1                               |     |                   |      |                      |        |          | Del Mar     |
| QC 27.3 C (Upper QC)         | RESE-1001184       | 08-Feb-05 | 81.9 | 14.1 | 6.41 | 3.52 | 16.8   |        | 266     | 24.4            | 69.7     | 0.321          | 0.135  |                                   | 295 |                   |      |                      |        |          | SVL         |
| QC 27.3 C (Upper QC)         | RESE-1001207       | 04-May-05 |      |      |      |      |        |        |         |                 |          |                |        |                                   |     | 20.9              | 8.4  | 442                  |        |          |             |
| QC 27.3 C (Upper QC)         | RESE-1001207       | 04-May-05 |      |      |      |      |        |        |         |                 |          |                |        | 2.1                               |     |                   |      |                      |        |          | Del Mar     |
| QC 27.3 C (Upper QC)         | RESE-1001207       | 04-May-05 | 60.9 | 17.5 | 9.44 | 2.81 | 21.3   |        | 159.8   | 70.7            | 27.1     | 0.22           | 0.125  |                                   | 298 |                   |      |                      |        |          | SVL         |
| QC 27.3 C (Upper QC)         | RESE-1002002       | 05-Aug-08 |      |      |      |      |        |        |         |                 |          |                |        |                                   |     | 23.2              | 8.69 | 444                  |        |          |             |
| QC 27.3 C (Upper QC)         | RESE-1002002       | 05-Aug-08 | 43.0 | 17.2 | 17.0 | 7.55 | 33.6   |        |         | 13.9            | 20.6     |                |        |                                   |     |                   |      |                      |        |          | SVL         |
| QC 27.3 C (Upper QC)         | RESE-1002002       | 05-Aug-08 |      |      |      |      | 33.7   |        | 207.4   | 12.7            |          | 0.392          | 0.230  |                                   | 210 |                   |      |                      |        |          | SVL         |
| QC 27.3 C (Upper QC)         | RESE-1002002       | 05-Aug-08 |      |      |      |      |        |        |         |                 |          |                |        |                                   |     |                   |      |                      |        |          | TestAmerica |
| QC 27.3 C (Upper QC)         | RESE-1002002       | 05-Aug-08 | 44.9 | 16.3 | 16.5 | 7.16 |        |        |         |                 |          |                |        |                                   |     |                   |      |                      |        |          | SVL         |
| QC 27.3 C (Upper QC)         | RESE-1002024       | 04-Nov-08 |      |      |      |      |        |        |         |                 |          |                |        |                                   |     | 14.7              | 8.98 | 396                  |        |          |             |
| QC 27.3 C (Upper QC)         | RESE-1002024       | 04-Nov-08 |      |      |      |      |        |        |         |                 | 0.18     |                |        |                                   |     |                   |      |                      |        |          | SVL         |
| QC 27.3 C (Upper QC)         | RESE-1002024       | 04-Nov-08 |      |      |      |      | 17.9   |        | 157.4   | 56.8            |          | 0.131          | 0.239  |                                   | 230 |                   |      |                      |        |          | SVL         |
| QC 27.3 C (Upper QC)         | RESE-1002024       | 04-Nov-08 |      |      |      |      |        |        |         |                 |          |                |        | <0.30                             |     |                   |      |                      |        |          | TestAmerica |
| QC 27.3 C (Upper QC)         | RESE-1002024       | 04-Nov-08 | 40.6 | 19.1 | 9.49 | 4.08 |        |        |         |                 |          |                |        |                                   |     |                   |      |                      |        |          | SVL         |
| QC 27.3 C (Upper QC)         | RESE-1002054       | 17-Feb-09 |      |      |      |      |        |        |         |                 |          |                |        |                                   |     | 10.9              | 8.33 | 161                  |        |          |             |
| QC 27.3 C (Upper QC)         | RESE-1002054       | 17-Feb-09 |      |      |      |      |        |        |         |                 | 23.1     |                |        |                                   |     |                   |      |                      |        |          | SVL         |
| QC 27.3 C (Upper QC)         | RESE-1002054       | 17-Feb-09 |      |      |      |      | 4.32   |        | 69.5    | 13.3            |          | <0.100         | <0.100 |                                   | 154 |                   |      |                      |        |          | SVL         |
| QC 27.3 C (Upper QC)         | RESE-1002054       | 17-Feb-09 | 67.2 | 6.46 | 4.45 | 2.44 |        |        |         |                 |          |                |        |                                   |     |                   |      |                      |        |          | SVL         |
| (- [ - 7 - ]                 |                    |           |      |      |      |      |        |        |         |                 |          |                |        |                                   |     |                   |      |                      |        |          |             |



| SAMPLE LOCATION           | SAMPLE IDENTIFIER/ | SAMPLE    |      |      |      |      | CON  | MON      | CONSTIT | UENTS           | a (mg/L)         | ) <sup>b</sup> |        |                                          |     |                           | RO   | UTINE PARA                 | METERS |               | ANALYTICAL  |
|---------------------------|--------------------|-----------|------|------|------|------|------|----------|---------|-----------------|------------------|----------------|--------|------------------------------------------|-----|---------------------------|------|----------------------------|--------|---------------|-------------|
|                           | DESCRIPTION        | DATE      |      |      |      |      |      |          |         |                 |                  |                |        |                                          |     |                           | FIEL | D                          | LABO   | RATORY        | LABORATORY  |
|                           |                    |           | Ca   | Mg   | Na   | K    | Cl   | CO₃      | HCO₃    | SO <sub>4</sub> | SiO <sub>2</sub> | Br             | F      | NO <sub>3</sub> + NO <sub>2</sub> (as N) | TDS | TEMP<br>(°C) <sup>c</sup> | рН   | SC<br>(μS/cm) <sup>d</sup> | рН     | SC<br>(μS/cm) |             |
|                           |                    |           |      |      |      |      | Sı   | ırface \ | Water   |                 |                  |                |        |                                          |     |                           |      |                            |        |               |             |
| QC 27.3 C (Upper QC)      | RESE-1002079       | 07-May-09 |      |      |      |      |      |          |         |                 |                  |                |        |                                          |     | 14.4                      | 7.76 | 503                        |        |               |             |
| QC 27.3 C (Upper QC)      | RESE-1002079       | 07-May-09 |      |      |      |      |      |          |         |                 | 21.9             |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| QC 27.3 C (Upper QC)      | RESE-1002079       | 07-May-09 |      |      |      |      | 43.0 | -        | 241.6   | 42.2            |                  | 0.541          | 0.131  |                                          | 321 |                           |      |                            |        |               | SVL         |
| QC 27.3 C (Upper QC)      | RESE-1002079       | 07-May-09 | 69.6 | 23.7 | 13.8 | 4.50 |      |          |         |                 |                  |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| QC 27.3 C (Upper QC)      | RESE-1002146       | 03-Nov-10 |      |      |      |      |      |          |         |                 |                  |                |        |                                          |     | 13.8                      | 8.53 | 267                        |        |               |             |
| QC 27.3 C (Upper QC)      | RESE-1002146       | 03-Nov-10 |      |      |      |      |      |          |         |                 | 16.4             |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| QC 27.3 C (Upper QC)      | RESE-1002146       | 03-Nov-10 |      |      |      |      | 13.6 | -        | 137.9   | 12.1            |                  | 0.183          | 0.105  |                                          | 175 |                           |      |                            |        |               | SVL         |
| QC 27.3 C (Upper QC)      | RESE-1002146       | 03-Nov-10 | 35.9 | 8.44 | 5.58 | 3.06 |      |          |         |                 |                  |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| QC 27.3 C (Upper QC)      | RESE-1002175       | 19-Aug-11 |      |      |      |      |      |          |         |                 |                  |                |        |                                          |     | 23.7                      | 7.32 | 261                        |        |               |             |
| QC 27.3 C (Upper QC)      | RESE-1002175       | 19-Aug-11 |      |      |      |      |      |          |         |                 | 28.5             |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| QC 27.3 C (Upper QC)      | RESE-1002175       | 19-Aug-11 | 40.4 | 8.57 | 6.43 | 3.39 | 3.99 |          | 164.7   | 8.62            |                  | <0.10          | 0.13   |                                          | 193 |                           |      |                            |        |               | SVL         |
| QC 27.3 C (Upper QC)      | RESE-1002197       | 01-Dec-11 |      |      |      |      |      |          |         |                 |                  |                |        |                                          |     | 8.0                       | 8.4  | 287                        |        |               |             |
| QC 27.3 C (Upper QC)      | RESE-1002197       | 01-Dec-11 |      |      |      |      |      |          |         |                 | 16.4             |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| QC 27.3 C (Upper QC)      | RESE-1002197       | 01-Dec-11 | 42.9 | 9.19 | 5.41 | 2.70 | 15.6 |          | 154.9   | 15.4            |                  | 0.16           | <0.10  |                                          | 204 |                           |      |                            |        |               | SVL         |
| RR 1.5 C (Rancho Rio)     | RESE-1002012       | 19-Aug-08 |      |      |      |      |      |          |         |                 |                  |                |        |                                          |     | 31.7                      | 9.67 | 168                        |        |               |             |
| RR 1.5 C (Rancho Rio)     | RESE-1002012       | 19-Aug-08 | 15.1 | 3.89 | 8.05 | 1.58 | 6.67 |          |         | 22.1            | 32.8             |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| RR 1.5 C (Rancho Rio)     | RESE-1002012       | 19-Aug-08 | 16.7 | 4.2  | 8.71 | 1.8  | 6.84 | 1.7      | 55.1    | 22.6            |                  | <0.100         | <0.100 |                                          | 150 |                           |      |                            |        |               | SVL         |
| RR 1.5 C (Rancho Rio)     | RESE-1002012       | 19-Aug-08 |      |      |      |      |      |          |         |                 |                  |                |        |                                          |     |                           |      |                            |        |               | TestAmerica |
| RR 1.5 C (Rancho Rio)     | RESE-1002029       | 05-Nov-08 |      |      |      |      |      |          |         |                 |                  |                |        |                                          |     | 14.8                      | 7.64 | 1637                       |        |               |             |
| RR 1.5 C (Rancho Rio)     | RESE-1002029       | 05-Nov-08 |      |      |      |      |      |          |         |                 | 29.9             |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| RR 1.5 C (Rancho Rio)     | RESE-1002029       | 05-Nov-08 |      |      |      |      | 5.87 |          | 52.8    | 27.6            |                  | <0.100         | 0.289  |                                          | 110 |                           |      |                            |        |               | SVL         |
| RR 1.5 C (Rancho Rio)     | RESE-1002029       | 05-Nov-08 |      |      |      |      |      |          |         |                 |                  |                |        | <0.30                                    |     |                           |      |                            |        |               | TestAmerica |
| RR 1.5 C (Rancho Rio)     | RESE-1002029       | 05-Nov-08 | 15.0 | 3.84 | 9.07 | 1.77 |      |          |         |                 |                  |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| RR 1.5 C (Rancho Rio) DUP | RESE-1002066       | 26-Feb-09 |      |      |      |      |      |          |         |                 | 26.5             |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| RR 1.5 C (Rancho Rio) DUP | RESE-1002066       | 26-Feb-09 |      |      |      |      | 3.03 | -        | 16.0    | 15.0            |                  | <0.100         | <0.100 |                                          | 110 |                           |      |                            |        |               | SVL         |
| RR 1.5 C (Rancho Rio) DUP | RESE-1002066       | 26-Feb-09 | 5.66 | 1.43 | 4.92 | 1.09 |      |          |         |                 |                  |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| RR 1.5 C (Rancho Rio)     | RESE-1002065       | 26-Feb-09 |      |      |      |      |      |          |         |                 |                  |                |        |                                          |     | 15.1                      | 6.78 | 88.5                       |        |               |             |
| RR 1.5 C (Rancho Rio)     | RESE-1002065       | 26-Feb-09 |      |      |      |      |      |          |         |                 | 26.4             |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| RR 1.5 C (Rancho Rio)     | RESE-1002065       | 26-Feb-09 |      |      |      |      | 3.05 |          | 15.9    | 15.0            |                  | <0.100         | <0.100 |                                          | 112 |                           |      |                            |        |               | SVL         |
| RR 1.5 C (Rancho Rio)     | RESE-1002065       | 26-Feb-09 | 5.86 | 1.48 | 5.03 | 1.10 |      |          |         |                 |                  |                |        |                                          |     |                           | -    |                            |        |               | SVL         |
| RR 1.5 C (Rancho Rio)     | RESE-1002100       | 21-May-09 |      |      |      |      |      |          |         |                 |                  |                |        |                                          |     | 19.1                      | 6.15 | 137.3                      |        |               |             |
| RR 1.5 C (Rancho Rio)     | RESE-1002100       | 21-May-09 |      |      |      |      |      |          |         |                 | 33.1             |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| RR 1.5 C (Rancho Rio)     | RESE-1002100       | 21-May-09 |      |      |      |      | 5.80 |          | 40.0    | 19.0            |                  | <0.100         | 0.341  |                                          | 106 |                           |      |                            |        |               | SVL         |
| RR 1.5 C (Rancho Rio)     | RESE-1002100       | 21-May-09 | 11.3 | 2.92 | 6.62 | 1.47 |      |          |         | -               |                  |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| RR 1.5 C (Rancho Rio) DUP | RESE-1002101       | 21-May-09 |      |      |      |      |      |          |         |                 | 32.3             |                |        |                                          |     |                           |      |                            |        |               | SVL         |
| RR 1.5 C (Rancho Rio) DUP | RESE-1002101       | 21-May-09 |      |      |      |      | 5.15 |          | 39.9    | 19.1            |                  | <0.100         | 0.279  |                                          | 104 |                           |      |                            |        |               | SVL         |
| RR 1.5 C (Rancho Rio) DUP | RESE-1002101       | 21-May-09 | 11.6 | 3.03 | 6.88 | 1.52 |      |          |         |                 |                  |                |        |                                          |     |                           |      |                            |        |               | SVL         |



| SAMPLE LOCATION                                       | SAMPLE IDENTIFIER/ | SAMPLE    |      |       |      |      | COI  | MMON   | CONSTI | TUENTS          | a (mg/L)         | b      |        |                                          |     |                           | ROL        | JTINE PAR                  | AMETERS    |               | ANALYTICAL |
|-------------------------------------------------------|--------------------|-----------|------|-------|------|------|------|--------|--------|-----------------|------------------|--------|--------|------------------------------------------|-----|---------------------------|------------|----------------------------|------------|---------------|------------|
|                                                       | DESCRIPTION        | DATE      |      |       |      |      |      |        |        |                 |                  |        |        |                                          |     |                           | FIELD      | )                          | LABOI      | RATORY        | LABORATORY |
|                                                       |                    |           | Ca   | Mg    | Na   | K    | Cl   | CO₃    | HCO₃   | SO <sub>4</sub> | SiO <sub>2</sub> | Br     | F      | NO <sub>3</sub> + NO <sub>2</sub> (as N) | TDS | TEMP<br>(°C) <sup>c</sup> | рН         | SC<br>(μS/cm) <sup>d</sup> | рН         | SC<br>(μS/cm) |            |
|                                                       |                    |           |      |       |      |      | Sı   | urface | Water  |                 |                  |        |        |                                          |     |                           |            |                            |            |               | ,          |
| RR 1.5 C (Rancho Rio)                                 | RESE-1002128       | 18-Feb-10 |      |       |      |      |      |        |        |                 |                  |        |        |                                          |     | 15.4                      | 6.89       | 88.6                       |            |               |            |
| RR 1.5 C (Rancho Rio)                                 | RESE-1002128       | 18-Feb-10 |      |       |      |      |      |        |        |                 | 26.0             |        |        |                                          |     |                           |            |                            |            |               | SVL        |
| RR 1.5 C (Rancho Rio)                                 | RESE-1002128       | 18-Feb-10 |      |       |      |      | 4.40 |        | 16.8   | 20.5            |                  | <0.100 | <0.100 |                                          | 66  |                           |            |                            |            |               | SVL        |
| RR 1.5 C (Rancho Rio)                                 | RESE-1002128       | 18-Feb-10 | 9.78 | 2.50  | 6.70 | 1.56 |      |        |        |                 |                  |        |        |                                          |     |                           |            |                            |            |               | SVL        |
| RR 1.5 C (Rancho Rio)                                 | RESE-1002143       | 02-Nov-10 |      |       |      |      |      |        |        |                 |                  |        |        |                                          |     | 17.1                      | 7.62       | 115.4                      |            |               |            |
| RR 1.5 C (Rancho Rio)                                 | RESE-1002143       | 02-Nov-10 |      |       |      |      |      |        |        |                 | 27.7             |        |        |                                          |     |                           |            |                            |            |               | SVL        |
| RR 1.5 C (Rancho Rio)                                 | RESE-1002143       | 02-Nov-10 |      |       |      |      | 5.43 |        | 38.9   | 19.6            |                  | <0.100 | 0.102  |                                          | 85  |                           |            |                            |            |               | SVL        |
| RR 1.5 C (Rancho Rio)                                 | RESE-1002143       | 02-Nov-10 | 10.6 | 2.73  | 8.18 | 1.91 |      |        |        |                 |                  |        |        |                                          |     |                           |            |                            |            |               | SVL        |
| RR 1.5 C (Rancho Rio)                                 | RESE-1002202       | 09-Dec-11 |      |       |      |      |      |        |        |                 |                  |        |        |                                          |     | 4.8                       | 6.99       | 102.9                      |            |               |            |
| RR 1.5 C (Rancho Rio)                                 | RESE-1002202       | 09-Dec-11 |      |       |      |      |      |        |        |                 | 19.3             |        |        |                                          |     |                           |            |                            |            |               | SVL        |
| RR 1.5 C (Rancho Rio)                                 | RESE-1002202       | 09-Dec-11 | 6.80 | 1.69  | 7.35 | 1.01 | 5.06 |        | 22.7   | 22.6            |                  | <0.10  | 0.10   |                                          | 89  |                           |            |                            |            |               | SVL        |
| RR 1.5 C (Rancho Rio) DUP                             | RESE-1002203       | 09-Dec-11 |      |       |      |      |      |        |        |                 |                  |        |        |                                          |     | 4.8                       | 6.99       | 102.9                      |            |               |            |
| RR 1.5 C (Rancho Rio) DUP                             | RESE-1002203       | 09-Dec-11 |      |       |      |      |      |        |        |                 | 24.4             |        |        |                                          |     |                           |            |                            |            |               | SVL        |
| RR 1.5 C (Rancho Rio) DUP                             | RESE-1002203       | 09-Dec-11 | 8.81 | 2.15  | 9.28 | 1.25 | 4.97 |        | 22.7   | 22.5            |                  | <0.10  | 0.12   |                                          | 99  |                           |            |                            |            |               | SVL        |
| SS-1                                                  | RESE-1001106       | 07-Apr-04 |      |       |      |      |      |        |        |                 |                  |        |        |                                          |     | 12.4                      | 7.89       | 53.4                       |            |               |            |
| SS-1                                                  | RESE-1001106       | 07-Apr-04 | 3.57 | 0.971 | 4.26 | 1    | 1.94 |        | 3.3    | 14.1            | 26               |        | <0.10  | <0.020                                   | 32  |                           |            |                            | 6.39       | 56            | SVL        |
| U.S EPA National Primary Drinking Water Regulations   |                    |           |      |       |      |      |      |        |        |                 |                  |        | 4.0    | 10                                       |     |                           |            |                            |            |               |            |
| U.S EPA National Secondary Drinking Water Regulations |                    |           |      |       |      |      | 250  |        |        | 250             |                  |        | 2.0    |                                          | 500 |                           | 6.5 to 8.5 |                            | 6.5 to 8.5 |               |            |
| Arizona Numeric Aquifer Water Quality Standards       |                    |           |      |       |      |      |      |        |        |                 |                  |        |        | 10                                       |     |                           |            |                            |            | -             |            |

#### Values in bold red are out of compliance with EPA primary water quality standards

Values in red italics are out of compliance with EPA secondary water quality standards Values in red underline are out of compliance with Arizona numeric water quality standards Values in blue indicate that detection limit exceeds standard

- --- = Not available, not applicable
- -- = Not calculated due to non-detect
- \* = Value reported as Na+K

Shading indicates dissolved results

Shading indicates total results
Shading indicates total recoverable results
Shading indicates unknown filtration or no filtration method provided for analyses

a Ca = Calcium

Mg = Magnesium

Na = Sodium

K = Potassium

CI = Chloride

CO₃ = Carbonate

HCO₃ = Bicarbonate SO<sub>4</sub> = Sulfate

SiO<sub>2</sub> = Silica

Br = Bromide F = Fluoride

NO<sub>3</sub>+NO<sub>2</sub> (as N) = Nitrate plus Nitrite, in equivalent milligrams of nitrogen per liter TDS = Total dissolved solids

b mg/L = milligrams per liter

#### **Explanation of Codes**

Absent = Analyte not present

ge = Greater than or equal to reported value

i = Insufficient sample j = Estimated value

j+ = Estimated value, high bias

j- = Estimated value, low bias Lost = Sample lost in processing

n = Not measured

na = Not available ND = Not Detected

np = Analyte not applicable

Present = Analyte was detected

q = Uncertain value r = Unusable data

< = Less than reported detection limit

> = Greater than reported value

d = Diluted. Diluted samples are indicated only when value is estimated.

DUP = Field Duplicate

LD = Laboratory duplicate

SP = Split sample SPD = Split-Duplicate



<sup>&</sup>lt;sup>C</sup> TEMP (°C) = Temperature, in degrees Celsius

 $<sup>^{</sup>d}$  SC ( $\mu$ S/cm) = Specific Conductance in microsiemens per centimeter

| SAMPLE LOCATION  | SAMPLE                     | SAMPLE    |         |          |          |        |          |          |           |          |          | TRACE      | CONSTIT | UENTS    | (mg/L)b      |          |           |          |            |            |           |       |           |         | ANALYTICAL  |
|------------------|----------------------------|-----------|---------|----------|----------|--------|----------|----------|-----------|----------|----------|------------|---------|----------|--------------|----------|-----------|----------|------------|------------|-----------|-------|-----------|---------|-------------|
|                  | IDENTIFIER/<br>DESCRIPTION | DATE      | Al      | Sb       | As       | Ва     | Ве       | В        | Cd        | Cr       | Со       | Cu         | CN      | Fe       | Pb           | Mn       | Hg        | Мо       | Ni         | Se         | Ag        | S     | TI        | Zn      | LABORATORY  |
|                  |                            |           |         | 1        |          | I.     |          |          |           | S        | urface V | Vater      |         |          |              |          |           |          | 1          | 1          |           |       |           |         |             |
| Blue Spring      | RESE-1001087               | 26-May-04 |         | <0.0030  | <0.0030  | 0.0305 | <0.0020  |          | <0.00010  | <0.0060  |          | <0.0030    |         |          | <0.0030      |          | <0.00020  |          | <0.010     |            | <0.00010  |       | <0.0020   | <0.0050 | SVL         |
| Blue Spring      | RESE-1001087               | 26-May-04 | <0.020  | <0.0030  | <0.0030  |        | <0.0020  | <0.040   | <0.00010  |          | <0.0060  | 0.0033     | <0.010  | 0.201    | <0.0030      |          | <0.00020  | 0.0086   |            | <0.030     | <0.00010  | <1.0  | <0.0020   | <0.0050 | SVL         |
| Blue Spring      | RESE-1001087               | 26-May-04 |         | <0.0030  | <0.0030  |        | <0.0020  |          | <0.00010  | <0.0060  |          | <0.0030    |         |          | <0.0030      | 0.0443   |           |          | <0.010     | <0.0030    | <0.00010  |       |           | <0.0050 | SVL         |
| Blue Spring      | RESE-1001093               | 03-Aug-04 |         | <0.0030  | <0.0030  | 0.0601 | <0.0020  |          | <0.00010  | <0.0060  |          | <0.0030    |         |          | <0.0030      |          | <0.00020  |          | <0.010     |            | <0.00010  |       | <0.0020   | <0.0050 | SVL         |
| Blue Spring      | RESE-1001093               | 03-Aug-04 | 0.041   | <0.0030  | 0.0040   |        | <0.0020  | <0.040   | <0.00010  |          | <0.0060  | <0.0030    |         | 0.993    | <0.0030      |          | <0.00020  | 0.0105   |            | <0.0060    | <0.00010  | <1.0  | <0.0020   | <0.0050 | SVL         |
| Blue Spring      | RESE-1001093               | 03-Aug-04 |         | <0.0030  | <0.0030  |        | <0.0020  |          | <0.00010  | <0.0060  |          | 0.0030     |         |          | <0.0030      | 0.789    |           |          | <0.010     | <0.0030    | <0.00010  |       |           | <0.0050 | SVL         |
| Blue Spring      | RESE-1001185               | 09-Feb-05 |         | <0.00300 | <0.00300 | 0.0261 | <0.00200 |          | <0.00020  | <0.00600 |          | <0.0100    |         |          | <0.00300     |          | <0.00020  |          | <0.0100    |            | <0.00010  |       | <0.00200  | <0.0100 | SVL         |
| Blue Spring      | RESE-1001185               | 09-Feb-05 | <0.0300 | <0.00300 | 0.00310  |        | <0.00200 | <0.0400  | <0.00020  |          | <0.00600 | <0.0100    |         | <0.0600  | <0.00300     |          | <0.00020  | <0.00800 |            | <0.00300   | <0.00010  | <1.00 | <0.00200  | <0.0100 | SVL         |
| Blue Spring      | RESE-1001185               | 09-Feb-05 |         | <0.00300 | <0.00300 |        | <0.00200 |          | <0.00020  | <0.00600 |          | <0.0100    |         |          | <0.00300     | 0.0362   |           |          | <0.0100    | <0.00300   | <0.00010  |       |           | <0.0100 | SVL         |
| Blue Spring      | RESE-1001200               | 03-May-05 |         | <0.00300 | <0.00300 | 0.0348 | <0.00200 |          | <0.00020  | <0.00600 |          | <0.0100    |         |          | <0.00300     |          | <0.00020  |          | <0.0100    |            | <0.00010  |       | <0.00200  | <0.0100 | SVL         |
| Blue Spring      | RESE-1001200               | 03-May-05 | <0.0300 | <0.00300 | <0.00300 |        | <0.00200 | 0.048    | <0.00020  |          | <0.00600 | <0.0100    |         | <0.0600  | <0.00300     |          | <0.00020  | 0.0082   |            | <0.00300   | <0.00010  | <1.00 | <0.00200  | <0.0100 | SVL         |
| Blue Spring      | RESE-1001200               | 03-May-05 |         | <0.00300 | <0.00300 |        | <0.00200 |          | <0.00020  | <0.00600 |          | <0.0100    |         |          | <0.00300     | 0.0346   |           |          | <0.0100    | <0.00300   | <0.00010  |       |           | <0.0100 | SVL         |
| Blue Spring      | RESE-1001219               | 03-Aug-05 |         | <0.00300 | <0.00300 | 0.0291 | <0.0020  |          | <0.00020  | <0.0060  |          | <0.0100    |         |          | <0.00300     |          | <0.0002   |          | <0.0100    |            | <0.00010  |       | <0.00200  | <0.0100 | SVL         |
| Blue Spring      | RESE-1001219               | 03-Aug-05 | <0.030  | <0.0030  | <0.00300 |        | <0.0020  | <0.04    | <0.00010  |          | <0.0060  | <0.0100    |         | 0.243    | <0.0030      |          | <0.0002   | <0.0080  |            | <0.0030    | <0.00010  | <1    | <0.00200  | <0.0100 | SVL         |
| Blue Spring      | RESE-1001219               | 03-Aug-05 |         | <0.00300 | <0.00300 |        | <0.0020  |          | <0.00020  | <0.0060  |          | <0.0100    |         |          | <0.00300     | 0.0783   |           |          | <0.0100    | <0.00300   | <0.00010  |       |           | <0.0100 | SVL         |
| Blue Spring      | RESE-1002009               | 19-Aug-08 | <0.0141 | <0.002   | <0.0066  | 0.0199 | <0.00036 |          | <0.000034 |          | <0.00065 | 0.000552 j |         | <0.0202  | <0.000043    | 0.0179   | <0.000064 | 0.0029 j | <0.0023    |            | <0.000017 |       | <0.000018 | <0.0019 | SVL         |
| Blue Spring      | RESE-1002009               | 19-Aug-08 |         | <0.0004  | <0.0065  |        | <0.00036 | 0.0291 j | <0.00096  | <0.001   |          | <0.0039    |         |          | <0.000172    | 0.0399 j | <0.000064 |          | <0.0023    | <0.0004    | <0.00079  |       | <0.000072 | <0.0019 | SVL         |
| Blue Spring DUP  | RESE-1002010               | 19-Aug-08 | <0.0141 | <0.0001  | <0.0066  | 0.0199 | <0.00036 |          | <0.000034 |          | <0.00065 | 0.000511 j |         | <0.0202  | <0.000043    | 0.0165   | <0.000064 | <0.0023  | <0.0023    |            | <0.000017 |       | <0.000018 | <0.0019 | SVL         |
| Blue Spring DUP  | RESE-1002010               | 19-Aug-08 |         | <0.0004  | <0.0065  |        | <0.00036 | 0.0264 j | <0.00096  | <0.001   |          | <0.0039    |         |          | 0.000184 j,d | 0.178 j  | <0.000064 |          | <0.0023    | <0.0004    | <0.00079  |       | <0.000072 | <0.0019 | SVL         |
| Blue Spring      | RESE-1002043               | 13-Nov-08 | <0.080  | <0.00300 | <0.025   | 0.0506 | <0.00200 |          | <0.000200 |          | <0.0060  | 0.00177    |         | <0.060   | <0.00300     | 0.361    | <0.00020  | <0.0080  | <0.010     |            | <0.000100 |       | <0.00100  | <0.0100 | SVL         |
| Blue Spring      | RESE-1002043               | 13-Nov-08 |         |          |          |        |          |          |           |          |          |            |         |          |              |          | <0.00020  |          |            |            |           |       |           |         | SVL         |
| Blue Spring      | RESE-1002043               | 13-Nov-08 |         | <0.00300 | <0.025   |        | <0.00200 | <0.040   | <0.0020   | <0.0060  |          | <0.010     |         |          | <0.00300     | 0.467    |           |          | <0.010     | <0.00300   | <0.0050   |       | <0.00100  | <0.0100 | SVL         |
| Blue Spring      | RESE-1002052               | 12-Feb-09 | <0.080  | <0.00300 | <0.025   | 0.0215 | <0.00200 |          | <0.000034 |          | <0.0060  | 0.00417    |         | <0.060   | <0.000043    | 0.0274   |           | 0.0198   | 0.00135    |            | <0.000100 |       | <0.00100  | <0.0100 | SVL         |
| Blue Spring      | RESE-1002052               | 12-Feb-09 |         |          |          |        |          |          |           |          |          |            |         |          |              |          | <0.00020  |          |            |            |           |       |           |         | SVL         |
| Blue Spring      | RESE-1002052               | 12-Feb-09 |         | <0.00300 | <0.025   |        | <0.00200 | <0.040   | <0.0020   | <0.0060  |          | <0.010     |         |          | <0.00300     | 0.0271   |           |          | <0.010     | 0.00028 jd | <0.0050   |       | <0.00100  | <0.0100 | SVL         |
| Blue Spring      | RESE-1002088               | 13-May-09 | <0.0141 | <0.00022 | 0.009 j  |        | <0.00036 |          | <0.000024 |          | <0.00065 | 0.000751 j |         | 0.0243 j | <0.000053    | 0.013    |           | 0.0057 j | 0.000839 j |            | <0.000019 |       | <0.000023 | <0.0019 | SVL         |
| Blue Spring      | RESE-1002088               | 13-May-09 |         |          |          |        |          |          |           |          |          |            |         |          |              |          | <0.00006  |          |            |            |           |       |           |         | SVL         |
| Blue Spring      | RESE-1002088               | 13-May-09 |         | <0.022   | 0.0089 j | 0.0624 | <0.00018 | 0.0257   | <0.00048  | 0.0029 j |          | 0.0099     |         |          | 0.0568       | 1.65     |           |          | 0.0022 j   | 0.0421     | <0.00021  |       | <0.0023   | 0.0085  | SVL         |
| Blue Spring      | RESE-1002118               | 12-Feb-10 | <0.080  | <0.00300 | <0.025   | 0.0321 |          |          | <0.000024 |          | <0.0060  | 0.00318    |         | <0.060   | <0.000053    | 0.0156   |           | <0.0080  | 0.00146    |            | <0.000100 |       | <0.00100  | <0.0100 | SVL         |
| Blue Spring      | RESE-1002118               | 12-Feb-10 |         |          |          |        |          |          |           |          |          |            |         |          |              |          | <0.00020  |          |            |            |           |       |           |         | SVL         |
| Blue Spring      | RESE-1002118               | 12-Feb-10 |         | <0.00300 | <0.025   |        | <0.00200 | <0.040   | <0.0020   | <0.0060  |          | <0.010     |         |          | <0.00300     | 0.0170   |           |          | <0.010     | 0.00034 jd |           |       | <0.00100  | <0.0100 | SVL         |
| Blue Spring      | RESE-1003165               | 17-Jul-10 | <0.20   | <0.0030  | 0.0026   | 0.020  | <0.0010  | <0.20    | <0.0010   | <0.0010  | <0.0010  | <0.0010    |         | <0.050   | <0.0010      | 0.023    | <0.00020  | 0.0010   | 0.0013     | <0.0020    | <0.0010   |       | <0.0010   | <0.010  | TestAmerica |
| Blue Spring      | RESE-1003165               | 17-Jul-10 | <0.20   | <0.0030  | 0.0027   | 0.021  | <0.0010  | <0.20    | <0.0010   | <0.0010  | <0.0010  | <0.0010    |         | 0.14     | <0.0010      | 0.060    | <0.00020  | <0.0010  | 0.0013     | <0.0020    | <0.0010   |       | <0.0010   | <0.010  | TestAmerica |
| Blue Spring      | RESE-1002153               | 08-Nov-10 | <0.080  | <0.00300 | <0.025   | 0.0221 |          |          | <0.000024 |          | <0.0060  | <0.00100   |         | <0.060   | <0.000019    | 0.0138   |           | <0.0080  | 0.00198    |            | <0.000100 |       | <0.00100  | <0.0100 | SVL         |
| Blue Spring      | RESE-1002153               | 08-Nov-10 |         |          |          |        |          |          |           |          |          |            |         |          |              |          | <0.00020  |          |            |            |           |       |           |         | SVL         |
| Blue Spring      | RESE-1002153               | 08-Nov-10 |         | <0.00300 | <0.025   |        | <0.00200 | <0.040   | <0.0020   | <0.0060  |          | <0.010     |         |          | <0.00300     | 0.349    |           |          | <0.010     | 0.00065 jd | <0.0050   |       | <0.00100  | <0.0100 | SVL         |
| Bored Spring     | RESE-1001088               | 26-May-04 |         | <0.0030  | 0.0090   | 0.0102 | <0.0020  |          | <0.0010   | <0.0060  |          | 0.0221     |         |          | <0.0030      |          | <0.00020  |          | <0.010     |            | <0.00010  |       | <0.0020   | <0.0050 | SVL         |
| Bored Spring     | RESE-1001088               | 26-May-04 | 0.079   | <0.0030  | 0.0080   |        | <0.0020  | <0.040   | <0.00010  |          | <0.0060  | 0.0254     | <0.010  | 0.092    | <0.0030      |          | <0.00020  | 0.0132   |            | <0.0030    | <0.00010  | <1.0  | <0.0020   | <0.0050 | SVL         |
| Bored Spring     | RESE-1001088               | 26-May-04 | 1       | <0.0030  | 0.0090   |        | <0.0020  |          | <0.00010  | <0.0060  |          | 0.0248     |         |          | <0.0030      | 0.0469   |           |          | <0.010     | <0.0030    | <0.00010  |       |           | <0.0050 | SVL         |
| Bored Spring DUP | RESE-1001164               | 03-Nov-04 |         | <0.0030  | <0.0030  | 0.0128 | <0.0020  |          | <0.00010  | <0.0060  |          | <0.0030    |         |          | <0.0030      |          | <0.00020  |          | <0.010     |            | <0.00010  |       | <0.0020   | <0.0050 | SVL         |
| Bored Spring DUP | RESE-1001164               | 03-Nov-04 | <0.020  | <0.0030  | <0.0030  |        | <0.0020  | <0.040   | <0.00010  |          | <0.0060  | <0.0030    |         | 0.094    | <0.0030      |          | <0.00020  | 0.0137   |            | <0.0030    | <0.00010  | <1.0  | <0.0020   | <0.0050 | SVL         |
| Bored Spring DUP | RESE-1001164               | 03-Nov-04 |         | <0.0030  | <0.0030  |        | <0.0020  |          | <0.00010  | <0.0060  |          | <0.0030    |         |          | <0.0030      | 0.0179   |           |          | <0.010     | <0.0030    | <0.00010  |       |           | <0.0050 | SVL         |



| SAMPLE LOCATION  | SAMPLE       | SAMPLE    |          |                      |          |        |          |         |           |           |              | TRACE    | CONSTI | TUENTS   | (mg/L) <sup>b</sup> |        |          |           |           |            |           |       |           |           | ANALYTICAL |
|------------------|--------------|-----------|----------|----------------------|----------|--------|----------|---------|-----------|-----------|--------------|----------|--------|----------|---------------------|--------|----------|-----------|-----------|------------|-----------|-------|-----------|-----------|------------|
|                  | IDENTIFIER/  | DATE      | Al       | Sb                   | As       | Ва     | Ве       | В       | Cd        | Cr        | Со           | Cu       | CN     | Fe       | Pb                  | Mn     | Hg       | Мо        | Ni        | Se         | Ag        | S     | TI        | Zn        | LABORATORY |
|                  | DESCRIPTION  |           |          |                      |          |        |          |         |           |           | <br>urface V | Notor    |        |          |                     |        |          |           |           |            |           |       |           |           |            |
|                  |              | 1         |          |                      |          |        |          |         |           |           | urrace v     |          |        |          |                     |        |          |           |           |            |           |       |           |           |            |
| Bored Spring     | RESE-1001163 | 03-Nov-04 |          | <0.0030              | <0.0030  | 0.0132 | <0.0020  |         | <0.00010  | <0.0060   |              | <0.0030  |        |          | <0.0030             |        | <0.00020 |           | <0.010    |            | <0.00010  |       | <0.0020   | <0.0050   | SVL        |
| Bored Spring     | RESE-1001163 | 03-Nov-04 | <0.020   | <0.0030              | <0.0030  |        | <0.0020  | <0.040  | <0.00010  | -0.0000   | <0.0060      | <0.0030  |        | 0.099    | <0.0030             | 0.0407 | <0.00020 | 0.0142    |           | <0.0030    | <0.00010  | <1.0  | <0.0020   | <0.0050   | SVL        |
| Bored Spring     | RESE-1001163 | 03-Nov-04 |          | <0.0030              | <0.0030  |        | <0.0020  |         | <0.00010  | <0.0060   |              | <0.0030  |        |          | <0.0030             | 0.0187 |          |           | <0.010    | <0.0030    | <0.00010  |       |           | <0.0050   | SVL        |
| Bored Spring     | RESE-1001188 | 09-Feb-05 |          | <0.00300             | <0.00300 | 0.0115 | <0.00200 |         | <0.00020  | <0.00600  |              | <0.0100  |        |          | <0.00300            |        | <0.00020 |           | <0.0100   |            | <0.00010  |       | <0.00200  | 0.0120    | SVL        |
| Bored Spring     | RESE-1001188 | 09-Feb-05 | <0.0300  | <0.00300             | <0.00300 |        | <0.00200 | <0.0400 | <0.00020  |           | <0.00600     | <0.0100  |        | <0.0600  | <0.00300            |        | <0.00020 | <0.00800  |           | <0.00300   | <0.00010  | <1.00 | <0.00200  | 0.0110    | SVL        |
| Bored Spring     | RESE-1001188 | 09-Feb-05 |          | <0.00300             | <0.00300 |        | <0.00200 |         | <0.00020  | <0.00600  |              | <0.0100  |        |          | <0.00300            | 0.0467 |          |           | <0.0100   | <0.00300   | <0.00010  |       |           | 0.0110    | SVL        |
| Bored Spring     | RESE-1001204 | 03-May-05 |          | <0.00300             | <0.00300 | 0.0119 | <0.00200 |         | <0.00020  | <0.00600  |              | <0.0100  |        |          | <0.00300            |        | <0.00020 |           | <0.0100   |            | <0.00010  |       | <0.00200  | <0.0100   | SVL        |
| Bored Spring     | RESE-1001204 | 03-May-05 | <0.0300  | <0.00300             | <0.00300 |        | <0.00200 | <0.0400 | <0.00020  |           | <0.00600     | <0.0100  |        | <0.0600  | <0.00300            |        | <0.00020 | 0.0098    |           | <0.00300   | <0.00010  | <1.00 | <0.00200  | <0.0100   | SVL        |
| Bored Spring     | RESE-1001204 | 03-May-05 |          | <0.00300             | <0.00300 |        | <0.00200 |         | <0.00020  | <0.00600  |              | <0.0100  |        |          | <0.00300            | 0.0993 |          |           | <0.0100   | <0.00300   | <0.00010  |       |           | 0.015     | SVL        |
| Bored Spring     | RESE-1001221 | 03-Aug-05 |          | <0.00300             | <0.00300 | 0.0129 | <0.0020  |         | <0.00020  | <0.0060   |              | <0.0100  |        |          | <0.00300            |        | <0.0002  |           | <0.0100   |            | <0.00010  |       | <0.00200  | <0.0100   | SVL        |
| Bored Spring     | RESE-1001221 | 03-Aug-05 | 0.115    | <0.0030              | <0.00300 |        | <0.0020  | <0.04   | 0.00030   |           | <0.0060      | <0.0100  |        | 0.214    | <0.0030             |        | <0.0002  | 0.0093    |           | <0.0030    | <0.00010  | <1    | <0.00200  | 0.041     | SVL        |
| Bored Spring     | RESE-1001221 | 03-Aug-05 |          | <0.00300             | <0.00300 |        | <0.0020  |         | <0.00020  | <0.0060   |              | <0.0100  |        |          | <0.00300            | 1.34   |          |           | <0.0100   | <0.00300   | <0.00010  |       |           | 0.044     | SVL        |
| Bored Spring     | RESE-1002044 | 13-Nov-08 | <0.080   | <0.00300             | <0.025   | 0.0357 | <0.00200 |         | <0.000200 |           | <0.0060      | <0.00100 |        | 0.077    | <0.00300            | 0.653  | <0.00020 | <0.0080   | <0.010    |            | <0.000100 |       | <0.00100  | <0.0100   | SVL        |
| Bored Spring     | RESE-1002044 | 13-Nov-08 |          |                      |          |        |          |         |           |           |              |          |        |          |                     |        | <0.00020 |           |           |            |           |       |           |           | SVL        |
| Bored Spring     | RESE-1002044 | 13-Nov-08 |          | <0.00300             | <0.025   |        | <0.00200 | 0.041   | <0.0020   | <0.0060   |              | 0.024    |        |          | 0.00691             | 0.732  |          |           | <0.010    | <0.00300   | <0.0050   |       | <0.00100  | 0.0237    | SVL        |
| Bored Spring     | RESE-1002051 | 12-Feb-09 | <0.080   | <0.00300             | <0.025   | 0.0123 | <0.00200 |         | <0.000034 |           | <0.0060      | <0.00100 |        | <0.060   | 0.000086 j          | 0.220  |          | 0.0217    | 0.00221   |            | <0.000100 |       | <0.00100  | <0.0100   | SVL        |
| Bored Spring     | RESE-1002051 | 12-Feb-09 |          |                      |          |        |          |         |           |           |              |          |        |          |                     |        | <0.00020 |           |           |            |           |       |           |           | SVL        |
| Bored Spring     | RESE-1002051 | 12-Feb-09 |          | <0.00300             | <0.025   |        | <0.00200 | <0.040  | <0.0020   | <0.0060   |              | <0.010   |        |          | <0.00300            | 0.214  |          |           | <0.010    | <0.00012   | <0.0050   |       | <0.00100  | <0.0100   | SVL        |
| Bored Spring     | RESE-1002089 | 13-May-09 | <0.0141  | 0.00027 j            | <0.0066  |        | <0.00036 |         | <0.000024 |           | 0.0027 j     | 0.0018   |        | <0.0202  | 0.000092 j          | 0.0523 |          | 0.0049 j  | 0.001 j   |            | <0.000019 |       | <0.000023 | <0.0019   | SVL        |
| Bored Spring     | RESE-1002089 | 13-May-09 |          |                      |          |        |          |         |           |           |              |          |        |          |                     |        | <0.00006 |           |           |            |           |       |           |           | SVL        |
| Bored Spring     | RESE-1002089 | 13-May-09 |          | <0.00055             | 0.0057 j | 0.0103 | <0.00018 | 0.0359  | <0.00048  | 0.00064 j |              | <0.002   |        |          | 0.000154 j,d        | 0.07   |          |           | <0.0011   | <0.0006    | <0.00021  |       | <0.000058 | 0.0053    | SVL        |
| Bored Spring     | RESE-1002119 | 12-Feb-10 | <0.080   | <0.00300             | <0.025   | 0.0089 |          |         | <0.000024 |           | <0.0060      | 0.00161  |        | <0.060   | 0.000105 j          | 0.0516 |          | <0.0080   | 0.00101   |            | <0.000100 |       | <0.00100  | <0.0100   | SVL        |
| Bored Spring     | RESE-1002119 | 12-Feb-10 |          |                      |          |        |          |         |           |           |              |          |        |          |                     |        | <0.00020 |           |           |            |           |       |           |           | SVL        |
| Bored Spring     | RESE-1002119 | 12-Feb-10 |          | <0.00300             | <0.025   |        | <0.00200 | <0.040  | <0.0020   | <0.0060   |              | <0.010   |        |          | <0.00300            | 0.0782 |          |           | <0.010    | 0.00032 jd | <0.0050   |       | <0.00100  | 0.0181    | SVL        |
| Bored Spring     | RESE-1002157 | 09-Nov-10 | <0.080   | <0.00300             | <0.025   | 0.0615 |          |         | <0.000024 |           | <0.0060      | 0.00304  |        | 0.166    | 0.000404 j          | 1.34   |          | <0.0080   | 0.00418   |            | <0.000100 |       | <0.00100  | <0.0100   | SVL        |
| Bored Spring     | RESE-1002157 | 09-Nov-10 |          |                      |          |        |          |         |           |           |              |          |        |          |                     |        | <0.00020 |           |           |            |           |       |           |           | SVL        |
| Bored Spring     | RESE-1002157 | 09-Nov-10 |          | <0.00300             | <0.025   |        | <0.00200 | 0.060   | <0.0020   | <0.0060   |              | 0.012    |        |          | <0.00300            | 1.73   |          |           | <0.010    | 0.00111 jd | <0.0050   |       | <0.00100  | <0.0100   | SVL        |
| Boulder Hole     | RESE-1001008 | 22-May-03 |          | <0.0060              | 0.0140   | 0.0408 | <0.0020  | <0.040  | <0.00010  |           |              | <0.0030  |        |          | <0.0030             |        | <0.00020 |           | <0.010    |            | <0.00010  |       | <0.0020   | 0.0099    | SVL        |
| Boulder Hole     | RESE-1001008 | 22-May-03 | <0.020   | <0.0060              | 0.0150   |        | <0.0020  |         | <0.00010  |           | <0.0060      | <0.0030  | <0.10  | 0.031    | <0.0050             |        | <0.00020 | 0.0130    |           | <0.0030    | <0.00010  | <1.0  |           | 0.0094    | SVL        |
| Boulder Hole     | RESE-1001008 | 22-May-03 |          | <0.0060              | 0.0140   |        | <0.0020  |         | <0.00010  | <0.0060   |              | <0.0030  |        |          | <0.0030             | 0.0942 |          |           | <0.010    | <0.0030    | <0.00010  |       | <0.0020   | 0.0104    | SVL        |
| Boulder Hole     | RESE-1001023 | 04-Sep-03 |          | <0.0030              | 0.0300   | 0.0481 | <0.0020  |         | <0.00010  | <0.0060   |              | <0.0030  |        |          | <0.0030             |        | <0.00020 |           | <0.010    |            | <0.00010  |       | <0.0020   | 0.0051    | SVL        |
| Boulder Hole     | RESE-1001023 | 04-Sep-03 | <0.020   | <0.0030              | 0.0330   |        | <0.0020  | 0.043   | <0.00010  |           | <0.0060      | 0.0038   | <0.010 | 0.048    | <0.0050             |        | <0.00020 | 0.0097    |           | <0.0030    | <0.00010  | <1.0  | <0.0020   | <0.0050   | SVL        |
| Boulder Hole     | RESE-1001023 | 04-Sep-03 |          | <0.0030              | 0.0290   |        | <0.0020  |         | <0.00010  | <0.0060   |              | 0.0034   |        |          | <0.0030             | 0.124  |          |           | <0.010    | <0.0030    | <0.00010  |       |           | <0.0050   | SVL        |
| Boulder Hole     | RESE-1001028 | 03-Nov-03 |          | <0.0030              | 0.0150   | 0.0696 | <0.0020  |         | <0.00010  | <0.0060   |              | 0.0033   |        |          | <0.0030             |        | <0.00020 |           | <0.010    |            | <0.00010  |       | <0.0020   | <0.0050   | SVL        |
| Boulder Hole     | RESE-1001028 | 03-Nov-03 | <0.020   | <0.0030              | 0.0160   |        | <0.0020  | <0.040  | <0.00010  |           | <0.0060      | 0.0051   |        | 0.046    | <0.0050             |        | <0.00020 | 0.0127    |           | <0.0030    | <0.00010  | <1.0  | <0.0020   | <0.0050   | SVL        |
| Boulder Hole     | RESE-1001028 | 03-Nov-03 |          | <0.0030              | 0.0160   |        | <0.0020  |         | <0.00010  | <0.0060   |              | 0.0039   |        |          | 0.0050              | 0.0510 |          |           | <0.010    | <0.0030    | <0.00010  |       |           | <0.0050   | SVL        |
| Boulder Hole DUP | RESE-1001025 | 09-Feb-04 |          | <0.00050             | 0.0089   | 0.0247 | <0.00020 |         | <0.00010  |           |              | 0.0052   |        |          | <0.0010             |        | <0.00020 |           | 0.00300 j |            | <0.00010  |       | <0.00040  | <0.00020  | SVL        |
| Boulder Hole DUP | RESE-1001055 | 09-Feb-04 | 0.0126 j | <0.00050             | 0.0092   |        | <0.00020 | <0.0070 |           |           | <0.00070     | 0.0056   |        | <0.0130  | <0.0010             |        | <0.00020 |           |           | <0.00080   | <0.00010  | <1.0  | <0.00040  | 0.00026 j | SVL        |
| Boulder Hole DUP | RESE-1001055 | 09-Feb-04 |          | <0.00050             | 0.0114   |        | <0.00020 |         |           | <0.00030  |              | 0.0073   |        |          | <0.0010             | 0.0055 |          |           | <0.00130  |            |           |       |           | 0.00037 j | SVL        |
|                  |              |           |          | <0.00050             | 0.0109   | 0.0245 | <0.00020 |         | <0.00010  |           |              | 0.0042   |        |          | <0.0010             |        | <0.00020 |           | 0.00290 j |            | <0.00010  |       | <0.00040  | 0.00031 j | SVL        |
| Boulder Hole     | RESE-1001054 | 09-Feb-04 | 0.0110 j | 0.00030<br>0.00078 j | 0.0094   | 0.0245 | <0.00020 | <0.0070 |           |           | <0.00070     | 0.0042   |        | 0.0150 j | <0.0010             |        | <0.00020 | 0.00780 j | 0.00290 j | <0.00080   | <0.00010  | <1.0  | <0.00040  | 0.00031 j | SVL        |
| Boulder Hole     | RESE-1001054 | 09-Feb-04 |          | <0.00076 )           | 0.0128   |        | <0.00020 |         | <0.00010  |           |              | 0.0051   |        |          | <0.0010             | 0.0046 |          |           | <0.00130  |            | <0.00010  |       |           | 0.00040 j | SVL        |
| Boulder Hole     | RESE-1001054 | 09-Feb-04 | ,        | -0.00000             | 0.0120   |        | -0.00020 |         | 10.00010  | -0.00030  |              | 0.0031   |        |          | 10.0010             | 0.0040 |          |           | -0.00130  | ~0.00000   | -0.00010  |       |           | 0.000413  | O V L      |



| SAMPLE LOCATION  | SAMPLE                  | SAMPLE    |         |                  |        |        |          |         |           |          |          | TRACE    | CONSTIT | UENTS   | (mg/L) <sup>b</sup> |          |          |          |          |            |           |        |          |         | ANALYTICAL  |
|------------------|-------------------------|-----------|---------|------------------|--------|--------|----------|---------|-----------|----------|----------|----------|---------|---------|---------------------|----------|----------|----------|----------|------------|-----------|--------|----------|---------|-------------|
|                  | IDENTIFIER/ DESCRIPTION | DATE      | Al      | Sb               | As     | Ва     | Ве       | В       | Cd        | Cr       | Co       | Cu       | CN      | Fe      | Pb                  | Mn       | Hg       | Мо       | Ni       | Se         | Ag        | S      | TI       | Zn      | LABORATORY  |
|                  | DESCRIPTION             |           |         |                  |        |        |          |         |           | Sı       | urface V | Vater    |         |         |                     |          |          |          |          |            |           |        |          |         |             |
| Boulder Hole     | RESE-1001083            | 24-May-04 |         | <0.0030          | 0.0160 | 0.0447 | <0.0020  |         | <0.00010  | <0.0060  |          | <0.0030  |         |         | <0.0030             |          | <0.00020 |          | <0.010   |            | <0.00010  |        | <0.0020  | <0.0050 | SVL         |
| Boulder Hole     | RESE-1001083            | 24-May-04 | <0.020  | <0.0030          | 0.0174 |        | <0.0020  | <0.040  | <0.00010  |          | <0.0060  | 0.0056   | <0.010  | 0.038   | <0.0030             |          | <0.00020 | 0.0135   |          | <0.0030    | <0.00010  | <1.0   | <0.0020  | <0.0050 | SVL         |
| Boulder Hole     | RESE-1001083            | 24-May-04 |         | <0.0030          | 0.0160 |        | <0.0020  |         | <0.00010  | <0.0060  |          | <0.0030  |         |         | <0.0030             | 0.138    |          |          | <0.010   | <0.0030    | <0.00010  |        |          | <0.0050 | SVL         |
| Boulder Hole DUP | RESE-1001095            | 03-Aug-04 |         | <0.0030          | 0.0240 | 0.0731 | <0.0020  |         | <0.00010  | <0.0060  |          | <0.0030  |         |         | <0.0030             |          | <0.00020 |          | <0.010   |            | <0.00010  |        | <0.0020  | <0.0050 | SVL         |
| Boulder Hole DUP | RESE-1001095            | 03-Aug-04 | <0.020  | <0.0030          | 0.0430 |        | <0.0020  | <0.040  | <0.00010  |          | <0.0060  | <0.0030  |         | 0.065   | <0.0030             |          | <0.00020 | 0.0085   |          | <0.0030    | <0.00010  | <1.0   | <0.0020  | <0.0050 | SVL         |
| Boulder Hole DUP | RESE-1001095            | 03-Aug-04 |         | <0.0030          | 0.0430 |        | <0.0020  |         | <0.00010  | <0.0060  |          | <0.0030  |         |         | <0.0030             | 0.636    |          |          | <0.010   | <0.0030    | <0.00010  |        |          | <0.0050 | SVL         |
| Boulder Hole     | RESE-1001094            | 03-Aug-04 |         | <0.0030          | 0.0340 | 0.0734 | <0.0020  |         | <0.00010  | <0.0060  |          | <0.0030  |         |         | <0.0030             |          | <0.00020 |          | <0.010   |            | <0.00010  |        | <0.0020  | <0.0050 | SVL         |
| Boulder Hole     | RESE-1001094            | 03-Aug-04 | <0.020  | <0.0030          | 0.0400 |        | <0.0020  | <0.040  | <0.00010  |          | <0.0060  | <0.0030  |         | 0.058   | <0.0030             |          | <0.00020 | 0.0085   |          | <0.0030    | <0.00010  | <1.0   | <0.0020  | <0.0050 | SVL         |
| Boulder Hole     | RESE-1001094            | 03-Aug-04 |         | <0.0030          | 0.0390 |        | <0.0020  |         | <0.00010  | <0.0060  |          | <0.0030  |         |         | <0.0030             | 0.565    |          |          | <0.010   | <0.0030    | <0.00010  |        |          | <0.0050 | SVL         |
| Boulder Hole     | RESE-1001165            | 03-Nov-04 |         | <0.0030          | 0.0260 | 0.0706 | <0.0020  |         | <0.00010  | <0.0060  |          | 0.0071   |         |         | <0.0030             |          | <0.00020 |          | <0.010   |            | <0.00010  |        | <0.0020  | <0.0050 | SVL         |
| Boulder Hole     | RESE-1001165            | 03-Nov-04 | <0.020  | <0.0030          | 0.0280 |        | <0.0020  | <0.040  | <0.00010  |          | <0.0060  | 0.0080   |         | 0.036   | <0.0030             |          | <0.00020 | 0.0115   |          | <0.0030    | <0.00010  | <1.0   | <0.0020  | <0.0050 | SVL         |
| Boulder Hole     | RESE-1001165            | 03-Nov-04 |         | <0.0030          | 0.0290 |        | <0.0020  |         | <0.00010  | <0.0060  |          | 0.0078   |         |         | <0.0030             | 0.0508   |          |          | <0.010   | <0.0030    | <0.00010  |        |          | <0.0050 | SVL         |
| Boulder Hole     | RESE-1001181            | 08-Feb-05 |         | <0.00300         | 0.0190 | 0.0130 | <0.00200 |         | <0.00020  | <0.00600 |          | <0.0100  |         |         | <0.00300            |          | <0.00020 |          | <0.0100  |            | <0.00010  |        | <0.00200 | <0.0100 | SVL         |
| Boulder Hole     | RESE-1001181            | 08-Feb-05 | <0.0300 | <0.00300         | 0.0171 |        | <0.00200 | <0.0400 | <0.00020  |          | <0.00600 | <0.0100  |         | <0.0600 | <0.00300            |          | <0.00020 | <0.00800 |          | <0.00300   | <0.00010  | <1.00  | <0.00200 | <0.0100 | SVL         |
| Boulder Hole     | RESE-1001181            | 08-Feb-05 |         | <0.00300         | 0.0175 |        | <0.00200 |         | <0.00020  | <0.00600 |          | <0.0100  |         |         | <0.00300            | <0.00400 |          |          | <0.0100  | <0.00300   | <0.00010  |        |          | <0.0100 | SVL         |
| Boulder Hole     | RESE-1001205            | 04-May-05 |         | <0.00300         | 0.0176 | 0.0364 | <0.00200 |         | <0.00020  | <0.00600 |          | <0.0100  |         |         | <0.00300            |          | <0.00020 |          | <0.0100  |            | <0.00010  |        | <0.00200 | <0.0100 | SVL         |
| Boulder Hole     | RESE-1001205            | 04-May-05 | <0.0300 | <0.00300         | 0.0171 |        | <0.00200 | <0.0400 | <0.00020  |          | <0.00600 | <0.0100  |         | <0.0600 | <0.00300            |          | <0.00020 | <0.00800 |          | <0.00300   | <0.00010  | <1.00  | <0.00200 | <0.0100 | SVL         |
| Boulder Hole     | RESE-1001205            | 04-May-05 |         | <0.00300         | 0.0173 |        | <0.00200 |         | <0.00020  | <0.00600 |          | <0.0100  |         |         | <0.00300            | 0.194    |          |          | <0.0100  | <0.00300   | <0.00010  |        |          | <0.0100 | SVL         |
| Boulder Hole     | RESE-1002006            | 06-Aug-08 | <0.080  | <0.00300         | 0.029  | 0.0540 | <0.00200 |         | <0.000200 |          | <0.0060  | 0.00243  |         | <0.060  | <0.00300            | 0.0947   | <0.00020 | 0.0493   | <0.010   |            | <0.000100 |        | <0.00100 | <0.0100 | SVL         |
| Boulder Hole     | RESE-1002006            | 06-Aug-08 |         |                  |        |        |          |         |           |          |          |          |         |         |                     |          | <0.00020 |          |          |            |           |        |          |         | SVL         |
| Boulder Hole     | RESE-1002006            | 06-Aug-08 |         | <0.00300         | <0.025 |        | <0.00200 | <0.040  | <0.0020   | <0.0060  |          | <0.010   |         |         | <0.00300            | 0.148    |          |          | <0.010   | <0.00300   | <0.0050   |        | <0.00100 | <0.0100 | SVL         |
| Boulder Hole     | RESE-1002031            | 06-Nov-08 | <0.080  | <0.00300         | 0.026  | 0.0563 | <0.00200 |         | <0.000200 |          | <0.0060  | 0.00189  |         | <0.060  | <0.00300            | 0.244    | <0.00020 | <0.0080  | <0.010   |            | <0.000100 |        | <0.00100 | <0.0100 | SVL         |
| Boulder Hole     | RESE-1002031            | 06-Nov-08 |         |                  |        |        |          |         |           |          |          |          |         |         |                     |          | <0.00020 |          |          |            |           |        |          |         | SVL         |
| Boulder Hole     | RESE-1002031            | 06-Nov-08 |         | <0.00300         | 0.040  |        | <0.00200 | <0.040  | <0.0020   | <0.0060  |          | <0.010   |         |         | <0.00300            | 0.335    |          |          | <0.010   | <0.00300   | <0.0050   |        | <0.00100 | <0.0100 | SVL         |
| Boulder Hole     | RESE-1002060            | 19-Feb-09 | <0.080  | <0.00300         | <0.025 | 0.0132 | <0.00200 |         | <0.000034 |          | <0.0060  | 0.0150   |         | <0.060  | 0.000206 j          | 0.0082   |          | <0.0080  | <0.00100 |            | <0.000100 |        | <0.00100 | <0.0100 | SVL         |
| Boulder Hole     | RESE-1002060            | 19-Feb-09 |         |                  |        |        |          |         |           |          |          |          |         |         |                     |          | <0.00020 |          |          |            |           |        |          |         | SVL         |
| Boulder Hole     | RESE-1002060            | 19-Feb-09 |         | <0.00300         | <0.025 |        | <0.00200 | <0.040  | <0.0020   | <0.0060  |          | 0.019    |         |         | <0.00300            | 0.0104   |          |          | <0.010   | <0.00012   | <0.0050   |        | <0.00100 | <0.0100 | SVL         |
| Boulder Hole     | RESE-1002082            | 07-May-09 | <0.080  | <0.00300         | 0.031  | 0.0457 | <0.00200 |         | <0.000024 |          | <0.0060  | 0.00216  |         | <0.060  | <0.000053           | 0.110    |          | <0.0080  | 0.00120  |            | <0.000100 |        | <0.00100 | <0.0100 | SVL         |
| Boulder Hole     | RESE-1002082            | 07-May-09 |         |                  |        |        |          |         |           |          |          |          |         |         |                     |          | <0.00020 |          |          |            |           |        |          |         | SVL         |
| Boulder Hole     | RESE-1002082            | 07-May-09 |         | <0.00300         | <0.025 |        | <0.00200 | <0.040  | <0.0020   | <0.0060  |          | <0.010   |         |         | <0.00300            | 0.122    |          |          | <0.010   | <0.00030   | <0.0050   |        | <0.00100 | <0.0100 | SVL         |
| Boulder Hole     | RESE-1002120            | 13-Feb-10 | <0.080  | <0.00300         | <0.025 | 0.0131 |          |         | <0.000024 |          | <0.0060  | 0.00638  |         | <0.060  | <0.000053           | <0.0040  |          | <0.0080  | <0.00100 |            | <0.000100 |        | <0.00100 | <0.0100 | SVL         |
| Boulder Hole     | RESE-1002120            | 13-Feb-10 |         |                  |        |        |          |         |           |          |          |          |         |         |                     |          | <0.00020 |          |          |            |           |        |          |         | SVL         |
| Boulder Hole     | RESE-1002120            | 13-Feb-10 |         | <0.00300         | <0.025 |        | <0.00200 | <0.040  | <0.0020   | <0.0060  |          | <0.010   |         |         | <0.00300            | <0.0040  |          |          | <0.010   | 0.00031 jd | <0.0050   |        | <0.00100 | <0.0100 | SVL         |
| Boulder Hole     | RESE-1002140            | 01-Nov-10 | <0.080  | <0.00300         | <0.025 | 0.0752 |          |         | <0.000024 |          | <0.0060  | 0.00407  |         | <0.060  | 0.00003 j           | 0.0318   |          | 0.0102   | 0.00369  |            | <0.000100 |        | <0.00100 | <0.0100 | SVL         |
| Boulder Hole     | RESE-1002140            | 01-Nov-10 |         |                  |        |        |          |         |           |          |          |          |         |         |                     |          | <0.00020 |          |          |            |           |        |          |         | SVL         |
| Boulder Hole     | RESE-1002140            | 01-Nov-10 |         | <0.00300         | 0.025  |        | <0.00200 | 0.042   | <0.0020   | <0.0060  |          | <0.010   |         |         | <0.00300            | 0.0401   |          |          | <0.010   | 0.00059 jd | <0.0050   |        | <0.00100 | <0.0100 | SVL         |
| Boulder Hole     | RESE-1002167            | 16-May-11 | <0.080  | <0.00300         | <0.025 |        |          |         | <0.000036 |          | <0.0060  | <0.00100 |         | 0.099   | 0.000049 j          | 2.32     |          | <0.008   | 0.00123  |            | <0.000100 |        | <0.00100 | <0.0100 | SVL         |
| Boulder Hole     | RESE-1002167            | 16-May-11 |         |                  |        |        |          |         |           |          |          |          |         |         |                     |          | <0.00020 |          |          |            |           |        |          |         | SVL         |
| Boulder Hole     | RESE-1002167            | 16-May-11 |         | <0.00300         | 0.034  | 0.0531 | <0.0020  | <0.040  | <0.0020   | <0.0060  |          | <0.010   |         |         | <0.00300            | 2.49     |          |          | <0.010   | 0.00051 jd | <0.0050   |        | <0.00100 | <0.0100 | SVL         |
| Boulder Hole SP  | RESE-1002167            | 16-May-11 | <0.20   | <u>&lt;0.015</u> | 0.027  | 0.049  | <0.0010  | <0.20   | <0.0050   | <0.0050  | <0.0050  | <0.0050  |         | 0.18    | <0.0050             | 2.6      | <0.00020 | <0.0050  | <0.0050  | <0.010     | <0.0050   |        | <0.0050  | <0.050  | TestAmerica |
| Boulder Hole SP  | RESE-1002167            | 16-May-11 | <0.20   | <u>&lt;0.015</u> | 0.029  | 0.053  | <0.0010  | <0.20   | <0.0050   | <0.0050  | <0.0050  | <0.0050  | <0.0080 | 0.61    | <0.0050             | 2.7      | <0.00020 | <0.0050  | <0.0050  | <0.010     | <0.0050   | <0.050 | <0.0050  | <0.050  | TestAmerica |



| SAMPLE LOCATION | SAMPLE       | SAMPLE    |       |          |           |        |          |         |           |           |          | TRACE     | CONSTIT | UENTS | (mg/L) <sup>b</sup> |         |          |           |               |          |          |       |          |                | ANALYTICAL |
|-----------------|--------------|-----------|-------|----------|-----------|--------|----------|---------|-----------|-----------|----------|-----------|---------|-------|---------------------|---------|----------|-----------|---------------|----------|----------|-------|----------|----------------|------------|
|                 | IDENTIFIER/  | DATE      | Al    | Sb       | As        | Ва     | Ве       | В       | Cd        | Cr        | Со       | Cu        | CN      | Fe    | Pb                  | Mn      | Hg       | Мо        | Ni            | Se       | Ag       | S     | TI       | Zn             | LABORATORY |
|                 | DESCRIPTION  |           |       |          |           |        |          |         |           |           |          |           |         |       |                     |         |          |           |               |          |          |       |          |                |            |
|                 |              |           |       |          |           |        |          |         |           | S         | urface V | Nater     |         |       |                     |         |          |           |               |          |          |       |          |                |            |
| DC 10.9 C       | RESE-1001004 | 16-May-03 |       | <0.0060  | <0.0030   | 0.0128 | <0.0020  | <0.040  | <0.00010  |           |          | 0.0061    |         |       | <0.0030             |         | <0.00020 |           | <0.010        |          | <0.00010 |       | <0.0020  | <0.0050        | SVL        |
| DC 10.9 C       | RESE-1001004 | 16-May-03 | 0.182 | <0.0060  | <0.0030   |        | <0.0020  |         | <0.00010  |           | <0.0060  | 0.0089    | <0.10   | 0.198 | <0.0050             |         | <0.00020 | <0.0080   |               | <0.0030  | 0.00010  | <1.0  |          | <0.0050        | SVL        |
| DC 10.9 C       | RESE-1001004 | 16-May-03 |       | <0.0060  | <0.0030   |        | <0.0020  |         | <0.00010  | <0.0060   |          | 0.0086    |         |       | <0.0030             | 0.0224  |          |           | <0.010        | <0.0030  | <0.00010 |       | <0.0020  | <0.0050        | SVL        |
| DC 10.9 C       | RESE-1001020 | 27-Aug-03 |       | <0.0060  | 0.0110    | 0.0358 | <0.0020  |         | <0.00010  | <0.0060   |          | <0.0030   |         |       | <0.0030             |         | <0.00020 |           | <0.010        |          | <0.00010 |       | <0.0020  | 0.0055         | SVL        |
| DC 10.9 C       | RESE-1001020 | 27-Aug-03 | 0.040 | <0.0060  | 0.0130    |        | <0.0020  | <0.040  | <0.00010  |           | <0.0060  | <0.0030   | <0.010  | 8.26  | <0.0050             |         | <0.00020 | <0.0080   |               | <0.0030  | <0.00010 | <1.0  | <0.0020  | <0.0050        | SVL        |
| DC 10.9 C       | RESE-1001020 | 27-Aug-03 |       | <0.0060  | 0.0130    |        | <0.0020  |         | <0.00010  | <0.0060   |          | <0.0030   |         |       | <0.0030             | 0.826   |          |           | <0.010        | <0.0030  | <0.00010 |       |          | <0.0050        | SVL        |
| DC 10.9 C       | RESE-1001036 | 05-Nov-03 |       | <0.0030  | <0.0030   | 0.0109 | <0.0020  |         | <0.00010  | <0.0060   |          | 0.0063    |         |       | <0.0030             |         | <0.00020 |           | <0.010        |          | <0.00010 |       | <0.0020  | <0.0050        | SVL        |
| DC 10.9 C       | RESE-1001036 | 05-Nov-03 | 0.199 | <0.0030  | <0.0030   |        | <0.0020  | <0.040  | <0.00010  |           | <0.0060  | 0.0090    |         | 0.679 | <0.0050             |         | <0.00020 | <0.0080   |               | <0.0030  | <0.00010 | <1.0  | <0.0020  | <0.0050        | SVL        |
| DC 10.9 C       | RESE-1001036 | 05-Nov-03 |       | <0.0030  | <0.0030   |        | <0.0020  |         | <0.00010  | <0.0060   |          | 0.0089    |         |       | <0.0030             | 0.0596  |          |           | <0.010        | <0.0030  | <0.00010 |       |          | <0.0050        | SVL        |
| DC 10.9 C       | RESE-1001060 | 11-Feb-04 |       | <0.00050 | <0.00060  | 0.0089 | <0.00020 |         | <0.00010  | <0.00030  |          | 0.0045    |         |       | <0.0010             |         | <0.00020 |           | 0.00390 j     |          | <0.00010 |       | <0.00040 | 0.0012 j       | SVL        |
| DC 10.9 C       | RESE-1001060 | 11-Feb-04 | 0.499 | <0.00050 | 0.00100 j |        | <0.00020 | <0.0070 | <0.00010  |           | <0.00070 | 0.0078    |         | 0.22  | <0.0010             |         | <0.00020 | 0.00240 j |               | <0.00080 | <0.00010 | <1.0  | <0.00040 | 0.0014 j       | SVL        |
| DC 10.9 C       | RESE-1001060 | 11-Feb-04 |       | <0.00050 | <0.00060  |        | <0.00020 |         | <0.00010  | 0.00043 j |          | 0.0074    |         |       | <0.0010             | 0.0092  |          |           | 0.00240 j     | <0.00080 | <0.00010 |       |          | 0.00290 j      | SVL        |
| DC 10.9 C       | RESE-1001091 | 27-May-04 |       | <0.0030  | <0.0030   | 0.0107 | <0.0020  |         | <0.00010  | <0.0060   |          | <0.0030   |         |       | <0.0030             |         | <0.00020 |           | <0.010        |          | <0.00010 |       | <0.0020  | <0.0050        | SVL        |
| DC 10.9 C       | RESE-1001091 | 27-May-04 | 0.192 | <0.0030  | <0.0030   |        | <0.0020  | <0.040  | <0.00010  |           | <0.0060  | 0.0088    | <0.010  | 0.696 | <0.0030             |         | <0.00020 | <0.0080   |               | <0.0030  | <0.00010 | <1.0  | <0.0020  | <0.0050        | SVL        |
| DC 10.9 C       | RESE-1001091 | 27-May-04 |       | <0.0030  | <0.0030   |        | <0.0020  |         | <0.00010  | <0.0060   |          | 0.0061    |         |       | <0.0030             | 0.0769  |          |           | <0.010        | <0.0030  | <0.00010 |       |          | <0.0050        | SVL        |
| DC 10.9 C       | RESE-1001099 | 11-Aug-04 |       | <0.0030  | 0.0140    | 0.0172 | <0.0020  |         | <0.00010  | <0.0060   |          | <0.0030   |         |       | <0.0030             |         | <0.00020 |           | <0.010        |          | <0.00010 |       | <0.0020  | <0.0050        | SVL        |
| DC 10.9 C       | RESE-1001099 | 11-Aug-04 | 0.123 | <0.0030  | 0.0130    |        | <0.0020  | <0.040  | <0.00010  |           | <0.0060  | <0.0030   |         | 5.45  | <0.0030             |         | <0.00020 | <0.0080   |               | <0.0030  | <0.00010 | <1.0  | <0.0020  | <0.0050        | SVL        |
| DC 10.9 C       | RESE-1001099 | 11-Aug-04 |       | <0.0030  | 0.0140    |        | <0.0020  |         | <0.00010  | <0.0060   |          | <0.0030   |         |       | <0.0030             | 0.532   |          |           | <0.010        | <0.0030  | <0.00010 |       |          | <0.0050        | SVL        |
| DC 10.9 C       | RESE-1001169 | 05-Nov-04 |       | <0.0030  | <0.0030   | 0.0248 | <0.0020  |         | <0.00010  | <0.0060   |          | <0.0030   |         |       | <0.0030             |         | <0.00020 |           | <0.010        |          | <0.00010 |       | <0.0020  | <0.0050        | SVL        |
| DC 10.9 C       | RESE-1001169 | 05-Nov-04 | 0.048 | <0.0030  | 0.0040    |        | <0.0020  | <0.040  | <0.00010  |           | <0.0060  | <0.0030   |         | 4.41  | <0.0030             |         | <0.00020 | <0.0080   |               | <0.0030  | <0.00010 | <1.0  | <0.0020  | <0.0050        | SVL        |
| DC 10.9 C       | RESE-1001169 | 05-Nov-04 |       | <0.0030  | 0.0040    |        | <0.0020  |         | <0.00010  | <0.0060   |          | <0.0030   |         |       | <0.0030             | 0.229   |          |           | <0.010        | <0.0030  | <0.00010 |       |          | <0.0050        | SVL        |
| DC 10.9 C       | RESE-1001189 | 15-Feb-05 |       | <0.00300 | 0.00350   | 0.0110 | <0.00200 |         | <0.00020  | <0.00600  |          | 0.0150    |         |       | <0.00300            |         | <0.00020 |           | <0.0100       |          | <0.00010 |       | <0.00200 | <0.0100        | SVL        |
| DC 10.9 C       | RESE-1001189 | 15-Feb-05 | 1.15  | <0.00300 | 0.00360   |        | <0.00200 | <0.0400 | <0.00020  |           | <0.00600 | 0.0170    |         | 0.553 | <0.00300            |         | <0.00020 | <0.00800  |               | <0.00300 | <0.00010 | <1.00 | <0.00200 | <0.0100        | SVL        |
| DC 10.9 C       | RESE-1001189 | 15-Feb-05 |       | <0.00300 | 0.00350   |        | <0.00200 |         | <0.00020  | <0.00600  |          | 0.0170    |         |       | <0.00300            | 0.00990 |          |           | <0.0100       | <0.00300 | 0.00031  |       |          | <0.0100        | SVL        |
| DC 10.9 C       | RESE-1001208 | 09-May-05 |       | <0.00300 | <0.00300  | 0.0118 | <0.00200 |         | <0.00020  | <0.00600  |          | <0.0100   |         |       | <0.00300            |         | <0.00020 |           | <0.0100       |          | <0.00010 |       | <0.00200 | <0.0100        | SVL        |
| DC 10.9 C       | RESE-1001208 | 09-May-05 | 0.275 | <0.00300 | <0.00300  |        | <0.00200 | <0.0400 | <0.00020  |           | <0.00600 | <0.0100   |         | 0.436 | <0.00300            |         | <0.00020 | <0.00800  |               | <0.00300 | <0.00010 | <1.00 | <0.00200 | <0.0100        | SVL        |
| DC 10.9 C       | RESE-1001208 | 09-May-05 |       | <0.00300 | <0.00300  |        | <0.00200 |         | <0.00020  | <0.00600  |          | <0.0100   |         |       | <0.00300            | 0.0424  |          |           | <0.0100       | <0.00300 | <0.00010 |       |          | <0.0100        | SVL        |
| DC 10.9 C       | RESE-1001224 | 10-Aug-05 |       | <0.00300 | 0.0053    | 0.0250 | <0.0020  |         | <0.00020  | <0.0060   |          | <0.0100   |         |       | <0.00300            |         | <0.0002  |           | <0.0100       |          | <0.00010 |       | <0.00200 | <0.0100        | SVL        |
| DC 10.9 C       | RESE-1001224 | 10-Aug-05 | 0.407 | <0.00300 | 0.00760   |        | <0.0020  | <0.04   | 0.00100 j |           | <0.0060  | <0.017    |         | 1.42  | <0.00300            |         | <0.0002  | <0.0080   |               | <0.00300 | <0.00010 | <1    | <0.00200 | <0.0100        | SVL        |
| DC 10.9 C       | RESE-1001224 | 10-Aug-05 |       | <0.00300 | 0.0073    |        | <0.0020  |         | <0.00020  | <0.0060   |          | <0.017    |         |       | <0.00300            | 0.225   |          |           | <0.0100       | <0.00300 | <0.00010 |       |          | <0.0100        | SVL        |
| DC 13.5 C DUP   | RESE-1001012 | 30-May-03 |       | <0.0030  | 0.0050    | 0.0135 | <0.0020  | <0.040  | <0.00010  |           |          | 0.0046 j- |         |       | <0.0030             |         | <0.00020 |           | <0.010        |          | <0.00010 |       | <0.0020  | <0.0050        | SVL        |
| DC 13.5 C DUP   | RESE-1001012 | 30-May-03 | 0.044 | <0.0030  | 0.0060 j  |        | <0.0020  |         | <0.00010  |           | <0.0060  | 0.0087    | <0.10   | 0.223 | <0.0050             |         | <0.00020 | <0.0080   |               | <0.0030  | <0.00010 | <1.0  |          | <0.0050        | SVL        |
| DC 13.5 C DUP   | RESE-1001012 | 30-May-03 |       | <0.0030  | 0.0060    |        | <0.0020  |         | <0.00010  | <0.0060   |          | 0.0077    |         |       | <0.0030             | 0.0776  |          |           | <0.010        | <0.0030  | <0.00010 |       | <0.0020  | <0.0050        | SVL        |
| DC 13.5 C       | RESE-1001011 | 30-May-03 |       | <0.0030  | 0.0050    | 0.0135 | <0.0020  | <0.040  | <0.00010  |           |          | 0.0047 j- |         |       | <0.0030             |         | <0.00020 |           | <0.010        |          | <0.00010 |       | <0.0020  | <0.0050        | SVL        |
| DC 13.5 C       | RESE-1001011 | 30-May-03 | 0.035 | <0.0030  | 0.0060 j  |        | <0.0020  |         | <0.00010  |           | <0.0060  | 0.0085    | <0.10   | 0.217 | <0.0050             |         | <0.00020 | <0.0080   |               | <0.0030  | <0.00010 | <1.0  |          | <0.0050        | SVL        |
| DC 13.5 C       | RESE-1001011 | 30-May-03 |       | <0.0030  | 0.0060    |        | <0.0020  |         | <0.00010  | <0.0060   |          | 0.0076    |         |       | <0.0030             | 0.0804  |          |           | <0.010        | <0.0030  | <0.00010 |       | <0.0020  | <0.0050        | SVL        |
| DC 13.5 C       | RESE-1001021 | 27-Aug-03 |       | <0.0060  | 0.0110    | 0.0176 | <0.0020  |         | <0.00010  | <0.0060   |          | 0.0203    |         |       | <0.0030             |         | <0.00020 |           | <0.010        |          | 0.00010  |       | <0.0020  | 0.0091         | SVL        |
| DC 13.5 C       | RESE-1001021 | 27-Aug-03 | 0.123 | <0.0060  | 0.0130    |        | <0.0020  | <0.040  | <0.00010  |           | <0.0060  | 0.0248    | <0.010  | 0.144 | <0.0050             |         | <0.00020 | <0.0080   |               | <0.0030  | 0.00010  | <1.0  | <0.0020  | 0.0126         | SVL        |
| DC 13.5 C       | RESE-1001021 | 27-Aug-03 |       | <0.0060  | 0.0110    |        | <0.0020  |         | <0.00010  | <0.0060   |          | 0.0252    |         |       | <0.0030             | 0.113   |          |           | <0.010        | <0.0030  | 0.00010  |       |          | 0.0138         | SVL        |
| DC 13.5 C       | RESE-1001037 | 05-Nov-03 |       | <0.0030  | <0.0030   | 0.0076 | <0.0020  |         | <0.00010  | <0.0060   |          | 0.0054    |         |       | <0.0030             |         | <0.00020 |           | <0.010        |          | <0.00010 |       | <0.0020  | <0.0050        | SVL        |
| DC 13.5 C       | RESE-1001037 | 05-Nov-03 | 0.086 | <0.0030  | <0.0030   |        | <0.0020  | <0.040  | <0.00010  |           | <0.0060  | 0.0055    |         | 0.273 | <0.0050             |         | <0.00020 | <0.0080   |               | <0.0030  | <0.00010 | <1.0  | <0.0020  | <0.0050        | SVL        |
| DC 13.5 C       | RESE-1001037 | 05-Nov-03 |       | <0.0030  | <0.0030   |        | <0.0020  |         | <0.00010  | <0.0060   |          | 0.0064    |         |       | <0.0030             | 0.0211  |          |           | <0.010        | <0.0030  | <0.00010 |       |          | <0.0050        | SVL        |
| DC 13.5 C       | RESE-1001037 | 05-Nov-03 |       | ~U.UU3U  | ~0.0030   |        | ~U.UU2U  |         | <0.00010  | ~0.0000   |          | 0.0004    |         |       | ~U.UU3U             | 0.0211  |          |           | <b>\0.010</b> | ~U.UU3U  | ~0.00010 |       |          | <b>\0.0050</b> | SVL        |



| SAMPLE LOCATION         | SAMPLE                       | SAMPLE                 |         |           |           |        |                      |          |           |          |          | TRACE      | CONSTIT | UENTS  | (mg/L)b              |         |           |           |           |            |            |       |                        |           | ANALYTICAL |
|-------------------------|------------------------------|------------------------|---------|-----------|-----------|--------|----------------------|----------|-----------|----------|----------|------------|---------|--------|----------------------|---------|-----------|-----------|-----------|------------|------------|-------|------------------------|-----------|------------|
|                         | IDENTIFIER/                  | DATE                   | Al      | Sb        | As        | Ва     | Ве                   | В        | Cd        | Cr       | Со       | Cu         | CN      | Fe     | Pb                   | Mn      | Hg        | Мо        | Ni        | Se         | Ag         | S     | TI                     | Zn        | LABORATORY |
|                         | DESCRIPTION                  |                        |         |           |           |        |                      |          |           |          |          |            |         |        |                      |         |           |           |           |            |            |       |                        |           |            |
|                         |                              |                        |         |           |           |        |                      |          |           | S        | urface V | Vater      |         |        |                      |         |           |           |           | •          |            |       |                        |           |            |
| DC 13.5 C               | RESE-1001059                 | 11-Feb-04              |         | <0.00050  | 0.00069 j | 0.0101 | <0.00020             |          | <0.00010  | <0.00030 |          | 0.0041     |         |        | <0.0010              |         | <0.00020  |           | 0.00480 j |            | <0.00010   |       | <0.00040               | 0.00091 j | SVL        |
| DC 13.5 C               | RESE-1001059                 | 11-Feb-04              | 0.482   | <0.00050  | 0.00065 j |        | <0.00020             | <0.0070  | <0.00010  |          | <0.00070 | 0.0061     |         | 0.309  | <0.0010              |         | <0.00020  | 0.00180 j |           | <0.00080   | <0.00010   | <1.0  | <0.00040               | 0.00120 j | SVL        |
| DC 13.5 C               | RESE-1001059                 | 11-Feb-04              |         | <0.00050  | 0.00083 j |        | <0.00020             |          | <0.00010  | <0.00030 |          | 0.0059     |         |        | <0.0010              | 0.0198  |           |           | 0.00150 j | <0.00080   | <0.00010   |       |                        | 0.00160 j | SVL        |
| DC 13.5 C               | RESE-1001086                 | 26-May-04              |         | <0.0030   | <0.0030   | 0.0119 | <0.0020              |          | 0.00100   | <0.0060  |          | 0.0036     |         |        | <0.0030              |         | <0.00020  |           | <0.010    |            | <0.00010   |       | <0.0020                | <0.0050   | SVL        |
| DC 13.5 C               | RESE-1001086                 | 26-May-04              | 0.053   | <0.0030   | <0.0030   |        | <0.0020              | <0.040   | <0.00010  |          | <0.0060  | 0.0067     | <0.010  | 0.308  | <0.0030              |         | <0.00020  | <0.0080   |           | <0.0030    | <0.00010   | <1.0  | <0.0020                | <0.0050   | SVL        |
| DC 13.5 C               | RESE-1001086                 | 26-May-04              |         | <0.0030   | <0.0030   |        | <0.0020              |          | <0.00010  | <0.0060  |          | 0.0045     |         |        | <0.0030              | 0.0749  |           |           | <0.010    | <0.0030    | <0.00010   |       |                        | <0.0050   | SVL        |
| DC 13.5 C               | RESE-1001190                 | 15-Feb-05              |         | <0.00300  | 0.00320   | 0.0121 | <0.00200             |          | <0.00020  | <0.00600 |          | 0.0150     |         |        | <0.00300             |         | <0.00020  |           | <0.0100   |            | <0.00010   |       | <0.00200               | <0.0100   | SVL        |
| DC 13.5 C               | RESE-1001190                 | 15-Feb-05              | 1.43    | <0.00300  | 0.00330   |        | <0.00200             | <0.0400  | <0.00020  |          | <0.00600 | 0.0170     |         | 0.697  | <0.00300             |         | <0.00020  | <0.00800  |           | <0.00300   | <0.00010   | <1.00 | <0.00200               | <0.0100   | SVL        |
| DC 13.5 C               | RESE-1001190                 | 15-Feb-05              |         | <0.00300  | 0.00330   |        | <0.00200             |          | <0.00020  | <0.00600 |          | 0.0160     |         |        | <0.00300             | 0.00900 |           |           | <0.0100   | <0.00300   | 0.00013    |       |                        | <0.0100   | SVL        |
| DC 13.5 C               | RESE-1001209                 | 09-May-05              |         | <0.00300  | <0.00300  | 0.0153 | <0.00200             |          | <0.00020  | <0.00600 |          | <0.0100    |         |        | <0.00300             |         | <0.00020  |           | <0.0100   |            | <0.00010   |       | <0.00200               | <0.0100   | SVL        |
| DC 13.5 C               | RESE-1001209                 | 09-May-05              | 0.072   | <0.00300  | <0.00300  |        | <0.00200             | <0.0400  | <0.00020  |          | <0.00600 | <0.0100    |         | 0.209  | <0.00300             |         | <0.00020  | <0.00800  |           | <0.00300   | <0.00010   | <1.00 | <0.00200               | <0.0100   | SVL        |
| DC 13.5 C               | RESE-1001209                 | 09-May-05              |         | <0.00300  | <0.00300  |        | <0.00200             |          | <0.00020  | <0.00600 |          | <0.0100    |         |        | <0.00300             | 0.0607  |           |           | <0.0100   | <0.00300   | <0.00010   |       |                        | <0.0100   | SVL        |
| DC 13.5 C               | RESE-1001225                 | 10-Aug-05              |         | <0.00300  | 0.0084    | 0.0158 | <0.0020              |          | <0.00020  | <0.0060  |          | <0.0100    |         |        | <0.00300             |         | <0.0002   |           | <0.0100   |            | <0.00010   |       | <0.00200               | <0.0100   | SVL        |
| DC 13.5 C               | RESE-1001225                 | 10-Aug-05              | 0.154   | <0.00300  | 0.00880   |        | <0.0020              | <0.04    | 0.00020 j |          | <0.0060  | <0.013     |         | 0.211  | <0.00300             |         | <0.0002   | <0.0080   |           | <0.00300   | <0.00010   | <1    | <0.00200               | <0.0100   | SVL        |
| DC 13.5 C               | RESE-1001225                 | 10-Aug-05              |         | <0.00300  | 0.0078    |        | <0.0020              |          | <0.00020  | <0.0060  |          | <0.013     |         |        | <0.00300             | 0.142   |           |           | <0.0100   | <0.00300   | <0.00010   |       |                        | <0.0100   | SVL        |
| DC 13.5 C               | RESE-1002014                 | 21-Aug-08              | <0.0141 | 0.00021 j | <0.0066   | 0.02   | <0.00036             |          | <0.000034 |          | <0.00065 | 0.0023     |         | 0.471  | 0.000106 j           | 0.0756  | <0.000064 | <0.0023   | <0.0023   |            | <0.000017  |       | <0.000018              | <0.0019   | SVL        |
| DC 13.5 C               | RESE-1002014                 | 21-Aug-08              |         | <0.0004   | <0.0065   |        | <0.00036             | 0.0188 j | <0.00096  | <0.001   |          | <0.0039    |         |        | 0.000441 j,d         | 0.219   | <0.000064 |           | <0.0023   | <0.005     | <0.00079   |       | <0.000072              | 0.0031 j  | SVL        |
| DC 13.5 C               | RESE-1002033                 | 12-Nov-08              | <0.080  | <0.00300  | <0.025    | 0.0111 | <0.00200             |          | <0.000200 |          | <0.0060  | 0.00190    |         | 0.489  | <0.00300             | 0.0496  | <0.00020  | <0.0080   | <0.010    |            | <0.000100  |       | <0.00100               | <0.0100   | SVL        |
| DC 13.5 C               | RESE-1002033                 | 12-Nov-08              |         |           |           |        |                      |          |           |          |          |            |         |        |                      |         | <0.00020  |           |           |            |            |       |                        |           | SVL        |
| DC 13.5 C               | RESE-1002033                 | 12-Nov-08              |         | <0.00300  | <0.025    |        | <0.00200             | <0.040   | <0.0020   | <0.0060  |          | <0.010     |         |        | <0.00300             | 0.236   |           |           | <0.010    | <0.00300   | <0.0050    |       | <0.00100               | <0.0100   | SVL        |
| DC 13.5 C DUP           | RESE-1002034                 | 12-Nov-08              | <0.080  | <0.00300  | <0.025    | 0.0110 | <0.00200             |          | <0.000200 |          | <0.0060  | 0.00194    |         | 0.502  | <0.00300             | 0.0493  | <0.00020  | <0.0080   | <0.010    |            | <0.000100  |       | <0.00100               | <0.0100   | SVL        |
| DC 13.5 C DUP           | RESE-1002034                 | 12-Nov-08              |         |           |           |        |                      |          |           |          |          |            |         |        |                      |         | <0.00020  |           |           |            |            |       |                        |           | SVL        |
| DC 13.5 C DUP           | RESE-1002034                 | 12-Nov-08              |         | <0.00300  | <0.025    |        | <0.00200             | <0.040   | <0.0020   | <0.0060  |          | <0.010     |         |        | <0.00300             | 0.260   |           |           | <0.010    | <0.00300   | <0.0050    |       | <0.00100               | <0.0100   | SVL        |
| DC 13.5 C               | RESE-1002057                 | 19-Feb-09              | 0.189   | <0.00300  | <0.025    | 0.0106 | <0.00200             |          | <0.000034 |          | <0.0060  | 0.0107     |         | 0.103  | 0.000335 j           | 0.0057  |           | <0.0080   | <0.00100  |            | <0.000100  |       | <0.00100               | <0.0100   | SVL        |
| DC 13.5 C               | RESE-1002057                 | 19-Feb-09              |         |           |           |        |                      |          |           |          |          |            |         |        |                      |         | <0.00020  |           |           |            |            |       |                        |           | SVL        |
| DC 13.5 C               | RESE-1002057                 | 19-Feb-09              |         | <0.00300  | <0.025    |        | <0.00200             | <0.040   | <0.0020   | <0.0060  |          | 0.013      |         |        | <0.00300             | 0.0078  |           |           | <0.010    | 0.00021 jd | <0.0050    |       | <0.00100               | <0.0100   | SVL        |
| DC 13.5 C               | RESE-1002103                 | 21-May-09              | <0.080  | <0.00300  | <0.025    |        | <0.00200             |          | <0.000024 |          | <0.0060  | 0.00209    |         | 0.446  | 0.000130 j           | 0.135   |           | <0.0080   | 0.00390   |            | <0.000100  |       | <0.00100               | <0.0100   | SVL        |
| DC 13.5 C               | RESE-1002103                 | 21-May-09              |         |           |           |        |                      |          |           |          |          |            |         |        |                      |         | <0.00020  |           |           |            |            |       |                        |           | SVL        |
| DC 13.5 C               | RESE-1002103                 | 21-May-09              |         | <0.00300  | <0.025    | 0.0150 | <0.00200             | <0.040   | <0.0020   | <0.0060  |          | <0.010     |         |        | <0.00300             | 0.160   |           |           | <0.010    | <0.00030   | <0.0050    |       | <0.00100               | <0.0100   | SVL        |
| DC 13.5 C               | RESE-1002142                 | 02-Nov-10              | <0.080  | <0.00300  | <0.025    | 0.0064 |                      |          | <0.000024 |          | <0.0060  | 0.00172    |         | 0.937  | 0.000085 j           | 0.113   |           | <0.0080   | <0.00100  |            | <0.000100  |       | <0.00100               | <0.0100   | SVL        |
| DC 13.5 C               | RESE-1002142                 | 02-Nov-10              |         |           |           |        |                      |          |           |          |          |            |         |        |                      |         | <0.00020  |           |           |            |            |       |                        |           | SVL        |
| DC 13.5 C               | RESE-1002142                 | 02-Nov-10              |         | <0.00300  | <0.025    |        | <0.00200             | <0.040   | <0.0020   | <0.0060  |          | <0.010     |         |        | <0.00300             | 0.139   |           |           | <0.010    | 0.00034 jd | <0.0050    |       | <0.00100               | <0.0100   | SVL        |
| DC 14.7 C /US 60 Bridge | RESE-1001069                 | 05-Mar-04              |         | <0.0030   | <0.0060   | 0.0172 | <0.0020              |          | <0.00020  | <0.0060  |          | 0.0161     |         |        | <0.0030              |         | <0.00020  |           | <0.010    |            | <0.00010   |       | <0.0020                | <0.0050   | SVL        |
| DC 14.7 C /US 60 Bridge | RESE-1001069                 | 05-Mar-04              | 2.53    | <0.0030   | 0.0050    |        | <0.0020              | <0.040   | <0.00010  |          | <0.0060  | 0.0290     |         | 1.65   | 0.0030               |         | <0.00020  | <0.0080   |           | <0.0030    | 0.00010    | <1.0  | <0.0020                | 0.0100    | SVL        |
| DC 14.7 C /US 60 Bridge | RESE-1001069<br>RESE-1001069 | 05-Mar-04              |         | <0.0030   | 0.0050    |        | <0.0020              |          | <0.00010  | <0.0060  |          | 0.0251     |         |        | 0.0030               | 0.0849  |           |           | <0.010    | <0.0030    | <0.00010   |       |                        | 0.0093    | SVL        |
| DC 14.7 C /US 60 Bridge |                              |                        | 0.247   | 0.00052 j | 0.0081 j  | 0.0193 | <0.00036             |          | <0.000034 |          | <0.00065 | 0.0279     |         | 0.137  | 0.000207 j           | 0.0132  |           | <0.0023   | <0.0023   |            | 0.000027 j |       | <0.000018              |           | SVL        |
|                         | RESE-1002015<br>RESE-1002015 | 27-Aug-08<br>27-Aug-08 | 0.247   | 0.00032 j | •         | 0.0193 | 0.00036<br>0.00047 j | 0.0234 j | <0.000034 |          |          | 0.0279     |         | 0.137  | 0.000207 ]           | 0.0132  |           | <0.0023   | <0.0023   |            | ·          |       | 0.000018<br>0.000054 j |           | SVL        |
| DC 14.7 C /US 60 Bridge |                              |                        | 0.172   | <0.00300  | <0.025    | 0.0087 | 0.00047 ]            | 0.0204)  | <0.00090  |          | <0.0060  | 0.00625    |         | <0.060 | 0.0099<br>0.000115 j | <0.0040 |           | <0.0080   | <0.0023   |            | <0.00079   |       | <0.00100               |           | SVL        |
| DC 14.7 C /US 60 Bridge | RESE-1002127                 | 17-Feb-10              |         | ~0.00300  | -0.025    | 0.0007 |                      |          | ~0.000024 |          | \0.0000° |            |         | ~0.000 | 0.000113]            |         |           | <0.0060   | ~0.00 T00 |            | -0.000100  |       |                        | <0.0100   | SVL        |
| DC 14.7 C /US 60 Bridge | RESE-1002127                 | 17-Feb-10              |         | <0.00300  | <0.025    |        | <0.00200             | <0.040   | <0.0020   | <0.0060  |          | <br><0.010 |         |        | <0.00300             | <0.0040 | <0.00020  |           | <0.010    | <0.00030   | <0.0050    |       | <0.00100               |           |            |
| DC 14.7 C /US 60 Bridge | RESE-1002127                 | 17-Feb-10              |         | <0.00300  | <0.025    |        | <0.00200             | <0.040   | <0.0020   | <0.0060  |          | <0.010     |         |        | <0.00300             | <0.0040 |           |           | <0.010    | <0.00030   | <0.0050    |       | <0.00100               | <0.0100   | SVL        |



| SAMPLE LOCATION      | SAMPLE                       | SAMPLE                 |          |          |           |         |          |         |           |           |          | TRACE    | CONSTI | TI IFNTS <sup>a</sup> | (mg/L) <sup>b</sup> |         |          |           |           |            |           |       |          |           | ANALYTICAL |
|----------------------|------------------------------|------------------------|----------|----------|-----------|---------|----------|---------|-----------|-----------|----------|----------|--------|-----------------------|---------------------|---------|----------|-----------|-----------|------------|-----------|-------|----------|-----------|------------|
| SAMI LE LOCATION     | IDENTIFIER/                  | DATE                   | Al       | Sb       | As        | Ва      | Be       | В       | Cd        | Cr        | Со       | Cu       | CN     | Fe                    | Pb                  | Mn      | Hg       | Мо        | Ni        | Se         | Ag        | S     | TI       | Zn        | LABORATORY |
|                      | DESCRIPTION                  | DAIL                   | Ai       | 30       | AS        | Da      | De       | ь       | Cu        | Ci        | 0        | Cu       | CIV    | 16                    | "                   | 14111   | ı ığ     | IVIO      | 141       | 36         | Ag        | 3     | "        | 211       | LADONATORT |
|                      | 22361 1161C                  | 1                      |          |          |           |         |          |         |           | S         | urface V | Nater -  |        | <u> </u>              |                     |         | 1        | l         |           |            |           |       | 1        |           |            |
| DC 15.2 C            | RESE-1001191                 | 15-Feb-05              |          | <0.00300 | <0.00300  | 0.0126  | <0.00200 |         | <0.00020  | <0.00600  |          | 0.0150   |        |                       | <0.00300            |         | <0.00020 |           | <0.0100   |            | <0.00010  |       | <0.00200 | <0.0100   | SVL        |
| DC 15.2 C            | RESE-1001191                 | 15-Feb-05              | 0.714    | <0.00300 | <0.00300  |         | <0.00200 | <0.0400 | <0.00020  |           | <0.00600 | 0.0170   |        | 0.376                 | <0.00300            |         | <0.00020 | <0.00800  |           | <0.00300   | <0.00010  | <1.00 | <0.00200 | <0.0100   | SVL        |
| DC 15.2 C            | RESE-1001191                 | 15-Feb-05              |          | <0.00300 | 0.00320   |         | <0.00200 |         | <0.00020  | <0.00600  |          | 0.0160   |        |                       | <0.00300            | 0.0105  |          |           | <0.0100   | <0.00300   | <0.00010  |       |          | <0.0100   | SVL        |
| DC 15.2 C            | RESE-1001210                 | 09-May-05              |          | <0.00300 | <0.00300  | 0.0248  | <0.00200 |         | <0.00020  | <0.00600  |          | <0.0100  |        |                       | <0.00300            |         | <0.00020 |           | <0.0100   |            | <0.00010  |       | <0.00200 | <0.0100   | SVL        |
| DC 15.2 C            | RESE-1001210                 | 09-May-05              | 0.044    | <0.00300 | <0.00300  |         | <0.00200 | <0.0400 | <0.00020  |           | <0.00600 | <0.0100  |        | <0.0600               | <0.00300            |         | <0.00020 | <0.00800  |           | <0.00300   | <0.00010  | <1.00 | <0.00200 | <0.0100   | SVL        |
| DC 15.2 C            | RESE-1001210                 | 09-May-05              |          | <0.00300 | <0.00300  |         | <0.00200 |         | <0.00020  | <0.00600  |          | <0.0100  |        |                       | <0.00300            | 0.0059  |          |           | <0.0100   | <0.00300   | <0.00010  |       |          | <0.0100   | SVL        |
| DC 15.2 C            | RESE-1001226                 | 10-Aug-05              |          | <0.00300 | <0.00300  | 0.0539  | <0.0020  |         | <0.00020  | <0.0060   |          | <0.0100  |        |                       | <0.00300            |         | <0.0002  |           | <0.0100   |            | <0.00010  |       | <0.00200 | 0.010     | SVL        |
| DC 15.2 C            | RESE-1001226                 | 10-Aug-05              | 0.533    | <0.00300 | 0.00370   |         | <0.0020  | <0.04   | 0.00200 j |           | <0.0060  | <0.011   |        | 0.466                 | <0.00300            |         | <0.0002  | <0.0083   |           | <0.00300   | <0.00010  | <1    | <0.00200 | 0.016     | SVL        |
| DC 15.2 C            | RESE-1001226                 | 10-Aug-05              |          | <0.00300 | <0.00300  |         | <0.0020  |         | <0.00020  | <0.0060   |          | <0.0100  |        |                       | <0.00300            | 0.103   |          |           | <0.0100   | <0.00300   | <0.00010  |       |          | 0.016     | SVL        |
| DC 15.5 C            | RESE-1002003                 | 05-Aug-08              | <0.080   | <0.00300 | <0.025    | 0.0045  | <0.00200 |         | <0.000200 |           | <0.0060  | 0.00871  |        | <0.060                | <0.00300            | 0.0253  | <0.00020 | <0.0080   | <0.010    |            | <0.000100 |       | <0.00100 | <0.0100   | SVL        |
| DC 15.5 C            | RESE-1002003                 | 05-Aug-08              |          |          |           |         |          |         |           |           |          |          |        |                       |                     |         | <0.00020 |           |           |            |           |       |          |           | SVL        |
| DC 15.5 C            | RESE-1002003                 | 05-Aug-08              |          | <0.00300 | <0.025    |         | <0.00200 | <0.040  | <0.0020   | <0.0060   |          | <0.010   |        |                       | <0.00300            | 0.0697  |          |           | <0.010    | <0.00300   | <0.0050   |       | <0.00100 | <0.0100   | SVL        |
| DC 15.5 C            | RESE-1002032                 | 12-Nov-08              | <0.080   | <0.00300 | <0.025    | <0.0020 | <0.00200 |         | <0.000200 |           | <0.0060  | 0.00375  |        | <0.060                | <0.00300            | 0.0137  | <0.00020 | <0.0080   | <0.010    |            | <0.000100 |       | <0.00100 | <0.0100   | SVL        |
| DC 15.5 C            | RESE-1002032                 | 12-Nov-08              |          |          |           |         |          |         |           |           |          |          |        |                       |                     |         | <0.00020 |           |           |            |           |       |          |           | SVL        |
| DC 15.5 C            | RESE-1002032                 | 12-Nov-08              |          | <0.00300 | <0.025    |         | <0.00200 | <0.040  | <0.0020   | <0.0060   |          | <0.010   |        |                       | <0.00300            | 0.0230  |          |           | <0.010    | <0.00300   | <0.0050   |       | <0.00100 | <0.0100   | SVL        |
| DC 15.5 C            | RESE-1002069                 | 26-Feb-09              | 0.272    | <0.00300 | <0.025    | 0.0045  | <0.00200 |         | <0.000042 |           | <0.0060  | 0.00652  |        | 0.090                 | 0.000199 j          | 0.0046  |          | <0.0080   | <0.00100  |            | <0.000100 |       | <0.00100 | <0.0100   | SVL        |
| DC 15.5 C            | RESE-1002069                 | 26-Feb-09              |          |          |           |         |          |         |           |           |          |          |        |                       |                     |         | <0.00020 |           |           |            |           |       |          |           | SVL        |
| DC 15.5 C            | RESE-1002069                 | 26-Feb-09              |          | <0.00300 | <0.025    |         | <0.00200 | <0.040  | <0.00020  | <0.0060   |          | <0.010   |        |                       | <0.00300            | <0.0040 |          |           | <0.010    | <0.00041   | <0.0050   |       | <0.00100 | <0.0100   | SVL        |
| DC 15.5 C            | RESE-1002075                 | 05-May-09              | 0.249    | <0.00300 | <0.025    | 0.0062  | <0.00200 |         | <0.000024 |           | <0.0060  | 0.00453  |        | 0.102                 | 0.000271 j          | 0.0095  |          | <0.0080   | <0.00100  |            | <0.000100 |       | <0.00100 | <0.0100   | SVL        |
| DC 15.5 C            | RESE-1002075                 | 05-May-09              |          |          |           |         |          |         |           |           |          |          |        |                       |                     |         | <0.00020 |           |           |            |           |       |          |           | SVL        |
| DC 15.5 C            | RESE-1002075                 | 05-May-09              |          | <0.00300 | <0.025    |         | <0.00200 | <0.040  | <0.0020   | <0.0060   |          | <0.010   |        |                       | <0.00300            | 0.0092  |          |           | <0.010    | <0.00030   | <0.0050   |       | <0.00100 | <0.0100   | SVL        |
| DC 15.5 C            | RESE-1002152                 | 08-Nov-10              | 0.144    | <0.00300 | <0.025    | 0.0049  |          |         | <0.000024 |           | <0.0060  | 0.00472  |        | 0.280                 | 0.000267 j          | 0.0383  |          | <0.0080   | <0.00100  |            | <0.000100 |       | <0.00100 | <0.0100   | SVL        |
| DC 15.5 C            | RESE-1002152                 | 08-Nov-10              |          |          |           |         |          |         |           |           |          |          |        |                       |                     |         | <0.00020 |           |           |            |           |       |          |           | SVL        |
| DC 15.5 C            | RESE-1002152                 | 08-Nov-10              |          | <0.00300 | <0.025    |         | <0.00200 | <0.040  | <0.0020   | <0.0060   |          | 0.011    |        |                       | <0.00300            | 0.0438  |          |           | <0.010    | 0.00092 jd | <0.0050   |       | <0.00100 | <0.0100   | SVL        |
| DC 15.5 C            | RESE-1002179                 | 22-Aug-11              | <0.080   | <0.00300 | <0.025    |         |          |         | <0.000026 |           | <0.0060  | 0.00494  |        | <0.060                | <0.000042           | 0.0053  |          | <0.008    | 0.00109   |            | <0.000100 |       | <0.00100 | <0.0100   | SVL        |
| DC 15.5 C            | RESE-1002179                 | 22-Aug-11              |          | <0.00300 | <0.025    | 0.0048  | <0.0020  | <0.040  | <0.0020   | <0.0060   |          | <0.010   |        |                       | <0.00300            | 0.137   | <0.00020 |           | <0.010    | <0.00070   | <0.0050   |       | <0.00100 | <0.0100   | SVL        |
| DC 15.5 C            | RESE-1002191                 | 29-Nov-11              | 0.098    | <0.00300 | <0.025    |         |          |         | <0.000026 |           | <0.0060  | 0.00335  |        | <0.060                | 0.000128            | 0.0126  |          | <0.008    | 0.00103   |            | <0.000100 |       | <0.00100 | <0.0100   | SVL        |
| DC 15.5 C            | RESE-1002191                 | 29-Nov-11              |          | <0.00300 | <0.025    | 0.0056  | <0.0020  | <0.040  | <0.0020   | <0.0060   |          | <0.010   |        |                       | <0.00300            | 0.0123  | <0.00020 |           | <0.010    | <0.00070   | <0.0050   |       | <0.00100 | <0.0100   | SVL        |
| DC 15.5 C DUP        | RESE-1002192                 | 29-Nov-11              | 0.097    | <0.00300 | <0.025    |         |          |         | 0.00003   |           | <0.0060  | 0.00365  |        | <0.060                | 0.000346            | 0.0119  |          | <0.008    | <0.00100  |            | <0.000100 |       | <0.00100 | <0.0100   | SVL        |
| DC 15.5 C DUP        | RESE-1002192                 | 29-Nov-11              |          | <0.00300 | <0.025    | 0.0055  | <0.0020  | <0.040  | <0.0020   | <0.0060   |          | <0.010   |        |                       | <0.00300            | 0.0125  | <0.00020 |           | <0.010    | <0.00070   | <0.0050   |       | <0.00100 | <0.0100   | SVL        |
|                      |                              |                        |          | <0.0060  | <0.0030   | 0.0126  | <0.0020  | < 0.040 | <0.00010  |           |          | <0.0030  |        |                       | <0.0030             |         | <0.00020 |           | <0.010    |            | <0.00010  |       | <0.0020  | 0.0096    | SVL        |
| DC 4.1 E<br>DC 4.1 E | RESE-1001007<br>RESE-1001007 | 21-May-03<br>21-May-03 | <0.020   | <0.0060  | <0.0030   |         | <0.0020  |         | <0.00010  |           | <0.0060  | <0.0030  | <0.10  | <0.020                | <0.0050             |         | <0.00020 | <0.0080   |           | <0.0030    | <0.00010  | <1.0  |          | 0.0030    | SVL        |
| DC 4.1 E             | RESE-1001007                 | 21-May-03              |          | <0.0060  | <0.0030   |         | <0.0020  |         | <0.00010  | <0.0060   |          | <0.0030  |        |                       | <0.0030             | <0.0020 |          |           | <0.010    | <0.0030    | <0.00010  |       | <0.0020  | 0.0224    | SVL        |
| DC 4.1 E             | RESE-1001019                 | ,                      |          | <0.0060  | <0.0030   | 0.0132  | <0.0020  |         | <0.00010  |           |          | <0.0030  |        |                       | <0.0030             |         | <0.00020 |           | <0.010    |            | <0.00010  |       | <0.0020  | <0.0050   | SVL        |
| DC 4.1 E             | RESE-1001019<br>RESE-1001019 | 26-Aug-03<br>26-Aug-03 | <0.020   | <0.0060  | <0.0030   |         | <0.0020  | <0.040  | <0.00010  |           | <0.0060  | <0.0030  | <0.010 | <0.020                | <0.0050             |         | <0.00020 | 0.0081    |           | <0.0030    | <0.00010  | <1.0  | <0.0020  | <0.0050   | SVL        |
| DC 4.1 E             | RESE-1001019                 | 26-Aug-03              |          | <0.0060  | <0.0030   |         | <0.0020  |         | <0.00010  |           |          | <0.0030  |        |                       |                     | <0.0020 |          |           | <0.010    |            | <0.00010  |       |          | <0.0050   | SVL        |
| DC 4.1 E             | RESE-1001019                 | 11-Nov-03              |          | <0.0030  | <0.0030   | 0.0139  | <0.0020  |         | <0.00010  |           |          | <0.0030  |        |                       | <0.0030             |         | <0.00020 |           | <0.010    |            | <0.00010  |       | <0.0020  | <0.0050   | SVL        |
| DC 4.1 E             | RESE-1001040<br>RESE-1001040 | 11-Nov-03              | <0.020   | <0.0030  | <0.0030   |         | <0.0020  | <0.040  | <0.00010  |           | <0.0060  | <0.0030  |        | <0.020                | <0.0050             |         | <0.00020 | <0.0080   |           | <0.0030    | <0.00010  | <1.0  | <0.0020  | <0.0050   | SVL        |
| DC 4.1 E             | RESE-1001040                 | 11-Nov-03              |          | <0.0030  | <0.0030   |         | <0.0020  |         | <0.00010  |           |          | <0.0030  |        |                       | <0.0030             | <0.0020 |          |           | <0.010    | <0.0030    | <0.00010  |       |          | <0.0050   | SVL        |
| DC 4.1 E             | RESE-1001058                 | 10-Feb-04              |          | <0.00050 | 0.00120 j | 0.0128  | <0.00020 |         |           |           |          | <0.00210 |        |                       | <0.0010             |         | <0.00020 |           | 0.00390 j |            | <0.00010  |       | <0.00040 | 0.0007 j  | SVL        |
| DC 4.1 E             | RESE-1001058<br>RESE-1001058 | 10-Feb-04<br>10-Feb-04 | 0.0082 j |          | 0.00120 j |         | <0.00020 | <0.0070 | <0.00010  |           | <0.00070 | <0.00210 |        | <0.0130               | <0.0010             |         | <0.00020 | 0.00490 j |           | <0.00080   | <0.00010  | <1.0  | <0.00040 | 0.0007 j  | SVL        |
| DC 4.1 E             | RESE-1001058                 | 10-Feb-04<br>10-Feb-04 |          |          | 0.00110 j |         | <0.00020 |         |           | 0.00040 j |          | <0.00210 |        |                       | <0.0010             | <0.0010 |          |           | <0.00130  | <0.00080   | <0.00010  |       |          | 0.00180 j | SVL        |
| DU 4.1 L             | IXEOE-1001000                | 10-FED-U4              |          | 2.00000  | 2.30.10   |         | J.000E0  |         | 3.00010   | 2.30010]  |          | 1.00210  |        |                       | 3.0010              | 3.0310  |          |           | 2.00100   | 2.00000    | 2.00010   |       |          | 1.10.00   | - 5.5      |



| SAMPLE LOCATION               | SAMPLE       | SAMPLE    |         |          |          |        |          |         |           |          |          | TRACE    | CONSTIT | UENTS   | (mg/L) <sup>b</sup> |          |          |          |          |          |           |       |          |          | ANALYTICAL |
|-------------------------------|--------------|-----------|---------|----------|----------|--------|----------|---------|-----------|----------|----------|----------|---------|---------|---------------------|----------|----------|----------|----------|----------|-----------|-------|----------|----------|------------|
|                               | IDENTIFIER/  | DATE      | Al      | Sb       | As       | Ва     | Be       | В       | Cd        | Cr       | Co       | Cu       | CN      | Fe      | Pb                  | Mn       | Hg       | Мо       | Ni       | Se       | Ag        | S     | TI       | Zn       | LABORATORY |
|                               | DESCRIPTION  |           |         |          |          |        |          |         |           |          |          |          |         |         |                     |          |          |          |          |          |           |       |          |          |            |
|                               |              |           |         |          |          |        |          |         |           | S        | urface V | Vater    |         |         |                     |          |          |          |          | •        |           |       |          |          |            |
| DC 5.5 C                      | RESE-1001039 | 10-Nov-03 |         | <0.0030  | 0.0040   | 0.0405 | <0.0020  |         | <0.00010  | <0.0060  |          | <0.0030  |         |         | <0.0030             |          | <0.00020 |          | <0.010   |          | <0.00010  |       | <0.0020  | <0.0050  | SVL        |
| DC 5.5 C                      | RESE-1001039 | 10-Nov-03 | <0.020  | <0.0030  | 0.0040   |        | <0.0020  | <0.040  | <0.00010  |          | <0.0060  | <0.0030  |         | 0.043   | <0.0050             |          | <0.00020 | 0.0083   |          | <0.0030  | <0.00010  | <1.0  | <0.0020  | <0.0050  | SVL        |
| DC 5.5 C                      | RESE-1001039 | 10-Nov-03 |         | <0.0030  | 0.0040   |        | <0.0020  |         | <0.00010  | <0.0060  |          | <0.0030  |         |         | <0.0030             | 0.0130   |          |          | <0.010   | <0.0030  | <0.00010  |       |          | <0.0050  | SVL        |
| DC 5.5 C                      | RESE-1001067 | 25-Feb-04 |         | <0.00030 | 0.00310  | 0.0170 | <0.00020 |         | <0.00010  | <0.00030 |          | 0.0022 j |         |         | <0.0010             |          | <0.00020 |          | 0.0042 j |          | <0.00010  |       | <0.00040 | <0.00020 | SVL        |
| DC 5.5 C                      | RESE-1001067 | 25-Feb-04 | 0.0281  | <0.00030 | 0.00410  |        | <0.00020 | <0.0070 | <0.00010  |          | <0.00070 | 0.0029 j |         | 0.0256  | <0.0010             |          | <0.00020 | 0.0025 j |          | <0.00080 | <0.00010  | <1.0  | <0.00040 | 0.003 j  | SVL        |
| DC 5.5 C                      | RESE-1001067 | 25-Feb-04 |         | <0.00030 | 0.00310  |        | <0.00020 |         | <0.00010  | <0.00030 |          | <0.00210 |         |         | <0.0010             | 0.0016 j |          |          | <0.00130 | <0.00080 | <0.00010  |       |          | <0.00020 | SVL        |
| DC 5.5 C                      | RESE-1001076 | 20-May-04 |         | <0.0030  | 0.0040   | 0.0256 | <0.0020  |         | <0.00010  | <0.0060  |          | <0.0030  |         |         | <0.0030             |          | <0.00020 |          | <0.010   |          | <0.00010  |       | <0.0020  | <0.0050  | SVL        |
| DC 5.5 C                      | RESE-1001076 | 20-May-04 | <0.020  | <0.0030  | 0.0050   |        | <0.0020  | <0.040  | <0.00010  |          | <0.0060  | <0.0030  | <0.010  | 0.077   | <0.0030             |          | <0.00020 | <0.0080  |          | <0.0030  | 0.00010   | <1.0  | <0.0020  | <0.0050  | SVL        |
| DC 5.5 C                      | RESE-1001076 | 20-May-04 |         | <0.0030  | 0.0040   |        | <0.0020  |         | <0.00010  | <0.0060  |          | <0.0030  |         |         | <0.0030             | 0.0465   |          |          | <0.010   | <0.0030  | <0.00010  |       |          | <0.0050  | SVL        |
| DC 5.5 C                      | RESE-1001158 | 23-Aug-04 |         | <0.0030  | 0.0050   | 0.0539 | <0.0020  |         | <0.00010  | <0.0060  |          | <0.0030  |         |         | <0.0030             |          | <0.00020 |          | <0.010   |          | <0.00010  |       | <0.0020  | 0.0086   | SVL        |
| DC 5.5 C                      | RESE-1001158 | 23-Aug-04 | <0.020  | <0.0030  | 0.0060   |        | <0.0020  | <0.040  | <0.00010  |          | <0.0060  | 0.0059   |         | 0.057   | <0.0030             |          | <0.00020 | 0.0091   |          | <0.0030  | <0.00010  | <1.0  | <0.0020  | <0.0050  | SVL        |
| DC 5.5 C                      | RESE-1001158 | 23-Aug-04 |         | <0.0030  | 0.0060   |        | <0.0020  |         | <0.00010  | <0.0060  |          | <0.0030  |         |         | <0.0030             | 0.0257   |          |          | <0.010   | <0.0030  | <0.00010  |       |          | <0.0050  | SVL        |
| DC 5.5 C                      | RESE-1001176 | 18-Nov-04 |         | <0.0030  | <0.0030  | 0.0270 | <0.0020  |         | <0.00010  | <0.0060  |          | <0.010   |         |         | <0.0030             |          | <0.00020 |          | <0.010   |          | <0.00010  |       | <0.0020  | <0.010   | SVL        |
| DC 5.5 C                      | RESE-1001176 | 18-Nov-04 | <0.030  | <0.0030  | <0.0030  |        | <0.0020  | <0.040  | <0.00010  |          | <0.0060  | <0.010   |         | <0.060  | <0.0030             |          | <0.00033 | <0.0080  |          | <0.0030  | <0.00010  | <1.0  | <0.0020  | <0.010   | SVL        |
| DC 5.5 C                      | RESE-1001176 | 18-Nov-04 |         | <0.0030  | <0.0030  |        | <0.0020  |         | <0.00010  | <0.0060  |          | <0.010   |         |         | <0.0030             | 0.0056   |          |          | <0.010   | <0.0030  | <0.00010  |       |          | <0.010   | SVL        |
| DC 5.5 C                      | RESE-1001198 | 28-Feb-05 |         | <0.00300 | 0.00320  | 0.0127 | <0.00200 |         | <0.00020  | <0.00600 |          | <0.0100  |         |         | <0.00300            |          | <0.00020 |          | <0.0100  |          | <0.00010  |       | <0.00200 | <0.0100  | SVL        |
| DC 5.5 C                      | RESE-1001198 | 28-Feb-05 | 0.658   | <0.00300 | 0.00340  |        | <0.00200 | <0.0400 | <0.00020  |          | <0.00600 | 0.0100   |         | 0.328   | <0.00300            |          | <0.00020 | <0.00800 |          | <0.00300 | <0.00010  | <1.00 | <0.00200 | <0.0100  | SVL        |
| DC 5.5 C                      | RESE-1001198 | 28-Feb-05 |         | <0.00300 | 0.00320  |        | <0.00200 |         | <0.00020  | <0.00600 |          | 0.0110   |         |         | <0.00300            | 0.00460  |          |          | <0.0100  | <0.00300 | <0.00010  |       |          | <0.0100  | SVL        |
| DC 5.5 C                      | RESE-1001216 | 24-May-05 |         | <0.00300 | 0.0053   | 0.0253 | <0.00200 |         | <0.00020  | <0.00600 |          | <0.0100  |         |         | <0.00300            |          | <0.00020 |          | <0.0100  |          | <0.00010  |       | <0.00200 | <0.0100  | SVL        |
| DC 5.5 C                      | RESE-1001216 | 24-May-05 | <0.0300 | <0.00300 | 0.0050   |        | <0.00200 | <0.0400 | <0.00020  |          | <0.00600 | <0.0100  |         | 0.088   | <0.00300            |          | <0.00020 | <0.00800 |          | <0.00300 | <0.00010  | <1.00 | <0.00200 | <0.0100  | SVL        |
| DC 5.5 C                      | RESE-1001216 | 24-May-05 |         | <0.00300 | 0.0052   |        | <0.00200 |         | <0.00020  | <0.00600 |          | <0.0100  |         |         | <0.00300            | 0.0466   |          |          | <0.0100  | <0.00300 | <0.00010  |       |          | <0.0100  | SVL        |
| DC 5.5 C                      | RESE-1001229 | 23-Aug-05 |         | <0.00300 | 0.0060   | 0.0229 | <0.0020  |         | <0.00020  | <0.0060  |          | <0.0100  |         |         | <0.00300            |          | <0.0002  |          | <0.0100  |          | <0.00010  |       | <0.00200 | <0.0100  | SVL        |
| DC 5.5 C                      | RESE-1001229 | 23-Aug-05 | 0.037   | <0.00300 | 0.00610  |        | <0.0020  | <0.04   | <0.00010  |          | <0.0060  | <0.0100  |         | 0.106   | <0.00300            |          | <0.0002  | <0.0080  |          | <0.00300 | <0.00010  | <1    | <0.00200 | <0.0100  | SVL        |
| DC 5.5 C                      | RESE-1001229 | 23-Aug-05 |         | <0.00300 | 0.0056   |        | <0.0020  |         | <0.00020  | <0.0060  |          | <0.0100  |         |         | <0.00300            | 0.0445   |          |          | <0.0100  | <0.00300 | <0.00010  |       |          | 0.020    | SVL        |
| DC 5.5 C                      | RESE-1002180 | 26-Aug-11 | <0.080  | <0.00300 | <0.025   |        |          |         | <0.000026 |          | <0.0060  | 0.00125  |         | <0.060  | <0.000042           | 0.252    |          | <0.008   | 0.00168  |          | <0.000100 |       | <0.00100 | <0.0100  | SVL        |
| DC 5.5 C                      | RESE-1002180 | 26-Aug-11 |         | <0.00300 | <0.025   | 0.0544 | <0.0020  | <0.040  | <0.0020   | <0.0060  |          | <0.010   |         |         | <0.00300            | 0.276    | <0.00020 |          | <0.010   | <0.00070 | <0.0050   |       | <0.00100 | <0.0100  | SVL        |
| DC 6.1 E (Lower Crater Tanks) | RESE-1001077 | 20-May-04 |         | <0.0030  | <0.0030  | 0.0181 | <0.0020  |         | <0.00010  | <0.0060  |          | <0.0030  |         |         | <0.0030             |          | <0.00020 |          | <0.010   |          | <0.00010  |       | <0.0020  | <0.0050  | SVL        |
| DC 6.1 E (Lower Crater Tanks) | RESE-1001077 | 20-May-04 | <0.020  | <0.0030  | <0.0030  |        | <0.0020  | <0.040  | <0.00010  |          | <0.0060  | <0.0030  | <0.010  | <0.020  | <0.0030             |          | <0.00020 | <0.0080  |          | <0.0030  | <0.00010  | <1.0  | <0.0020  | <0.0050  | SVL        |
| DC 6.1 E (Lower Crater Tanks) | RESE-1001077 | 20-May-04 |         | <0.0030  | <0.0030  |        | <0.0020  |         | <0.00010  | <0.0060  |          | <0.0030  |         |         | <0.0030             | <0.0020  |          |          | <0.010   | <0.0030  | <0.00010  |       |          | <0.0050  | SVL        |
| DC 6.1 E (Lower Crater Tanks) | RESE-1001159 | 23-Aug-04 |         | <0.0030  | <0.0030  | 0.0183 | <0.0020  |         | <0.00010  | <0.0060  |          | <0.0030  |         |         | <0.0030             |          | <0.00020 |          | <0.010   |          | <0.00010  |       | <0.0020  | <0.0050  | SVL        |
| DC 6.1 E (Lower Crater Tanks) | RESE-1001159 | 23-Aug-04 | <0.020  | <0.0030  | <0.0030  |        | <0.0020  | <0.040  | <0.00010  |          | <0.0060  | <0.0030  |         | <0.020  | <0.0030             |          | <0.00020 | <0.0080  |          | <0.0030  | <0.00010  | <1.0  | <0.0020  | <0.0050  | SVL        |
| DC 6.1 E (Lower Crater Tanks) | RESE-1001159 | 23-Aug-04 |         | <0.0030  | <0.0030  |        | <0.0020  |         | <0.00010  | <0.0060  |          | <0.0030  |         |         | <0.0030             | <0.0020  |          |          | <0.010   | <0.0030  | <0.00010  |       |          | <0.0050  | SVL        |
| DC 6.1 E (Lower Crater Tanks) | RESE-1001177 | 18-Nov-04 |         | <0.0030  | <0.0030  | 0.0181 | <0.0020  |         | <0.00010  | <0.0060  |          | <0.010   |         |         | <0.0030             |          | <0.00020 |          | <0.010   |          | <0.00010  |       | <0.0020  | <0.010   | SVL        |
| DC 6.1 E (Lower Crater Tanks) | RESE-1001177 | 18-Nov-04 | <0.030  | <0.0030  | <0.0030  |        | <0.0020  | <0.040  | <0.00010  |          | <0.0060  | <0.010   |         | <0.060  | <0.0030             |          | <0.00020 | <0.0080  |          | <0.0030  | <0.00010  | <1.0  | <0.0020  | <0.010   | SVL        |
| DC 6.1 E (Lower Crater Tanks) | RESE-1001177 | 18-Nov-04 |         | <0.0030  | <0.0030  |        | <0.0020  |         | <0.00010  | <0.0060  |          | <0.010   |         |         | <0.0030             | <0.0040  |          |          | <0.010   | <0.0030  | <0.00010  |       |          | <0.010   | SVL        |
| DC 6.1 E (Lower Crater Tanks) | RESE-1001199 | 28-Feb-05 |         | <0.00300 | <0.00300 | 0.0231 | <0.00200 |         | <0.00020  | <0.00600 |          | <0.0100  |         |         | <0.00300            |          | <0.00020 |          | <0.0100  |          | <0.00010  |       | <0.00200 | <0.0100  | SVL        |
| DC 6.1 E (Lower Crater Tanks) | RESE-1001199 | 28-Feb-05 | <0.0300 | <0.00300 | <0.00300 |        | <0.00200 | <0.0400 | <0.00020  |          | <0.00600 | <0.0100  |         | <0.0600 | <0.00300            |          | <0.00020 | <0.00800 |          | <0.00300 | <0.00010  | <1.00 | <0.00200 | <0.0100  | SVL        |
| DC 6.1 E (Lower Crater Tanks) | RESE-1001199 | 28-Feb-05 |         | <0.00300 | <0.00300 |        | <0.00200 |         | <0.00020  | <0.00600 |          | <0.0100  |         |         | <0.00300            | <0.00400 |          |          | <0.0100  | <0.00300 | <0.00010  |       |          | <0.0100  | SVL        |
| DC 6.1 E (Lower Crater Tanks) | RESE-1001217 | 24-May-05 |         | <0.00300 | <0.00300 | 0.0195 | <0.00200 |         | <0.00020  | <0.00600 |          | <0.0100  |         |         | <0.00300            |          | <0.00020 |          | <0.0100  |          | <0.00010  |       | <0.00200 | <0.0100  | SVL        |
| DC 6.1 E (Lower Crater Tanks) | RESE-1001217 | 24-May-05 | <0.0300 | <0.00300 | <0.00300 |        | <0.00200 | <0.0400 | <0.00020  |          | <0.00600 | <0.0100  |         | <0.0600 | <0.00300            |          | <0.00020 | <0.00800 |          | <0.00300 | <0.00010  | <1.00 | <0.00200 | <0.0100  | SVL        |
| DC 6.1 E (Lower Crater Tanks) | RESE-1001217 | 24-May-05 |         | <0.00300 | <0.00300 |        | <0.00200 |         | <0.00020  | <0.00600 |          | <0.0100  |         |         | <0.00300            | <0.00400 |          |          | <0.0100  | <0.00300 | <0.00010  |       |          | <0.0100  | SVL        |



| SAMPLE LOCATION                   | SAMPLE       | SAMPLE    |         |          |          |        |          |          |           |          |          | TRACE    | CONSTI | <b>TUENTS</b> <sup>a</sup> | (mg/L)b    |          |           |          |          |            |           |    |           |         | ANALYTICAL |
|-----------------------------------|--------------|-----------|---------|----------|----------|--------|----------|----------|-----------|----------|----------|----------|--------|----------------------------|------------|----------|-----------|----------|----------|------------|-----------|----|-----------|---------|------------|
|                                   | IDENTIFIER/  | DATE      | Al      | Sb       | As       | Ва     | Ве       | В        | Cd        | Cr       | Co       | Cu       | CN     | Fe                         | Pb         | Mn       | Hg        | Мо       | Ni       | Se         | Ag        | S  | TI        | Zn      | LABORATORY |
|                                   | DESCRIPTION  |           |         |          |          |        |          |          |           |          |          |          |        |                            |            |          |           |          |          |            |           |    |           |         |            |
|                                   |              |           |         |          |          |        |          |          |           | S        | urface V | Vater    |        |                            |            |          |           |          |          |            |           |    |           |         |            |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1001230 | 23-Aug-05 |         | <0.00300 | <0.00300 | 0.0185 | <0.0020  |          | <0.00020  | <0.0060  |          | <0.0100  |        |                            | <0.00300   |          | <0.0002   |          | <0.0100  |            | <0.00010  |    | <0.00200  | <0.0100 | SVL        |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1001230 | 23-Aug-05 | <0.030  | <0.00300 | <0.00300 |        | <0.0020  | <0.04    | <0.00010  |          | <0.0060  | <0.0100  |        | <0.060                     | <0.00300   |          | <0.0002   | <0.0080  |          | <0.00300   | <0.00010  | <1 | <0.00200  | <0.0100 | SVL        |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1001230 | 23-Aug-05 |         | <0.00300 | <0.00300 |        | <0.0020  |          | <0.00020  | <0.0060  |          | <0.0100  |        |                            | <0.00300   | <0.0040  |           |          | <0.0100  | <0.00300   | <0.00010  |    |           | <0.0100 | SVL        |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002007 | 07-Aug-08 | <0.080  | <0.00300 | <0.025   | 0.0172 | <0.00200 |          | <0.000200 |          | <0.0060  | <0.00100 |        | <0.060                     | <0.00300   | <0.0040  | <0.00020  | 0.0289   | <0.010   |            | <0.000100 |    | <0.00100  | <0.0100 | SVL        |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002007 | 07-Aug-08 |         |          |          |        |          |          |           |          |          |          |        |                            |            |          | <0.00020  |          |          |            |           |    |           |         | SVL        |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002007 | 07-Aug-08 |         | <0.00300 | <0.025   |        | <0.00200 | <0.040   | <0.0020   | <0.0060  |          | <0.010   |        |                            | <0.00300   | <0.0040  |           |          | <0.010   | <0.00300   | <0.0050   |    | <0.00100  | <0.0100 | SVL        |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002036 | 06-Nov-08 | <0.080  | <0.00300 | <0.025   | 0.0176 | <0.00200 |          | <0.000200 |          | <0.0060  | <0.0010  |        | <0.060                     | <0.00300   | <0.0040  | <0.00020  | <0.0080  | <0.010   |            | <0.000100 |    | <0.00100  | <0.0100 | SVL        |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002036 | 06-Nov-08 |         |          |          |        |          |          |           |          |          |          |        |                            |            |          | <0.00020  |          |          |            |           |    |           |         | SVL        |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002036 | 06-Nov-08 |         | <0.00300 | <0.025   |        | <0.00200 | <0.040   | <0.0020   | <0.0060  |          | <0.010   |        |                            | <0.00300   | <0.0040  |           |          | <0.010   | <0.00300   | <0.0050   |    | <0.00100  | <0.0100 | SVL        |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002064 | 25-Feb-09 | <0.080  | <0.00300 | <0.025   | 0.0171 | <0.00200 |          | <0.000042 |          | <0.0060  | <0.00100 |        | <0.060                     | <0.000017  | <0.0040  |           | <0.0080  | <0.00100 |            | <0.000100 |    | <0.00100  | <0.0100 | SVL        |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002064 | 25-Feb-09 |         |          |          |        |          |          |           |          |          |          |        |                            |            |          | <0.00020  |          |          |            |           |    |           |         | SVL        |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002064 | 25-Feb-09 |         | <0.00300 | <0.025   |        | <0.00200 | <0.040   | <0.00020  | <0.0060  |          | <0.010   |        |                            | <0.00300   | <0.0040  |           |          | <0.010   | <0.00041   | <0.0050   |    | <0.00100  | <0.0100 | SVL        |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002099 | 20-May-09 | <0.080  | <0.00300 | <0.025   |        | <0.00200 |          | <0.000024 |          | <0.0060  | <0.00100 |        | <0.060                     | <0.000053  | <0.0040  |           | <0.0080  | <0.00100 |            | <0.000100 |    | <0.00100  | <0.0100 | SVL        |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002099 | 20-May-09 |         |          |          |        |          |          |           |          |          |          |        |                            |            |          | <0.00020  |          |          |            |           |    |           |         | SVL        |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002099 | 20-May-09 |         | <0.00300 | <0.025   | 0.0172 | <0.00200 | <0.040   | <0.0020   | <0.0060  |          | <0.010   |        |                            | <0.00300   | <0.0040  |           |          | <0.010   | <0.00030   | <0.0050   |    | <0.00100  | <0.0100 | SVL        |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002135 | 19-Mar-10 | <0.080  | <0.00300 | <0.025   | 0.0228 |          |          | <0.000024 |          | <0.0060  | <0.00100 |        | <0.060                     | <0.000053  | <0.0040  |           | <0.0080  | <0.00100 |            | <0.000100 |    | <0.00100  | <0.0100 | SVL        |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002135 | 19-Mar-10 |         |          |          |        |          |          |           |          |          |          |        |                            |            |          | <0.00020  |          |          |            |           |    |           |         | SVL        |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002135 | 19-Mar-10 |         | <0.00300 | <0.025   |        | <0.00200 | <0.040   | <0.0020   | <0.0060  |          | <0.010   |        |                            | <0.00300   | <0.0040  |           |          | <0.010   | 0.00033 jd | <0.0050   |    | <0.00100  | <0.0100 | SVL        |
| DC 6.1 E (Lower Crater Tanks) DUP | RESE-1002136 | 19-Mar-10 | <0.080  | <0.00300 | <0.025   | 0.0228 |          |          | <0.000024 |          | <0.0060  | <0.00100 |        | <0.060                     | <0.000053  | <0.0040  |           | <0.0080  | <0.00100 |            | <0.000100 |    | <0.00100  | <0.0100 | SVL        |
| DC 6.1 E (Lower Crater Tanks) DUP | RESE-1002136 | 19-Mar-10 |         |          |          |        |          |          |           |          |          |          |        |                            |            |          | <0.00020  |          |          |            |           |    |           |         | SVL        |
| DC 6.1 E (Lower Crater Tanks) DUP | RESE-1002136 | 19-Mar-10 |         | <0.00300 | <0.025   |        | <0.00200 | <0.040   | <0.0020   | <0.0060  |          | <0.010   |        |                            | <0.00300   | <0.0040  |           |          | <0.010   | <0.00030   | <0.0050   |    | <0.00100  | <0.0100 | SVL        |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002138 | 19-Oct-10 | <0.080  | <0.00300 | <0.025   | 0.0191 |          |          | <0.000024 |          | <0.0060  | <0.00100 |        | <0.060                     | <0.000019  | <0.0040  |           | <0.0080  | 0.00107  |            | <0.000100 |    | <0.00100  | <0.0100 | SVL        |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002138 | 19-Oct-10 |         |          |          |        |          |          |           |          |          |          |        |                            |            |          | <0.00020  |          |          |            |           |    |           |         | SVL        |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002138 | 19-Oct-10 |         | <0.00300 | <0.025   |        | <0.00200 | <0.040   | <0.0020   | <0.0060  |          | <0.010   |        |                            | <0.00300   | <0.0040  |           |          | <0.010   | 0.00068 jd | <0.0050   |    | <0.00100  | <0.0100 | SVL        |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002161 | 10-Nov-10 | <0.0172 | <0.0001  | <0.0066  | 0.0303 |          |          | <0.000036 |          | <0.00095 | 0.0014   |        | 0.032 j                    | <0.00002   | 0.0104   |           | 0.0058 j | <0.00013 |            | <0.000012 |    | <0.000018 | <0.0019 | SVL        |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002161 | 10-Nov-10 |         |          |          |        |          |          |           |          |          |          |        |                            |            |          | <0.000065 |          |          |            |           |    |           |         | SVL        |
| DC 6.1 E (Lower Crater Tanks)     | RESE-1002161 | 10-Nov-10 |         | <0.00012 | <0.0032  |        | <0.00024 | 0.01 j   | <0.00025  | <0.00043 |          | 0.00 j   |        |                            | <0.003     | 0.0114   |           |          | <0.0015  | <0.0038    | <0.0007   |    | <0.000022 | <0.01   | SVL        |
| DC 6.14 C (Upper Crater Tank)     | RESE-1002013 | 20-Aug-08 | <0.0141 | <0.0001  | <0.0066  | 0.0292 | <0.00036 |          | <0.000034 |          | <0.00065 | 0.0022   |        | <0.0202                    | <0.000043  | <0.0013  | <0.000064 | <0.0023  | <0.0023  |            | <0.000017 |    | <0.000018 | <0.0019 | SVL        |
| DC 6.14 C (Upper Crater Tank)     | RESE-1002013 | 20-Aug-08 |         | <0.0004  | <0.0065  |        | <0.00036 | 0.0258 j | <0.00096  | <0.001   |          | <0.0039  |        |                            | <0.000172  | 0.0062 j | <0.000064 |          | <0.0023  | <0.0004    | <0.00079  |    | <0.000072 | <0.0019 | SVL        |
| DC 6.14 C (Upper Crater Tank)     | RESE-1002037 | 12-Nov-08 | <0.080  | <0.00300 | <0.025   | 0.0249 | <0.00200 |          | <0.000200 |          | <0.0060  | 0.00127  |        | <0.060                     | <0.00300   | 0.0049   | <0.00020  | <0.0080  | <0.010   |            | <0.000100 |    | <0.00100  | <0.0100 | SVL        |
| DC 6.14 C (Upper Crater Tank)     | RESE-1002037 | 12-Nov-08 |         |          |          |        |          |          |           |          |          |          |        |                            |            |          | <0.00020  |          |          |            |           |    |           |         | SVL        |
| DC 6.14 C (Upper Crater Tank)     | RESE-1002037 | 12-Nov-08 |         | <0.00300 | <0.025   |        | <0.00200 | <0.040   | 0.0046    | <0.0060  |          | <0.010   |        |                            | <0.00300   | 0.0184   |           |          | <0.010   | <0.00300   | <0.0050   |    | <0.00100  | <0.0100 | SVL        |
| DC 6.14 C (Upper Crater Tank)     | RESE-1002056 | 18-Feb-09 | 0.165   | <0.00300 | <0.025   | 0.0112 | <0.00200 |          | <0.000034 |          | <0.0060  | 0.0117   |        | 0.097                      | 0.000298 j | 0.0105   |           | <0.0080  | 0.00120  |            | <0.000100 |    | <0.00100  | <0.0100 | SVL        |
| DC 6.14 C (Upper Crater Tank)     | RESE-1002056 | 18-Feb-09 |         |          |          |        |          |          |           |          |          |          |        |                            |            |          | <0.00020  |          |          |            |           |    |           |         | SVL        |
| DC 6.14 C (Upper Crater Tank)     | RESE-1002056 | 18-Feb-09 |         | <0.00300 | <0.025   |        | <0.00200 | <0.040   | <0.0020   | <0.0060  |          | 0.013    |        |                            | <0.00300   | 0.0097   |           |          | <0.010   | 0.00016 jd | <0.0050   |    | <0.00100  | <0.0100 | SVL        |
| DC 6.14 C (Upper Crater Tank)     | RESE-1002078 | 06-May-09 | <0.080  | <0.00300 | <0.025   | 0.0242 | <0.00200 |          | <0.000024 |          | <0.0060  | 0.00134  |        | <0.060                     | <0.000053  | 0.0090   |           | <0.0080  | <0.00100 |            | <0.000100 |    | <0.00100  | <0.0100 | SVL        |
| DC 6.14 C (Upper Crater Tank)     | RESE-1002078 | 06-May-09 |         |          |          |        |          |          |           |          |          |          |        |                            |            |          | <0.00020  |          |          |            |           |    |           |         | SVL        |
| DC 6.14 C (Upper Crater Tank)     | RESE-1002078 | 06-May-09 |         | <0.00300 | <0.025   |        | <0.00200 | <0.040   | <0.0020   | <0.0060  |          | <0.010   |        |                            | <0.00300   | 0.0079   |           |          | <0.010   | <0.00030   | <0.0050   |    | <0.00100  | <0.0100 | SVL        |
| DC 6.14 C (Upper Crater Tank)     | RESE-1002196 | 30-Nov-11 | <0.080  | <0.00300 | <0.025   |        |          |          | <0.000026 |          | <0.0060  | 0.00161  |        | <0.060                     | <0.000042  | <0.0040  |           | <0.008   | 0.00178  |            | <0.000100 |    | <0.00100  | <0.0100 | SVL        |
| o (oppos oracor runn)             | RESE-1002196 | 30-Nov-11 |         | <0.00300 | <0.025   | 0.0316 | <0.0020  | <0.040   | <0.0020   | <0.0060  |          | <0.010   |        |                            |            | <0.0040  | <0.00020  |          | <0.010   | <0.00070   | <0.0050   |    |           | <0.0100 | SVL        |



| SAMPLE LOCATION | SAMPLE       | SAMPLE    |        |           |          |        |          |         |          |          |          | TRACE    | CONSTIT | UENTS  | (mg/L) <sup>b</sup> |          |          |          |          |          |          |       |          |           | ANALYTICAL |
|-----------------|--------------|-----------|--------|-----------|----------|--------|----------|---------|----------|----------|----------|----------|---------|--------|---------------------|----------|----------|----------|----------|----------|----------|-------|----------|-----------|------------|
|                 | IDENTIFIER/  | DATE      | Al     | Sb        | As       | Ва     | Ве       | В       | Cd       | Cr       | Со       | Cu       | CN      | Fe     | Pb                  | Mn       | Hg       | Мо       | Ni       | Se       | Ag       | S     | TI       | Zn        | LABORATORY |
|                 | DESCRIPTION  |           |        |           |          |        |          |         |          |          |          |          |         |        |                     |          |          |          |          |          |          |       |          |           |            |
|                 |              |           |        |           |          |        |          |         |          | S        | urface V | Vater    |         |        |                     |          |          |          |          |          |          |       |          |           |            |
| DC 6.6 W        | RESE-1001010 | 29-May-03 |        | <0.0030   | 0.0040   | 0.0238 | <0.0020  | <0.040  | <0.00010 |          |          | <0.0030  |         |        | <0.0030             |          | <0.00020 |          | <0.010   |          | <0.00010 |       | <0.0020  | <0.0050   | SVL        |
| DC 6.6 W        | RESE-1001010 | 29-May-03 | 0.052  | <0.0030   | 0.0040 j |        | <0.0020  |         | <0.00010 |          | <0.0060  | <0.0030  | <0.10   | 0.061  | <0.0050             |          | <0.00020 | <0.0080  |          | <0.0060  | <0.00010 | <1.0  |          | <0.0050   | SVL        |
| DC 6.6 W        | RESE-1001010 | 29-May-03 |        | <0.0030   | 0.0030   |        | <0.0020  |         | <0.00010 | <0.0060  |          | <0.0030  |         |        | <0.0030             | 0.0086   |          |          | <0.010   | <0.0060  | <0.00010 |       | <0.0020  | <0.0050   | SVL        |
| DC 6.6 W        | RESE-1001022 | 03-Sep-03 |        | <0.0030   | <0.0030  | 0.0324 | <0.0020  |         | <0.00010 | <0.0060  |          | <0.0030  |         |        | <0.0030             |          | <0.00020 |          | <0.010   |          | <0.00010 |       | <0.0020  | <0.0050   | SVL        |
| DC 6.6 W        | RESE-1001022 | 03-Sep-03 | <0.020 | <0.0030   | <0.0030  |        | <0.0020  | <0.040  | <0.00010 |          | <0.0060  | <0.0030  | <0.010  | 0.264  | <0.0050             |          | <0.00020 | 0.0088   |          | <0.0150  | <0.00010 | <1.0  | <0.0020  | <0.0050   | SVL        |
| DC 6.6 W        | RESE-1001022 | 03-Sep-03 |        | <0.0030   | <0.0030  |        | <0.0020  |         | <0.00010 | <0.0060  |          | <0.0030  |         |        | <0.0030             | 0.323    |          |          | <0.010   | <0.0150  | <0.00010 |       |          | <0.0050   | SVL        |
| DC 6.6 W        | RESE-1001033 | 04-Nov-03 |        | <0.0030   | 0.0040   | 0.0361 | <0.0020  |         | <0.00010 | <0.0060  |          | <0.0030  |         |        | <0.0030             |          | <0.00020 |          | <0.010   |          | <0.00010 |       | <0.0020  | <0.0050   | SVL        |
| DC 6.6 W        | RESE-1001033 | 04-Nov-03 | <0.020 | <0.0030   | 0.0060   |        | <0.0020  | <0.040  | <0.00010 |          | <0.0060  | <0.0030  |         | 0.433  | <0.0050             |          | <0.00020 | 0.0100   |          | <0.0060  | <0.00010 | <1.0  | <0.0020  | <0.0050   | SVL        |
| DC 6.6 W        | RESE-1001033 | 04-Nov-03 |        | <0.0030   | 0.0050   |        | <0.0020  |         | <0.00010 | <0.0060  |          | <0.0030  |         |        | <0.0030             | 0.415    |          |          | <0.010   | <0.0150  | <0.00010 |       |          | <0.0050   | SVL        |
| DC 6.6 W        | RESE-1001064 | 18-Feb-04 |        | <0.00030  | 0.0056   | 0.0231 | <0.00020 |         | <0.00010 | <0.00030 |          | <0.00210 |         |        | <0.0010             |          | <0.00020 |          | 0.005 j  |          | <0.00010 |       | <0.00040 | 0.00051 j | SVL        |
| DC 6.6 W        | RESE-1001064 | 18-Feb-04 | 0.02   | 0.00034 j | 0.004    |        | <0.00020 | <0.0070 | <0.00010 |          | <0.00070 | <0.00210 |         | 0.128  | <0.0010             |          | <0.00020 | 0.0054 j |          | <0.00080 | <0.00010 | <1.0  | <0.00040 | <0.00020  | SVL        |
| DC 6.6 W        | RESE-1001064 | 18-Feb-04 |        | <0.00030  | 0.0043   |        | <0.00020 |         | <0.00010 | <0.00030 |          | <0.00210 |         |        | <0.0010             | 0.0809   |          |          | 0.0021 j | <0.00080 | <0.00010 |       |          | <0.00020  | SVL        |
| DC 6.6 W        | RESE-1001074 | 05-May-04 |        | <0.0030   | <0.0030  | 0.0303 | <0.0020  |         | <0.00010 | <0.0060  |          | <0.0030  |         |        | <0.0030             |          | <0.00020 |          | <0.010   |          | <0.00010 |       | <0.0020  | <0.0050   | SVL        |
| DC 6.6 W        | RESE-1001074 | 05-May-04 | 0.025  | <0.0030   | <0.0030  |        | <0.0020  | <0.040  | <0.00010 |          | <0.0060  | <0.0030  | <0.010  | 0.277  | <0.0030             |          | <0.00020 | <0.0080  |          | <0.0060  | <0.00010 | <1.0  | <0.0020  | <0.0050   | SVL        |
| DC 6.6 W        | RESE-1001074 | 05-May-04 |        | <0.0030   | <0.0030  |        | <0.0020  |         | <0.00010 | <0.0060  |          | <0.0030  |         |        | <0.0030             | 0.110    |          |          | <0.010   | <0.0030  | <0.00010 |       |          | <0.0050   | SVL        |
| DC 6.6 W        | RESE-1001155 | 19-Aug-04 |        | <0.0030   | 0.0040   | 0.0257 | <0.0020  |         | <0.00010 | <0.0060  |          | <0.0030  |         |        | <0.0030             |          | <0.00020 |          | <0.010   |          | <0.00010 |       | <0.0020  | 0.0075    | SVL        |
| DC 6.6 W        | RESE-1001155 | 19-Aug-04 | <0.020 | <0.0030   | 0.0030   |        | <0.0020  | <0.040  | <0.00010 |          | <0.0060  | <0.0030  |         | 0.088  | <0.0030             |          | <0.00020 | <0.0080  |          | <0.0060  | <0.00010 | <1.0  | <0.0020  | 0.0084    | SVL        |
| DC 6.6 W        | RESE-1001155 | 19-Aug-04 |        | <0.0030   | <0.0030  |        | <0.0020  |         | <0.00010 | <0.0060  |          | <0.0030  |         |        | <0.0030             | 0.0201   |          |          | <0.010   | <0.0150  | <0.00010 |       |          | 0.0088    | SVL        |
| DC 6.6 W        | RESE-1001170 | 12-Nov-04 |        | <0.0030   | <0.0030  | 0.0255 | <0.0020  |         | <0.00010 | <0.0060  |          | <0.0030  |         |        | <0.0030             |          | <0.00020 |          | <0.010   |          | <0.00010 |       | <0.0020  | <0.0050   | SVL        |
| DC 6.6 W        | RESE-1001170 | 12-Nov-04 | <0.020 | <0.0030   | <0.0030  |        | <0.0020  | <0.040  | <0.00010 |          | <0.0060  | <0.0030  |         | 0.134  | <0.0030             |          | <0.00020 | <0.0080  |          | <0.0150  | <0.00010 | <1.0  | <0.0020  | 0.0060    | SVL        |
| DC 6.6 W        | RESE-1001170 | 12-Nov-04 |        | <0.0030   | <0.0030  |        | <0.0020  |         | <0.00010 | <0.0060  |          | <0.0030  |         |        | <0.0030             | 0.0696   |          |          | <0.010   | <0.0150  | <0.00010 |       |          | <0.0050   | SVL        |
| DC 6.6 W        | RESE-1001192 | 16-Feb-05 |        | <0.00300  | <0.00300 | 0.0169 | <0.00200 |         | <0.00020 | <0.00600 |          | <0.0100  |         |        | <0.00300            |          | <0.00020 |          | <0.0100  |          | <0.00010 |       | <0.00200 | <0.0100   | SVL        |
| DC 6.6 W        | RESE-1001192 | 16-Feb-05 | 0.325  | <0.00300  | <0.00300 |        | <0.00200 | <0.0400 | <0.00020 |          | <0.00600 | <0.0100  |         | 0.146  | <0.00300            |          | <0.00020 | <0.00800 |          | <0.00300 | <0.00010 | <1.00 | <0.00200 | <0.0100   | SVL        |
| DC 6.6 W        | RESE-1001192 | 16-Feb-05 |        | <0.00300  | <0.00300 |        | <0.00200 |         | <0.00020 | <0.00600 |          | <0.0100  |         |        | <0.00300            | <0.00400 |          |          | <0.0100  | <0.00300 | <0.00010 |       |          | <0.0100   | SVL        |
| DC 6.6 W        | RESE-1001214 | 17-May-05 |        | <0.00300  | 0.0048   | 0.0253 | <0.00200 |         | <0.00020 | <0.00600 |          | 0.011    |         |        | <0.00300            |          | <0.00020 |          | <0.0100  |          | <0.00010 |       | <0.00200 | <0.0100   | SVL        |
| DC 6.6 W        | RESE-1001214 | 17-May-05 | 0.041  | <0.00300  | 0.0050   |        | <0.00200 | <0.0400 | <0.00020 |          | <0.00600 | <0.0100  |         | 0.403  | <0.00300            |          | <0.00020 | <0.00800 |          | <0.00300 | <0.00010 | <1.00 | <0.00200 | 0.017     | SVL        |
| DC 6.6 W        | RESE-1001214 | 17-May-05 |        | <0.00300  | 0.0049   |        | <0.00200 |         | <0.00020 | <0.00600 |          | <0.0100  |         |        | <0.00300            | 0.152    |          |          | <0.0100  | <0.00300 | <0.00010 |       |          | <0.0100   | SVL        |
| DC 6.6 W        | RESE-1001232 | 07-Sep-05 |        | <0.00300  | 0.0048   | 0.0306 | <0.0020  |         | <0.00008 | <0.0060  |          | <0.0100  |         |        | <0.00300            |          | <0.0002  |          | <0.0100  |          | <0.00010 |       | <0.00200 | <0.0100   | SVL        |
| DC 6.6 W        | RESE-1001232 | 07-Sep-05 | 0.072  | <0.00300  | 0.00460  |        | <0.0020  | <0.04   | <0.00010 |          | <0.0060  | <0.0100  |         | 0.090  | <0.00300            |          | <0.0002  | <0.0080  |          | <0.00300 | <0.00010 | <1.0  | <0.00200 | <0.0100   | SVL        |
| DC 6.6 W        | RESE-1001232 | 07-Sep-05 |        | <0.00300  | 0.0042   |        | <0.0020  |         | <0.00020 | <0.0060  |          | <0.0100  |         |        | <0.00300            | 0.0185   |          |          | <0.0100  | <0.00300 | <0.00010 |       |          | <0.0100   | SVL        |
| DC 7.1 C        | RESE-1001009 | 29-May-03 |        | <0.0030   | 0.0080 j | 0.0246 | <0.0020  | <0.040  | <0.00010 |          |          | <0.0030  |         |        | <0.0030             |          | <0.00020 |          | <0.010   |          | <0.00010 |       | <0.0020  | <0.0050   | SVL        |
| DC 7.1 C        | RESE-1001009 | 29-May-03 | <0.020 | <0.0030   | 0.0090 j |        | <0.0020  |         | <0.00010 |          | <0.0060  | <0.0030  | <0.10   | 0.206  | <0.0050             |          | <0.00020 | <0.0080  |          | <0.0030  | <0.00010 | <1.0  |          | <0.0050   | SVL        |
| DC 7.1 C        | RESE-1001009 | 29-May-03 |        | <0.0030   | 0.0090   |        | <0.0020  |         | <0.00010 | <0.0060  |          | <0.0030  |         |        | <0.0030             | 0.137    |          |          | <0.010   | <0.0030  | <0.00010 |       | <0.0020  | <0.0050   | SVL        |
| DC 7.1 C        | RESE-1001034 | 04-Nov-03 |        | <0.0030   | 0.0050   | 0.0286 | <0.0020  |         | <0.00010 | <0.0060  |          | <0.0030  |         |        | <0.0030             |          | <0.00020 |          | <0.010   |          | <0.00010 |       | <0.0020  | <0.0050   | SVL        |
| DC 7.1 C        | RESE-1001034 | 04-Nov-03 | <0.020 | <0.0030   | 0.0060   |        | <0.0020  | <0.040  | <0.00010 |          | <0.0060  | <0.0030  |         | 0.079  | <0.0050             |          | <0.00020 | <0.0080  |          | <0.0030  | <0.00010 | <1.0  | <0.0020  | <0.0050   | SVL        |
| DC 7.1 C        | RESE-1001034 | 04-Nov-03 |        | <0.0030   | 0.0050   |        | <0.0020  |         | <0.00010 | <0.0060  |          | <0.0030  |         |        | <0.0030             | 0.0416   |          |          | <0.010   | <0.0030  | <0.00010 |       |          | <0.0050   | SVL        |
| DC 7.1 C        | RESE-1001065 | 18-Feb-04 |        | <0.00030  | 0.0035   | 0.0159 | <0.00020 |         | <0.00010 | <0.00030 |          | <0.00210 |         |        | <0.0010             |          | <0.00020 |          | 0.0048 j |          | <0.00010 |       | <0.00040 | <0.00020  | SVL        |
| DC 7.1 C        | RESE-1001065 | 18-Feb-04 | 0.0534 | <0.00030  | 0.003 j  |        | <0.00020 | <0.0070 | <0.00010 |          | <0.00070 | 0.0029 j |         | 0.0786 | <0.0010             |          | <0.00020 | 0.0045 j |          | <0.00080 | <0.00010 | <1.0  | <0.00040 | 0.00042 j | SVL        |
| DC 7.1 C        | RESE-1001065 | 18-Feb-04 |        | <0.00030  | 0.0036   |        | <0.00020 |         | 0.00017  | <0.00030 |          | <0.00210 |         |        | <0.0010             | 0.0076   |          |          | 0.0026 j | <0.00080 | <0.00010 |       |          | 0.00099 j | SVL        |
| DC 7.1 C        | RESE-1001075 | 05-May-04 |        | <0.0030   | <0.0030  | 0.0196 | <0.0020  |         | <0.00010 | <0.0060  |          | <0.0030  |         |        | <0.0030             |          | <0.00020 |          | <0.010   |          | <0.00010 |       | <0.0020  | <0.0050   | SVL        |
| DC 7.1 C        | RESE-1001075 | 05-May-04 | <0.020 | <0.0030   | <0.0030  |        | <0.0020  | <0.040  | <0.00010 |          | <0.0060  | 0.0057   | <0.010  | 0.088  | <0.0030             |          | <0.00020 | <0.0080  |          | <0.0030  | <0.00010 | <1.0  | <0.0020  | <0.0050   | SVL        |
| DC 7.1 C        | RESE-1001075 | 05-May-04 |        | <0.0030   | <0.0030  |        | <0.0020  |         | <0.00010 | <0.0060  |          | 0.0041   |         |        | <0.0030             | 0.0184   |          |          | <0.010   | <0.0030  | <0.00010 |       |          | <0.0050   | SVL        |



| SAMPLE LOCATION      | SAMPLE                       | SAMPLE                 |         |          |         |        |          |         |           |          |             | TRACE      | CONSTI | TUENTS <sup>a</sup> | (mg/L)b    |          |              |          |          |          |           |       |           |         | ANALYTICAL |
|----------------------|------------------------------|------------------------|---------|----------|---------|--------|----------|---------|-----------|----------|-------------|------------|--------|---------------------|------------|----------|--------------|----------|----------|----------|-----------|-------|-----------|---------|------------|
| SAIVIFEE LOCATION    | IDENTIFIER/                  | DATE                   | Al      | Sb       | ۸۵      | Ва     | Be       | В       | Cd        | Cr       | Со          |            | CN     | Fe                  | Pb         | Mn       | Цα           | Mo       | Ni       | Se       | ۸۵        | S     | TI        | Zn      | LABORATORY |
|                      | DESCRIPTION                  | DAIL                   | AI      | 30       | As      | Ба     | Ве       | ь       | Cu        | Ci       | 0           | Cu         | CIV    | re                  | FU         | Mn       | Hg           | Мо       | INI      | 36       | Ag        | 3     | "         | 211     | LADONATORT |
|                      | DESCINI HON                  |                        |         |          |         |        |          |         |           | S        | urface V    | ⊥<br>Vater |        |                     |            |          |              |          |          |          |           |       |           |         |            |
| DC 7.1 C             | RESE-1001156                 | 19-Aug-04              |         | <0.0030  | <0.0030 | 0.0429 | <0.0020  |         | <0.00010  | <0.0060  |             | 0.0061     |        |                     | <0.0030    |          | <0.00020     |          | <0.010   |          | <0.00010  |       | <0.0020   | <0.0050 | SVL        |
| DC 7.1 C             | RESE-1001156                 | 19-Aug-04              | <0.020  | <0.0030  | 0.0050  |        | <0.0020  | <0.040  | <0.00010  |          | <0.0060     | 0.0096     |        | 0.042               | <0.0030    |          | <0.00020     | <0.0080  |          | <0.0030  | <0.00010  | <1.0  | <0.0020   | <0.0050 | SVL        |
| DC 7.1 C             | RESE-1001156                 | 19-Aug-04              |         | <0.0030  | 0.0040  |        | <0.0020  |         | <0.00010  | <0.0060  |             | 0.0097     |        |                     | <0.0030    | 0.0128   |              |          | <0.010   | <0.0060  | <0.00010  |       |           | <0.0050 | SVL        |
| DC 7.1 C             | RESE-1001171                 | 12-Nov-04              |         | <0.0030  | 0.0040  | 0.0224 | <0.0020  |         | <0.00010  | <0.0060  |             | <0.0030    |        |                     | <0.0030    |          | <0.00020     |          | <0.010   |          | <0.00010  |       | <0.0020   | <0.0050 | SVL        |
| DC 7.1 C             | RESE-1001171                 | 12-Nov-04              | 0.024   | <0.0030  | 0.0030  |        | <0.0020  | <0.040  | <0.00010  |          | <0.0060     | <0.0030    |        | 0.072               | <0.0030    |          | <0.00020     | <0.0080  |          | <0.0030  | <0.00010  | <1.0  | <0.0020   | <0.0050 | SVL        |
| DC 7.1 C             | RESE-1001171                 | 12-Nov-04              |         | <0.0030  | 0.0030  |        | <0.0020  |         | <0.00010  | <0.0060  |             | <0.0030    |        |                     | <0.0030    | 0.0138   |              |          | <0.010   | <0.0030  | <0.00010  |       |           | <0.0050 | SVL        |
| DC 7.1 C             | RESE-1001193                 | 16-Feb-05              |         | <0.00300 | 0.00300 | 0.0134 | <0.00200 |         | <0.00020  | <0.00600 |             | 0.0120     |        |                     | <0.00300   |          | <0.00020     |          | <0.0100  |          | <0.00010  |       | <0.00200  | <0.0100 | SVL        |
| DC 7.1 C             | RESE-1001193                 | 16-Feb-05              | 0.570   | <0.00300 | 0.00310 |        | <0.00200 | <0.0400 | <0.00020  |          | <0.00600    | 0.0130     |        | 0.279               | <0.00300   |          | <0.00020     | <0.00800 |          | <0.00300 | <0.00010  | <1.00 | <0.00200  | <0.0100 | SVL        |
| DC 7.1 C             | RESE-1001193                 | 16-Feb-05              |         | <0.00300 | 0.00330 |        | <0.00200 |         | <0.00020  | <0.00600 |             | 0.0120     |        |                     | <0.00300   | 0.00730  |              |          | <0.0100  | <0.00300 | <0.00010  |       |           | <0.0100 | SVL        |
| DC 7.1 C             | RESE-1001215                 | 17-May-05              |         | <0.00300 | 0.0053  | 0.0186 | <0.00200 |         | <0.00020  | <0.00600 |             | <0.0100    |        |                     | <0.00300   |          | <0.00020     |          | <0.0100  |          | <0.00010  |       | <0.00200  | <0.0100 | SVL        |
| DC 7.1 C             | RESE-1001215                 | 17-May-05              | <0.0300 | <0.00300 | 0.0047  |        | <0.00200 | <0.0400 | <0.00020  |          | <0.00600    | <0.0100    |        | 0.076               | <0.00300   |          | <0.00020     | <0.00800 |          | <0.00300 | <0.00010  | <1.00 | <0.00200  | 0.016   | SVL        |
| DC 7.1 C             | RESE-1001215                 | 17-May-05              |         | <0.00300 | 0.0049  |        | <0.00200 |         | <0.00020  | <0.00600 |             | <0.0100    |        |                     | <0.00300   | 0.0166   |              |          | <0.0100  | <0.00300 | <0.00010  |       |           | <0.0100 | SVL        |
| DC 7.1 C             | RESE-1001231                 | 07-Sep-05              |         | <0.00300 | 0.0088  | 0.0294 | <0.0020  |         | <0.00008  | <0.0060  |             | <0.0100    |        |                     | <0.00300   |          | <0.0002      |          | <0.0100  |          | <0.00010  |       | <0.00200  | <0.0100 | SVL        |
| DC 7.1 C             | RESE-1001231                 | 07-Sep-05              | <0.030  | <0.00300 | 0.00810 |        | <0.0020  | <0.04   | <0.00010  |          | <0.0060     | <0.0100    |        | 0.109               | <0.00300   |          | <0.0002      | <0.0080  |          | <0.00300 | <0.00010  | <1.0  | <0.00200  | <0.0100 | SVL        |
| DC 7.1 C             | RESE-1001231                 | 07-Sep-05              |         | <0.00300 | 0.0077  |        | <0.0020  |         | <0.00020  | <0.0060  |             | <0.0100    |        |                     | <0.00300   | 0.0452   |              |          | <0.0100  | <0.00300 | <0.00010  |       |           | <0.0100 | SVL        |
| DC 7.1 C             | RESE-1002195                 | 30-Nov-11              | <0.080  | <0.00300 | <0.025  |        |          |         | <0.000026 |          | <0.0060     | 0.00174    |        | <0.060              | <0.000042  | 0.0046   |              | <0.008   | 0.00207  |          | <0.000100 |       | <0.00100  | <0.0100 | SVL        |
| DC 7.1 C             | RESE-1002195                 | 30-Nov-11              |         | <0.00300 | <0.025  | 0.0248 | <0.0020  | <0.040  | <0.0020   | <0.0060  |             | <0.010     |        |                     | <0.00300   | 0.0047   | <0.00020     |          | <0.010   | <0.00070 | <0.0050   |       | <0.00100  | <0.0100 | SVL        |
|                      |                              |                        | <0.080  | <0.00300 | <0.025  | 0.0240 | <0.00200 |         | <0.000200 |          | <0.0060     | 0.00111    |        | <0.060              | <0.00300   | 0.0203   | <0.00020     | 0.0279   | <0.010   |          | <0.000100 |       | <0.00100  | <0.0100 | SVL        |
| DC 8.1 C             | RESE-1002005<br>RESE-1002005 | 06-Aug-08              |         |          |         |        |          |         |           |          |             |            |        |                     |            |          | <0.00020     |          |          |          |           |       |           |         | SVL        |
| DC 8.1 C             | RESE-1002005                 | 06-Aug-08<br>06-Aug-08 |         | <0.00300 | <0.025  |        | <0.00200 | <0.040  | <0.0020   | <0.0060  |             | <0.010     |        |                     | <0.00300   | 0.0222   |              |          | <0.010   | <0.00300 | <0.0050   |       | <0.00100  | <0.0100 | SVL        |
|                      | RESE-1002026                 | 05-Nov-08              | <0.080  | <0.00300 | <0.025  | 0.0224 | <0.00200 |         | <0.000200 |          | <0.0060     | <0.00100   |        | <0.060              | <0.00300   | 0.0051   | <0.00020     | <0.0080  | <0.010   |          | <0.000100 |       | <0.00100  | <0.0100 | SVL        |
| DC 8.1 C<br>DC 8.1 C | RESE-1002026<br>RESE-1002026 | 05-Nov-08              |         |          |         |        |          |         |           |          |             |            |        |                     |            |          | <0.00020     |          |          |          |           |       |           |         | SVL        |
| DC 8.1 C             | RESE-1002026                 | 05-Nov-08              |         | <0.00300 | <0.025  |        | <0.00200 | <0.040  | <0.0020   | <0.0060  |             | <0.010     |        |                     | <0.00300   | 0.0094   |              |          | <0.010   | <0.00300 | <0.0050   |       | <0.00100  | 0.0135  | SVL        |
| DC 8.1 C             | RESE-1002062                 | 24-Feb-09              | 0.136   | <0.00300 | <0.025  | 0.0118 | <0.00200 |         | <0.000042 |          | <0.0060     | 0.00753    |        | 0.115               | 0.000200 j | 0.0077   |              | <0.0080  | <0.00100 |          | <0.000100 |       | <0.00100  | <0.0100 | SVL        |
| DC 8.1 C             | RESE-1002062<br>RESE-1002062 | 24-Feb-09<br>24-Feb-09 |         |          |         |        |          |         |           |          |             |            |        |                     |            |          | <0.00020     |          |          |          |           |       |           |         | SVL        |
| DC 8.1 C             | RESE-1002062                 | 24-Feb-09              |         | <0.00300 | <0.025  |        | <0.00200 | <0.040  | <0.00020  | <0.0060  |             | <0.010     |        |                     | <0.00300   | 0.0082   |              |          | <0.010   | <0.00041 | <0.0050   |       | <0.00100  | <0.0100 | SVL        |
| DC 8.1 C             | RESE-1002098                 | 19-May-09              | <0.080  | <0.00300 | <0.025  |        | <0.00200 |         | <0.000024 |          | <0.0060     | 0.00105    |        | <0.060              | <0.000053  | 0.0088   |              | <0.0080  | 0.00101  |          | <0.000100 |       | <0.00100  | <0.0100 | SVL        |
| DC 8.1 C             | RESE-1002098                 | 19-May-09              |         |          |         |        |          |         |           |          |             |            |        |                     |            |          | <0.00020     |          |          |          |           |       |           |         | SVL        |
| DC 8.1 C             | RESE-1002098                 | 19-May-09              |         | <0.00300 | <0.025  | 0.0215 | <0.00200 | <0.040  | <0.0020   | <0.0060  |             | <0.010     |        |                     | <0.00300   | 0.0157   |              |          | <0.010   | <0.00030 | <0.0050   |       | <0.00100  | <0.0100 | SVL        |
| DC 8.1 C             | RESE-1002160                 | 10-Nov-10              | <0.0172 | <0.0001  | <0.0066 | 0.0282 |          |         | <0.000036 |          | <0.00095    | 0.000 j    |        | 0.033 j             | <0.00002   | 0.0079 j |              | 0.0070 j | <0.00013 |          | <0.000012 |       | <0.000018 | <0.0019 | SVL        |
| DC 8.1 C             | RESE-1002160                 | 10-Nov-10              |         |          |         |        |          |         |           |          |             |            |        |                     |            |          | <0.000065    |          |          |          |           |       |           |         | SVL        |
| DC 8.1 C             | RESE-1002160                 | 10-Nov-10              |         | <0.00012 | <0.0032 |        | <0.00024 | 0.01 j  | <0.00025  | <0.00043 |             | 0.00 j     |        |                     | <0.003     | 0.0743   |              |          | <0.0015  | <0.0038  | <0.0007   |       | <0.000022 | <0.01   | SVL        |
| DC 8.1 C             | RESE-1002187                 | 31-Aug-11              | <0.080  | <0.00300 | <0.025  |        |          |         | <0.000026 |          | <0.0060     | <0.00100   |        | <0.060              | 0.000053   | 0.0150   |              | <0.008   | 0.00120  |          | <0.000100 |       | <0.00100  | <0.0100 | SVL        |
| DC 8.1 C             | RESE-1002187                 | 31-Aug-11              |         | <0.00300 | <0.025  | 0.0225 | <0.0020  | <0.040  | <0.0020   | <0.0060  |             | <0.010     |        |                     | <0.00300   |          | <0.00020     |          | <0.010   | <0.00070 |           |       | <0.00100  | <0.0100 | SVL        |
| DC 8.1 C             | RESE-1002194                 | 30-Nov-11              | <0.080  | <0.00300 | <0.025  |        |          |         | <0.000026 |          | <0.0060     | 0.00110    |        | <0.060              | <0.000042  | 0.0101   |              | <0.008   | 0.00175  |          | <0.000100 |       | <0.00100  | <0.0100 | SVL        |
| DC 8.1 C             | RESE-1002194                 | 30-Nov-11              |         | <0.00300 | <0.025  | 0.0280 | <0.0020  | <0.040  | <0.0020   | <0.0060  |             | <0.010     |        |                     | <0.00300   | 0.0081   | <0.00020     |          | <0.010   | <0.00070 | <0.0050   |       | <0.00100  | <0.0100 | SVL        |
|                      |                              |                        |         | <0.0060  | <0.0030 | 0.0176 | <0.0020  | <0.040  | <0.00010  |          |             | <0.0030    |        |                     | <0.0030    |          | <0.00020     |          | <0.010   |          | <0.00010  |       | <0.0020   | <0.0050 | SVL        |
| DC 8.2 W             | RESE-1001006                 | 20-May-03              | <0.020  | <0.0060  | <0.0030 | 0.0176 | <0.0020  | <0.040  | <0.00010  |          | <0.0060     | <0.0030    | <0.10  | <0.020              | <0.0030    |          | <0.00020     | 0.0085   | <0.010   | <0.0030  | <0.00010  | <1.0  | <0.0020   | <0.0050 | SVL        |
| DC 8.2 W             | RESE-1001006                 | 20-May-03              |         | <0.0060  | <0.0030 |        | <0.0020  |         | <0.00010  |          | ~0.0000<br> | <0.0030    |        |                     | <0.0030    | <0.0020  |              | 0.0065   | <0.010   | <0.0030  | <0.00010  |       | <0.0020   | <0.0050 | SVL        |
| DC 8.2 W             | RESE-1001006                 | 20-May-03              |         |          |         |        |          |         |           |          |             |            |        |                     |            |          |              |          |          |          |           |       |           |         |            |
| DC 8.2 W             | RESE-1001017                 | 21-Aug-03              | <0.020  | <0.0060  | <0.0030 | 0.0200 | <0.0020  | <0.040  | <0.00010  |          | <0.0060     | <0.0030    | <0.010 | <0.020              | <0.0030    |          | <0.00020     | <0.0080  | <0.010   | <0.0030  | <0.00010  | <1.0  | <0.0020   | <0.0050 | SVL<br>SVL |
| DC 8.2 W             | RESE-1001017                 | 21-Aug-03              |         | <0.0060  | <0.0030 |        | <0.0020  | <0.040  | <0.00010  | <0.0060  | <0.0060     | <0.0030    |        | ~U.UZU              | <0.0030    | <0.0020  | <0.00020<br> | ~0.0000  | <0.010   | <0.0030  | <0.00010  |       | <0.0020   | <0.0050 | SVL        |
| DC 8.2 W             | RESE-1001017                 | 21-Aug-03              |         | 10.0000  | 10.0030 |        | -0.0020  |         | 10.00010  | 10.0000  |             | -0.0030    |        |                     | 10.0030    | -U.UUZU  |              |          | -0.010   | -0.0030  | -0.00010  |       |           | -0.0030 | JVL        |



| SAMPLE LOCATION | SAMPLE                     | SAMPLE    |         |          |          |        |          |         |           |           |          | TRACE    | CONSTI | TUENTS <sup>a</sup> | (mg/L) <sup>b</sup> |          |          |          |          |            |           |        |          |           | ANALYTICAL  |
|-----------------|----------------------------|-----------|---------|----------|----------|--------|----------|---------|-----------|-----------|----------|----------|--------|---------------------|---------------------|----------|----------|----------|----------|------------|-----------|--------|----------|-----------|-------------|
|                 | IDENTIFIER/<br>DESCRIPTION | DATE      | Al      | Sb       | As       | Ва     | Ве       | В       | Cd        | Cr        | Co       | Cu       | CN     | Fe                  | Pb                  | Mn       | Hg       | Мо       | Ni       | Se         | Ag        | S      | TI       | Zn        | LABORATORY  |
|                 |                            |           |         | I        |          |        |          |         |           | S         | urface V | Vater    |        |                     |                     |          |          |          | I        |            |           |        |          |           |             |
| DC 8.2 W        | RESE-1001044               | 12-Nov-03 |         | <0.0030  | <0.0030  | 0.0201 | <0.0020  |         | <0.00010  | <0.0060   |          | <0.0030  |        |                     | <0.0030             |          | <0.00020 |          | <0.010   |            | <0.00010  |        | <0.0020  | <0.0050   | SVL         |
| DC 8.2 W        | RESE-1001044               | 12-Nov-03 | <0.020  | <0.0030  | <0.0030  |        | <0.0020  | <0.040  | <0.00010  |           | <0.0060  | <0.0030  |        | 0.044               | <0.0050             |          | <0.00020 | <0.0080  |          | <0.0030    | <0.00010  | <1.0   | <0.0020  | <0.0050   | SVL         |
| DC 8.2 W        | RESE-1001044               | 12-Nov-03 |         | <0.0030  | <0.0030  |        | <0.0020  |         | <0.00010  | <0.0060   |          | <0.0030  |        |                     | <0.0030             | <0.0020  |          |          | <0.010   | <0.0030    | <0.00010  |        |          | <0.0050   | SVL         |
| DC 8.2 W        | RESE-1001063               | 17-Feb-04 |         | <0.00030 | 0.0028 j | 0.0173 | <0.00020 |         | <0.00010  | 0.00038 j |          | <0.00210 |        |                     | <0.0010             |          | <0.00020 |          | 0.0049 j |            | <0.00010  |        | <0.00040 | 0.00042 j | SVL         |
| DC 8.2 W        | RESE-1001063               | 17-Feb-04 | 0.0318  | <0.00030 | 0.0026 j |        | <0.00020 | <0.0070 | <0.00010  |           | <0.00070 | <0.00210 |        | 0.0256              | <0.0010             |          | <0.00020 | 0.0048 j |          | <0.00080   | <0.00010  | <1.0   | <0.00040 | 0.00035 j | SVL         |
| DC 8.2 W        | RESE-1001063               | 17-Feb-04 |         | <0.00030 | 0.0034   |        | <0.00020 |         | <0.00010  | 0.00049 j |          | <0.00210 |        |                     | <0.0010             | 0.0027   |          |          | 0.0023 j | <0.00080   | <0.00010  |        |          | 0.00031 j | SVL         |
| DC 8.2 W        | RESE-1001079               | 21-May-04 |         | <0.0030  | <0.0030  | 0.0183 | <0.0020  |         | <0.00010  | <0.0060   |          | <0.0030  |        |                     | <0.0030             |          | <0.00020 |          | <0.010   |            | <0.00010  |        | <0.0020  | <0.0050   | SVL         |
| DC 8.2 W        | RESE-1001079               | 21-May-04 | <0.020  | <0.0030  | <0.0030  |        | <0.0020  | <0.040  | <0.00010  |           | <0.0060  | <0.0030  | <0.010 | 0.028               | <0.0030             |          | <0.00020 | <0.0080  |          | <0.0030    | <0.00010  | <1.0   | <0.0020  | <0.0050   | SVL         |
| DC 8.2 W        | RESE-1001079               | 21-May-04 |         | <0.0030  | <0.0030  |        | <0.0020  |         | <0.00010  | <0.0060   |          | <0.0030  |        |                     | <0.0030             | <0.0020  |          |          | <0.010   | <0.0030    | <0.00010  |        |          | <0.0050   | SVL         |
| DC 8.2 W        | RESE-1001152               | 16-Aug-04 |         | <0.0030  | <0.0030  | 0.0181 | <0.0020  |         | <0.00010  | <0.0060   |          | <0.0030  |        |                     | <0.0030             |          | <0.00020 |          | <0.010   |            | <0.00010  |        | <0.0020  | <0.0050   | SVL         |
| DC 8.2 W        | RESE-1001152               | 16-Aug-04 | <0.020  | <0.0030  | <0.0030  |        | <0.0020  | <0.040  | <0.00010  |           | <0.0060  | <0.0030  |        | <0.020              | <0.0030             |          | <0.00020 | <0.0080  |          | <0.0030    | <0.00010  | <1.0   | <0.0020  | <0.0050   | SVL         |
| DC 8.2 W        | RESE-1001152               | 16-Aug-04 |         | <0.0030  | <0.0030  |        | <0.0020  |         | <0.00010  | <0.0060   |          | <0.0030  |        |                     | <0.0030             | <0.0020  |          |          | <0.010   | <0.0030    | <0.00010  |        |          | <0.0050   | SVL         |
| DC 8.2 W        | RESE-1001175               | 16-Nov-04 |         | <0.0030  | <0.0030  | 0.0224 | <0.0020  |         | <0.00010  | <0.0060   |          | <0.010   |        |                     | <0.0030             |          | <0.00020 |          | <0.010   |            | <0.00010  |        | <0.0020  | <0.010    | SVL         |
| DC 8.2 W        | RESE-1001175               | 16-Nov-04 | 0.073   | <0.0030  | <0.0030  |        | <0.0020  | <0.040  | <0.00010  |           | <0.0060  | <0.010   |        | 0.161               | <0.0030             |          | <0.00020 | <0.0080  |          | <0.0030    | <0.00010  | <1.0   | <0.0020  | <0.010    | SVL         |
| DC 8.2 W        | RESE-1001175               | 16-Nov-04 |         | <0.0030  | <0.0030  |        | <0.0020  |         | <0.00010  | <0.0060   |          | <0.010   |        |                     | <0.0030             | 0.0192   |          |          | <0.010   | <0.0030    | <0.00010  |        |          | <0.010    | SVL         |
| DC 8.2 W        | RESE-1001196               | 25-Feb-05 |         | <0.00300 | 0.00310  | 0.0181 | <0.00200 |         | <0.00020  | <0.00600  |          | <0.0100  |        |                     | <0.00300            |          | <0.00020 |          | <0.0100  |            | <0.00010  |        | <0.00200 | <0.0100   | SVL         |
| DC 8.2 W        | RESE-1001196               | 25-Feb-05 | 0.0610  | <0.00300 | <0.00300 |        | <0.00200 | <0.0400 | <0.00020  |           | <0.00600 | <0.0100  |        | <0.0600             | <0.00300            |          | <0.00020 | <0.00800 |          | <0.00300   | <0.00010  | <1.00  | <0.00200 | <0.0100   | SVL         |
| DC 8.2 W        | RESE-1001196               | 25-Feb-05 |         | <0.00300 | <0.00300 |        | <0.00200 |         | <0.00020  | <0.00600  |          | <0.0100  |        |                     | <0.00300            | <0.00400 |          |          | <0.0100  | <0.00300   | <0.00010  |        |          | <0.0100   | SVL         |
| DC 8.2 W        | RESE-1001212               | 11-May-05 |         | <0.00300 | <0.00300 | 0.0186 | <0.00200 |         | <0.00020  | <0.00600  |          | <0.0100  |        |                     | <0.00300            |          | <0.00020 |          | <0.0100  |            | <0.00010  |        | <0.00200 | <0.0100   | SVL         |
| DC 8.2 W        | RESE-1001212               | 11-May-05 | <0.0300 | <0.00300 | <0.00300 |        | <0.00200 | <0.0400 | <0.00020  |           | <0.00600 | <0.0100  |        | <0.0600             | <0.00300            |          | <0.00020 | <0.00800 |          | <0.00300   | <0.00010  | <1.00  | <0.00200 | <0.0100   | SVL         |
| DC 8.2 W        | RESE-1001212               | 11-May-05 |         | <0.00300 | <0.00300 |        | <0.00200 |         | <0.00020  | <0.00600  |          | <0.0100  |        |                     | <0.00300            | <0.00400 |          |          | <0.0100  | <0.00300   | <0.00010  |        |          | <0.0100   | SVL         |
| DC 8.2 W        | RESE-1001227               | 16-Aug-05 |         | <0.00300 | <0.00300 | 0.0184 | <0.0020  |         | <0.00020  | <0.0060   |          | <0.0100  |        |                     | <0.00300            |          | <0.0002  |          | <0.0100  |            |           |        | <0.00200 | <0.0100   | SVL         |
| DC 8.2 W        | RESE-1001227               | 16-Aug-05 | 0.173   | <0.00300 | <0.00300 |        | <0.0020  | <0.04   | 0.00010   |           | <0.0060  | <0.0100  |        | 0.137               | <0.00300            |          | <0.0002  | <0.0080  |          | <0.00300   | <0.00010  | <1     | <0.00200 | <0.0100   | SVL         |
| DC 8.2 W        | RESE-1001227               | 16-Aug-05 |         | <0.00300 | <0.00300 |        | <0.0020  |         | <0.00020  | <0.0060   |          | <0.0100  |        |                     | <0.00300            | 0.0121   |          |          | <0.0100  | <0.00300   |           |        |          | <0.0100   | SVL         |
| DC 8.2 W        | RESE-1000260               | 19-Feb-08 | <0.20   | <0.0030  | 0.0025   | 0.024  | <0.0010  |         | <0.0010   | <0.010    |          | <0.010   |        | <0.050              | <0.0010             |          | <0.00020 | <0.010   | <0.010   | <0.0020    | <0.010    |        | <0.0010  | <0.050    | TestAmerica |
| DC 8.2 W        | RESE-1000260               | 19-Feb-08 |         |          |          |        |          |         |           |           |          |          | <0.020 |                     |                     |          |          |          |          |            |           | <0.10  |          |           | TestAmerica |
| DC 8.2 W        | RESE-1003002               | 27-May-08 | <0.20   |          |          | 0.018  | <0.0010  | <0.20   |           | <0.010    |          | 0.014    |        | <0.050              |                     |          |          | <0.010   | <0.010   |            |           |        |          | <0.050    | TestAmerica |
| DC 8.2 W        | RESE-1003002               | 27-May-08 |         | <0.0030  | 0.0021   |        |          |         | <0.0010   |           | 0.0081   |          | <0.025 |                     | <0.0010             | 0.018    | <0.00020 |          |          | <0.0020    | <0.0010   | <0.040 | <0.0010  |           | TestAmerica |
| DC 8.2 W        | RESE-1002004               | 06-Aug-08 | <0.080  | <0.00300 | <0.025   | 0.0168 | <0.00200 |         | <0.000200 |           | <0.0060  | <0.00100 |        | <0.060              | <0.00300            | <0.0040  | <0.00020 | 0.0277   | <0.010   |            | <0.000100 |        | <0.00100 | <0.0100   | SVL         |
| DC 8.2 W        | RESE-1002004               | 06-Aug-08 |         |          |          |        |          |         |           |           |          |          |        |                     |                     |          | <0.00020 |          |          |            |           |        |          |           | SVL         |
| DC 8.2 W        | RESE-1002004               | 06-Aug-08 |         | <0.00300 | <0.025   |        | <0.00200 | <0.040  | <0.0020   | <0.0060   |          | <0.010   |        |                     | <0.00300            | <0.0040  |          |          | <0.010   | <0.00300   | <0.0050   |        | <0.00100 | <0.0100   | SVL         |
| DC 8.2 W        | RESE-1002027               | 05-Nov-08 | <0.080  | <0.00300 | <0.025   | 0.0172 | <0.00200 |         | <0.000200 |           | <0.0060  | <0.00100 |        | <0.060              | <0.00300            | <0.0040  | <0.00020 | <0.0080  | <0.010   |            | <0.000100 |        | <0.00100 | <0.0100   | SVL         |
| DC 8.2 W        | RESE-1002027               | 05-Nov-08 |         |          |          |        |          |         |           |           |          |          |        |                     |                     |          | <0.00020 |          |          |            |           |        |          |           | SVL         |
| DC 8.2 W        | RESE-1002027               | 05-Nov-08 |         | <0.00300 | <0.025   |        | <0.00200 | <0.040  | <0.0020   | <0.0060   |          | <0.010   |        |                     | <0.00300            | <0.0040  |          |          | <0.010   | <0.00300   | <0.0050   |        | <0.00100 | <0.0100   | SVL         |
| DC 8.2 W        | RESE-1003023               | 02-Dec-08 | <0.20   | <0.0030  | 0.0023   | 0.018  | <0.0010  |         | <0.0010   | <0.010    |          | <0.010   |        | <0.050              | <0.0010             |          | <0.00020 | <0.010   | <0.010   | <0.0020    | <0.0010   |        | <0.0010  | <0.050    | TestAmerica |
| DC 8.2 W        | RESE-1003023               | 02-Dec-08 |         |          |          |        |          |         |           |           |          |          | <0.025 |                     |                     |          |          |          |          |            |           | <0.10  |          |           | TestAmerica |
| DC 8.2 W        | RESE-1002063               | 24-Feb-09 | <0.080  | <0.00300 | <0.025   | 0.0178 | <0.00200 |         | <0.000042 |           | <0.0060  | 0.00103  |        | <0.060              | 0.000019 j          | 0.0044   |          | <0.0080  | <0.00100 |            | <0.000100 |        | <0.00100 | <0.0100   | SVL         |
| DC 8.2 W        | RESE-1002063               | 24-Feb-09 |         |          |          |        |          |         |           |           |          |          |        |                     |                     |          | <0.00020 |          |          |            |           |        |          |           | SVL         |
| DC 8.2 W        | RESE-1002063               | 24-Feb-09 |         | <0.00300 | <0.025   |        | <0.00200 | <0.040  | <0.00020  | <0.0060   |          | <0.010   |        |                     | <0.00300            | <0.0040  |          |          | <0.010   | 0.00043 jd | <0.0050   |        | <0.00100 | <0.0100   | SVL         |
| DC 8.2 W        | RESE-1002097               | 19-May-09 | <0.080  | <0.00300 | <0.025   |        | <0.00200 |         | <0.000024 |           | <0.0060  | <0.00100 |        | <0.060              | <0.000053           | <0.0040  |          | <0.0080  | <0.00100 |            | <0.000100 |        | <0.00100 | <0.0100   | SVL         |
| DC 8.2 W        | RESE-1002097               | 19-May-09 |         |          |          |        |          |         |           |           |          |          |        |                     |                     |          | <0.00020 |          |          |            |           |        |          |           | SVL         |
| DC 8.2 W        | RESE-1002097               | 19-May-09 |         | <0.00300 | <0.025   | 0.0180 | <0.00200 | <0.040  | <0.0020   | <0.0060   |          | <0.010   |        |                     | <0.00300            | <0.0040  |          |          | <0.010   | <0.00030   | <0.0050   |        | <0.00100 | <0.0100   | SVL         |



| SAMPLE LOCATION            | SAMPLE                       | SAMPLE                 |         |          |          |        |          |                |           |             |          | TRACE    | CONSTIT | THENTS <sup>a</sup> | (mg/I)b    |          |              |             |          |            |           |       |              |           | ANALYTICAL      |
|----------------------------|------------------------------|------------------------|---------|----------|----------|--------|----------|----------------|-----------|-------------|----------|----------|---------|---------------------|------------|----------|--------------|-------------|----------|------------|-----------|-------|--------------|-----------|-----------------|
| SAME EL ESCATION           | IDENTIFIER/                  | DATE                   | Al      | Sb       | As       | Ва     | Be       | R              | Cd        | Cr          | Со       | Cu       | CN      | Fe                  | Pb         | Mn       | Hg           | Мо          | Ni       | Se         | Ag        | S     | TI           | Zn        | LABORATORY      |
|                            | DESCRIPTION                  |                        | Α.      | 35       |          | Du     | BC       |                | Cu        | C.          |          | -        | Cit     | ''                  | ''         |          |              | 1410        |          | JC         | 75        | 3     | l "          | 2.11      | 2.150.15.1.011. |
|                            |                              |                        |         |          |          |        |          |                |           | Sı          | urface V | Vater    | l       |                     |            |          |              |             |          | l          | 1         |       |              |           |                 |
| DC 8.2 W                   | RESE-1002159                 | 10-Nov-10              | <0.0172 | <0.0001  | <0.0066  | 0.02   |          |                | <0.000036 |             | <0.00095 | 0.000 j  |         | 0.030 j             | <0.00002   | 0.0066 j |              | 0.0070 j    | <0.00013 |            | <0.000012 |       | <0.000018    | <0.0019   | SVL             |
| DC 8.2 W                   | RESE-1002159                 | 10-Nov-10              |         |          |          |        |          |                |           |             |          |          |         |                     |            |          | <0.000065    |             |          |            |           |       |              |           | SVL             |
| DC 8.2 W                   | RESE-1002159                 | 10-Nov-10              |         | <0.00012 | <0.0032  |        | 0.0004 j | 0.01 j         | <0.00025  | 0.0059 j    |          | 0.00 j   |         |                     | < 0.003    | 0.104    |              |             | <0.0015  | <0.0038    | <0.0007   |       | <0.000022    | <0.00095  | SVL             |
| DC 8.8 C                   | RESE-1001005                 | 20-May-03              |         | <0.0060  | <0.0030  | 0.0200 | <0.0020  | <0.040         | <0.00010  |             |          | <0.0030  |         |                     | <0.0030    |          | <0.00020     |             | <0.010   |            | <0.00010  |       | <0.0020      | <0.0050   | SVL             |
| DC 8.8 C                   | RESE-1001005                 | 20-May-03              | <0.020  | <0.0060  | <0.0030  |        | <0.0020  |                | <0.00010  |             | <0.0060  | <0.0030  | <0.10   | 0.072               | <0.0050    |          | <0.00020     | <0.0080     |          | <0.0030    | <0.00010  | <1.0  |              | <0.0050   | SVL             |
| DC 8.8 C                   | RESE-1001005                 | 20-May-03              |         | <0.0060  | <0.0030  |        | <0.0020  |                | <0.00010  | <0.0060     |          | <0.0030  |         |                     | <0.0030    | 0.0106   |              |             | <0.010   | <0.0030    | <0.00010  |       | <0.0020      | <0.0050   | SVL             |
| DC 8.8 C                   | RESE-1001018                 | 21-Aug-03              |         | <0.0060  | 0.0050   | 0.0247 | <0.0020  |                | <0.00010  | <0.0060     |          | <0.0030  |         |                     | <0.0030    |          | <0.00020     |             | <0.010   |            | <0.00010  |       | <0.0020      | <0.0050   | SVL             |
| DC 8.8 C                   | RESE-1001018                 | 21-Aug-03<br>21-Aug-03 | <0.020  | <0.0060  | 0.0050   |        | <0.0020  | <0.040         | <0.00010  |             | <0.0060  | <0.0030  | <0.010  | 0.115               | <0.0050    |          | <0.00020     | <0.0080     |          | <0.0060    | <0.00010  | <1.0  | <0.0020      | <0.0050   | SVL             |
| DC 8.8 C                   | RESE-1001018                 | 21-Aug-03<br>21-Aug-03 |         | <0.0060  | 0.0050   |        | <0.0020  |                | <0.00010  | <0.0060     |          | <0.0030  |         |                     | <0.0030    | 0.0544   |              |             | <0.010   | <0.0030    | <0.00010  |       |              | <0.0050   | SVL             |
| DC 8.8 C                   | RESE-1001042                 | 12-Nov-03              |         | <0.0030  | 0.0030   | 0.0247 | <0.0020  |                | <0.00010  | <0.0060     |          | <0.0030  |         |                     | <0.0030    |          | <0.00020     |             | <0.010   |            | <0.00010  |       | <0.0020      | <0.0050   | SVL             |
| DC 8.8 C                   | RESE-1001042                 | 12-Nov-03              | <0.020  | <0.0030  | <0.0030  |        | <0.0020  | <0.040         | <0.00010  |             | <0.0060  | <0.0030  |         | 0.094               | <0.0050    |          | <0.00020     | <0.0080     |          | <0.0030    | <0.00010  | <1.0  | <0.0020      | <0.0050   | SVL             |
| DC 8.8 C                   | RESE-1001042                 | 12-Nov-03              |         | <0.0030  | <0.0030  |        | <0.0020  |                | <0.00010  | <0.0060     |          | <0.0030  |         |                     | <0.0030    | 0.0171   |              |             | <0.010   | <0.0030    | <0.00010  |       |              | <0.0050   | SVL             |
|                            |                              |                        |         | <0.00030 | 0.0011 j | 0.0129 | <0.00020 |                | 0.00036   | <0.00030    |          | 0.0026 j |         |                     | <0.0010    |          | <0.00020     |             | 0.0049 j |            | <0.00010  |       | <0.00040     | 0.00028 j | SVL             |
| DC 8.8 C                   | RESE-1001062<br>RESE-1001062 | 17-Feb-04<br>17-Feb-04 | 0.118   | <0.00030 | 0.0011 j | 0.0123 | <0.00020 | <0.0070        | <0.00010  |             | <0.00070 | 0.0039   |         | 0.114               | <0.0010    |          | <0.00020     | 0.0031 j    |          | <0.00080   | <0.00010  | <1.0  | <0.00040     | 0.00020 j | SVL             |
| DC 8.8 C                   | RESE-1001062                 | 17-Feb-04<br>17-Feb-04 |         | <0.00030 | 0.0011 j |        | <0.00020 |                | <0.00010  | <0.00030    |          | 0.0023 j |         |                     | <0.0010    | 0.0076   |              |             | 0.0027 j | <0.00080   | <0.00010  |       |              | 0.00063 j | SVL             |
|                            |                              |                        |         | <0.0030  | <0.0030  | 0.0200 | <0.0020  |                | <0.00010  | <0.0060     |          | <0.0030  |         |                     | <0.0030    |          | <0.00020     |             | <0.010   |            | <0.00010  |       | <0.0020      | <0.0050   | SVL             |
| DC 8.8 C                   | RESE-1001078                 | 21-May-04              | <0.020  | <0.0030  | <0.0030  | 0.0200 | <0.0020  | <0.040         | <0.00010  |             | <0.0060  | <0.0030  | <0.010  | 0.086               | <0.0030    |          | <0.00020     | <0.0080     |          | <0.0030    | <0.00010  | <1.0  | <0.0020      | <0.0050   | SVL             |
| DC 8.8 C                   | RESE-1001078<br>RESE-1001078 | 21-May-04              |         | <0.0030  | <0.0030  |        | <0.0020  |                | <0.00010  | <0.0060     |          | 0.0034   |         |                     | <0.0030    | 0.0181   |              |             | <0.010   | <0.0030    | <0.00010  |       |              | <0.0050   | SVL             |
| DC 8.8 C                   |                              | 21-May-04              |         | <0.0030  | 0.0050   | 0.0262 | <0.0020  |                | <0.00010  | <0.0060     |          | <0.0030  |         |                     | <0.0030    |          | <0.00020     |             | <0.010   | -0.0000    | <0.00010  |       | <0.0020      | <0.0050   | SVL             |
| DC 8.8 C                   | RESE-1001151                 | 16-Aug-04              | 0.020   | <0.0030  | 0.0050   | 0.0202 | <0.0020  | <0.040         | 0.00010   | <0.0000     | <0.0060  | <0.0030  |         | 0.212               | <0.0030    |          | <0.00020     | <0.0080     | <0.010   | <0.0030    | <0.00010  | <1.0  | <0.0020      | <0.0050   | SVL             |
| DC 8.8 C                   | RESE-1001151                 | 16-Aug-04              | 0.020   | <0.0030  | 0.0030   |        | <0.0020  |                | <0.00010  | <0.0060     |          | <0.0030  |         | 0.212               | <0.0030    | 0.0619   |              |             | <0.010   | <0.0030    | <0.00010  |       |              | <0.0050   | SVL             |
| DC 8.8 C                   | RESE-1001151                 | 16-Aug-04              |         | <0.0030  | <0.0030  | 0.0229 | <0.0020  |                | <0.00010  | <0.0060     |          | <0.010   |         |                     | <0.0030    | 0.0013   | <0.00020     |             | <0.010   | -0.0000    | <0.00010  |       | <0.0020      | <0.010    | SVL             |
| DC 8.8 C                   | RESE-1001174                 | 16-Nov-04              | <0.030  | <0.0030  | <0.0030  | 0.0229 | <0.0020  | <0.040         | <0.00010  | <0.0000<br> | <0.0060  | <0.010   |         | 0.151               | <0.0030    |          | <0.00020     | <0.0080     | <0.010   | <0.0030    | <0.00010  | <1.0  | <0.0020      | <0.010    | SVL             |
| DC 8.8 C                   | RESE-1001174                 | 16-Nov-04              | 40.000  | <0.0030  | <0.0030  |        | <0.0020  |                | <0.00010  | <0.0060     |          | <0.010   |         | 0.131               | <0.0030    | 0.0242   |              |             | <0.010   | <0.0030    | <0.00010  |       |              | <0.010    | SVL             |
| DC 8.8 C                   | RESE-1001174                 | 16-Nov-04              |         | <0.00300 | 0.00340  | 0.0119 | <0.00200 |                | <0.00020  | <0.00600    |          | 0.0130   |         |                     | <0.00300   |          | <0.00020     |             | <0.0100  | -0.0000    | <0.00010  |       | <0.00200     | <0.0100   | SVL             |
| DC 8.8 C                   | RESE-1001197                 | 25-Feb-05              | 0.905   | <0.00300 | 0.00340  | 0.0119 | <0.00200 | <0.0400        | <0.00020  |             | <0.00600 | 0.0150   |         | 0.454               | <0.00300   |          | <0.00020     | <0.00800    |          | <0.00300   | <0.00010  | <1.00 | <0.00200     | <0.0100   | SVL             |
| DC 8.8 C                   | RESE-1001197                 | 25-Feb-05              | 0.903   | <0.00300 | 0.00300  |        | <0.00200 | ~0.0400        | <0.00020  | <0.00600    |          | 0.0130   |         | 0.404               | <0.00300   | 0.00790  |              | ~0.00000    | <0.0100  | <0.00300   | <0.00010  |       |              | <0.0100   | SVL             |
| DC 8.8 C                   | RESE-1001197                 | 25-Feb-05              |         | <0.00300 | <0.00370 | 0.0184 | <0.00200 |                | <0.00020  | <0.00600    |          | <0.0100  |         |                     | <0.00300   |          | <0.00020     |             | <0.0100  | 40.00000   | <0.00010  |       | <0.00200     | <0.0100   | SVL             |
| DC 8.8 C                   | RESE-1001211                 | 11-May-05              | 0.056   | <0.00300 | <0.00300 | 0.0104 | <0.00200 | <0.0400        | <0.00020  | <0.00000    | <0.00600 | <0.0100  |         | 0.121               | <0.00300   |          | <0.00020     | <0.00800    | <0.0100  | <0.00300   | <0.00010  | <1.00 | <0.00200     | <0.0100   | SVL             |
| DC 8.8 C                   | RESE-1001211                 | 11-May-05              | 0.030   | <0.00300 | <0.00300 |        | <0.00200 | <b>~0.0400</b> | <0.00020  | <0.00600    | <0.00000 | <0.0100  |         | 0.121               | <0.00300   | 0.0109   | ~0.00020<br> | <0.00000    | <0.0100  | <0.00300   |           | ~1.00 | <0.00200<br> | <0.0100   | SVL             |
| DC 8.8 C                   | RESE-1001211                 | 11-May-05              |         | <0.00300 | 0.0057   | 0.0236 | <0.00200 |                | <0.00020  | <0.0060     |          | <0.0100  |         |                     | <0.00300   | 0.0103   | <0.0002      |             | <0.0100  | 40.00000   | 10.00010  |       | <0.00200     | <0.0100   | SVL             |
| DC 8.8 C                   | RESE-1001228                 | 16-Aug-05              | 0.205   | <0.00300 | 0.0057   | 0.0230 | <0.0020  | <0.04          | 0.00010   | <0.0000     | <0.0060  | 0.012    |         | 0.203               | <0.00300   |          | <0.0002      | <0.0080     | <0.0100  | <0.00300   | <0.00010  | <1    | <0.00200     | <0.0100   | SVL             |
| DC 8.8 C                   | RESE-1001228                 | 16-Aug-05              | 0.205   | <0.00300 | 0.0052   |        | <0.0020  | ~0.04<br>      | <0.00010  | <0.0060     | <0.0000  | <0.012   |         | 0.203               | <0.00300   | 0.0297   | <0.0002<br>  | ~0.0060<br> | <0.0100  | <0.00300   |           |       | <0.00200<br> | <0.0100   | SVL             |
| DC 8.8 C                   | RESE-1001228                 | 16-Aug-05              |         |          |          |        | <0.0020  |                |           |             |          |          |         |                     |            |          |              |             |          | <0.00300   |           |       |              |           |                 |
| Government Springs         | RESE-1002112                 | 15-Dec-09              | <0.080  | <0.00300 | <0.025   | 0.0643 |          |                | <0.000024 |             | <0.0060  | 0.00231  |         | <0.060              | 0.000172 j | <0.0040  |              | <0.0080     | 0.00161  |            | <0.000100 |       | <0.00100     | <0.0100   | SVL             |
| Government Springs         | RESE-1002112                 | 15-Dec-09              |         |          |          |        |          |                |           |             |          |          |         |                     |            |          | <0.00020     |             |          |            |           |       |              |           | SVL             |
| Government Springs         | RESE-1002112                 | 15-Dec-09              |         | <0.00300 | <0.025   |        | <0.00200 | <0.040         | <0.0020   | <0.0060     |          | <0.010   |         |                     | <0.00300   | <0.0040  |              |             | <0.010   | 0.00060 jd |           |       | <0.00100     |           | SVL             |
| Government Springs         | RESE-1002181                 | 29-Aug-11              | <0.080  | <0.00300 | <0.025   |        |          |                | <0.000026 |             | <0.0060  | 0.00343  |         | <0.060              | 0.000158   | <0.0040  |              | <0.008      | 0.00245  |            | <0.000100 |       | <0.00100     | <0.0100   | SVL             |
| Government Springs         | RESE-1002181                 | 29-Aug-11              |         | <0.00300 | <0.025   | 0.0612 | <0.0020  | <0.040         | <0.0020   | <0.0060     |          | <0.010   |         |                     | <0.00300   | <0.0040  | <0.00020     |             | <0.010   | <0.00070   |           |       | <0.00100     |           | SVL             |
| Government Springs         | RESE-1002199                 | 08-Dec-11              | <0.080  | <0.00300 | <0.025   |        |          |                | <0.000026 |             | <0.0060  | 0.00268  |         | <0.060              | 0.000269   | <0.0040  |              | 0.009       | 0.00341  |            | <0.000100 |       | <0.00100     | <0.0100   | SVL             |
| Government Springs         | RESE-1002199                 | 08-Dec-11              |         | <0.00300 | <0.025   | 0.0654 | <0.0020  | <0.040         | <0.0020   | <0.0060     |          | <0.010   |         |                     | <0.00300   | <0.0040  | <0.00020     |             | <0.010   | <0.00070   | <0.0050   |       | <0.00100     | <0.0100   | SVL             |
| H 0.1 C (Hackberry Canyon) | RESE-1002011                 | 19-Aug-08              | <0.0141 | <0.002   | <0.0066  | 0.0361 | <0.00036 |                | <0.000034 |             | <0.00065 | 0.0033   |         | <0.0202             | 0.000065 j | 0.0112   | <0.000064    | <0.0023     | <0.0023  |            | <0.000017 |       | <0.000018    | <0.0019   | SVL             |
| H 0.1 C (Hackberry Canyon) | RESE-1002011                 | 19-Aug-08              |         | <0.0004  | 0.0074 j |        | <0.00036 | 0.0163 j       | <0.00096  | <0.001      |          | 0.0051 j |         |                     | <0.000172  | 0.0262   | <0.000064    |             | <0.0023  | <0.0004    | <0.00079  |       | <0.000072    | 0.0078 j  | SVL             |



| SAMPLE LOCATION                | SAMPLE       | SAMPLE    |         |           |           |        |          |          |           |           |          | TRACE    | CONSTI | <b>TUENTS</b> <sup>a</sup> | (mg/L)b    |         |          |         |          |            |           |      |          |         | ANALYTICAL |
|--------------------------------|--------------|-----------|---------|-----------|-----------|--------|----------|----------|-----------|-----------|----------|----------|--------|----------------------------|------------|---------|----------|---------|----------|------------|-----------|------|----------|---------|------------|
|                                | IDENTIFIER/  | DATE      | Al      | Sb        | As        | Ва     | Ве       | В        | Cd        | Cr        | Co       | Cu       | CN     | Fe                         | Pb         | Mn      | Hg       | Мо      | Ni       | Se         | Ag        | S    | TI       | Zn      | LABORATORY |
|                                | DESCRIPTION  |           |         |           |           |        |          |          |           |           |          |          |        |                            |            |         |          |         |          |            |           |      |          |         |            |
|                                |              |           |         |           |           |        |          |          |           | S         | urface V | Nater    |        |                            |            |         |          |         |          |            |           |      |          |         |            |
| H 0.1 C (Hackberry Canyon)     | RESE-1002028 | 05-Nov-08 | <0.080  | <0.00300  | <0.025    | 0.0585 | <0.00200 |          | <0.000200 |           | <0.0060  | 0.00123  |        | <0.060                     | <0.00300   | 0.0129  | <0.00020 | <0.0080 | <0.010   |            | <0.000100 |      | <0.00100 | <0.0100 | SVL        |
| H 0.1 C (Hackberry Canyon)     | RESE-1002028 | 05-Nov-08 |         |           |           |        |          |          |           |           |          |          |        |                            |            |         | <0.00020 |         |          |            |           |      |          |         | SVL        |
| H 0.1 C (Hackberry Canyon)     | RESE-1002028 | 05-Nov-08 |         | <0.00300  | <0.025    |        | <0.00200 | <0.040   | <0.0020   | <0.0060   |          | <0.010   |        |                            | <0.00300   | 0.0204  |          |         | <0.010   | <0.00300   | <0.0050   |      | <0.00100 | <0.0100 | SVL        |
| H 0.1 C (Hackberry Canyon)     | RESE-1002061 | 24-Feb-09 | <0.080  | <0.00300  | <0.025    | 0.0254 | <0.00200 |          | <0.000042 |           | <0.0060  | 0.00388  |        | <0.060                     | 0.000054 j | <0.0040 |          | <0.0080 | <0.00100 |            | <0.000100 |      | <0.00100 | <0.0100 | SVL        |
| H 0.1 C (Hackberry Canyon)     | RESE-1002061 | 24-Feb-09 |         |           |           |        |          |          |           |           |          |          |        |                            |            |         | <0.00020 |         |          |            |           |      |          |         | SVL        |
| H 0.1 C (Hackberry Canyon)     | RESE-1002061 | 24-Feb-09 |         | <0.00300  | <0.025    |        | <0.00200 | <0.040   | <0.00020  | <0.0060   |          | <0.010   |        |                            | <0.00300   | <0.0040 |          |         | <0.010   | <0.00041   | <0.0050   |      | <0.00100 | <0.0100 | SVL        |
| H 0.1 C (Hackberry Canyon)     | RESE-1002096 | 19-May-09 | <0.080  | <0.00300  | <0.025    |        | <0.00200 |          | <0.000024 |           | <0.0060  | 0.00218  |        | <0.060                     | <0.000053  | 0.0324  |          | <0.0080 | <0.00100 |            | <0.000100 |      | <0.00100 | <0.0100 | SVL        |
| H 0.1 C (Hackberry Canyon)     | RESE-1002096 | 19-May-09 |         |           |           |        |          |          |           |           |          |          |        |                            |            |         | <0.00020 |         |          |            |           |      |          |         | SVL        |
| H 0.1 C (Hackberry Canyon)     | RESE-1002096 | 19-May-09 |         | <0.00300  | <0.025    | 0.0568 | <0.00200 | <0.040   | <0.0020   | <0.0060   |          | <0.010   |        |                            | <0.00300   | 0.0958  |          |         | <0.010   | 0.00034 jd | <0.0050   |      | <0.00100 | <0.0100 | SVL        |
| H 0.1 C (Hackberry Canyon)     | RESE-1002158 | 10-Nov-10 | <0.080  | <0.00300  | <0.025    | 0.0421 |          |          | <0.000024 |           | <0.0060  | 0.00238  |        | <0.060                     | <0.000019  | 0.0041  |          | <0.0080 | 0.00125  |            | <0.000100 |      | <0.00100 | <0.0100 | SVL        |
| H 0.1 C (Hackberry Canyon)     | RESE-1002158 | 10-Nov-10 |         |           |           |        |          |          |           |           |          |          |        |                            |            |         | <0.00020 |         |          |            |           |      |          |         | SVL        |
| H 0.1 C (Hackberry Canyon)     | RESE-1002158 | 10-Nov-10 |         | <0.00300  | <0.025    |        | <0.00200 | <0.040   | <0.0020   | <0.0060   |          | <0.010   |        |                            | <0.00300   | 0.0044  |          |         | <0.010   | <0.00034   | <0.0050   |      | <0.00100 | <0.0100 | SVL        |
| H 0.1 C (Hackberry Canyon)     | RESE-1002188 | 31-Aug-11 | <0.080  | <0.00300  | <0.025    |        |          |          | <0.000026 |           | <0.0060  | 0.00328  |        | <0.060                     | <0.000042  | 0.0370  |          | <0.008  | <0.00100 |            | <0.000100 |      | <0.00100 | <0.0100 | SVL        |
| H 0.1 C (Hackberry Canyon)     | RESE-1002188 | 31-Aug-11 |         | <0.00300  | <0.025    | 0.0276 | <0.0020  | <0.040   | <0.0020   | <0.0060   |          | <0.010   |        |                            | <0.00300   | 0.0421  | <0.00020 |         | <0.010   | <0.00070   | <0.0050   |      | <0.00100 | <0.0100 | SVL        |
| H 0.1 C (Hackberry Canyon) DUP | RESE-1002189 | 31-Aug-11 | <0.080  | <0.00300  | <0.025    |        |          |          | <0.000026 |           | <0.0060  | 0.00326  |        | <0.060                     | 0.000046   | 0.0380  |          | <0.008  | 0.00129  |            | <0.000100 |      | <0.00100 | <0.0100 | SVL        |
| H 0.1 C (Hackberry Canyon) DUP | RESE-1002189 | 31-Aug-11 |         | <0.00300  | <0.025    | 0.0276 | <0.0020  | <0.040   | <0.0020   | <0.0060   |          | <0.010   |        |                            | <0.00300   | 0.0418  | <0.00020 |         | <0.010   | <0.00070   | <0.0050   |      | <0.00100 | <0.0100 | SVL        |
| H 0.1 C (Hackberry Canyon)     | RESE-1002193 | 30-Nov-11 | <0.080  | <0.00300  | <0.025    |        |          |          | <0.000026 |           | <0.0060  | 0.00305  |        | <0.060                     | 0.000049   | 0.0092  |          | <0.008  | 0.00153  |            | <0.000100 |      | <0.00100 | 0.0216  | SVL        |
| H 0.1 C (Hackberry Canyon)     | RESE-1002193 | 30-Nov-11 |         | <0.00300  | <0.025    | 0.0222 | <0.0020  | <0.040   | <0.0020   | <0.0060   |          | <0.010   |        |                            | <0.00300   | <0.0040 | <0.00020 |         | <0.010   | <0.00070   | <0.0050   |      | <0.00100 | <0.0100 | SVL        |
| Hidden Spring                  | RESE-1001003 | 15-May-03 |         | <0.0060   | <0.0030   | 0.0269 | <0.0020  | <0.040   | <0.00010  |           |          | <0.0030  |        |                            | <0.0030    |         | <0.00020 |         | <0.010   |            | <0.00010  |      | <0.0020  | 0.0095  | SVL        |
| Hidden Spring                  | RESE-1001003 | 15-May-03 | 0.042   | <0.0060   | <0.0030   |        | <0.0020  |          | <0.00010  |           | <0.0060  | <0.0030  | <0.10  | 0.097                      | <0.0050    |         | <0.00020 | 0.0216  |          | <0.0030    | <0.00010  | <1.0 |          | 0.0108  | SVL        |
| Hidden Spring                  | RESE-1001003 | 15-May-03 |         | <0.0060   | <0.0030   |        | <0.0020  |          | <0.00010  | <0.0060   |          | <0.0030  |        |                            | <0.0030    | 0.0225  |          |         | <0.010   | <0.0030    | <0.00010  |      | <0.0020  | 0.0117  | SVL        |
| Hidden Spring                  | RESE-1001015 | 20-Aug-03 |         | <0.0060   | <0.0030   | 0.0273 | <0.0020  |          | <0.00010  | <0.0060   |          | <0.0030  |        |                            | <0.0030    |         | <0.00020 |         | <0.010   |            | <0.00010  |      | <0.0020  | <0.0050 | SVL        |
| Hidden Spring                  | RESE-1001015 | 20-Aug-03 | <0.020  | <0.0060   | <0.0030   |        | <0.0020  | 0.045    | <0.00010  |           | <0.0060  | <0.0030  | <0.010 | 0.213                      | <0.0050    |         | <0.00020 | 0.0092  |          | <0.0030    | <0.00010  | <1.0 | <0.0020  | 0.0172  | SVL        |
| Hidden Spring                  | RESE-1001015 | 20-Aug-03 |         | <0.0060   | <0.0030   |        | <0.0020  |          | <0.00010  | <0.0060   |          | <0.0030  |        |                            | <0.0030    | 0.0211  |          |         | <0.010   | <0.0030    | <0.00010  |      |          | 0.0173  | SVL        |
| Hidden Spring DUP              | RESE-1001016 | 20-Aug-03 |         | <0.0060   | <0.0030   | 0.0271 | <0.0020  |          | <0.00010  | <0.0060   |          | <0.0030  |        |                            | <0.0030    |         | <0.00020 |         | <0.010   |            | <0.00010  |      | <0.0020  | 0.0074  | SVL        |
| Hidden Spring DUP              | RESE-1001016 | 20-Aug-03 | <0.020  | <0.0060   | <0.0030   |        | <0.0020  | 0.040    | <0.00010  |           | <0.0060  | <0.0030  | <0.010 | 0.380                      | <0.0050    |         | <0.00020 | 0.0087  |          | <0.0030    | <0.00010  | <1.0 | <0.0020  | 0.0246  | SVL        |
| Hidden Spring DUP              | RESE-1001016 | 20-Aug-03 |         | <0.0060   | <0.0030   |        | <0.0020  |          | <0.00010  | <0.0060   |          | <0.0030  |        |                            | <0.0030    | 0.0320  |          |         | <0.010   | <0.0030    | <0.00010  |      |          | 0.0328  | SVL        |
| Hidden Spring                  | RESE-1001027 | 03-Nov-03 |         | <0.0030   | <0.0030   | 0.0269 | <0.0020  |          | <0.00010  | <0.0060   |          | <0.0030  |        |                            | <0.0030    |         | <0.00020 |         | <0.010   |            | <0.00010  |      | <0.0020  | 0.0100  | SVL        |
| Hidden Spring                  | RESE-1001027 | 03-Nov-03 | 0.020   | <0.0030   | <0.0030   |        | <0.0020  | 0.049    | <0.00010  |           | <0.0060  | <0.0030  |        | 0.302                      | <0.0050    |         | <0.00020 | 0.0155  |          | <0.0030    | <0.00010  | <1.0 | <0.0020  | 0.0246  | SVL        |
| Hidden Spring                  | RESE-1001027 | 03-Nov-03 |         | <0.0030   | <0.0030   |        | <0.0020  |          | <0.00010  | <0.0060   |          | <0.0030  |        |                            | <0.0030    | 0.0294  |          |         | <0.010   | <0.0030    | <0.00010  |      |          | 0.0283  | SVL        |
| Hidden Spring                  | RESE-1001052 | 09-Feb-04 |         | <0.00050  | 0.00094 j | 0.0228 | <0.00020 |          | <0.00006  | 0.00047 j |          | <0.00210 |        |                            | <0.0010    |         | <0.00020 |         | 0.0021 j |            | <0.00010  |      | <0.00040 | 0.0056  | SVL        |
| Hidden Spring                  | RESE-1001052 | 09-Feb-04 | <0.0060 | 0.00061 j | <0.00060  |        | <0.00020 | 0.0292 j | <0.00006  |           | <0.00070 | <0.00210 |        | 0.0283                     | <0.0010    |         | <0.00020 | 0.0113  |          | <0.00080   |           | <1.0 | 0.0004 j | 0.0066  | SVL        |
| Hidden Spring                  | RESE-1001052 | 09-Feb-04 |         | <0.00050  | 0.0012 j  |        | <0.00020 |          | <0.00006  | 0.00068 j |          | <0.00210 |        |                            | <0.0010    | 0.0034  |          |         | <0.00130 | <0.00080   | <0.00010  |      |          | 0.0069  | SVL        |
| Hidden Spring                  | RESE-1001082 | 24-May-04 |         | <0.0030   | <0.0030   | 0.0265 | <0.0020  |          | <0.00010  | <0.0060   |          | <0.0030  |        |                            | <0.0030    |         | <0.00020 |         | <0.010   |            | <0.00010  |      | <0.0020  | 0.0096  | SVL        |
| Hidden Spring                  | RESE-1001082 | 24-May-04 | 0.066   | <0.0030   | <0.0030   |        | <0.0020  | <0.040   | <0.00010  |           | <0.0060  | <0.0030  | <0.010 | 0.065                      | <0.0030    |         | <0.00020 | 0.0135  |          | <0.0030    | <0.00010  | <1.0 | <0.0020  | 0.0079  | SVL        |
| Hidden Spring                  | RESE-1001082 | 24-May-04 |         | <0.0030   | <0.0030   |        | <0.0020  |          | <0.00010  | <0.0060   |          | <0.0030  |        |                            | <0.0030    | 0.0149  |          |         | <0.010   | <0.0030    | <0.00010  |      |          | 0.0086  | SVL        |
| Hidden Spring                  | RESE-1001097 | 04-Aug-04 |         | <0.0030   | <0.0030   | 0.0278 | <0.0020  |          | <0.00010  | <0.0060   |          | <0.0030  |        |                            | <0.0030    |         | <0.00020 |         | <0.010   |            | <0.00010  |      | <0.0020  | <0.0050 | SVL        |
| Hidden Spring                  | RESE-1001097 | 04-Aug-04 | 0.059   | <0.0030   | <0.0030   |        | <0.0020  | <0.040   | <0.00010  |           | <0.0060  | <0.0030  |        | 0.475                      | <0.0030    |         | <0.00020 | 0.0113  |          | <0.0030    | <0.00010  | <1.0 | <0.0020  | 0.0054  | SVL        |
| Hidden Spring                  | RESE-1001097 | 04-Aug-04 |         | <0.0030   | <0.0030   |        | <0.0020  |          | <0.00010  | <0.0060   |          | 0.0034   |        |                            | <0.0030    | 0.0495  |          |         | <0.010   | <0.0030    | <0.00010  |      |          | <0.0050 | SVL        |
| Hidden Spring                  | RESE-1001162 | 03-Nov-04 |         | <0.0030   | <0.0030   | 0.0267 | <0.0020  |          | <0.00010  | <0.0060   |          | <0.0030  |        |                            | <0.0030    |         | <0.00020 |         | <0.010   |            | <0.00010  |      | <0.0020  | <0.0050 | SVL        |
| Hidden Spring                  | RESE-1001162 | 03-Nov-04 | 0.028   | <0.0030   | <0.0030   |        | <0.0020  | 0.043    | <0.00010  |           | <0.0060  | <0.0030  |        | 0.134                      | <0.0030    |         | <0.00020 | 0.0130  |          | <0.0030    | <0.00010  | <1.0 | <0.0020  | 0.0071  | SVL        |
| Hidden Spring                  | RESE-1001162 | 03-Nov-04 |         | <0.0030   | <0.0030   |        | <0.0020  |          | <0.00010  | <0.0060   |          | <0.0030  |        |                            | <0.0030    | 0.0363  |          |         | <0.010   | <0.0030    | <0.00010  |      |          | 0.0078  | SVL        |



| Hidden Spring Hidden Spring Hidden Spring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SAMPLE IDENTIFIER/ DESCRIPTION  RESE-1001187 | SAMPLE<br>DATE | Al       | Sb        | As       | Pa     | D-       |          | 1 1       |          |          |            |    | <b>TUENTS</b> <sup>a</sup> | 161 -1     |          |           |          |          |            |           |       |           |          | ANALYTICAL  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------|----------|-----------|----------|--------|----------|----------|-----------|----------|----------|------------|----|----------------------------|------------|----------|-----------|----------|----------|------------|-----------|-------|-----------|----------|-------------|
| Hidden Spring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              |                |          |           | 7.3      | Ва     | Be       | В        | Cd        | Cr       | Co       | Cu         | CN | Fe                         | Pb         | Mn       | Hg        | Mo       | Ni       | Se         | Ag        | S     | TI        | Zn       | LABORATORY  |
| Hidden Spring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RESE-1001187                                 |                |          |           |          |        |          |          |           |          |          |            |    |                            |            |          |           |          |          |            |           |       |           |          |             |
| Hidden Spring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RESE-1001187                                 |                |          |           |          |        |          |          |           | Sı       | urface V | /ater      |    |                            |            |          |           |          |          |            |           |       |           |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THEOR TOUTION                                | 09-Feb-05      |          | <0.00300  | <0.00300 | 0.0226 | <0.00200 |          | <0.00020  | <0.00600 |          | <0.0100    |    |                            | <0.00300   |          | <0.00020  |          | <0.0100  |            | <0.00010  |       | <0.00200  | <0.0100  | SVL         |
| Hidden Spring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RESE-1001187                                 | 09-Feb-05      | <0.0300  | <0.00300  | <0.00300 |        | <0.00200 | <0.0400  | <0.00020  |          | <0.00600 | <0.0100    |    | <0.0600                    | <0.00300   |          | <0.00020  | <0.00800 |          | <0.00300   | <0.00010  | <1.00 | <0.00200  | <0.0100  | SVL         |
| The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | RESE-1001187                                 | 09-Feb-05      |          | <0.00300  | <0.00300 |        | <0.00200 |          | <0.00020  | <0.00600 |          | <0.0100    |    |                            | <0.00300   | <0.00400 |           |          | <0.0100  | <0.00300   | <0.00010  |       |           | 0.0110   | SVL         |
| Hidden Spring DUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RESE-1001203                                 | 03-May-05      |          | <0.00300  | <0.00300 | 0.0218 | <0.00200 |          | <0.00020  | <0.00600 |          | <0.0100    |    |                            | <0.00300   |          | <0.00020  |          | <0.0100  |            | <0.00010  |       | <0.00200  | <0.0100  | SVL         |
| Hidden Spring DUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RESE-1001203                                 | 03-May-05      | <0.0300  | <0.00300  | <0.00300 |        | <0.00200 | <0.0400  | <0.00020  |          | <0.00600 | <0.0100    |    | <0.0600                    | <0.00300   |          | <0.00020  | 0.0082   |          | <0.00300   | <0.00010  | <1.00 | <0.00200  | <0.0100  | SVL         |
| Hidden Spring DUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RESE-1001203                                 | 03-May-05      | 1        | <0.00300  | <0.00300 |        | <0.00200 |          | <0.00020  | <0.00600 |          | <0.0100    |    |                            | <0.00300   | <0.00400 |           |          | <0.0100  | <0.00300   | <0.00010  |       |           | 0.012    | SVL         |
| Hidden Spring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RESE-1001202                                 | 03-May-05      |          | <0.00300  | <0.00300 | 0.0216 | <0.00200 |          | <0.00020  | <0.00600 |          | <0.0100    |    |                            | <0.00300   |          | <0.00020  |          | <0.0100  |            | <0.00010  |       | <0.00200  | <0.0100  | SVL         |
| Hidden Spring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RESE-1001202                                 | 03-May-05      | <0.0300  | <0.00300  | <0.00300 |        | <0.00200 | <0.0400  | <0.00020  |          | <0.00600 | <0.0100    |    | <0.0600                    | <0.00300   |          | <0.00020  | 0.0082   |          | <0.00300   | <0.00010  | <1.00 | <0.00200  | <0.0100  | SVL         |
| Hidden Spring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RESE-1001202                                 | 03-May-05      |          | <0.00300  | <0.00300 |        | <0.00200 |          | <0.00020  | <0.00600 |          | <0.0100    |    |                            | <0.00300   | <0.00400 |           |          | <0.0100  | <0.00300   | <0.00010  |       |           | <0.0100  | SVL         |
| Hidden Spring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RESE-1001220                                 | 03-Aug-05      |          | <0.00300  | <0.00300 | 0.0239 | <0.0020  |          | <0.00020  | <0.0060  |          | <0.0100    |    |                            | <0.00300   |          | <0.0002   |          | <0.0100  |            | <0.00010  |       | <0.00200  | <0.0100  | SVL         |
| Hidden Spring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RESE-1001220                                 | 03-Aug-05      | <0.030   | <0.0030   | <0.00300 |        | <0.0020  | <0.04    | <0.00010  |          | <0.0060  | <0.0100    |    | <0.060                     | <0.0030    |          | <0.0002   | <0.0080  |          | <0.0030    | <0.00010  | <1    | <0.00200  | <0.0100  | SVL         |
| Hidden Spring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RESE-1001220                                 | 03-Aug-05      |          | <0.00300  | <0.00300 |        | <0.0020  |          | <0.00020  | <0.0060  |          | <0.0100    |    |                            | <0.00300   | <0.0040  |           |          | <0.0100  | <0.00300   | <0.00010  |       |           | <0.0100  | SVL         |
| Hidden Spring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RESE-1002008                                 | 19-Aug-08      | <0.0141  | <0.002    | <0.0066  | 0.0216 | <0.00036 |          | <0.000034 |          | <0.00065 | 0.000311 j |    | 0.0235 j                   | <0.000043  | 0.0113   | <0.000064 | <0.0023  | <0.0023  |            | <0.000017 |       | <0.000018 | 0.004 j  | SVL         |
| Hidden Spring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RESE-1002008                                 | 19-Aug-08      |          | <0.0004   | <0.0065  |        | <0.00036 | 0.0385 j | <0.00096  | 0.0046 j |          | 0.0281     |    |                            | 0.0331     | 0.0789   | <0.000064 |          | 0.0028 j | <0.005     | <0.00079  |       | <0.000072 | 0.162    | SVL         |
| Hidden Spring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RESE-1002030                                 | 06-Nov-08      | <0.080   | <0.00300  | <0.025   | 0.0215 | <0.00200 |          | <0.000200 |          | <0.0060  | <0.00100   |    | <0.060                     | <0.00300   | <0.0040  | <0.00020  | <0.0080  | <0.010   |            | <0.000100 |       | <0.00100  | <0.0100  | SVL         |
| Hidden Spring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RESE-1002030                                 | 06-Nov-08      |          |           |          |        |          |          |           |          |          |            |    |                            |            |          | <0.00020  |          |          |            |           |       |           |          | SVL         |
| Hidden Spring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RESE-1002030                                 | 06-Nov-08      |          | <0.00300  | <0.025   |        | <0.00200 | <0.040   | <0.0020   | <0.0060  |          | <0.010     |    |                            | <0.00300   | 0.0040   |           |          | <0.010   | <0.00300   | <0.0050   |       | <0.00100  | <0.0100  | SVL         |
| Hidden Spring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RESE-1002045                                 | 10-Feb-09      | <0.080   | <0.00300  | <0.025   | 0.0218 | <0.00200 |          | <0.000034 |          | <0.0060  | <0.00100   |    | <0.060                     | <0.000043  | <0.0040  |           | 0.0256   | 0.00111  |            | <0.000100 |       | <0.00100  | <0.0100  | SVL         |
| Hidden Spring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RESE-1002045                                 | 10-Feb-09      |          |           |          |        |          |          |           |          |          |            |    |                            |            |          | <0.00020  |          |          |            |           |       |           |          | SVL         |
| Hidden Spring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RESE-1002045                                 | 10-Feb-09      |          | <0.00300  | <0.025   |        | <0.00200 | <0.040   | <0.0020   | <0.0060  |          | <0.010     |    |                            | <0.00300   | <0.0040  |           |          | <0.010   | 0.00070 jd | <0.0050   |       | <0.00100  | <0.0100  | SVL         |
| Hidden Spring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RESE-1002086                                 | 12-May-09      | <0.080   | <0.00300  | <0.025   |        | <0.00200 |          | <0.000024 |          | <0.0060  | <0.00100   |    | <0.060                     | 0.000689 j | 0.0091   |           | <0.0080  | <0.00100 |            | <0.000100 |       | <0.00100  | <0.0100  | SVL         |
| Hidden Spring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RESE-1002086                                 | 12-May-09      |          |           |          |        |          |          |           |          |          |            |    |                            |            |          | <0.00020  |          |          |            |           |       |           |          | SVL         |
| Hidden Spring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RESE-1002086                                 | 12-May-09      |          | <0.00300  | <0.025   | 0.0232 | <0.00200 | <0.040   | <0.0020   | <0.0060  |          | <0.010     |    |                            | <0.00300   | 0.0151   |           |          | <0.010   | 0.00119 jd | <0.0050   |       | <0.00100  | 0.0171   | SVL         |
| Hidden Spring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RESE-1002116                                 | 12-Feb-10      | <0.080   | <0.00300  | <0.025   | 0.0203 |          |          | <0.000024 |          | <0.0060  | <0.00100   |    | <0.060                     | 0.000054 j | <0.0040  |           | <0.0080  | 0.00124  |            | <0.000100 |       | <0.00100  | <0.0100  | SVL         |
| Hidden Spring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RESE-1002116                                 | 12-Feb-10      |          |           |          |        |          |          |           |          |          |            |    |                            |            |          | <0.00020  |          |          |            |           |       |           |          | SVL         |
| Hidden Spring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RESE-1002116                                 | 12-Feb-10      |          | <0.00300  | <0.025   |        | <0.00200 | <0.040   | <0.0020   | <0.0060  |          | <0.010     |    |                            | <0.00300   | <0.0040  |           |          | <0.010   | 0.00096 jd | <0.0050   |       | <0.00100  | <0.0100  | SVL         |
| Hidden Spring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RESE-1003163                                 | 17-Jul-10      | <0.20    | <0.0030   | 0.0017   | 0.024  | <0.0010  | <0.20    | <0.0010   | <0.0010  | <0.0010  | <0.0010    |    | <0.050                     | <0.0010    | 0.0086   | <0.00020  | <0.0010  | 0.0026   | <0.0020    | <0.0010   |       | <0.0010   | <0.010   | TestAmerica |
| Hidden Spring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RESE-1003163                                 | 17-Jul-10      | <0.20    | <0.0030   | 0.0018   | 0.024  | <0.0010  | <0.20    | <0.0010   | <0.0010  | <0.0010  | <0.0010    |    | 0.050                      | <0.0010    | 0.0087   | 0.0017    | <0.0010  | 0.0023   | <0.0020    | <0.0010   |       | <0.0010   | 0.010    | TestAmerica |
| Hidden Spring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RESE-1002155                                 | 09-Nov-10      | <0.080   | <0.00300  | <0.025   | 0.0222 |          |          | <0.000024 |          | <0.0060  | <0.00100   |    | <0.060                     | 0.000024 j | <0.0040  |           | <0.0080  | 0.00304  |            | <0.000100 |       | <0.00100  | <0.0100  | SVL         |
| Hidden Spring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RESE-1002155                                 | 09-Nov-10      |          |           |          |        |          |          |           |          |          |            |    |                            |            |          | <0.00020  |          |          |            |           |       |           |          | SVL         |
| Hidden Spring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RESE-1002155                                 | 09-Nov-10      |          | <0.00300  | <0.025   |        | <0.00200 | <0.040   | <0.0020   | <0.0060  |          | <0.010     |    |                            | <0.00300   | <0.0040  |           |          | <0.010   | 0.00195 jd | <0.0050   |       | <0.00100  | 0.0187   | SVL         |
| Hidden Spring DUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RESE-1002156                                 | 09-Nov-10      | <0.080   | <0.00300  | <0.025   | 0.0223 |          |          | <0.000024 |          | <0.0060  | <0.00100   |    | <0.060                     | 0.000042 j | <0.0040  |           | <0.0080  | 0.00334  |            | <0.000100 |       | <0.00100  | <0.0100  | SVL         |
| Hidden Spring DUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RESE-1002156                                 | 09-Nov-10      |          |           |          |        |          |          |           |          |          |            |    |                            |            |          | <0.00020  |          |          |            |           |       |           |          | SVL         |
| Hidden Spring DUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RESE-1002156                                 | 09-Nov-10      | 1        | <0.00300  | <0.025   |        | <0.00200 | <0.040   | <0.0020   | <0.0060  |          | <0.010     |    |                            | <0.00300   | 0.0048   |           |          | <0.010   | 0.00090 jd | <0.0050   |       | <0.00100  | 0.0284   | SVL         |
| IC 1.0 C (Iron Canyon)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RESE-1002019                                 | 28-Aug-08      | 0.0527 j | 0.00045 j | <0.0066  | 0.0569 | <0.00036 |          | <0.000034 |          | <0.00065 | 0.0135     |    | 0.0374 j                   | 0.000149 j | 0.0053 j |           | <0.0023  | <0.0023  |            | <0.000017 |       | <0.000018 | 0.0028 j | SVL         |
| IC 1.0 C (Iron Canyon)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RESE-1002019                                 | 28-Aug-08      |          | 0.00042 j | <0.0065  |        | <0.00036 | 0.0328 j | <0.00096  | <0.001   |          | 0.0126     |    |                            | 0.000477 j | 0.0052 j |           |          | <0.0023  | 0.00066 j  | <0.00079  |       | <0.000018 | 0.0092 j | SVL         |
| IC 1.0 C (Iron Canyon)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RESE-1002055                                 | 17-Feb-09      | 0.165    | <0.00300  | <0.025   | 0.0161 | <0.00200 |          | <0.000034 |          | <0.0060  | 0.0208     |    | 0.136                      | 0.000292 j | 0.0134   |           | <0.0080  | 0.00101  |            | <0.000100 |       | <0.00100  | <0.0100  | SVL         |
| IC 1.0 C (Iron Canyon)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RESE-1002055                                 | 17-Feb-09      |          |           |          |        |          |          |           |          |          |            |    |                            |            |          | <0.00020  |          |          |            |           |       |           |          | SVL         |
| IC 1.0 C (Iron Canyon)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RESE-1002055                                 | 17-Feb-09      |          | <0.00300  | <0.025   |        | <0.00200 | <0.040   | <0.0020   | <0.0060  |          | 0.033      |    |                            | <0.00300   | 0.0674   |           |          | <0.010   | 0.00039 jd | <0.0050   |       | <0.00100  | 0.0135   | SVL         |
| IC 1.0 C (Iron Canyon)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RESE-1002085                                 | 12-May-09      | <0.080   | <0.00300  | <0.025   |        | <0.00200 |          | 0.00003 j |          | <0.0060  | 0.00397    |    | 0.070                      | 0.000072 j | 0.0845   |           | <0.0080  | 0.00159  |            | <0.000100 |       | <0.00100  | <0.0100  | SVL         |
| IC 1.0 C (Iron Canyon)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RESE-1002085                                 | 12-May-09      |          |           |          |        |          |          |           |          |          |            |    |                            |            |          | <0.00020  |          |          |            |           |       |           |          | SVL         |
| IC 1.0 C (Iron Canyon)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RESE-1002085                                 | 12-May-09      |          | <0.00300  | <0.025   | 0.0778 | <0.00200 | <0.040   | <0.0020   | <0.0060  |          | <0.010     |    |                            | <0.00300   | 0.274    |           |          | <0.010   | 0.00037 jd | <0.0050   |       | <0.00100  | <0.0100  | SVL         |



| SAMPLE LOCATION                              | SAMPLE       | SAMPLE    |         |           |            |        |          |          |            |           |          | TRACE      | CONSTIT | UENTS   | (mg/L)b    |          |          |          |          |            |             |       |              |             | ANALYTICAL |
|----------------------------------------------|--------------|-----------|---------|-----------|------------|--------|----------|----------|------------|-----------|----------|------------|---------|---------|------------|----------|----------|----------|----------|------------|-------------|-------|--------------|-------------|------------|
| <i>5</i> , <u>12</u> <u>15</u> <u>5</u> , 61 | IDENTIFIER/  | DATE      | Al      | Sb        | As         | Ва     | Be       | В        | Cd         | Cr        | Со       | Cu         | CN      | Fe      | Pb         | Mn       | Hg       | Мо       | Ni       | Se         | Ag          | S     | TI           | Zn          | LABORATORY |
|                                              | DESCRIPTION  |           |         |           |            |        |          |          |            |           |          |            |         |         |            |          |          |          |          |            |             |       |              |             |            |
|                                              |              |           |         |           |            |        |          |          |            | Sı        | urface V | Nater      |         |         |            |          |          |          |          | •          |             |       |              |             |            |
| IC 1.0 C (Iron Canyon)                       | RESE-1002109 | 07-Aug-09 | <0.0192 | 0.00037 j | 0.0081 j   | 0.0747 | <0.00024 |          | <0.000024  |           | 0.0025 j | 0.007      |         | 0.24    | 0.000105 j | 0.161    |          | 0.0034 j | 0.0029   |            | <0.000019   |       | <0.000023    | 0.0074 j    | SVL        |
| IC 1.0 C (Iron Canyon)                       | RESE-1002109 | 07-Aug-09 |         | <0.00028  | 0.0046 j   |        | <0.00012 | 0.0333   | <0.00024   | <0.0004   |          | 0.009      |         |         | 0.000281 j | 0.157    |          |          | <0.005   | 0.0004 j   | 0.00034 j   |       | <0.000029    | 0.0017 j    | SVL        |
| IC 1.0 C (Iron Canyon)                       | RESE-1002115 | 16-Dec-09 | <0.080  | <0.00300  | <0.025     | 0.0628 |          |          | 0.000065 j |           | <0.0060  | 0.00664    |         | <0.060  | 0.000089 j | 0.0990   |          | <0.0080  | 0.00165  |            | <0.000100   |       | <0.00100     | 0.0196      | SVL        |
| IC 1.0 C (Iron Canyon)                       | RESE-1002115 | 16-Dec-09 |         |           |            |        |          |          |            |           |          |            |         |         |            |          | <0.00020 |          |          |            |             |       |              |             | SVL        |
| IC 1.0 C (Iron Canyon)                       | RESE-1002115 | 16-Dec-09 |         | <0.00300  | <0.025     |        | <0.00200 | <0.040   | <0.0020    | <0.0060   |          | 0.012      |         |         | <0.00300   | 0.0872   |          |          | <0.010   | 0.00063 jd | <0.0050     |       | <0.00100     | 0.0179      | SVL        |
| IC 1.0 C (Iron Canyon)                       | RESE-1002126 | 17-Feb-10 | <0.080  | <0.00300  | <0.025     | 0.0422 |          |          | <0.000024  |           | <0.0060  | 0.00955    |         | 0.068   | 0.000086 j | <0.0040  |          | <0.0080  | 0.00117  |            | <0.000100   |       | <0.00100     | <0.0100     | SVL        |
| IC 1.0 C (Iron Canyon)                       | RESE-1002126 | 17-Feb-10 |         |           |            |        |          |          |            |           |          |            |         |         |            |          | <0.00020 |          |          |            |             |       |              |             | SVL        |
| IC 1.0 C (Iron Canyon)                       | RESE-1002126 | 17-Feb-10 |         | <0.00300  | <0.025     |        | <0.00200 | <0.040   | <0.0020    | <0.0060   |          | 0.011      |         |         | <0.00300   | 0.0044   |          |          | <0.010   | <0.00030   | <0.0050     |       | <0.00100     | <0.0100     | SVL        |
| IC 1.0 C (Iron Canyon)                       | RESE-1002204 | 09-Dec-11 | <0.080  | <0.00300  | <0.025     |        |          |          | 0.00003    |           | <0.0060  | 0.00894    |         | <0.060  | <0.000042  | <0.0040  |          | <0.008   | 0.00300  |            | <0.000100   |       | <0.00100     | <0.0100     | SVL        |
| IC 1.0 C (Iron Canyon)                       | RESE-1002204 | 09-Dec-11 |         | <0.00300  | <0.025     | 0.0640 | <0.0020  | <0.040   | <0.0020    | <0.0060   |          | 0.012      |         |         | <0.00300   | <0.0040  | <0.00020 |          | <0.010   | <0.00070   | <0.0050     |       | <0.00100     | <0.0100     | SVL        |
| Kane Spring                                  | RESE-1001002 | 15-May-03 |         | <0.0060   | <0.0030    | 0.0493 | <0.0020  | 0.075    | <0.00010   |           |          | <0.0030    |         |         | <0.0030    |          | <0.00020 |          | <0.010   |            | <0.00010    |       | <0.0020      | <0.0050     | SVL        |
| Kane Spring                                  | RESE-1001002 | 15-May-03 | <0.020  | <0.0060   | 0.0030     |        | <0.0020  |          | <0.00010   |           | <0.0060  | 0.0041     | <0.10   | 0.026   | <0.0050    |          | <0.00020 | 0.0279   |          | <0.0030    | <0.00010    | <1.0  |              | <0.0050     | SVL        |
| Kane Spring                                  | RESE-1001002 | 15-May-03 |         | <0.0060   | <0.0030    |        | <0.0020  |          | <0.00010   | <0.0060   |          | 0.0042     |         |         | <0.0030    | <0.0020  |          |          | <0.010   | <0.0030    | <0.00010    |       | <0.0020      | <0.0050     | SVL        |
| Kane Spring                                  | RESE-1001014 | 20-Aug-03 |         | <0.0060   | 0.0030     | 0.0407 | <0.0020  |          | <0.00010   | <0.0060   |          | <0.0030    |         |         | <0.0030    |          | <0.00020 |          | <0.010   |            | <0.00010    |       | <0.0020      | <0.0050     | SVL        |
| Kane Spring                                  | RESE-1001014 | 20-Aug-03 | <0.020  | <0.0060   | <0.0030    |        | <0.0020  | 0.088    | <0.00010   |           | <0.0060  | <0.0030    | <0.010  | <0.020  | <0.0050    |          | <0.00050 | 0.0082   |          | <0.0030    | <0.00010    | <1.0  | <0.0020      | <0.0050     | SVL        |
| Kane Spring                                  | RESE-1001014 | 20-Aug-03 |         | <0.0060   | <0.0030    |        | <0.0020  |          | <0.00010   | <0.0060   |          | <0.0030    |         |         | <0.0030    | <0.0020  |          |          | <0.010   | <0.0030    | <0.00010    |       |              | <0.0050     | SVL        |
| Kane Spring                                  | RESE-1001026 | 03-Nov-03 |         | <0.0030   | 0.0030     | 0.0331 | <0.0020  |          | <0.00010   | <0.0060   |          | 0.0033     |         |         | <0.0030    |          | <0.00020 |          | <0.010   |            | <0.00010    |       | <0.0020      | 0.0071      | SVL        |
| Kane Spring                                  | RESE-1001026 | 03-Nov-03 | 0.029   | <0.0030   | 0.0040     |        | <0.0020  | 0.069    | <0.00010   |           | <0.0060  | 0.0043     |         | 0.037   | <0.0050    |          | <0.00020 | 0.0204   |          | <0.0030    | <0.00010    | <1.0  | <0.0020      | 0.0094      | SVL        |
| Kane Spring                                  | RESE-1001026 | 03-Nov-03 |         | <0.0030   | 0.0030     |        | <0.0020  |          | <0.00010   | <0.0060   |          | 0.0041     |         |         | <0.0030    | 0.0234   |          |          | <0.010   | <0.0030    | <0.00010    |       |              | 0.0100      | SVL        |
| Kane Spring                                  | RESE-1001051 | 09-Feb-04 |         | <0.0010   | <0.00060   | 0.0317 | <0.00020 |          | <0.00006   | 0.00061 j |          | 0.0026 j   |         |         | <0.0010    |          | <0.00020 |          | 0.0023 j |            | <0.00010    |       | <0.00040     | 0.001 j     | SVL        |
| Kane Spring                                  | RESE-1001051 | 09-Feb-04 | <0.0060 | <0.00050  | 0.0018 j   |        | <0.00020 | 0.0285 j | <0.00006   |           | <0.00070 | 0.0031     |         | <0.0130 | <0.0010    |          | <0.00020 | 0.0132   |          | <0.00080   | <0.00010    | <1.0  | <0.00040     | 0.00052 j   | SVL        |
| Kane Spring                                  | RESE-1001051 | 09-Feb-04 |         | <0.00050  | 0.0019 j   |        | <0.00020 |          | <0.00006   | 0.00065 j |          | 0.0029 j   |         |         | <0.0010    | 0.0034   |          |          | <0.00130 | <0.00080   | <0.00010    |       |              | 0.00077 j   | SVL        |
| Kane Spring                                  | RESE-1001161 | 03-Nov-04 |         | <0.0030   | <0.0030    | 0.0267 | <0.0020  |          | <0.00010   | <0.0060   |          | 0.0042     |         |         | <0.0030    |          | <0.00020 |          | <0.010   |            | <0.00010    |       | <0.0020      | <0.0050     | SVL        |
| Kane Spring                                  | RESE-1001161 | 03-Nov-04 | <0.020  | <0.0030   | <0.0030    |        | <0.0020  | 0.050    | <0.00010   |           | <0.0060  | 0.0050     |         | 0.077   | <0.0030    |          | <0.00020 | 0.0184   |          | <0.0030    | <0.00010    | <1.0  | <0.0020      | <0.0050     | SVL        |
| Kane Spring                                  | RESE-1001161 | 03-Nov-04 |         | <0.0030   | <0.0030    |        | <0.0020  |          | <0.00010   | <0.0060   |          | 0.0047     |         |         | <0.0030    | 0.0081   |          |          | <0.010   | <0.0030    | <0.00010    |       |              | <0.0050     | SVL        |
| Kane Spring                                  | RESE-1001186 | 09-Feb-05 |         | <0.00300  | 0.00330    | 0.0291 | <0.00200 |          | <0.00020   | <0.00600  |          | <0.0100    |         |         | <0.00300   |          | <0.00020 |          | <0.0100  |            | <0.00010    |       | <0.00200     | <0.0100     | SVL        |
| Kane Spring                                  | RESE-1001186 | 09-Feb-05 | <0.0300 | <0.00300  | 0.00340    |        | <0.00200 | 0.0410   | <0.00020   |           | <0.00600 | <0.0100    |         | <0.0600 | <0.00300   |          | <0.00020 | <0.00800 |          | <0.00300   | <0.00010    | <1.00 | <0.00200     | <0.0100     | SVL        |
| Kane Spring                                  | RESE-1001186 | 09-Feb-05 |         | <0.00300  | 0.00300    |        | <0.00200 |          | <0.00020   | <0.00600  |          | <0.0100    |         |         | <0.00300   | <0.00400 |          |          | <0.0100  | <0.00300   | <0.00010    |       |              | <0.0100     | SVL        |
| Kane Spring                                  | RESE-1001201 | 03-May-05 |         | <0.00300  | <0.00300   | 0.0438 | <0.00200 |          | <0.00020   | <0.00600  |          | <0.0100    |         |         | <0.00300   |          | <0.00020 |          | <0.0100  |            | <0.00010    |       | <0.00200     | <0.0100     | SVL        |
| Kane Spring                                  | RESE-1001201 | 03-May-05 | 0.030   | <0.00300  | <0.00300   |        | <0.00200 | 0.056    | <0.00020   |           | <0.00600 | <0.0100    |         | <0.0600 | <0.00300   |          | <0.00020 | 0.0104   |          | <0.00300   | <0.00010    | <1.00 | <0.00200     | <0.0100     | SVL        |
| Kane Spring                                  | RESE-1001201 | 03-May-05 |         | <0.00300  | <0.00300   |        | <0.00200 |          | <0.00020   | <0.00600  |          | <0.0100    |         |         | <0.00300   | 0.0047   |          |          | <0.0100  | <0.00300   | <0.00010    |       |              | <0.0100     | SVL        |
| Kane Spring                                  | RESE-1001218 | 03-Aug-05 |         | <0.00300  | 0.0047     | 0.0511 | <0.0020  |          | <0.00020   | <0.0060   |          | <0.0100    |         |         | <0.00300   |          | <0.0002  |          | <0.0100  |            | <0.00010    |       | <0.00200     | <0.0100     | SVL        |
| Kane Spring                                  | RESE-1001218 | 03-Aug-05 | <0.030  | <0.0030   | 0.0050     |        | <0.0020  | 0.09     | <0.00010   |           | <0.0060  | <0.0100    |         | <0.060  | <0.0030    |          | <0.0002  | 0.0135   |          | <0.0030    | <0.00010    | <1    | <0.00200     | <0.0100     | SVL        |
| Kane Spring                                  | RESE-1001218 | 03-Aug-05 |         | <0.00300  |            |        | <0.0020  |          | <0.00020   | <0.0060   |          | <0.0100    |         |         | <0.00300   | 0.0107   |          |          | <0.0100  | <0.00300   | <0.00010    |       |              | <0.0100     | SVL        |
| Kane Spring                                  | RESE-1002022 | 29-Aug-08 | <0.0141 | <0.0001   | 0.0094 j   | 0.0523 | <0.00036 |          | <0.000034  |           | <0.00065 | 0.000339 j |         | <0.0202 | <0.000043  |          |          | 0.0026 j | <0.0023  |            | <0.000017   |       | <0.000018    | 0.0141      | SVL        |
| Kane Spring                                  | RESE-1002022 | 29-Aug-08 |         | <0.0001   | <0.0065    |        | <0.00036 | 0.0443   | <0.00096   | <0.001    |          | <0.0039    |         |         | <0.000043  |          |          |          | <0.0023  | 0.00052 j  | <0.00079    |       | <0.000018    |             | SVL        |
| Kane Spring                                  | RESE-1002035 | 05-Nov-08 | <0.080  | <0.00300  | <0.025     | 0.0499 | <0.00200 |          | <0.000200  |           | <0.0060  | <0.0010    |         | <0.060  | <0.00300   | <0.0040  | <0.00020 | <0.0080  | <0.010   |            | <0.000100   |       | <0.00100     | <0.0100     | SVL        |
| Kane Spring                                  | RESE-1002035 | 05-Nov-08 |         |           | <br>-0.005 |        |          | 0.040    |            |           |          |            |         |         |            |          | <0.00020 |          |          |            | <br><0.0050 |       | <br><0.00100 |             | SVL        |
| Kane Spring                                  | RESE-1002035 | 05-Nov-08 |         | <0.00300  | <0.025     |        | <0.00200 | 0.049    | <0.0020    | <0.0060   |          | <0.010     |         |         | <0.00300   | <0.0040  |          |          | <0.010   | <0.00300   | <0.0050     |       | <0.00100     | <0.0100     | SVL        |
| Kane Spring                                  | RESE-1002046 | 10-Feb-09 | <0.080  | <0.00300  | <0.025     | 0.0447 | <0.00200 |          | <0.000034  |           | <0.0060  | <0.00100   |         | <0.060  | <0.000043  | 0.0064   |          | 0.0272   | 0.00136  |            | <0.000100   |       | <0.00100     | <0.0100     | SVL        |
| Kane Spring                                  | RESE-1002046 | 10-Feb-09 |         |           | <br>-0.005 |        |          | 0.042    |            |           |          |            |         |         |            |          | <0.00020 |          |          | 0.00000 :4 | <br><0.0050 |       | <br><0.00100 | <br>-0.0100 | SVL        |
| Kane Spring                                  | RESE-1002046 | 10-Feb-09 |         | <0.00300  | <0.025     |        | <0.00200 | 0.042    | <0.0020    | <0.0060   |          | <0.010     |         |         | <0.00300   | <0.0040  |          |          | <0.010   | 0.00060 jd | <0.0050     |       | <0.00100     | <0.0100     | SVL        |



| SAMPLE LOCATION                            | SAMPLE                       | SAMPLE                 |                |                  |               |        |                 |               |                  |         |                | TRACE     | CONSTI | <b>TUENTS</b> <sup>a</sup> | (mg/L) <sup>b</sup> |          |          |                 |            |            |           |   |           |             | ANALYTICAL  |
|--------------------------------------------|------------------------------|------------------------|----------------|------------------|---------------|--------|-----------------|---------------|------------------|---------|----------------|-----------|--------|----------------------------|---------------------|----------|----------|-----------------|------------|------------|-----------|---|-----------|-------------|-------------|
|                                            | IDENTIFIER/                  | DATE                   | Al             | Sb               | As            | Ва     | Ве              | В             | Cd               | Cr      | Со             | Cu        | CN     | Fe                         | Pb                  | Mn       | Hg       | Мо              | Ni         | Se         | Ag        | S | TI        | Zn          | LABORATORY  |
|                                            | DESCRIPTION                  |                        |                |                  |               |        |                 |               |                  |         | <br>faaa V     | Mata:     |        |                            |                     |          |          |                 |            |            |           |   |           |             |             |
|                                            |                              |                        |                |                  |               |        |                 |               |                  | 3       | urface V       |           |        |                            |                     |          |          |                 |            |            |           |   |           |             | 0.0         |
| Kane Spring                                | RESE-1002087                 | 13-May-09              | <0.0141        | <0.00022         | 0.0113 j      |        | <0.00036        |               | <0.000024        |         | <0.00065       | 0.00053 j |        | <0.0202                    | <0.000053           | <0.0013  |          | 0.0068 j        | 0.000809 j |            | <0.000019 |   | <0.000023 | <0.0019     | SVL         |
| Kane Spring                                | RESE-1002087                 | 13-May-09              |                |                  |               |        |                 |               |                  |         |                |           |        |                            |                     |          | <0.00006 |                 |            |            |           |   |           |             | SVL         |
| Kane Spring                                | RESE-1002087                 | 13-May-09              |                | <0.00055         | 0.0053 j      | 0.0462 | <0.00018        | 0.0434        | <0.00048         | <0.0005 |                | <0.002    |        |                            | <0.000132           | <0.00065 |          |                 | <0.0011    | <0.0006    | <0.00021  |   | <0.000058 | 0.0031 j    | SVL         |
| Kane Spring                                | RESE-1002117                 | 12-Feb-10              | <0.080         | <0.00300         | <0.025        | 0.0414 |                 |               | <0.000024        |         | <0.0060        | <0.00100  |        | <0.060                     | 0.000112 j          | <0.0040  |          | <0.0080         | 0.00124    |            | <0.000100 |   | <0.00100  | <0.0100     | SVL         |
| Kane Spring                                | RESE-1002117                 | 12-Feb-10              |                |                  |               |        |                 |               |                  |         |                |           |        |                            |                     |          | <0.00020 |                 |            |            |           |   |           |             | SVL         |
| Kane Spring                                | RESE-1002117                 | 12-Feb-10              |                | <0.00300         | <0.025        |        | <0.00200        | 0.044         | <0.0020          | <0.0060 |                | <0.010    |        |                            | <0.00300            | <0.0040  |          |                 | <0.010     | 0.00058 jd | <0.0050   |   | <0.00100  | <0.0100     | SVL         |
| Kane Spring                                | RESE-1003164                 | 17-Jul-10              | <0.20          | <0.0030          | 0.0018        | 0.055  | <0.0010         | <0.20         | <0.0010          | <0.0010 | <0.0010        | <0.0010   |        | <0.050                     | <0.0010             | <0.0050  | <0.00020 | 0.0013          | 0.0021     | <0.0020    | <0.0010   |   | <0.0010   | <0.010      | TestAmerica |
| Kane Spring                                | RESE-1003164                 | 17-Jul-10              | <0.20          | <0.0030          | 0.0017        | 0.054  | <0.0010         | <0.20         | <0.0010          | <0.0010 | <0.0010        | <0.0010   |        | <0.050                     | <0.0010             | <0.0050  | 0.00037  | 0.0014          | 0.0024     | <0.0020    | <0.0010   |   | <0.0010   | <0.010      | TestAmerica |
| Kane Spring                                | RESE-1002154                 | 09-Nov-10              | <0.080         | <0.00300         | <0.025        | 0.0504 |                 |               | <0.000024        |         | <0.0060        | <0.00100  |        | <0.060                     | 0.000023 j          | <0.0040  |          | <0.0080         | 0.00319    |            | <0.000100 |   | <0.00100  | <0.0100     | SVL         |
| Kane Spring                                | RESE-1002154                 | 09-Nov-10              |                |                  |               |        |                 |               |                  |         |                |           |        |                            |                     |          | <0.00020 |                 |            |            |           |   |           |             | SVL         |
| Kane Spring                                | RESE-1002154                 | 09-Nov-10              |                | <0.00300         | <0.025        |        | <0.00200        | 0.049         | <0.0020          | <0.0060 |                | <0.010    |        |                            | <0.00300            | 0.0053   |          |                 | <0.010     | 0.00110 jd | <0.0050   |   | <0.00100  | <0.0100     | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)     | RESE-1002039                 | 13-Nov-08              | <0.080         | <0.00300         | <0.025        | 0.0436 | <0.00200        |               | <0.000200        |         | <0.0060        | 0.00287   |        | <0.060                     | <0.00300            | 0.0272   | <0.00020 | <0.0080         | <0.010     |            | <0.000100 |   | <0.00100  | <0.0100     | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)     | RESE-1002039                 | 13-Nov-08              |                |                  |               |        |                 |               |                  |         |                |           |        |                            |                     |          | <0.00020 |                 |            |            |           |   |           |             | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)     | RESE-1002039                 | 13-Nov-08              |                | <0.00300         | <0.025        |        | <0.00200        | <0.040        | <0.0020          | <0.0060 |                | 0.011     |        |                            | <0.00300            | 0.0282   |          |                 | <0.010     | <0.00300   | <0.0050   |   | <0.00100  | <0.0100     | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)     | RESE-1002072                 | 05-Mar-09              | <0.080         | <0.00300         | <0.025        | 0.0310 | <0.00200        |               | <0.000042        |         | <0.0060        | 0.00704   |        | <0.060                     | <0.000017           | <0.0040  |          | <0.0080         | <0.00100   |            | <0.000100 |   | <0.00100  | <0.0100     | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)     | RESE-1002072                 | 05-Mar-09              |                |                  |               |        |                 |               |                  |         |                |           |        |                            |                     |          | <0.00020 |                 |            |            |           |   |           |             | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)     | RESE-1002072                 | 05-Mar-09              |                | <0.00300         | <0.025        |        | <0.00200        | <0.040        | <0.0020          | <0.0060 |                | 0.011     |        |                            | <0.00300            | <0.0040  |          |                 | <0.010     | 0.00056 jd | <0.0050   |   | <0.00100  | <0.0100     | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)     | RESE-1002093                 | 14-May-09              | <0.0141        | 0.00023 j        | <0.0066       |        | <0.00036        |               | <0.000024        |         | <0.00065       | 0.0045    |        | <0.0202                    | <0.000053           | 0.0035 j |          | 0.0072 j        | 0.0013     |            | <0.000019 |   | <0.000023 | <0.0019     | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)     | RESE-1002093                 | 14-May-09              |                |                  |               |        |                 |               |                  |         |                |           |        |                            |                     |          | <0.00006 |                 |            |            |           |   |           |             | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)     | RESE-1002093                 | 14-May-09              |                | <0.00055         | 0.0042 j      | 0.0351 | <0.00018        | 0.0225        | <0.00048         | <0.0005 |                | 0.0065    |        |                            | <0.000132           | <0.00065 |          |                 | <0.0011    | <0.0006    | <0.00021  |   | <0.000058 | 0.0019 j    | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)     | RESE-1002106                 | 06-Aug-09              | <0.0192        | <0.00022         | 0.0146 j      | 0.0365 | <0.00024        |               | <0.000024        |         | <0.00085       | 0.0023    |        | 0.0742 j                   | <0.000054           | 0.0172   |          | 0.0048 j        | 0.0018     |            | <0.000019 |   | <0.000023 | <0.0026     | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)     | RESE-1002106                 | 06-Aug-09              |                | <0.00028         | <0.0028       |        | <0.00012        | 0.027         | <0.00024         | <0.0004 |                | 0.0177    |        |                            | 0.0021 j            | 0.0243   |          |                 | <0.00095   | 0.00052 j  | <0.00024  |   | <0.000029 |             | SVL         |
|                                            |                              |                        | <0.080         | <0.00300         | <0.025        | 0.0338 |                 |               | <0.000024        |         | <0.0060        | 0.00524   |        | <0.060                     | <0.000053           | 0.0128   |          | <0.0080         | 0.00145    |            | <0.000100 |   | <0.00100  | <0.0100     | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)     | RESE-1002111                 | 15-Dec-09              |                |                  | -0.020        |        |                 |               | -0.000024        |         | -0.0000        | 0.00024   |        | -0.000                     | -0.000000           |          | <0.00020 |                 | 0.00140    |            | -0.000100 |   |           |             | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)     | RESE-1002111<br>RESE-1002111 | 15-Dec-09<br>15-Dec-09 |                | <0.00300         | <0.025        |        | <0.00200        | <0.040        | <0.0020          | <0.0060 |                | <0.010    |        |                            | <0.00300            | 0.0074   |          |                 | <0.010     | 0.00068 jd | <0.0050   |   | <0.00100  | <0.0100     | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)     |                              |                        | <0.080         | <0.00300         | <0.025        | 0.0244 | 0.00200         | 0.0.0         | <0.00024         | 0.0000  | <0.0060        | 0.00922   |        | <0.060                     | <0.000053           | <0.0040  |          | <0.0080         | <0.00100   | 0.00000 ju | <0.000100 |   | <0.00100  | <0.0100     | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)     | RESE-1002124                 | 15-Feb-10              | <b>~</b> 0.000 | <b>~</b> 0.00300 | <b>~0.023</b> | 0.0244 |                 |               | <b>\0.000024</b> |         | <b>\0.0000</b> | 0.00922   |        | <0.000                     | <0.000033           |          | <0.00020 | <b>~</b> 0.0000 | <0.00100   |            | <0.000100 |   |           |             | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)     | RESE-1002124                 | 15-Feb-10              |                | <0.00300         | <0.025        |        | <0.00200        | <0.040        | <0.0020          | <0.0060 |                | 0.013     |        |                            | <0.00300            | <0.0040  |          |                 | <0.010     | 0.00069 jd | <0.0050   |   | <0.00100  | <0.0100     | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)     | RESE-1002124                 | 15-Feb-10              |                |                  |               | 0.0400 | <b>~0.00200</b> | <b>\0.040</b> |                  | <0.0000 |                |           |        | 0.000                      |                     |          |          | -0.0000         |            | 0.00009 ju |           |   |           |             |             |
| LF 0.2 C (Lyons Fork Headwater Spring)     | RESE-1002149                 | 04-Nov-10              | <0.080         | <0.00300         | <0.025        | 0.0426 |                 |               | <0.000024        |         | <0.0060        | 0.00197   |        | 0.330                      | <0.000019           | 0.0468   | <0.00000 | <0.0080         | 0.00341    |            | <0.000100 |   | <0.00100  | <0.0100     | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)     | RESE-1002149                 | 04-Nov-10              |                | <0.00000         | <br><0.00E    |        | on one          | <0.040        | <0.0000          | <0.0000 |                | <0.040    |        |                            | <0.00000            | 0.0474   | <0.00020 |                 | <br>-0.010 | 0.0044034  | <0.0050   |   | <0.00400  | <br><0.0400 | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)     | RESE-1002149                 | 04-Nov-10              |                | <0.00300         | <0.025        |        | <0.00200        | <0.040        | <0.0020          | <0.0060 |                | <0.010    |        |                            | <0.00300            | 0.0474   |          |                 | <0.010     | 0.00110 jd | <0.0050   |   | <0.00100  | <0.0100     | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)     | RESE-1002165                 | 24-Feb-11              | <0.080         | <0.00300         | <0.025        |        |                 |               | <0.000036        |         | <0.0060        | 0.00215   |        | <0.060                     | <0.000019           |          |          | <0.008          | 0.00230    |            | <0.000100 |   | <0.00100  |             | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)     | RESE-1002165                 | 24-Feb-11              |                |                  |               |        |                 |               |                  |         |                |           |        |                            |                     |          | <0.00020 |                 |            |            |           |   |           |             | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)     | RESE-1002165                 | 24-Feb-11              |                | <0.00300         | <0.025        | 0.0355 | <0.00200        | <0.040        | <0.0020          | <0.0060 |                | <0.010    |        |                            | <0.00300            | <0.0040  |          |                 | <0.010     | 0.00069 jd |           |   | <0.00100  | <0.0100     | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)     | RESE-1002174                 | 31-May-11              | <0.080         | <0.00300         | <0.025        |        |                 |               | <0.000026        |         | <0.0060        | 0.00184   |        | <0.060                     | <0.000042           | 0.0054   |          | <0.008          | <0.00100   |            | <0.000100 |   | <0.00100  | <0.0100     | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)     | RESE-1002174                 | 31-May-11              |                |                  |               |        |                 |               |                  |         |                |           |        |                            |                     |          | <0.00020 |                 |            |            |           |   |           |             | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)     | RESE-1002174                 | 31-May-11              |                | <0.00300         | <0.025        | 0.0406 | <0.0020         | <0.040        | <0.0020          | <0.0060 |                | <0.010    |        |                            | <0.00300            | 0.0086   |          |                 | <0.010     | <0.00108   | <0.0050   |   | <0.00100  | <0.0100     | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)     | RESE-1002182                 | 29-Aug-11              | <0.080         | <0.00300         | <0.025        |        |                 |               | <0.000026        |         | <0.0060        | 0.00192   |        | 0.145                      | 0.000102            | 0.213    |          | <0.008          | 0.00286    |            | <0.000100 |   | <0.00100  | <0.0100     | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring)     | RESE-1002182                 | 29-Aug-11              |                | <0.00300         | <0.025        | 0.0688 | <0.0020         | <0.040        | <0.0020          | <0.0060 |                | 0.034     |        |                            | 0.00731             | 0.456    | <0.00020 |                 | <0.010     | <0.00070   | <0.0050   |   | <0.00100  | 0.0270      | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring) DUP | RESE-1002183                 | 29-Aug-11              | <0.080         | <0.00300         | <0.025        |        |                 |               | <0.000026        |         | <0.0060        | 0.00188   |        | 0.154                      | 0.000139            | 0.212    |          | <0.008          | 0.00263    |            | <0.000100 |   | <0.00100  | <0.0100     | SVL         |
| LF 0.2 C (Lyons Fork Headwater Spring) DUP | RESE-1002183                 | 29-Aug-11              |                | <0.00300         | <0.025        | 0.0619 | <0.0020         | <0.040        | <0.0020          | <0.0060 |                | 0.024     |        |                            | 0.00485             | 0.391    | <0.00020 |                 | <0.010     | <0.00070   | <0.0050   |   | <0.00100  | 0.0168      | SVL         |



| SAMPLE LOCATION           | SAMPLE       | SAMPLE    |         |           |          |        |          |          |           |           |          | TRACE        | CONSTI | <b>TUENTS</b> <sup>a</sup> | (mg/L)b    |          |          |          |            |            |           |   |           |          | ANALYTICAL |
|---------------------------|--------------|-----------|---------|-----------|----------|--------|----------|----------|-----------|-----------|----------|--------------|--------|----------------------------|------------|----------|----------|----------|------------|------------|-----------|---|-----------|----------|------------|
|                           | IDENTIFIER/  | DATE      | Al      | Sb        | As       | Ва     | Ве       | В        | Cd        | Cr        | Со       | Cu           | CN     | Fe                         | Pb         | Mn       | Hg       | Мо       | Ni         | Se         | Ag        | S | TI        | Zn       | LABORATORY |
|                           | DESCRIPTION  |           |         |           |          |        |          |          |           |           |          |              |        |                            |            |          |          |          |            |            |           |   |           |          |            |
|                           |              |           |         |           |          |        |          |          |           | Sı        | urface V | <b>Nater</b> |        |                            |            |          |          |          |            |            |           |   |           |          |            |
| MC 3.3 C                  | RESE-1002040 | 13-Nov-08 | <0.080  | <0.00300  | <0.025   | 0.0352 | <0.00200 |          | <0.000200 |           | <0.0060  | 0.00182      |        | <0.060                     | <0.00300   | 0.0137   | <0.00020 | <0.0080  | <0.010     |            | <0.000100 |   | <0.00100  | <0.0100  | SVL        |
| MC 3.3 C                  | RESE-1002040 | 13-Nov-08 |         |           |          |        |          |          |           |           |          |              |        |                            |            |          | <0.00020 |          |            |            |           |   |           |          | SVL        |
| MC 3.3 C                  | RESE-1002040 | 13-Nov-08 |         | <0.00300  | <0.025   |        | <0.00200 | <0.040   | <0.0020   | <0.0060   |          | <0.010       |        |                            | <0.00300   | 0.0254   |          |          | <0.010     | <0.00300   | <0.0050   |   | <0.00100  | <0.0100  | SVL        |
| MC 3.3 C                  | RESE-1002074 | 05-Mar-09 | <0.080  | <0.00300  | <0.025   | 0.0346 | <0.00200 |          | <0.000042 |           | <0.0060  | 0.00247      |        | <0.060                     | <0.000017  | 0.0131   |          | <0.0080  | <0.00100   |            | <0.000100 |   | <0.00100  | <0.0100  | SVL        |
| MC 3.3 C                  | RESE-1002074 | 05-Mar-09 |         |           |          |        |          |          |           |           |          |              |        |                            |            |          | <0.00020 |          |            |            |           |   |           |          | SVL        |
| MC 3.3 C                  | RESE-1002074 | 05-Mar-09 |         | <0.00300  | <0.025   |        | <0.00200 | <0.040   | <0.0020   | <0.0060   |          | <0.010       |        |                            | <0.00300   | 0.0177   |          |          | <0.010     | <0.00030   | <0.0050   |   | <0.00100  | <0.0100  | SVL        |
| MC 3.3 C                  | RESE-1002095 | 14-May-09 | <0.0141 | 0.00028 j | 0.0126 j |        | <0.00036 |          | <0.000024 |           | 0.0012 j | 0.0022       |        | <0.0202                    | <0.000053  | 0.0075 j |          | 0.0059 j | 0.0011     |            | <0.000019 |   | <0.000023 | <0.0019  | SVL        |
| MC 3.3 C                  | RESE-1002095 | 14-May-09 |         |           |          |        |          |          |           |           |          |              |        |                            |            |          | <0.00006 |          |            |            |           |   |           |          | SVL        |
| MC 3.3 C                  | RESE-1002095 | 14-May-09 |         | <0.00055  | 0.0047 j | 0.0409 | <0.00018 | 0.0186 j | <0.00048  | 0.00059 j |          | <0.002       |        |                            | <0.000132  | <0.0157  |          |          | <0.0011    | <0.0006    | <0.00021  |   | <0.000058 | 0.0026 j | SVL        |
| MC 3.3 C                  | RESE-1002104 | 06-Aug-09 | <0.0192 | <0.00022  | 0.0162 j | 0.0292 | <0.00024 |          | <0.000024 |           | <0.00085 | 0.0019 j     |        | 0.0653 j                   | <0.000054  | 0.083    |          | 0.0041 j | 0.0012 j   |            | <0.000019 |   | <0.000023 | <0.0026  | SVL        |
| MC 3.3 C                  | RESE-1002104 | 06-Aug-09 |         | <0.00028  | 0.0051 j |        | <0.00012 | 0.0208   | <0.00024  | <0.0004   |          | 0.0081       |        |                            | 0.0012 j   | 0.614    |          |          | <0.0059    | 0.00047 j  | 0.0004 j  |   | <0.000029 | <0.0013  | SVL        |
| MC 3.3 C                  | RESE-1002114 | 15-Dec-09 | <0.080  | <0.00300  | <0.025   | 0.0367 |          |          | <0.000024 |           | <0.0060  | 0.00214      |        | 0.071                      | <0.000053  | 0.0380   |          | <0.0080  | 0.00136    |            | <0.000100 |   | <0.00100  | <0.0100  | SVL        |
| MC 3.3 C                  | RESE-1002114 | 15-Dec-09 |         |           |          |        |          |          |           |           |          |              |        |                            |            |          | <0.00020 |          |            |            |           |   |           |          | SVL        |
| MC 3.3 C                  | RESE-1002114 | 15-Dec-09 |         | <0.00300  | <0.025   |        | <0.00200 | <0.040   | <0.0020   | <0.0060   |          | <0.010       |        |                            | <0.00300   | 0.0404   |          |          | <0.010     | <0.00030   | <0.0050   |   | <0.00100  | <0.0100  | SVL        |
| MC 3.3 C                  | RESE-1002121 | 15-Feb-10 | <0.080  | <0.00300  | <0.025   | 0.0290 |          |          | <0.000024 |           | <0.0060  | 0.00444      |        | <0.060                     | <0.000053  | 0.0109   |          | <0.0080  | 0.00109    |            | <0.000100 |   | <0.00100  | <0.0100  | SVL        |
| MC 3.3 C                  | RESE-1002121 | 15-Feb-10 |         |           |          |        |          |          |           |           |          |              |        |                            |            |          | <0.00020 |          |            |            |           |   |           |          | SVL        |
| MC 3.3 C                  | RESE-1002121 | 15-Feb-10 |         | <0.00300  | <0.025   |        | <0.00200 | <0.040   | <0.0020   | <0.0060   |          | <0.010       |        |                            | <0.00300   | 0.0116   |          |          | <0.010     | 0.00068 jd | <0.0050   |   | <0.00100  | <0.0100  | SVL        |
| MC 3.3 C                  | RESE-1002151 | 04-Nov-10 | <0.080  | <0.00300  | <0.025   | 0.0160 |          |          | <0.000024 |           | <0.0060  | <0.00100     |        | <0.060                     | <0.000019  | <0.0040  |          | <0.0080  | 0.00201    |            | <0.000100 |   | <0.00100  | <0.0100  | SVL        |
| MC 3.3 C                  | RESE-1002151 | 04-Nov-10 |         |           |          |        |          |          |           |           |          |              |        |                            |            |          | <0.00020 |          |            |            |           |   |           |          | SVL        |
| MC 3.3 C                  | RESE-1002151 | 04-Nov-10 |         | <0.00300  | <0.025   |        | <0.00200 | <0.040   | <0.0020   | <0.0060   |          | <0.010       |        |                            | <0.00300   | <0.0040  |          |          | <0.010     | 0.00080 jd | <0.0050   |   | <0.00100  | <0.0100  | SVL        |
| MC 3.3 C                  | RESE-1002163 | 24-Feb-11 | <0.080  | <0.00300  | <0.025   |        |          |          | <0.000036 |           | <0.0060  | 0.00139      |        | <0.060                     | <0.000019  | 0.0041   |          | <0.008   | 0.00172    |            | <0.000100 |   | <0.00100  | <0.0100  | SVL        |
| MC 3.3 C                  | RESE-1002163 | 24-Feb-11 |         |           |          |        |          |          |           |           |          |              |        |                            |            |          | <0.00020 |          |            |            |           |   |           |          | SVL        |
| MC 3.3 C                  | RESE-1002163 | 24-Feb-11 |         | <0.00300  | <0.025   | 0.0321 | <0.00200 | <0.040   | <0.0020   | <0.0060   |          | <0.010       |        |                            | <0.00300   | 0.0051   |          |          | <0.010     | <0.00034   | <0.0050   |   | <0.00100  | <0.0100  | SVL        |
| MC 3.3 C                  | RESE-1002172 | 31-May-11 | <0.080  | <0.00300  | <0.025   |        |          |          | <0.000026 |           | <0.0060  | 0.00122      |        | <0.060                     | <0.000042  | <0.0040  |          | <0.008   | <0.00100   |            | <0.000100 |   | <0.00100  | <0.0100  | SVL        |
| MC 3.3 C                  | RESE-1002172 | 31-May-11 |         |           |          |        |          |          |           |           |          |              |        |                            |            |          | <0.00020 |          |            |            |           |   |           |          | SVL        |
| MC 3.3 C                  | RESE-1002172 | 31-May-11 |         | <0.00300  | <0.025   | 0.0291 | <0.0020  | <0.040   | <0.0020   | <0.0060   |          | <0.010       |        |                            | <0.00300   | 0.0159   |          |          | <0.010     | <0.00108   | <0.0050   |   | <0.00100  | <0.0100  | SVL        |
| MC 3.3 C                  | RESE-1002186 | 29-Aug-11 | <0.080  | <0.00300  | <0.025   |        |          |          | <0.000026 |           | <0.0060  | 0.00139      |        | 0.184                      | 0.000139   | 0.136    |          | <0.008   | 0.00179    |            | <0.000100 |   | <0.00100  | <0.0100  | SVL        |
| MC 3.3 C                  | RESE-1002186 | 29-Aug-11 |         | <0.00300  | <0.025   | 0.0307 | <0.0020  | <0.040   | <0.0020   | <0.0060   |          | <0.010       |        |                            | <0.00300   | 0.147    | <0.00020 |          | <0.010     | <0.00070   | <0.0050   |   | <0.00100  | <0.0100  | SVL        |
| MC 3.4 W (Wet Leg Spring) | RESE-1002041 | 13-Nov-08 | <0.080  | <0.00300  | <0.025   | 0.0180 | <0.00200 |          | <0.000200 |           | <0.0060  | <0.001       |        | <0.060                     | <0.00300   | <0.0040  | <0.00020 | <0.0080  | <0.010     |            | <0.000100 |   | <0.00100  | <0.0100  | SVL        |
| MC 3.4 W (Wet Leg Spring) | RESE-1002041 | 13-Nov-08 |         |           |          |        |          |          |           |           |          |              |        |                            |            |          | <0.00020 |          |            |            |           |   |           |          | SVL        |
| MC 3.4 W (Wet Leg Spring) | RESE-1002041 | 13-Nov-08 |         | <0.00300  | <0.025   |        | <0.00200 | <0.040   | <0.0020   | <0.0060   |          | <0.010       |        |                            | <0.00300   | 0.0078   |          |          | <0.010     | <0.00300   | <0.0050   |   | <0.00100  | <0.0100  | SVL        |
| MC 3.4 W (Wet Leg Spring) | RESE-1002073 | 05-Mar-09 | <0.080  | <0.00300  | <0.025   | 0.0148 | <0.00200 |          | <0.000042 |           | <0.0060  | <0.00100     |        | <0.060                     | <0.000017  | <0.0040  |          | <0.0080  | <0.00100   |            | <0.000100 |   | <0.00100  | <0.0100  | SVL        |
| MC 3.4 W (Wet Leg Spring) | RESE-1002073 | 05-Mar-09 |         |           |          |        |          |          |           |           |          |              |        |                            |            |          | <0.00020 |          |            |            |           |   |           |          | SVL        |
| MC 3.4 W (Wet Leg Spring) | RESE-1002073 | 05-Mar-09 |         | <0.00300  | <0.025   |        | <0.00200 | <0.040   | <0.0020   | <0.0060   |          | <0.010       |        |                            | <0.00300   | <0.0040  |          |          | <0.010     | <0.00030   | <0.0050   |   | <0.00100  | <0.0100  | SVL        |
| MC 3.4 W (Wet Leg Spring) | RESE-1002094 | 14-May-09 | <0.0141 | <0.00022  | 0.0067 j |        | <0.00036 |          | <0.000024 |           | <0.00065 | 0.000601 j   |        | <0.0202                    | <0.000053  | <0.0013  |          | 0.0045 j | 0.000363 j |            | <0.000019 |   | <0.000023 | <0.0019  | SVL        |
| MC 3.4 W (Wet Leg Spring) | RESE-1002094 | 14-May-09 |         |           |          |        |          |          |           |           |          |              |        |                            |            |          | <0.00006 |          |            |            |           |   |           |          | SVL        |
| MC 3.4 W (Wet Leg Spring) | RESE-1002094 | 14-May-09 |         | <0.00055  | 0.0056 j | 0.0151 | <0.00018 | 0.01 j   | <0.00048  | <0.0005   |          | <0.002       |        |                            | <0.000132  | <0.00065 |          |          | <0.0011    | <0.0006    | <0.00021  |   | <0.000058 | 0.0019 j | SVL        |
| MC 3.4 W (Wet Leg Spring) | RESE-1002105 | 06-Aug-09 | <0.0192 | <0.00022  | 0.0098 j | 0.0167 | <0.00024 |          | <0.000024 |           | <0.00085 | 0.000666 j   |        | 0.0276 j                   | <0.000054  | 0.0042   |          | 0.003 j  | 0.000871 j |            | <0.000019 |   | <0.000023 | <0.0026  | SVL        |
| MC 3.4 W (Wet Leg Spring) | RESE-1002105 | 06-Aug-09 |         | <0.00028  | <0.0028  |        | <0.00012 | 0.0117 j | <0.00024  | 0.00044 j |          | 0.0049 j     |        |                            | 0.000436 j | 0.0319   |          |          | <0.005     | 0.00047 j  | 0.00046 j |   | <0.000029 | <0.0013  | SVL        |
| MC 3.4 W (Wet Leg Spring) | RESE-1002113 | 15-Dec-09 | <0.080  | <0.00300  | <0.025   | 0.0163 |          |          | <0.000024 |           | <0.0060  | <0.00100     |        | <0.060                     | <0.000053  | <0.0040  |          | <0.0080  | <0.00100   |            | <0.000100 |   | <0.00100  | <0.0100  | SVL        |
| MC 3.4 W (Wet Leg Spring) | RESE-1002113 | 15-Dec-09 |         |           |          |        |          |          |           |           |          |              |        |                            |            |          | <0.00020 |          |            |            |           |   |           |          | SVL        |
| MC 3.4 W (Wet Leg Spring) | RESE-1002113 | 15-Dec-09 |         | <0.00300  | <0.025   |        | <0.00200 | <0.040   | <0.0020   | <0.0060   |          | <0.010       |        |                            | <0.00300   | 0.0045   |          |          | <0.010     | <0.00030   | <0.0050   |   | <0.00100  | <0.0100  | SVL        |



| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LE LOCATION                | SAMPLE       | SAMPLE    |         |                  |          |        |          |        |            |         |          | INACE    | CONSIII | <b>'UENTS</b> a | (mg/L)     |          |          |          |          |            |           |        |                   |          | ANALYTICAL  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------|-----------|---------|------------------|----------|--------|----------|--------|------------|---------|----------|----------|---------|-----------------|------------|----------|----------|----------|----------|------------|-----------|--------|-------------------|----------|-------------|
| Surface Water    Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water   Surface Water |                            | •            |           | Al      | Sb               | As       | Ва     | Ве       | В      | Cd         | Cr      | Co       |          |         | _               |            | Mn       | Hg       | Мо       | Ni       | Se         | Ag        | S      | TI                | Zn       | LABORATORY  |
| 14 - 14 - 15 - 15 - 15 - 15 - 15 - 15 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |              |           |         |                  |          |        |          |        |            | Sı      | urface V | Vater    |         |                 |            |          |          |          |          | 1          | <u> </u>  |        |                   | l -      |             |
| 12. 14 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 More 12. 15 | Spring)                    | RESE-1002122 | 15-Feb-10 | <0.080  | <0.00300         | <0.025   | 0.0154 |          |        | <0.000024  |         | <0.0060  | <0.00100 |         | <0.060          | <0.000053  | <0.0040  |          | <0.0080  | <0.00100 |            | <0.000100 |        | <0.00100          | <0.0100  | SVL         |
| 15.4 W (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre) 16.5 M (Mickle Sorre)  | Spring)                    | RESE-1002122 | 15-Feb-10 |         |                  |          |        |          |        |            |         |          |          |         |                 |            |          | <0.00020 |          |          |            |           |        |                   |          | SVL         |
| C. 4. W (M. C. 1. W (M. C. 1. S. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. C. 1. M. M. C. 1. M. M. C. 1. M. M. C. 1. M. M. C. 1. M. M. C. 1. M. M. C. 1. M. M. C. 1. M. M. M. C. 1. M. M. M. C. 1. M. M. M. C. 1. M. M. M. M. M. M. M. M. M. M. M. M. M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Spring)                    | RESE-1002122 | 15-Feb-10 |         | <0.00300         | <0.025   |        | <0.00200 | <0.040 | <0.0020    | <0.0060 |          | <0.010   |         |                 | <0.00300   | 0.0040   |          |          | <0.010   | <0.00030   | <0.0050   |        | <0.00100          | <0.0100  | SVL         |
| 15.4 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spring) 15.5 by (Well 1g Spri | Spring)                    | RESE-1002150 | 04-Nov-10 | <0.080  | <0.00300         | <0.025   | 0.0350 |          |        | <0.000024  |         | <0.0060  | 0.00137  |         | <0.060          | 0.000019 j | 0.0096   |          | <0.0080  | 0.00244  |            | <0.000100 |        | <0.00100          | <0.0100  | SVL         |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Spring)                    | RESE-1002150 | 04-Nov-10 |         |                  |          |        |          |        |            |         |          |          |         |                 |            |          | <0.00020 |          |          |            |           |        |                   |          | SVL         |
| 15 A W (WILL LIS SPRING) 16 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PEST-1002144 24 PE | Spring)                    | RESE-1002150 | 04-Nov-10 |         | <0.00300         | <0.025   |        | <0.00200 | <0.040 | <0.0020    | <0.0060 |          | <0.010   |         |                 | <0.00300   | 0.0176   |          |          | <0.010   | 0.00204 jd | <0.0050   |        | <0.00100          | <0.0100  | SVL         |
| 12 A W (Well Leg Spring) 12 PESE-1002174 13 A May-11 14 ORD 13 A W (Well Leg Spring) 13 A May-11 14 ORD 14 ORD 15 A W (Well Leg Spring) 13 A May-11 14 ORD 15 A W (Well Leg Spring) 13 A May-11 14 ORD 15 A W (Well Leg Spring) 15 A May-11 15 A W (Well Leg Spring) 15 A May-11 15 A W (Well Leg Spring) 15 A May-11 15 A W (Well Leg Spring) 15 A May-11 15 A W (Well Leg Spring) 15 A May-11 15 A W (Well Leg Spring) 15 A May-11 15 A W (Well Leg Spring) 15 A May-11 15 A W (Well Leg Spring) 15 A May-11 15 A W (Well Leg Spring) 15 A May-11 15 A W (Well Leg Spring) 15 A May-11 15 A W (Well Leg Spring) 15 A May-11 15 A W (Well Leg Spring) 15 A May-11 15 A W (Well Leg Spring) 15 A May-11 15 A W (Well Leg Spring) 15 A May-11 15 A W (Well Leg Spring) 15 A May-11 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg Spring) 15 A W (Well Leg  | Spring)                    | RESE-1002164 | 24-Feb-11 | <0.080  | <0.00300         | <0.025   |        |          |        | <0.000036  |         | <0.0060  | <0.00100 |         | <0.060          | <0.000019  | <0.0040  |          | <0.008   | <0.00100 |            | <0.000100 |        | <0.00100          | <0.0100  | SVL         |
| 3.3 w (W to 1g Spring)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Spring)                    | RESE-1002164 | 24-Feb-11 |         |                  |          |        |          |        |            |         |          |          |         |                 |            |          | <0.00020 |          |          |            |           |        |                   |          | SVL         |
| 3.4 W (W Leg Spring) RESE-1002773 3.1 May-11 4.00 4.00000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.00000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.00000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.00000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.00000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.00000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.00000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.00000 4.00000 4.00000 4.00000 4.00000 4.00000 4.00000 4.00000 4.00000 4.00000 4.00000 4.00000 4.00000 4.00000 4.00000 4.00000 4.00000 4.00000 4.00000 4.00000 4.00000 4.000000 4.000000 4.000000 4. | Spring)                    | RESE-1002164 | 24-Feb-11 |         | <0.00300         | <0.025   | 0.0156 | <0.00200 | <0.040 | <0.0020    | <0.0060 |          | <0.010   |         |                 | <0.00300   | <0.0040  |          |          | <0.010   | <0.00034   | <0.0050   |        | <0.00100          | <0.0100  | SVL         |
| 10.3 4W (Wint Log Spring)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Spring)                    | RESE-1002173 | 31-May-11 | <0.080  | <0.00300         | <0.025   |        |          |        | <0.000026  |         | <0.0060  | <0.00100 |         | <0.060          | <0.000042  | <0.0040  |          | <0.008   | <0.00100 |            | <0.000100 |        | <0.00100          | <0.0100  | SVL         |
| C 3 4 W (Wet Lag Sirring) SP RESE-1002173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Spring)                    | RESE-1002173 | 31-May-11 |         |                  |          |        |          |        |            |         |          |          |         |                 |            |          | <0.00020 |          |          |            |           |        |                   |          | SVL         |
| 23.4 W (Wet Leg Spirring) SP PESE-1002277 31-Map-11 40.80 40.0000 40.025 40.0000 40.005 40.000 40.0010 40.000 40.0010 40.000 40.0010 40.000 40.0010 40.000 40.0010 40.000 40.0010 40.000 40.0010 40.000 40.0010 40.000 40.0010 40.000 40.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Spring)                    | RESE-1002173 | 31-May-11 |         | <0.00300         | <0.025   | 0.0163 | <0.0020  | <0.040 | <0.0020    | <0.0060 |          | <0.010   |         |                 | <0.00300   | <0.0040  |          |          | <0.010   | <0.00108   | <0.0050   |        | <0.00100          | <0.0100  | SVL         |
| C 3.4 W (Wet Leg Spring)  RESE-1002185  29.Aug-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Spring) SP                 | RESE-1002173 | 31-May-11 | <0.20   | <0.0030          | 0.0028   | 0.016  | <0.0010  | <0.20  | <0.0010    | <0.0010 | <0.0010  | <0.0010  |         | <0.050          | <0.0010    | <0.010   | <0.00020 | <0.0010  | 0.0019   | <0.0020    | <0.0010   |        | <0.0010           | <0.010   | TestAmerica |
| AC S A W (Wet Les Spring)   RESE-1002171   31-May-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Spring) SP                 | RESE-1002173 | 31-May-11 | <0.20   | <u>&lt;0.015</u> | <0.0050  | 0.016  | <0.0010  | <0.20  | <0.0050    | <0.0050 | <0.0050  | <0.0050  | <0.0080 | <0.050          | <0.0050    | <0.010   | <0.00020 | <0.0050  | <0.0050  | <0.010     | <0.0050   | <0.050 | <u>&lt;0.0050</u> | <0.050   | TestAmerica |
| KC 52 C RESE-1002171 31-May-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Spring)                    | RESE-1002185 | 29-Aug-11 | <0.080  | <0.00300         | <0.025   |        |          |        | <0.000026  |         | <0.0060  | <0.00100 |         | <0.060          | <0.000042  | <0.0040  |          | <0.008   | <0.00100 |            | <0.000100 |        | <0.00100          | <0.0100  | SVL         |
| C 2 C   RESE-1002171   31-May-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Spring)                    | RESE-1002185 | 29-Aug-11 |         | <0.00300         | <0.025   | 0.0205 | <0.0020  | <0.040 | <0.0020    | <0.0060 |          | <0.010   |         |                 | <0.00300   | 0.0156   | <0.00020 |          | <0.010   | <0.00070   | <0.0050   |        | <0.00100          | <0.0100  | SVL         |
| 10.5 2 C RESE-1002171 31-May-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | RESE-1002171 | 31-May-11 | <0.080  | <0.00300         | <0.025   |        |          |        | <0.000026  |         | <0.0060  | 0.00111  |         | <0.060          | <0.000042  | <0.0040  |          | <0.008   | <0.00100 |            | <0.000100 |        | <0.00100          | <0.0100  | SVL         |
| CG 2 C SP RESE-1002171 31-May-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | RESE-1002171 | 31-May-11 |         |                  |          |        |          |        |            |         |          |          |         |                 |            |          | <0.00020 |          |          |            |           |        |                   |          | SVL         |
| RESE-1002171 31-May-11 < 0.20 < 0.015 < 0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            | RESE-1002171 | 31-May-11 |         | <0.00300         | <0.025   | 0.0336 | <0.0020  | <0.040 | <0.0020    | <0.0060 |          | <0.010   |         |                 | <0.00300   | 0.0047   |          |          | <0.010   | <0.00108   | <0.0050   |        | <0.00100          | <0.0100  | SVL         |
| 16.5 2 RESE-1002184 29 Aug-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            | RESE-1002171 | 31-May-11 | <0.20   | <0.0030          | 0.0022   | 0.032  | <0.0010  | <0.20  | <0.0010    | <0.0010 | <0.0010  | 0.0014   |         | <0.050          | <0.0010    | <0.010   | <0.00020 | 0.0013   | 0.0037   | <0.0020    | <0.0010   |        | <0.0010           | <0.010   | TestAmerica |
| RESE-1002184 29-Aug-11 <0.0030 <0.025 0.0373 <0.0020 <0.040 <0.0020 <0.0060 <0.010 <0.0030 0.127 <0.00020 <0.010 <0.0070 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | RESE-1002171 | 31-May-11 | <0.20   | <u>&lt;0.015</u> | <0.0050  | 0.038  | <0.0010  | <0.20  | <0.0050    | <0.0050 | <0.0050  | 0.0052   | <0.0080 | 0.054           | <0.0050    | 0.023    | <0.00020 | <0.0050  | <0.0050  | <0.010     | <0.0050   | <0.050 | <u>&lt;0.0050</u> | <0.050   | TestAmerica |
| C6.2 C RESE-1002201 08-Dec-11 <0.00300 <0.025 <0.000026 <0.0060 <0.00100 <0.060 <0.000042 0.0336 0.008 0.00270 <0.000100 <0.060 <0.000042 0.0336 0.008 0.00270 <0.000100 <0.060 <0.000042 0.0336 0.008 0.00270 <0.000100 <0.060 <0.000042 0.0336 0.008 0.00270 <0.000100 <0.000000 <0.00000 0.0342 <0.00000 <0.00000 0.0342 <0.00000 <0.00000 0.0342 <0.00000 <0.00000 0.0342 <0.00000 <0.000000 0.0342 <0.00000 0.0342 <0.00000 <0.000000 0.0342 <0.00000 0.0342 <0.00000 0.0342 <0.00000 0.0342 <0.00000 0.0342 <0.00000 0.0342 <0.00000 0.00000 0.0342 <0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000                                                                                                                                                                                                    |                            | RESE-1002184 | 29-Aug-11 | <0.080  | <0.00300         | <0.025   |        |          |        | <0.000026  |         | <0.0060  | <0.00100 |         | <0.060          | <0.000042  | 0.0937   |          | <0.008   | 0.00153  |            | <0.000100 |        | <0.00100          | <0.0100  | SVL         |
| AC 5.2 C RESE-1002201 08-Dec-11 <0.00300 <0.025 0.0359 <0.0020 <0.040 <0.0020 <0.066  <0.010 <0.00300 0.0342 <0.00300 0.0342 <0.00200 <0.010 <0.00070 <0.0050 <0.00400 <0.00400 <0.00400 <0.00500 0.0359 <0.00500 0.0359 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            | RESE-1002184 | 29-Aug-11 |         | <0.00300         | <0.025   | 0.0373 | <0.0020  | <0.040 | <0.0020    | <0.0060 |          | <0.010   |         |                 | <0.00300   | 0.127    | <0.00020 |          | <0.010   | <0.00070   | <0.0050   |        | <0.00100          | <0.0100  | SVL         |
| CC 8.4 C (Ranch Fork Headwaters Spring)  RESE-1002038  13-Nov-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | RESE-1002201 | 08-Dec-11 | <0.080  | <0.00300         | <0.025   |        |          |        | <0.000026  |         | <0.0060  | <0.00100 |         | <0.060          | <0.000042  | 0.0336   |          | 0.008    | 0.00270  |            | <0.000100 |        | <0.00100          | <0.0100  | SVL         |
| 13-Nov-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            | RESE-1002201 | 08-Dec-11 |         | <0.00300         | <0.025   | 0.0359 | <0.0020  | <0.040 | <0.0020    | <0.0060 |          | <0.010   |         |                 | <0.00300   | 0.0342   | <0.00020 |          | <0.010   | <0.00070   | <0.0050   |        | <0.00100          | <0.0100  | SVL         |
| 1C 8.4 C (Ranch Fork Headwaters Spring)  RESE-1002038  13-Nov-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ork Headwaters Spring)     | RESE-1002038 | 13-Nov-08 | <0.080  | <0.00300         | 0.037    | 0.0464 | <0.00200 |        | <0.000200  |         | <0.0060  | 0.00159  |         | <0.060          | <0.00300   | <0.0040  | <0.00020 | <0.0080  | <0.010   |            | <0.000100 |        | <0.00100          | <0.0100  | SVL         |
| AC 8.4 C (Ranch Fork Headwaters Spring)  RESE-1002071  05-Mar-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ork Headwaters Spring)     | RESE-1002038 | 13-Nov-08 |         |                  |          |        |          |        |            |         |          |          |         |                 |            |          | <0.00020 |          |          |            |           |        |                   |          | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring) RESE-1002071 05-Mar-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ork Headwaters Spring)     | RESE-1002038 | 13-Nov-08 |         | <0.00300         | <0.025   |        | <0.00200 | <0.040 | <0.0020    | <0.0060 |          | <0.010   |         |                 | <0.00300   | <0.0040  |          |          | <0.010   | <0.00300   | <0.0050   |        | <0.00100          | <0.0100  | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)  RESE-1002071  O5-Mar-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ork Headwaters Spring)     | RESE-1002071 | 05-Mar-09 | <0.080  | <0.00300         | <0.025   | 0.0430 | <0.00200 |        | 0.000047 j |         | <0.0060  | 0.00116  |         | <0.060          | <0.000017  | <0.0040  |          | <0.0080  | 0.00123  |            | <0.000100 |        | <0.00100          | <0.0100  | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)  RESE-1002090  14-May-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ork Headwaters Spring)     | RESE-1002071 | 05-Mar-09 |         |                  |          |        |          |        |            |         |          |          |         |                 |            |          | <0.00020 |          |          |            |           |        |                   |          | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)  RESE-1002090  14-May-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ork Headwaters Spring)     | RESE-1002071 | 05-Mar-09 |         | <0.00300         | <0.025   |        | <0.00200 | <0.040 | <0.0020    | <0.0060 |          | <0.010   |         |                 | <0.00300   | <0.0040  |          |          | <0.010   | 0.00074 jd | <0.0050   |        | <0.00100          | <0.0100  | SVL         |
| Cl 8.4 C (Ranch Fork Headwaters Spring)  RESE-1002090  14-May-09  <0.00055  0.0035 j  0.0523  <0.00018  0.0288  <0.0005  <0.0005  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000132  <0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ork Headwaters Spring)     | RESE-1002090 | 14-May-09 | <0.0141 | 0.00027 j        | 0.0167 j |        | <0.00036 |        | <0.000024  |         | <0.00065 | 0.0015   |         | <0.0202         | <0.000053  | 0.0098 j |          | 0.0063 j | 0.0012   |            | <0.000019 |        | <0.000023         | <0.0019  | SVL         |
| Solve Chandle Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Co | ork Headwaters Spring)     | RESE-1002090 | 14-May-09 |         |                  |          |        |          |        |            |         |          |          |         |                 |            |          | <0.00006 |          |          |            |           |        |                   |          | SVL         |
| C 8.4 C (Ranch Fork Headwaters Spring) DUP RESE-1002091 14-May-09 <0.0141 <0.00022 0.0143 j <0.00036 <0.000024 <0.00005 0.0014 <0.0202 <0.00053 0.0099 j 0.0073 j 0.0012 <0.000019 <0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ork Headwaters Spring)     | RESE-1002090 | 14-May-09 |         | <0.00055         | 0.0035 j | 0.0523 | <0.00018 | 0.0288 | <0.00048   | <0.0005 |          | <0.002   |         |                 | <0.000132  | <0.0107  |          |          | <0.0011  | <0.0006    | <0.00021  |        | <0.000058         | 0.0015 j | SVL         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ork Headwaters Spring) DUP | RESE-1002091 | 14-May-09 | <0.0141 | <0.00022         | 0.0143 j |        | <0.00036 |        | <0.000024  |         | <0.00065 | 0.0014   |         | <0.0202         | <0.000053  | 0.0099 j |          | 0.0073 j | 0.0012   |            | <0.000019 |        | <0.000023         | <0.0019  | SVL         |
| C 8.4 C (Ranch Fork Headwaters Spring) DUP RESE-1002091 14-May-09 <0.00006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . •                        |              | · ·       |         |                  |          |        |          |        |            |         |          |          |         |                 |            |          | <0.00006 |          |          |            |           |        |                   |          | SVL         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |              | -         |         | <0.00055         | 0.0042 j | 0.0527 | <0.00018 | 0.0287 | <0.00048   | <0.0005 |          | <0.002   |         |                 | <0.000132  | <0.0112  |          |          | <0.0011  | <0.0006    | <0.00021  |        | <0.000058         | 0.0013 j | SVL         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |              |           | <0.0192 | <0.00022         | 0.0301   | 0.0499 | <0.00024 |        | <0.000024  |         | <0.00085 | 0.0014   |         | <0.0182         | <0.000054  | 0.0054   |          | 0.0036 j | 0.0026   |            | <0.000019 |        | <0.000023         | <0.0026  | SVL         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . •                        |              | -         |         | <0.00028         | <0.0028  |        | <0.00012 | 0.0329 | <0.00024   | <0.0004 |          | 0.0038 j |         |                 | <0.000066  | 0.0052   |          |          | <0.00095 | <0.0003    | <0.00024  |        | <0.000029         | <0.0013  | SVL         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |              |           | <0.0192 | <0.00022         | 0.0229 j | 0.0494 | <0.00024 |        | <0.000024  |         | <0.00085 | 0.0014   |         | <0.0182         | <0.000054  | 0.005    |          | 0.0036 j | 0.0023   |            | <0.000019 |        | <0.000023         | <0.0026  | SVL         |
| 5 5.4 5 (Mail of File Microsoft Spring) Bot 1252 1052 105 105 105 105 105 105 105 105 105 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |              |           |         |                  |          |        |          | 0.0334 |            | <0.0004 |          |          |         |                 |            |          |          |          |          | 0.00035 i  |           |        | <0.000029         |          | SVL         |



| SAMPLE LOCATION                             | SAMPLE                  | SAMPLE                 |        |          |          |        |          |          |            |         |          | TRACE    | CONSTIT | <b>TUENTS</b> <sup>a</sup> | (mg/L) <sup>b</sup> |          |          |         |          |            |           |        |           |          | ANALYTICAL  |
|---------------------------------------------|-------------------------|------------------------|--------|----------|----------|--------|----------|----------|------------|---------|----------|----------|---------|----------------------------|---------------------|----------|----------|---------|----------|------------|-----------|--------|-----------|----------|-------------|
|                                             | IDENTIFIER/ DESCRIPTION | DATE                   | Al     | Sb       | As       | Ва     | Ве       | В        | Cd         | Cr      | Со       | Cu       | CN      | Fe                         | Pb                  | Mn       | Hg       | Мо      | Ni       | Se         | Ag        | S      | TI        | Zn       | LABORATORY  |
|                                             |                         |                        |        |          |          |        |          |          |            | S       | urface V | Vater    |         | I                          |                     |          |          |         | I        | 1          |           |        |           |          |             |
| MC 8.4 C (Ranch Fork Headwaters Spring)     | RESE-1002110            | 15-Dec-09              | <0.080 | <0.00300 | <0.025   | 0.0431 |          |          | <0.000024  |         | <0.0060  | 0.00165  |         | <0.060                     | <0.000053           | <0.0040  |          | <0.0080 | 0.00180  |            | <0.000100 |        | <0.00100  | <0.0100  | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)     | RESE-1002110            | 15-Dec-09              |        |          |          |        |          |          |            |         |          |          |         |                            |                     |          | <0.00020 |         |          |            |           |        |           |          | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)     | RESE-1002110            | 15-Dec-09              |        | <0.00300 | <0.025   |        | <0.00200 | <0.040   | <0.0020    | <0.0060 |          | <0.010   |         |                            | <0.00300            | <0.0040  |          |         | <0.010   | 0.00067 jd | <0.0050   |        | <0.00100  | <0.0100  | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)     | RESE-1002123            | 15-Feb-10              | <0.080 | <0.00300 | <0.025   | 0.0295 |          |          | <0.000024  |         | <0.0060  | 0.00269  |         | <0.060                     | 0.000058 j          | <0.0040  |          | <0.0080 | 0.00122  |            | <0.000100 |        | <0.00100  | <0.0100  | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)     | RESE-1002123            | 15-Feb-10              |        |          |          |        |          |          |            |         |          |          |         |                            |                     |          | <0.00020 |         |          |            |           |        |           |          | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)     | RESE-1002123            | 15-Feb-10              |        | <0.00300 | <0.025   |        | <0.00200 | <0.040   | <0.0020    | <0.0060 |          | <0.010   |         |                            | <0.00300            | <0.0040  |          |         | <0.010   | 0.00111 jd | <0.0050   |        | <0.00100  | <0.0100  | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)     | RESE-1002148            | 04-Nov-10              | <0.080 | <0.00300 | <0.025   | 0.0468 |          |          | <0.000024  |         | <0.0060  | 0.00136  |         | <0.060                     | 0.00003 j           | <0.0040  |          | <0.0080 | 0.00386  |            | <0.000100 |        | <0.00100  | <0.0100  | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)     | RESE-1002148            | 04-Nov-10              |        |          |          |        |          |          |            |         |          |          |         |                            |                     |          | <0.00020 |         |          |            |           |        |           |          | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)     | RESE-1002148            | 04-Nov-10              |        | <0.00300 | <0.025   |        | <0.00200 | <0.040   | <0.0020    | <0.0060 |          | <0.010   |         |                            | <0.00300            | 0.0161   |          |         | <0.010   | 0.00079 jd | <0.0050   |        | <0.00100  | <0.0100  | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)     | RESE-1002166            | 24-Feb-11              | <0.080 | <0.00300 | <0.025   |        |          |          | <0.000036  |         | <0.0060  | 0.00103  |         | <0.060                     | 0.000023 j          | <0.0040  |          | <0.008  | 0.00231  |            | <0.000100 |        | <0.00100  | <0.0100  | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)     | RESE-1002166            | 24-Feb-11              |        |          |          |        |          |          |            |         |          |          |         |                            |                     |          | <0.00020 |         |          |            |           |        |           |          | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)     | RESE-1002166            | 24-Feb-11              |        | <0.00300 | <0.025   | 0.0409 | <0.00200 | <0.040   | <0.0020    | <0.0060 |          | <0.010   |         |                            | <0.00300            | 0.0112   |          |         | <0.010   | 0.00059 jd | <0.0050   |        | <0.00100  | <0.0100  | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring) DUP | RESE-1002162            | 24-Feb-11              | <0.080 | <0.00300 | <0.025   |        |          |          | <0.000036  |         | <0.0060  | 0.00106  |         | <0.060                     | <0.000019           | <0.0040  |          | <0.008  | 0.00251  |            | <0.000100 |        | <0.00100  | <0.0100  | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring) DUP | RESE-1002162            | 24-Feb-11              |        |          |          |        |          |          |            |         |          |          |         |                            |                     |          | <0.00020 |         |          |            |           |        |           |          | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring) DUP | RESE-1002162            | 24-Feb-11              |        | <0.00300 | <0.025   | 0.0404 | <0.00200 | <0.040   | <0.0020    | <0.0060 |          | <0.010   |         |                            | <0.00300            | 0.0043   |          |         | <0.010   | 0.00052 jd | <0.0050   |        | <0.00100  | <0.0100  | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)     | RESE-1002169            | 31-May-11              | <0.080 | <0.00300 | <0.025   |        |          |          | <0.000026  |         | <0.0060  | <0.00100 |         | <0.060                     | 0.000049 j          | <0.0040  |          | <0.008  | <0.00100 |            | <0.000100 |        | <0.00100  | <0.0100  | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)     | RESE-1002169            | 31-May-11              |        |          |          |        |          |          |            |         |          |          |         |                            |                     |          | <0.00020 |         |          |            |           |        |           |          | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)     | RESE-1002169            | 31-May-11              |        | <0.00300 | <0.025   | 0.0432 | <0.0020  | 0.054    | <0.0020    | <0.0060 |          | <0.010   |         |                            | <0.00300            | <0.0040  |          |         | <0.010   | <0.00108   | <0.0050   |        | <0.00100  | <0.0100  | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring) DUP | RESE-1002170            | 31-May-11              | <0.080 | <0.00300 | <0.025   |        |          |          | <0.000026  |         | <0.0060  | <0.00100 |         | <0.060                     | <0.000042           | <0.0040  |          | <0.008  | <0.00100 |            | <0.000100 |        | <0.00100  | <0.0100  | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring) DUP | RESE-1002170            | 31-May-11              |        |          |          |        |          |          |            |         |          |          |         |                            |                     |          | <0.00020 |         |          |            |           |        |           |          | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring) DUP | RESE-1002170            | 31-May-11              |        | <0.00300 | <0.025   | 0.0419 | <0.0020  | 0.045    | <0.0020    | <0.0060 |          | <0.010   |         |                            | <0.00300            | 0.0042   |          |         | <0.010   | <0.00108   | <0.0050   |        | <0.00100  | <0.0100  | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)     | RESE-1002200            | 08-Dec-11              | <0.080 | <0.00300 | <0.025   |        |          |          | <0.000026  |         | <0.0060  | 0.00158  |         | <0.060                     | <0.000042           | 0.0372   |          | 0.008   | 0.00396  |            | <0.000100 |        | <0.00100  | <0.0100  | SVL         |
| MC 8.4 C (Ranch Fork Headwaters Spring)     | RESE-1002200            | 08-Dec-11              |        | <0.00300 | <0.025   | 0.0627 | <0.0020  | <0.040   | <0.0020    | <0.0060 |          | <0.010   |         |                            | <0.00300            | 0.0397   | <0.00020 |         | <0.010   | 0.00072    | <0.0050   |        | <0.00100  | <0.0100  | SVL         |
| Mineral Creek Post-Fire                     | RESE-1003170            | 28-Jul-10              | <0.20  | <0.0030  | 0.0019   | 0.047  | <0.0010  | <0.20    | <0.0010    | <0.0010 | 0.0015   | 0.0021   |         | <0.050                     | <0.0010             | 0.097    | <0.00020 | 0.0012  | 0.0033   | <0.0020    | <0.0010   |        | <0.0010   | <0.010   | TestAmerica |
| Mineral Creek Post-Fire                     | RESE-1003170            | 28-Jul-10              | 0.83   | <0.0030  | 0.0027   | 0.063  | <0.0010  | <0.20    | <0.0010    | <0.0010 | 0.0015   | 0.012    | <0.020  | 0.77                       | 0.0046              | 0.21     | <0.00020 | 0.0010  | 0.0040   | <0.0020    | <0.0010   | <0.050 | <0.0010   | 0.011    | TestAmerica |
| Number Nine                                 | RESE-1002020            | 28-Aug-08              | 0.138  | 0.0015 j | 0.0248 j | 0.0302 | <0.00036 |          | <0.000034  |         | <0.00065 | 0.0591   |         | 0.0916 j                   | 0.000298 j          | 0.0104   |          | <0.0023 | <0.0023  |            | 0.00014 j |        | <0.000018 | 0.0041 j | SVL         |
| Number Nine                                 | RESE-1002020            | 28-Aug-08              |        | 0.0016 j | 0.0187 j |        | <0.00036 | 0.0234 j | <0.00096   | <0.001  |          | 0.0566   |         |                            | 0.000636 j          | 0.0118   |          |         | <0.0023  | 0.00034 j  | <0.00079  |        | <0.000018 | 0.0057 j | SVL         |
| Number Nine                                 | RESE-1002042            | 12-Nov-08              | <0.080 | <0.00300 | 0.051    | 0.0289 | <0.00200 |          | <0.000200  |         | <0.0060  | 0.0389   |         | 0.125                      | <0.00300            | 0.0813   | <0.00020 | <0.0080 | <0.010   |            | <0.000100 |        | <0.00100  | <0.0100  | SVL         |
| Number Nine                                 | RESE-1002042            | 12-Nov-08              |        |          |          |        |          |          |            |         |          |          |         |                            |                     |          | <0.00020 |         |          |            |           |        |           |          | SVL         |
| Number Nine                                 | RESE-1002042            | 12-Nov-08              |        | <0.00300 | 0.058    |        | <0.00200 | <0.040   | <0.0020    | <0.0060 |          | 0.045    |         |                            | <0.00300            | 0.217    |          |         | <0.010   | <0.00300   | <0.0050   |        | <0.00100  | <0.0100  | SVL         |
| Number Nine                                 | RESE-1002058            | 19-Feb-09              | 0.182  | <0.00300 | <0.025   | 0.0206 | <0.00200 |          | <0.000034  |         | 0.0061   | 0.0442   |         | 0.097                      | 0.000330 j          | 0.0169   |          | <0.0080 | 0.00150  |            | <0.000100 |        | <0.00100  | <0.0100  | SVL         |
| Number Nine                                 | RESE-1002058            | 19-Feb-09              |        |          |          |        |          |          |            |         |          |          |         |                            |                     |          | <0.00020 |         |          |            |           |        |           |          | SVL         |
| Number Nine                                 | RESE-1002058            | 19-Feb-09              |        | <0.00300 | <0.025   |        | <0.00200 | <0.040   | <0.0020    | <0.0060 |          | 0.049    |         |                            | <0.00300            | 0.0150   |          |         | <0.010   | <0.00012   | <0.0050   |        | <0.00100  | <0.0100  | SVL         |
| Number Nine DUP                             | RESE-1002059            | 19-Feb-09              | 0.175  | <0.00300 | <0.025   | 0.0197 | <0.00200 |          | <0.000034  |         | <0.0060  | 0.0447   |         | 0.092                      | 0.000362 j          | 0.0149   |          | <0.0080 | 0.00140  |            | <0.000100 |        | <0.00100  | <0.0100  | SVL         |
| Number Nine DUP                             | RESE-1002059            | 19-Feb-09              |        |          |          |        |          |          |            |         |          |          |         |                            |                     |          | <0.00020 |         |          |            |           |        |           |          | SVL         |
| Number Nine DUP                             | RESE-1002059            | 19-Feb-09              |        | <0.00300 | <0.025   |        | <0.00200 | <0.040   | <0.0020    | <0.0060 |          | 0.048    |         |                            | <0.00300            | 0.0190   |          |         | <0.010   | 0.00029 jd | <0.0050   |        | <0.00100  | <0.0100  | SVL         |
| Number Nine                                 | RESE-1002077            | 05-May-09              | 0.101  | <0.00300 | <0.025   | 0.0261 | <0.00200 |          | <0.000024  |         | <0.0060  | 0.0462   |         | 0.102                      | 0.000216 j          | 0.0328   |          | <0.0080 | 0.00117  |            | <0.000100 |        | <0.00100  | <0.0100  | SVL         |
| Number Nine                                 | RESE-1002077            | 05-May-09              |        |          |          |        |          |          |            |         |          |          |         |                            |                     |          | <0.00020 |         |          |            |           |        |           |          | SVL         |
| Number Nine                                 | RESE-1002077            | 05-May-09              |        | <0.00300 | <0.025   |        | <0.00200 | <0.040   | <0.0020    | <0.0060 |          | 0.084    |         |                            | <0.00300            | 0.0423   |          |         | <0.010   | <0.00030   | <0.0050   |        | <0.00100  | <0.0100  | SVL         |
| Number Nine                                 | RESE-1002139            | 01-Nov-10              | <0.080 | <0.00300 | <0.025   | 0.0252 |          |          | 0.000025 j |         | <0.0060  | 0.0425   |         | 0.262                      | 0.000480 j          | 0.0192   |          | <0.0080 | <0.00100 |            | <0.000100 |        | <0.00100  | <0.0100  | SVL         |
| Number Nine                                 | RESE-1002139            | 01-Nov-10<br>01-Nov-10 |        |          |          |        |          |          |            |         |          |          |         |                            |                     |          | <0.00020 |         |          |            |           |        |           |          | SVL         |
|                                             | RESE-1002139            | 01-Nov-10              |        | <0.00300 | <0.025   |        | <0.00200 | <0.040   | <0.0020    | <0.0060 |          | 0.062    |         |                            | <0.00300            | 0.0214   |          |         | <0.010   | <0.00034   | <0.0050   |        | <0.00100  | <0.0100  | SVL         |
| Number Nine                                 | RESE-1002139            | U 1-INOV- IU           |        | 0.0000   | 0.320    |        | 0.00200  | 0.0-10   | 0.5020     | 0.5000  |          | 0.302    |         |                            | 0.0000              | J.JE 1-7 |          |         | 0.010    | 0.00004    | 0.0000    |        | 0.30100   | 0.0100   | 342         |



| SAMPLE LOCATION         | SAMPLE       | SAMPLE    |        |          |           |        |           |          |            |           |          | TRACE     | CONSTI | <b>TUENTS</b> <sup>a</sup> | (mg/L) <sup>b</sup> |         |          |          |           |            |            |      |            |           | ANALYTICAL |
|-------------------------|--------------|-----------|--------|----------|-----------|--------|-----------|----------|------------|-----------|----------|-----------|--------|----------------------------|---------------------|---------|----------|----------|-----------|------------|------------|------|------------|-----------|------------|
|                         | IDENTIFIER/  | DATE      | Al     | Sb       | As        | Ва     | Be        | В        | Cd         | Cr        | Со       | Cu        | CN     | Fe                         | Pb                  | Mn      | Hg       | Мо       | Ni        | Se         | Ag         | S    | TI         | Zn        | LABORATORY |
|                         | DESCRIPTION  |           |        |          |           |        |           |          |            |           |          |           |        |                            |                     |         |          |          |           |            |            |      |            |           |            |
|                         |              |           |        |          |           |        |           |          |            | S         | urface V | Vater     |        |                            |                     |         |          |          |           |            |            |      |            |           |            |
| Number Nine             | RESE-1002147 | 03-Nov-10 | <0.080 | <0.00300 | 0.039     | 0.0176 |           |          | <0.000024  |           | <0.0060  | 0.0201    |        | <0.060                     | 0.000135 j          | 0.0216  |          | <0.0080  | 0.00190   |            | <0.000100  |      | <0.00100   | <0.0100   | SVL        |
| Number Nine             | RESE-1002147 | 03-Nov-10 |        |          |           |        |           |          |            |           |          |           |        |                            |                     |         | <0.00020 |          |           |            |            |      |            |           | SVL        |
| Number Nine             | RESE-1002147 | 03-Nov-10 |        | <0.00300 | 0.047     |        | <0.00200  | <0.040   | <0.0020    | <0.0060   |          | 0.045     |        |                            | 0.00647             | 0.172   |          |          | <0.010    | 0.00040 jd | <0.0050    |      | <0.00100   | 0.0177    | SVL        |
| Number Nine             | RESE-1002178 | 19-Aug-11 | <0.080 | <0.00300 | 0.026     |        |           |          | 0.00005    |           | <0.0060  | 0.0169    |        | 0.146                      | 0.000344            | 0.169   |          | <0.008   | 0.00191   |            | <0.000100  |      | <0.00100   | <0.0100   | SVL        |
| Number Nine             | RESE-1002178 | 19-Aug-11 |        | <0.00300 | 0.032     | 0.0373 | <0.0020   | <0.040   | <0.0020    | <0.0060   |          | 0.025     |        |                            | <0.00300            | 0.200   | <0.00020 |          | <0.010    | <0.00070   | <0.0050    |      | <0.00100   | <0.0100   | SVL        |
| Number Nine             | RESE-1002198 | 01-Dec-11 | <0.080 | <0.00300 | <0.025    |        |           |          | <0.000026  |           | <0.0060  | 0.0151    |        | <0.060                     | 0.000069            | <0.0040 |          | <0.008   | 0.00161   |            | <0.000100  |      | <0.00100   | <0.0100   | SVL        |
| Number Nine             | RESE-1002198 | 01-Dec-11 |        | <0.00300 | <0.025    | 0.0403 | <0.0020   | <0.040   | <0.0020    | <0.0060   |          | 0.021     |        |                            | <0.00300            | 0.0158  | <0.00020 |          | <0.010    | <0.00070   | <0.0050    |      | <0.00100   | <0.0100   | SVL        |
| Oak Flat Tributary      | RESE-1002016 | 27-Aug-08 | 0.192  | 0.0013 j | 0.024 j   | 0.0159 | <0.00036  |          | 0.000058 j |           | <0.00065 | 0.0506    |        | 0.103                      | 0.000419 j          | 0.0131  |          | 0.0026 j | <0.0023   |            | 0.000049 j |      | 0.000034 j | 0.0067 j  | SVL        |
| Oak Flat Tributary      | RESE-1002016 | 27-Aug-08 |        | 0.0012 j | 0.0218 j  |        | <0.00036  | 0.0288 j | <0.00096   | <0.001    |          | 0.0508    |        |                            | 0.0017 j            | 0.0215  |          |          | <0.0023   | 0.00068 j  | <0.00079   |      | 0.000051 j | 0.0072 j  | SVL        |
| Oak Flat Tributary      | RESE-1002068 | 26-Feb-09 | 0.110  | <0.00300 | <0.025    | 0.0112 | <0.00200  |          | <0.000042  |           | <0.0060  | 0.0318    |        | 0.087                      | 0.000353 j          | 0.0192  |          | <0.0080  | 0.00118   |            | <0.000100  |      | <0.00100   | <0.0100   | SVL        |
| Oak Flat Tributary      | RESE-1002068 | 26-Feb-09 |        |          |           |        |           |          |            |           |          |           |        |                            |                     |         | <0.00020 |          |           |            |            |      |            |           | SVL        |
| Oak Flat Tributary      | RESE-1002068 | 26-Feb-09 |        | <0.00300 | <0.025    |        | <0.00200  | <0.040   | <0.00020   | <0.0060   |          | 0.036     |        |                            | <0.00300            | 0.0163  |          |          | <0.010    | 0.00068 jd | <0.0050    |      | <0.00100   | <0.0100   | SVL        |
| Oak Flat Tributary      | RESE-1002076 | 05-May-09 | <0.080 | <0.00300 | 0.045     | 0.0123 | <0.00200  |          | 0.000025 j |           | <0.0060  | 0.0289    |        | <0.060                     | 0.000335 j          | 0.0444  |          | 0.0083   | 0.00194   |            | <0.000100  |      | <0.00100   | <0.0100   | SVL        |
| Oak Flat Tributary      | RESE-1002076 | 05-May-09 |        |          |           |        |           |          |            |           |          |           |        |                            |                     |         | <0.00020 |          |           |            |            |      |            |           | SVL        |
| Oak Flat Tributary      | RESE-1002076 | 05-May-09 |        | <0.00300 | 0.038     |        | <0.00200  | <0.040   | <0.0020    | <0.0060   |          | 0.055     |        |                            | 0.00579             | 0.313   |          |          | <0.010    | 0.00040 jd | <0.0050    |      | <0.00100   | 0.0132    | SVL        |
| Oak Flat Tributary      | RESE-1002176 | 19-Aug-11 | 0.253  | <0.00300 | <0.025    |        |           |          | 0.00010    |           | <0.0060  | 0.0402    |        | 0.160                      | 0.000762            | 0.0871  |          | <0.008   | 0.00108   |            | <0.000100  |      | <0.00100   | <0.0100   | SVL        |
| Oak Flat Tributary      | RESE-1002176 | 19-Aug-11 |        | <0.00300 | 0.028     | 0.0139 | <0.0020   | <0.040   | <0.0020    | <0.0060   |          | 0.052     |        |                            | <0.00300            | 0.100   | <0.00020 |          | <0.010    | <0.00070   | <0.0050    |      | <0.00100   | 0.0126    | SVL        |
| Oak Flat Tributary      | RESE-1002205 | 09-Dec-11 | 0.344  | <0.00300 | <0.025    |        |           |          | 0.00007    |           | <0.0060  | 0.0215    |        | 0.174                      | 0.000240            | 0.0302  |          | <0.008   | 0.00137   |            | <0.000100  |      | <0.00100   | <0.0100   | SVL        |
| Oak Flat Tributary      | RESE-1002205 | 09-Dec-11 |        | <0.00300 | <0.025    | 0.0145 | <0.0020   | <0.040   | <0.0020    | <0.0060   |          | 0.027     |        |                            | <0.00300            | 0.0323  | <0.00020 |          | <0.010    | <0.00070   | <0.0050    |      | <0.00100   | <0.0100   | SVL        |
| Patterson Spring        | RESE-1002137 | 18-May-10 | <0.080 | <0.00300 | <0.025    | 0.0106 |           |          | 0.00209    |           | 0.0427   | 0.00219   |        | <0.060                     | <0.000019           | 3.66    |          | <0.0080  | 0.0414    |            | <0.000100  |      | <0.00100   | 1.84      | SVL        |
| Patterson Spring        | RESE-1002137 | 18-May-10 |        |          |           |        |           |          |            |           |          |           |        |                            |                     |         | <0.00020 |          |           |            |            |      |            |           | SVL        |
| Patterson Spring        | RESE-1002137 | 18-May-10 |        | <0.00300 | <0.025    |        | <0.00200  | <0.040   | 0.0021     | <0.0060   |          | <0.010    |        |                            | <0.00300            | 3.57    |          |          | 0.038     | 0.00059 jd | <0.0050    |      | <0.00100   | 1.82      | SVL        |
| Pump Station Spring     | RESE-1001001 | 15-May-03 |        | <0.0060  | <0.0030   | 0.0219 | <0.0020   | <0.040   | <0.00010   |           |          | <0.0030   |        |                            | <0.0030             |         | <0.00020 |          | <0.010    |            | <0.00010   |      | <0.0020    | <0.0050   | SVL        |
| Pump Station Spring     | RESE-1001001 | 15-May-03 | 0.454  | <0.0060  | <0.0030   |        | <0.0020   |          | <0.00010   |           | <0.0060  | 0.0040    | <0.10  | 0.593                      | <0.0050             |         | <0.00020 | 0.0225   |           | <0.0030    | <0.00010   | <1.0 |            | <0.0050   | SVL        |
| Pump Station Spring     | RESE-1001001 | 15-May-03 |        | <0.0060  | <0.0030   |        | <0.0020   |          | <0.00010   | <0.0060   |          | 0.0039    |        |                            | <0.0030             | 0.268   |          |          | <0.010    | <0.0030    | <0.00010   |      | <0.0020    | <0.0050   | SVL        |
| Pump Station Spring     | RESE-1001024 | 04-Sep-03 |        | <0.0030  | <0.0030   | 0.0164 | <0.0020   |          | <0.00010   | <0.0060   |          | <0.0030   |        |                            | <0.0030             |         | <0.00020 |          | <0.010    |            | <0.00010   |      | <0.0020    | <0.0050   | SVL        |
| Pump Station Spring     | RESE-1001024 | 04-Sep-03 | 0.038  | <0.0030  | <0.0030   |        | <0.0020   | <0.040   | <0.00010   |           | <0.0060  | 0.0032    | <0.010 | 0.020                      | <0.0050             |         | <0.00020 | 0.0154   |           | <0.0090    | <0.00010   | <1.0 | <0.0020    | <0.0050   | SVL        |
| Pump Station Spring     | RESE-1001024 | 04-Sep-03 |        | <0.0030  | <0.0030   |        | <0.0020   |          | <0.00010   | <0.0060   |          | <0.0030   |        |                            | <0.0030             | 0.0502  |          |          | <0.010    | <0.0030    | <0.00010   |      |            | <0.0050   | SVL        |
| Pump Station Spring     | RESE-1001029 | 03-Nov-03 |        | <0.0030  | <0.0030   | 0.0167 | <0.0020   |          | <0.00010   | <0.0060   |          | <0.0030   |        |                            | <0.0030             |         | <0.00020 |          | <0.010    |            | <0.00010   |      | <0.0020    | <0.0050   | SVL        |
| Pump Station Spring     | RESE-1001029 | 03-Nov-03 | 0.021  | <0.0030  | <0.0030   |        | <0.0020   | <0.040   | <0.00010   |           | <0.0060  | <0.0030   |        | <0.020                     | <0.0050             |         | <0.00020 | 0.0151   |           | <0.0030    | <0.00010   | <1.0 | <0.0020    | <0.0050   | SVL        |
| Pump Station Spring     | RESE-1001029 | 03-Nov-03 |        | <0.0030  | <0.0030   |        | <0.0020   |          | <0.00010   | <0.0060   |          | <0.0030   |        |                            | <0.0030             | 0.0067  |          |          | <0.010    | <0.0030    | <0.00010   |      |            | <0.0050   | SVL        |
| Pump Station Spring DUP | RESE-1001030 | 03-Nov-03 |        | <0.0030  | <0.0030   | 0.0166 | <0.0020   |          | <0.00010   | <0.0060   |          | <0.0030   |        |                            | <0.0030             |         | <0.00020 |          | <0.010    |            | <0.00010   |      | <0.0020    | <0.0050   | SVL        |
| Pump Station Spring DUP | RESE-1001030 | 03-Nov-03 | <0.020 | <0.0030  | <0.0030   |        | <0.0020   | <0.040   | <0.00010   |           | <0.0060  | <0.0030   |        | <0.020                     | <0.0050             |         | <0.00020 | 0.0145   |           | <0.0030    | <0.00010   | <1.0 | <0.0020    | <0.0050   | SVL        |
| Pump Station Spring DUP | RESE-1001030 | 03-Nov-03 |        | <0.0030  | <0.0030   |        | <0.0020   |          | <0.00010   | <0.0060   |          | <0.0030   |        |                            | <0.0030             | 0.0066  |          |          | <0.010    | <0.0030    | <0.00010   |      |            | <0.0050   | SVL        |
| Pump Station Spring     | RESE-1001056 | 09-Feb-04 |        | <0.00050 | 0.00083 j | 0.0141 | <0.00020  |          | <0.00010   | 0.00041 j |          | 0.00300 j |        |                            | <0.0010             |         | <0.00020 |          | 0.00170 j |            | <0.00010   |      | <0.00040   | 0.0004 j  | SVL        |
| Pump Station Spring     | RESE-1001056 | 09-Feb-04 | 0.0391 | <0.00050 | 0.00110 j |        | 0.00022 j | <0.0070  | <0.00010   |           | <0.00070 | 0.004     |        | 0.0258                     | <0.0010             |         | <0.00020 | 0.0106   |           | <0.00160   | <0.00010   | <1.0 | <0.00040   | 0.00390 j | SVL        |
| Pump Station Spring     | RESE-1001056 | 09-Feb-04 |        | <0.00050 | 0.00087 j |        | <0.00020  |          | <0.00010   | 0.00053 j |          | 0.00290 j |        |                            | <0.0010             | 0.0025  |          |          | <0.00130  | 0.00140 j  | <0.00010   |      |            | <0.00020  | SVL        |
| Pump Station Spring DUP | RESE-1001085 | 25-May-04 |        | <0.0030  | <0.0030   | 0.0167 | <0.0020   |          | <0.00010   | <0.0060   |          | <0.0030   |        |                            | <0.0030             |         | <0.00020 |          | <0.010    |            | <0.00010   |      | <0.0020    | <0.0050   | SVL        |
| Pump Station Spring DUP | RESE-1001085 | 25-May-04 | 0.116  | <0.0030  | <0.0030   |        | <0.0020   | <0.040   | <0.00010   |           | <0.0060  | <0.0030   | <0.010 | 0.072                      | <0.0030             |         | <0.00020 | 0.0147   |           | <0.0030    | <0.00010   | <1.0 | <0.0020    | <0.0050   | SVL        |
| Pump Station Spring DUP | RESE-1001085 | 25-May-04 |        | <0.0030  | <0.0030   |        | <0.0020   |          | <0.00010   | <0.0060   |          | <0.0030   |        |                            | <0.0030             | 0.0076  |          |          | <0.010    | <0.030     | <0.00010   |      |            | <0.0050   | SVL        |



| SAMPLE LOCATION         | SAMPLE                  | SAMPLE    |         |          |         |        |          |         |           |          |          | TRACE   | CONSTIT | <b>TUENTS</b> <sup>a</sup> | (mg/L) <sup>b</sup> |          |          |         |          |            |           |       |          |         | ANALYTICAL |
|-------------------------|-------------------------|-----------|---------|----------|---------|--------|----------|---------|-----------|----------|----------|---------|---------|----------------------------|---------------------|----------|----------|---------|----------|------------|-----------|-------|----------|---------|------------|
|                         | IDENTIFIER/ DESCRIPTION | DATE      | Al      | Sb       | As      | Ва     | Ве       | В       | Cd        | Cr       | Со       | Cu      | CN      | Fe                         | Pb                  | Mn       | Hg       | Мо      | Ni       | Se         | Ag        | S     | TI       | Zn      | LABORATORY |
|                         | 7233                    |           |         |          |         |        |          |         |           | S        | urface V | Vater   |         |                            |                     |          |          |         |          |            |           |       |          |         |            |
| Pump Station Spring     | RESE-1001084            | 25-May-04 |         | <0.0030  | <0.0030 | 0.0141 | <0.0020  |         | <0.00010  | <0.0060  |          | <0.0030 |         |                            | <0.0030             |          | <0.00020 |         | <0.010   |            | <0.00010  |       | <0.0020  | <0.0050 | SVL        |
| Pump Station Spring     | RESE-1001084            | 25-May-04 | 0.051   | <0.0030  | <0.0030 |        | <0.0020  | <0.040  | <0.00010  |          | <0.0060  | <0.0030 | <0.010  | 0.025                      | <0.0030             |          | <0.00020 | 0.0137  |          | <0.0030    | <0.00010  | <1.0  | <0.0020  | <0.0050 | SVL        |
| Pump Station Spring     | RESE-1001084            | 25-May-04 |         | <0.0030  | <0.0030 |        | <0.0020  |         | <0.00010  | <0.0060  |          | <0.0030 |         |                            | <0.0030             | 0.0068   |          |         | <0.010   | <0.0030    | <0.00010  |       |          | <0.0050 | SVL        |
| Pump Station Spring     | RESE-1001096            | 03-Aug-04 |         | <0.0030  | <0.0030 | 0.0144 | <0.0020  |         | <0.00010  | <0.0060  |          | <0.0030 |         |                            | <0.0030             |          | <0.00020 |         | <0.010   |            | <0.00010  |       | <0.0020  | <0.0050 | SVL        |
| Pump Station Spring     | RESE-1001096            | 03-Aug-04 | <0.020  | <0.0030  | <0.0030 |        | <0.0020  | <0.040  | <0.00010  |          | <0.0060  | <0.0030 |         | <0.020                     | <0.0030             |          | <0.00020 | 0.0102  |          | <0.0030    | <0.00010  | <1.0  | <0.0020  | <0.0050 | SVL        |
| Pump Station Spring     | RESE-1001096            | 03-Aug-04 |         | <0.0030  | <0.0030 |        | <0.0020  |         | <0.00010  | <0.0060  |          | <0.0030 |         |                            | <0.0030             | 0.0049   |          |         | <0.010   | <0.0030    | <0.00010  |       |          | <0.0050 | SVL        |
| Pump Station Spring     | RESE-1001166            | 03-Nov-04 |         | <0.0030  | <0.0030 | 0.0159 | <0.0020  |         | <0.00010  | <0.0060  |          | <0.0030 |         |                            | <0.0030             |          | <0.00020 |         | <0.010   |            | <0.00010  |       | <0.0020  | <0.0050 | SVL        |
| Pump Station Spring     | RESE-1001166            | 03-Nov-04 | <0.020  | <0.0030  | <0.0030 |        | <0.0020  | <0.040  | <0.00010  |          | <0.0060  | <0.0030 |         | <0.020                     | <0.0030             |          | <0.00020 | 0.0121  |          | <0.0060    | <0.00010  | <1.0  | <0.0020  | <0.0050 | SVL        |
| Pump Station Spring     | RESE-1001166            | 03-Nov-04 |         | <0.0030  | <0.0030 |        | <0.0020  |         | <0.00010  | <0.0060  |          | <0.0030 |         |                            | <0.0030             | 0.0027   |          |         | <0.010   | <0.0060    | <0.00010  |       |          | <0.0050 | SVL        |
| Pump Station Spring DUP | RESE-1001183            | 08-Feb-05 |         | 0.00310  | 0.00350 | 0.0196 | <0.00200 |         | <0.00020  | <0.00600 |          | <0.0100 |         |                            | <0.00300            |          | <0.00020 |         | <0.0100  |            | <0.00010  |       | <0.00200 | <0.0100 | SVL        |
| Pump Station Spring DUP | RESE-1001183            | 08-Feb-05 | <0.0300 | <0.00300 | 0.00360 |        | <0.00200 | <0.0400 | <0.00020  |          | <0.00600 | <0.0100 |         | <0.0600                    | <0.00300            |          | <0.00020 | 0.0394  |          | 0.00840    | <0.00010  | <1.00 | <0.00200 | <0.0100 | SVL        |
| Pump Station Spring DUP | RESE-1001183            | 08-Feb-05 |         | <0.00300 | 0.00340 |        | <0.00200 |         | <0.00020  | <0.00600 |          | <0.0100 |         |                            | <0.00300            | <0.00400 |          |         | <0.0100  | 0.00830    | <0.00010  |       |          | <0.0100 | SVL        |
| Pump Station Spring     | RESE-1001182            | 08-Feb-05 |         | 0.00310  | 0.00360 | 0.0195 | <0.00200 |         | <0.00020  | <0.00600 |          | <0.0100 |         |                            | <0.00300            |          | <0.00020 |         | <0.0100  |            | <0.00010  |       | <0.00200 | <0.0100 | SVL        |
| Pump Station Spring     | RESE-1001182            | 08-Feb-05 | <0.0300 | <0.00300 | 0.00370 |        | <0.00200 | <0.0400 | <0.00020  |          | <0.00600 | <0.0100 |         | <0.0600                    | <0.00300            |          | <0.00020 | 0.0393  |          | 0.00850    | <0.00010  | <1.00 | <0.00200 | <0.0100 | SVL        |
| Pump Station Spring     | RESE-1001182            | 08-Feb-05 |         | <0.00300 | 0.00340 |        | <0.00200 |         | <0.00020  | <0.00600 |          | <0.0100 |         |                            | <0.00300            | <0.00400 |          |         | <0.0100  | 0.00770    | <0.00010  |       |          | <0.0100 | SVL        |
| Pump Station Spring     | RESE-1001206            | 04-May-05 |         | <0.00300 | 0.0035  | 0.0216 | <0.00200 |         | <0.00020  | <0.00600 |          | <0.0100 |         |                            | <0.00300            |          | <0.00020 |         | <0.0100  |            | <0.00010  |       | <0.00200 | <0.0100 | SVL        |
| Pump Station Spring     | RESE-1001206            | 04-May-05 | <0.0300 | <0.00300 | 0.0036  |        | <0.00200 | <0.0400 | <0.00020  |          | <0.00600 | <0.0100 |         | <0.0600                    | <0.00300            |          | <0.00020 | 0.0159  |          | <0.00300   | <0.00010  | <1.00 | <0.00200 | <0.0100 | SVL        |
| Pump Station Spring     | RESE-1001206            | 04-May-05 |         | <0.00300 | 0.0035  |        | <0.00200 |         | <0.00020  | <0.00600 |          | <0.0100 |         |                            | <0.00300            | <0.00400 |          |         | <0.0100  | <0.00300   | <0.00010  |       |          | <0.0100 | SVL        |
| Pump Station Spring     | RESE-1001222            | 08-Aug-05 |         | 0.0032   | 0.0033  | 0.0255 | <0.0020  |         | <0.00020  | <0.0060  |          | <0.0100 |         |                            | <0.00300            |          | <0.0002  |         | <0.0100  |            | <0.00010  |       | <0.00200 | <0.0100 | SVL        |
| Pump Station Spring     | RESE-1001222            | 08-Aug-05 | <0.030  | <0.00390 | 0.00380 |        | <0.0020  | <0.04   | 0.00500 j |          | <0.0060  | <0.0100 |         | <0.060                     | <0.00300            |          | <0.0002  | 0.0262  |          | <0.00300   | <0.00010  | <1.0  | <0.00200 | <0.0100 | SVL        |
| Pump Station Spring     | RESE-1001222            | 08-Aug-05 |         | 0.0031   | 0.0033  |        | <0.0020  |         | <0.00020  | <0.0060  |          | <0.0100 |         |                            | <0.00300            | <0.0040  |          |         | <0.0100  | 0.0031     | <0.00010  |       |          | <0.0100 | SVL        |
| Pump Station Spring DUP | RESE-1001223            | 08-Aug-05 |         | 0.0030   | 0.0033  | 0.0259 | <0.0020  |         | <0.00020  | <0.0060  |          | <0.0100 |         |                            | <0.00300            |          | <0.0002  |         | <0.0100  |            | <0.00010  |       | <0.00200 | <0.0100 | SVL        |
| Pump Station Spring DUP | RESE-1001223            | 08-Aug-05 | <0.030  | <0.00360 | 0.00330 |        | <0.0020  | <0.04   | <0.00100  |          | <0.0060  | <0.0100 |         | <0.060                     | <0.00300            |          | <0.0002  | 0.0248  |          | <0.00300   | <0.00010  | <1.0  | <0.00200 | <0.0100 | SVL        |
| Pump Station Spring DUP | RESE-1001223            | 08-Aug-05 |         | 0.0034   | 0.0035  |        | <0.0020  |         | <0.00020  | <0.0060  |          | <0.0100 |         |                            | <0.00300            | <0.0040  |          |         | <0.0100  | <0.00300   | <0.00010  |       |          | <0.0100 | SVL        |
| Pump Station Spring     | RESE-1002001            | 05-Aug-08 | <0.080  | <0.00300 | 0.027   | 0.0249 | <0.00200 |         | <0.000200 |          | <0.0060  | 0.00130 |         | <0.060                     | <0.00300            | 0.0702   | <0.00020 | 0.0556  | <0.010   |            | <0.000100 |       | <0.00100 | <0.0100 | SVL        |
| Pump Station Spring     | RESE-1002001            | 05-Aug-08 |         |          |         |        |          |         |           |          |          |         |         |                            |                     |          | <0.00020 |         |          |            |           |       |          |         | SVL        |
| Pump Station Spring     | RESE-1002001            | 05-Aug-08 |         | <0.00300 | <0.025  |        | <0.00200 | <0.040  | <0.0020   | <0.0060  |          | <0.010  |         |                            | <0.00300            | 0.0421   |          |         | <0.010   | <0.00300   | <0.0050   |       | <0.00100 | <0.0100 | SVL        |
| Pump Station Spring     | RESE-1002023            | 04-Nov-08 | <0.080  | <0.00300 | <0.025  | 0.0237 | <0.00200 |         | <0.000200 |          | <0.0060  | 0.00131 |         | <0.060                     | <0.00300            | <0.0040  | <0.00020 | <0.0080 | <0.010   |            | <0.000100 |       | <0.00100 | <0.0100 | SVL        |
| Pump Station Spring     | RESE-1002023            | 04-Nov-08 |         |          |         |        |          |         |           |          |          |         |         |                            |                     |          | <0.00020 |         |          |            |           |       |          |         | SVL        |
| Pump Station Spring     | RESE-1002023            | 04-Nov-08 |         | <0.00300 | <0.025  |        | <0.00200 | <0.040  | <0.0020   | <0.0060  |          | <0.010  |         |                            | <0.00300            | <0.0040  |          |         | <0.010   | <0.00300   | <0.0050   |       | <0.00100 | <0.0100 | SVL        |
| Pump Station Spring     | RESE-1002053            | 17-Feb-09 | 0.136   | <0.00300 | <0.025  | 0.0083 | <0.00200 |         | <0.000034 |          | <0.0060  | 0.00739 |         | 0.078                      | 0.000288 j          | 0.0052   |          | <0.0080 | <0.00100 |            | <0.000100 |       | <0.00100 | <0.0100 | SVL        |
| Pump Station Spring     | RESE-1002053            | 17-Feb-09 |         |          |         |        |          |         |           |          |          |         |         |                            |                     |          | <0.00020 |         |          |            |           |       |          |         | SVL        |
| Pump Station Spring     | RESE-1002053            | 17-Feb-09 |         | <0.00300 | <0.025  |        | <0.00200 | <0.040  | <0.0020   | <0.0060  |          | 0.019   |         |                            | <0.00300            | 0.0566   |          |         | <0.010   | 0.00018 jd | <0.0050   |       | <0.00100 | <0.0100 | SVL        |
| Pump Station Spring     | RESE-1002080            | 12-May-09 | <0.080  | <0.00300 | <0.025  |        | <0.00200 |         | <0.000024 |          | <0.0060  | 0.00125 |         | <0.060                     | <0.000053           | <0.0040  |          | <0.0080 | 0.00119  |            | <0.000100 |       | <0.00100 | <0.0100 | SVL        |
| Pump Station Spring     | RESE-1002080            | 12-May-09 |         |          |         |        |          |         |           |          |          |         |         |                            |                     |          | <0.00020 |         |          |            |           |       |          |         | SVL        |
| Pump Station Spring     | RESE-1002080            | 12-May-09 |         | <0.00300 | <0.025  | 0.0192 | <0.00200 | <0.040  | <0.0020   | <0.0060  |          | <0.010  |         |                            | <0.00300            | <0.0040  |          |         | <0.010   | 0.00095 jd | <0.0050   |       | <0.00100 | <0.0100 | SVL        |
| Pump Station Spring DUP | RESE-1002084            | 12-May-09 | <0.080  | <0.00300 | <0.025  |        | <0.00200 |         | <0.000024 |          | <0.0060  | 0.00119 |         | <0.060                     | <0.000053           | 0.0048   |          | <0.0080 | 0.00156  |            | <0.000100 |       | <0.00100 | <0.0100 | SVL        |
| Pump Station Spring DUP | RESE-1002084            | 12-May-09 |         |          |         |        |          |         |           |          |          |         |         |                            |                     |          | <0.00020 |         |          |            |           |       |          |         | SVL        |
| Pump Station Spring DUP | RESE-1002084            | 12-May-09 |         | <0.00300 | <0.025  | 0.0204 | <0.00200 | <0.040  | <0.0020   | <0.0060  |          | <0.010  |         |                            | <0.00300            | 0.0076   |          |         | <0.010   | 0.00126 jd | <0.0050   |       | <0.00100 | <0.0100 | SVL        |
| Pump Station Spring     | RESE-1002125            | 16-Feb-10 | <0.080  | <0.00300 | <0.025  | 0.0194 |          |         | <0.000024 |          | <0.0060  | 0.00188 |         | <0.060                     | <0.000053           | 0.0096   |          | <0.0080 | 0.00132  |            | <0.000100 |       | <0.00100 | <0.0100 | SVL        |
| Pump Station Spring     | RESE-1002125            | 16-Feb-10 |         |          |         |        |          |         |           |          |          |         |         |                            |                     |          | <0.00020 |         |          |            |           |       |          |         | SVL        |
| Pump Station Spring     | RESE-1002125            | 16-Feb-10 |         | <0.00300 | <0.025  |        | <0.00200 | <0.040  | <0.0020   | <0.0060  |          | <0.010  |         |                            | <0.00300            | 0.0110   |          |         | <0.010   | 0.00167 jd | <0.0050   |       | <0.00100 | <0.0100 | SVL        |



| SAMPLE LOCATION                    | SAMPLE                       | SAMPLE    |          |                |          |         |          |          |            |          |          | TRACE    | CONSTI  | TUENTS <sup>a</sup> | (mg/L) <sup>b</sup> |          |          |          |          |            |            |        |              |          | ANALYTICAL  |
|------------------------------------|------------------------------|-----------|----------|----------------|----------|---------|----------|----------|------------|----------|----------|----------|---------|---------------------|---------------------|----------|----------|----------|----------|------------|------------|--------|--------------|----------|-------------|
|                                    | IDENTIFIER/ DESCRIPTION      | DATE      | Al       | Sb             | As       | Ва      | Ве       | В        | Cd         | Cr       | Со       | Cu       | CN      | Fe                  | Pb                  | Mn       | Hg       | Мо       | Ni       | Se         | Ag         | S      | TI           | Zn       | LABORATORY  |
|                                    | DESCRIPTION                  |           |          |                |          |         |          |          |            | S        | urface V | Vater    |         |                     |                     |          |          |          |          | 1          |            |        |              |          |             |
| Pump Station Spring                | RESE-1002144                 | 03-Nov-10 | <0.080   | <0.00300       | <0.025   | 0.0158  |          |          | <0.000024  |          | <0.0060  | <0.00100 |         | <0.060              | <0.000019           | 0.0338   |          | 0.0082   | 0.00377  |            | <0.000100  |        | <0.00100     | <0.0100  | SVL         |
| Pump Station Spring                | RESE-1002144                 | 03-Nov-10 |          |                |          |         |          |          |            |          |          |          |         |                     |                     |          | <0.00020 |          |          |            |            |        |              |          | SVL         |
| Pump Station Spring                | RESE-1002144                 | 03-Nov-10 |          | <0.00300       | <0.025   |         | <0.00200 | <0.040   | <0.0020    | <0.0060  |          | <0.010   |         |                     | <0.00300            | 0.0727   |          |          | <0.010   | 0.00203 jd | <0.0050    |        | <0.00100     | 0.0100   | SVL         |
| Pump Station Spring DUP            | RESE-1002145                 | 03-Nov-10 | <0.080   | <0.00300       | <0.025   | 0.0155  |          |          | <0.000024  |          | <0.0060  | <0.00100 |         | <0.060              | <0.000019           | 0.0359   |          | 0.0084   | 0.00421  |            | <0.000100  |        | <0.00100     | <0.0100  | SVL         |
| Pump Station Spring DUP            | RESE-1002145                 | 03-Nov-10 |          |                |          |         |          |          |            |          |          |          |         |                     |                     |          | <0.00020 |          |          |            |            |        |              |          | SVL         |
| Pump Station Spring DUP            | RESE-1002145                 | 03-Nov-10 |          | <0.00300       | <0.025   |         | <0.00200 | <0.040   | <0.0020    | <0.0060  |          | <0.010   |         |                     | <0.00300            | 0.0472   |          |          | <0.010   | 0.00146 jd | <0.0050    |        | <0.00100     | <0.0100  | SVL         |
| Pump Station Spring                | RESE-1002168                 | 17-May-11 | <0.080   | <0.00300       | <0.025   |         |          |          | <0.000036  |          | <0.0060  | <0.00100 |         | <0.060              | 0.000022 j          | 0.0441   |          | <0.008   | <0.00100 |            | <0.000100  |        | <0.00100     | <0.0100  | SVL         |
| Pump Station Spring                | RESE-1002168                 | 17-May-11 |          |                |          |         |          |          |            |          |          |          |         |                     |                     |          | <0.00020 |          |          |            |            |        |              |          | SVL         |
| Pump Station Spring                | RESE-1002168                 | 17-May-11 |          | <0.00300       | <0.025   | 0.0191  | <0.0020  | <0.040   | <0.0020    | <0.0060  |          | <0.010   |         |                     | <0.00300            | 0.0377   |          |          | <0.010   | 0.00146 jd | <0.0050    |        | <0.00100     | <0.0100  | SVL         |
| Pump Station Spring SP             | RESE-1002168                 | 17-May-11 | <0.20    | <0.01 <u>5</u> | <0.0050  | 0.019   | <0.0010  | <0.20    | <0.0050    | <0.0050  | <0.0050  | <0.0050  |         | <0.050              | <0.0050             | 0.045    | <0.00020 | <0.0050  | 0.0051   | <0.010     | <0.0050    |        | <0.0050      | <0.050   | TestAmerica |
| Pump Station Spring SP             | RESE-1002168                 | 17-May-11 | <0.20    | <0.0030        | 0.0023   | 0.023   | <0.0010  | <0.20    | <0.0010    | <0.0010  | <0.0010  | <0.0050  | <0.0080 | 0.21                | <0.0010             | 0.037    | <0.00020 | <0.0010  | 0.0050   | 0.0022     | <0.0010    | <0.050 | <0.0010      | <0.010   | TestAmerica |
|                                    |                              | ,         | 0.0142 j | 0.0015 j       | 0.0266   | 0.034   | <0.00036 |          | <0.000034  |          | <0.00065 | 0.0183   |         | <0.0202             | 0.000051 j          | 0.005 j  |          | 0.0047 j | <0.0023  |            | <0.000017  |        | <0.000018    | <0.0019  | SVL         |
| QC 19.7 C (Queen above Magma Wash) | RESE-1002021<br>RESE-1002021 | 28-Aug-08 |          | 0.0014 j       | 0.0176 j |         | <0.00036 | 0.05     | <0.00096   | <0.001   |          | 0.0173   |         |                     | 0.000232 j          | 0.005 j  |          |          | <0.0023  | 0.00072 j  | <0.00079   |        | 0.00003 j    |          | SVL         |
| QC 19.7 C (Queen above Magma Wash) |                              | 28-Aug-08 | 0.007    | <0.00300       | 0.026    | 0.0143  | <0.00200 | 0.00     | <0.000034  | -0.001   | <0.0060  | 0.0195   |         | <0.060              | 0.000241 j          | 0.0099   |          | 0.0145   | 0.00111  | 0.000723   | <0.00010   |        | <0.00100     | <0.0100  | SVL         |
| QC 19.7 C (Queen above Magma Wash) | RESE-1002048                 | 11-Feb-09 | 0.087    | <0.00300       | 0.026    | 0.0143  | <0.00200 |          | <0.000034  |          | <0.0000  | 0.0195   |         | <0.000              | 0.000241 j          | 0.0099   | <0.00020 | 0.0145   | 0.00111  |            | <0.000100  |        | <0.00100     | <0.0100  | SVL         |
| QC 19.7 C (Queen above Magma Wash) | RESE-1002048                 | 11-Feb-09 |          |                | -0.005   |         | <0.00000 | <0.040   | <b></b>    | <0.0060  |          | 0.000    |         |                     | <0.00300            | 0.0004   | <0.00020 |          | -0.010   | 0.00044:4  | <0.00E0    |        | <br>-0.00100 | <0.0100  |             |
| QC 19.7 C (Queen above Magma Wash) | RESE-1002048                 | 11-Feb-09 |          | <0.00300       | <0.025   |         | <0.00200 | <0.040   | <0.0020    | <0.0060  |          | 0.022    |         |                     |                     | 0.0091   |          |          | <0.010   | 0.00044 jd | <0.0050    |        | <0.00100     | <0.0100  | SVL         |
| QC 19.7 C (Queen above Magma Wash) | RESE-1002206                 | 14-Dec-11 | 0.115    | <0.00300       | <0.025   |         |          |          | <0.000026  |          | <0.0060  | 0.0257   |         | <0.060              | 0.000289            | 0.0079   |          | <0.008   | 0.00121  |            | <0.000100  |        | <0.00100     | <0.0100  | SVL         |
| QC 19.7 C (Queen above Magma Wash) | RESE-1002206                 | 14-Dec-11 |          | <0.00300       | <0.025   | 0.0179  | <0.0020  | <0.040   | <0.0020    | <0.0060  |          | 0.032    |         |                     | <0.00300            | 0.0214   | <0.00020 |          | <0.010   | <0.00070   | <0.0050    |        | <0.00100     | <0.0100  | SVL         |
| QC 21.7 C (Magma Avenue) LD        | RESE-1002018                 | 28-Aug-08 | 0.0248 j | 0.0011 j       | 0.0209 j | 0.0289  | <0.00036 |          | <0.000034  |          | <0.00065 | 0.0167   |         | <0.0202             | 0.000079 j          | 0.0068 j |          | 0.0038 j | <0.0023  |            | 0.000018 j |        | <0.000018    | <0.0019  | SVL         |
| QC 21.7 C (Magma Avenue) LD        | RESE-1002018                 | 28-Aug-08 |          | 0.0011 j       | 0.014 j  |         | <0.00036 | 0.0342 j | <0.00096   | <0.001   |          | 0.0165   |         |                     | 0.000444 j          | 0.0091 j |          |          | <0.0023  | 0.00087 j  | <0.00079   |        | <0.000018    | 0.0032 j | SVL         |
| QC 21.7 C (Magma Avenue)           | RESE-1002025                 | 04-Nov-08 | <0.080   | <0.00300       | 0.028    | 0.0323  | <0.00200 |          | <0.000200  |          | <0.0060  | 0.00540  |         | <0.060              | <0.00300            | 0.230    | <0.00020 | <0.0080  | <0.010   |            | <0.000100  |        | <0.00100     | <0.0100  | SVL         |
| QC 21.7 C (Magma Avenue)           | RESE-1002025                 | 04-Nov-08 |          |                |          |         |          |          |            |          |          |          |         |                     |                     |          | <0.00020 |          |          |            |            |        |              |          | SVL         |
| QC 21.7 C (Magma Avenue)           | RESE-1002025                 | 04-Nov-08 |          | <0.00300       | 0.040    |         | <0.00200 | 0.054    | <0.0020    | <0.0060  |          | 0.010    |         |                     | <0.00300            | 0.419    |          |          | <0.010   | <0.00300   | <0.0050    |        | <0.00100     | 0.0248   | SVL         |
| QC 21.7 C (Magma Avenue)           | RESE-1002047                 | 11-Feb-09 | 0.106    | <0.00300       | <0.025   | 0.0143  | <0.00200 |          | <0.000034  |          | <0.0060  | 0.0203   |         | <0.060              | 0.000223 j          | 0.0088   |          | 0.0128   | 0.00112  |            | <0.000100  |        | <0.00100     | <0.0100  | SVL         |
| QC 21.7 C (Magma Avenue)           | RESE-1002047                 | 11-Feb-09 |          |                |          |         |          |          |            |          |          |          |         |                     |                     |          | <0.00020 |          |          |            |            |        |              |          | SVL         |
| QC 21.7 C (Magma Avenue)           | RESE-1002047                 | 11-Feb-09 |          | <0.00300       | <0.025   |         | <0.00200 | <0.040   | <0.0020    | <0.0060  |          | 0.023    |         |                     | <0.00300            | 0.0108   |          |          | <0.010   | 0.00030 jd | <0.0050    |        | <0.00100     | <0.0100  | SVL         |
| QC 21.7 C (Magma Avenue)           | RESE-1002083                 | 07-May-09 | <0.080   | <0.00300       | 0.035    | 0.0299  | <0.00200 |          | 0.000027 j |          | <0.0060  | 0.00775  |         | <0.060              | 0.000185 j          | 0.102    |          | 0.0111   | 0.00259  |            | <0.000100  |        | <0.00100     | <0.0100  | SVL         |
| QC 21.7 C (Magma Avenue)           | RESE-1002083                 | 07-May-09 |          |                |          |         |          |          |            |          |          |          |         |                     |                     |          | <0.00020 |          |          |            |            |        |              |          | SVL         |
| QC 21.7 C (Magma Avenue)           | RESE-1002083                 | 07-May-09 |          | <0.00300       | 0.027    |         | <0.00200 | <0.040   | <0.0020    | <0.0060  |          | 0.011    |         |                     | <0.00300            | 0.327    |          |          | <0.010   | <0.00030   | <0.0050    |        | <0.00100     | <0.0100  | SVL         |
| QC 21.7 C (Magma Avenue)           | RESE-1002141                 | 01-Nov-10 | <0.080   | <0.00300       | <0.025   | 0.0563  |          |          | 0.000063 j |          | <0.0060  | 0.0159   |         | <0.060              | 0.000397 j          | 0.0258   |          | 0.0098   | 0.00270  |            | <0.000100  |        | <0.00100     | <0.0100  | SVL         |
| QC 21.7 C (Magma Avenue)           | RESE-1002141                 | 01-Nov-10 |          |                |          |         |          |          |            |          |          |          |         |                     |                     |          | <0.00020 |          |          |            |            |        |              |          | SVL         |
| QC 21.7 C (Magma Avenue)           | RESE-1002141                 | 01-Nov-10 |          | <0.00300       | <0.025   |         | <0.00200 | 0.062    | <0.0020    | <0.0060  |          | 0.034    |         |                     | 0.00523             | 0.0596   |          |          | <0.010   | 0.00044 jd | <0.0050    |        | <0.00100     | 0.0273   | SVL         |
| QC 21.7 C (Magma Avenue)           | RESE-1002177                 | 19-Aug-11 | <0.080   | <0.00300       | <0.025   |         |          |          | 0.00006    |          | <0.0060  | 0.0508   |         | <0.060              | 0.000349            | 0.0326   |          | 0.010    | 0.00287  |            | <0.000100  |        | <0.00100     | <0.0100  | SVL         |
| QC 21.7 C (Magma Avenue)           | RESE-1002177                 | 19-Aug-11 |          | <0.00300       | <0.025   | 0.0771  | <0.0020  | 0.043    | <0.0020    | <0.0060  |          | 0.144    |         |                     | 0.0215              | 0.183    | <0.00020 |          | <0.010   | 0.00116    | <0.0050    |        | <0.00100     | 0.0898   | SVL         |
| QC 21.7 C (Magma Avenue)           | RESE-1002190                 | 28-Nov-11 | <0.080   | <0.00300       | <0.025   |         |          |          | 0.00003    |          | <0.0060  | 0.0286   |         | <0.060              | 0.000537            | 0.0068   |          | <0.008   | 0.00340  |            | <0.000100  |        | <0.00100     | 0.0104   | SVL         |
| QC 21.7 C (Magma Avenue)           | RESE-1002190                 | 28-Nov-11 |          | <0.00300       | <0.025   | 0.0318  | <0.0020  | <0.040   | <0.0020    | <0.0060  |          | 0.033    |         |                     | <0.00300            | 0.0315   | <0.00020 |          | <0.010   | <0.00070   | <0.0050    |        | <0.00100     | <0.0100  | SVL         |
| QC 22.6 E (Karst Spring)           | RESE-1001180                 | 08-Feb-05 |          | <0.00300       | 0.0108   | 0.00730 | <0.00200 |          | <0.00020   | <0.00600 |          | <0.0100  |         |                     | <0.00300            |          | <0.00020 |          | <0.0100  |            | <0.00010   |        | <0.00200     | 0.0210   | SVL         |
| QC 22.6 E (Karst Spring)           | RESE-1001180                 | 08-Feb-05 | <0.0300  | <0.00300       | 0.00990  |         | <0.00200 | <0.0400  | <0.00020   |          | <0.00600 | <0.0100  |         | <0.0600             | <0.00300            |          | <0.00020 | <0.00800 |          | <0.00300   | <0.00010   | <1.00  | <0.00200     | 0.0200   | SVL         |
| QC 22.6 E (Karst Spring)           | RESE-1001180                 | 08-Feb-05 |          | <0.00750       | 0.00980  |         | <0.00200 |          |            | <0.00600 |          | <0.0100  |         |                     | <0.00750            | <0.00400 |          |          | <0.0100  |            | <0.00025   |        |              | 0.0200   | SVL         |
|                                    |                              |           | <0.0141  |                | 0.0155 j | 0.0136  | <0.00036 |          | 0.000241   |          | <0.00065 | 0.009    |         | <0.0202             | 0.000169 j          | 0.0079 j |          | 0.0026 j | <0.0023  |            | <0.00017   |        | <0.000018    | 0.0628   | SVL         |
| QC 22.6 E (Karst Spring)           | RESE-1002017                 | 28-Aug-08 |          | 0.00049 j      |          |         | <0.00036 | 0.0347 j |            | <0.001   |          | 0.0122   |         |                     | 0.000 i j           | 0.0079   |          |          | <0.0023  | 0.00069 j  | <0.00079   |        | <0.000018    |          | SVL         |
| QC 22.6 E (Karst Spring)           | RESE-1002017                 | 28-Aug-08 |          | 0.00049]       | ~0.0003  |         | ~0.00030 | 0.0347   | ~0.00090   | VU.001   |          | 0.0122   |         |                     | 0.001               | 0.0122   | -        |          | ~0.0023  | 0.00009]   | VU.00019   |        | ~0.000018    | 0.0020   | SVL         |



| QC 22.6 E (Karst Spring) DUP RESE-1002050 11-Feb-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00134                             | 0.00064 jd         | Ag <0.000100 <0.0050     | <br>  | <b>TI</b> <0.00100 | <b>Zn</b> | ANALYTICAL<br>LABORATORY |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------|--------------------------|-------|--------------------|-----------|--------------------------|
| DESCRIPTION  Surface Water  QC 22.6 E (Karst Spring) DUP  RESE-1002050 11-Feb-09 QC 22.6 E (Karst Spring) DUP  RESE-1002050 11-Feb-09 RESE-1002050 11-Feb-09 RESE-1002050 11-Feb-09 RESE-1002050 11-Feb-09 RESE-1002050 11-Feb-09 RESE-1002050 11-Feb-09 RESE-1002050 11-Feb-09 RESE-1002050 11-Feb-09 RESE-1002050 11-Feb-09 RESE-1002050 11-Feb-09 RESE-1002050 11-Feb-09 RESE-1002050 11-Feb-09 RESE-1002050 11-Feb-09 RESE-1002050 11-Feb-09 RESE-1002050 11-Feb-09 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE-1002050 RESE | <0.00100<br><br><0.010 0<br>0.00134 | <br><br>0.00064 jd | <0.000100<br><br><0.0050 |       | <0.00100           |           |                          |
| QC 22.6 E (Karst Spring) DUP RESE-1002050 11-Feb-09 <0.080 <0.00300 <0.025 0.0088 <0.00200 0.000122 j <0.0060 0.00745 <0.060 0.00098 j <0.0040 0.0221 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021                  | <0.010 0<br>0.00134                 | 0.00064 jd         | <0.0050                  |       |                    | 0.0377    | SVL                      |
| QC 22.6 E (Karst Spring) DUP  RESE-1002050  11-Feb-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.010 0<br>0.00134                 | 0.00064 jd         | <0.0050                  |       |                    | 0.0377    | SVL                      |
| QC 22.6 E (Karst Spring) DUP RESE-1002050 11-Feb-09 <0.00300 <0.025 <0.00200 <0.040 <0.0020 <0.0060 <0.010 < <0.00300 0.0055 < QC 22.6 E (Karst Spring) RESE-1002049 11-Feb-09 <0.080 <0.00300 0.028 0.0089 <0.00200 0.000141 j <0.0060 0.00739 <0.060 0.000110 j 0.0115 0.00226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00134                             |                    |                          |       |                    |           |                          |
| QC 22.6 E (Karst Spring)  RESE-1002049 11-Feb-09 <0.080 <0.00300 0.028 0.0089 <0.00200 0.000141 j <0.0060 0.00739 <0.060 0.000110 j 0.0115 0.0226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00134                             |                    |                          |       |                    |           | SVL                      |
| de 22.0 E (Italia opinia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |                    | .0.000400                |       | <0.00100           | 0.0364    | SVL                      |
| · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.010 0                            |                    | <0.000100                |       | <0.00100           | 0.0392    | SVL                      |
| QC 22.6 E (Karst Spring) RESE-1002049 11-Feb-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.010 0                            |                    |                          |       |                    |           | SVL                      |
| QC 22.6 E (Karst Spring) RESE-1002049 11-Feb-09 <0.00300 <0.025 <0.00200 <0.040 <0.0020 <0.0060 <0.010 < <0.00300 0.0065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     | 0.00029 jd         | <0.0050                  |       | <0.00100           | 0.0379    | SVL                      |
| QC 27.3 C (Upper QC) RESE-1001184 08-Feb-05 <0.00300 0.00490 0.0187 <0.00200 <0.00020 <0.00600 <0.0100 < <0.00300 <0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.0100                             |                    | <0.00010                 |       | <0.00200           | <0.0100   | SVL                      |
| QC 27.3 C (Upper QC) RESE-1001184 08-Feb-05 9.32 <0.00300 0.00780 <0.00200 <0.0400 0.0021 <0.00600 0.0240 5.11 0.00770 <0.00020 <0.00800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <                                   | <0.00300           | <0.00010                 | <1.00 | <0.00200           | 0.0200    | SVL                      |
| QC 27.3 C (Upper QC) RESE-1001184 08-Feb-05 <0.00300 0.00730 <0.00200 0.00032 <0.00600 0.0200 0.0200 0.00780 0.120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.0100                             | <0.00300           | <0.00010                 |       |                    | 0.0180    | SVL                      |
| QC 27.3 C (Upper QC) RESE-1001207 04-May-05 <0.00300 0.0042 0.0234 <0.00200 <0.00020 <0.00600 <0.0100 < <0.00300 <0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.0100                             |                    | <0.00010                 |       | <0.00200           | <0.0100   | SVL                      |
| QC 27.3 C (Upper QC) RESE-1001207 04-May-05 <0.0300 <0.00300 0.0043 <0.00200 <0.0400 <0.00020 <0.00600 <0.0100 <0.0600 <0.00300 <0.00020 0.0088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                   | <0.00300           | <0.00010                 | <1.00 | <0.00200           | <0.0100   | SVL                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.0100                             | <0.00300           | <0.00010                 |       |                    | <0.0100   | SVL                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.010                              |                    | <0.000100                |       | <0.00100           | <0.0100   | SVL                      |
| QC 27.3 C (Upper QC) RESE-1002002 05-Aug-08 < < < < <-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |                    |                          |       |                    |           | SVL                      |
| QC 27.3 C (Upper QC) RESE-1002002 05-Aug-08 <0.00300 0.033 <0.00200 0.083 <0.0020 <0.0060 0.010 <0.00300 0.264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.010                              | <0.00300           | <0.0050                  |       | <0.00100           | <0.0100   | SVL                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.010                              |                    | <0.000100                |       | <0.00100           | <0.0100   | SVL                      |
| QC 27.3 C (Upper QC) RESE-1002024 04-Nov-08 <0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     |                    |                          |       |                    |           | SVL                      |
| QC 27.3 C (Upper QC) RESE-1002024 04-Nov-08 <0.00300 <0.025 <0.00200 0.064 <0.0020 <0.0060 0.020 < <0.00300 0.0962 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.010                              | <0.00300           | <0.0050                  |       | <0.00100           | <0.0100   | SVL                      |
| 40 E.10 C (Opport 40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00102                             |                    | <0.000100                |       | <0.00100           | <0.0100   | SVL                      |
| QC 27.3 C (Upper QC)  RESE-1002054  17-Feb-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     |                    |                          |       |                    |           | SVL                      |
| ACE TO COPPOR ACY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.010 0                            | 0.00021 jd         | <0.0050                  |       | <0.00100           | 0.0130    | SVL                      |
| же влю с (оррания)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00218                             |                    | <0.000100                |       | <0.00100           | <0.0100   | SVL                      |
| ACCES (Opported)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                    |                          |       |                    |           | SVL                      |
| ACCES (Opported)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.010 0                            | 0.00056 jd         | <0.0050                  |       | <0.00100           | <0.0100   | SVL                      |
| do 21.00 (opported)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00152                             | ,                  | <0.000100                |       | <0.00100           | <0.0100   | SVL                      |
| ACCES (Opportuo)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00132                             |                    | <0.000100                |       | <b>~0.00100</b>    | <0.0100   | SVL                      |
| RESE TOUR TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.010 0                            | 0.00051 jd         | <0.0050                  |       | <0.00100           | <0.0100   | SVL                      |
| do Eno di (opported)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     |                    |                          |       |                    |           |                          |
| de 2.10 o (oppositio)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00265                             |                    | <0.000100                |       | <0.00100           | <0.0100   | SVL                      |
| do and o topped do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     | <0.00070           | <0.0050                  |       | <0.00100           |           | SVL                      |
| 3. 50 T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00251                             |                    | <0.000100                |       | <0.00100           | <0.0100   | SVL                      |
| QC 27.3 C (Upper QC) RESE-1002197 01-Dec-11 <0.00300 <0.025 0.0236 <0.0020 <0.040 <0.0020 <0.0060 0.010 < <0.00300 <0.0040 <0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.010                              | <0.00070           | <0.0050                  |       | <0.00100           | <0.0100   | SVL                      |
| RR 1.5 C (Rancho Rio) RESE-1002012 19-Aug-08 <0.0141 <0.002 <0.0066 0.0073 j <0.00036 <0.000034 0.0014 j 0.0018 0.364 0.000065 j 0.0871 <0.000064 <0.0023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.0023                             |                    | <0.000017                |       | <0.000018          | <0.0019   | SVL                      |
| RR 1.5 C (Rancho Rio) RESE-1002012 19-Aug-08 <0.0004 0.0069 j <0.00036 0.0217 j <0.00096 <0.001 <0.0039 0.000273 j.d 0.301 <0.00064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.0023                             | <0.0004            | <0.00079                 |       | <0.000072          | <0.0019   | SVL                      |
| RR 1.5 C (Rancho Rio) RESE-1002029 05-Nov-08 <0.080 <0.00300 <0.025 0.0614 <0.00200 <0.000200 <0.0060 0.00260 <0.060 <0.00300 0.0214 <0.00020 <0.0080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.010                              |                    | <0.000100                |       | <0.00100           | <0.0100   | SVL                      |
| RR 1.5 C (Rancho Rio) RESE-1002029 05-Nov-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |                    |                          |       |                    |           | SVL                      |
| RR 1.5 C (Rancho Rio) RESE-1002029 05-Nov-08 <0.00300 <0.025 <0.00200 <0.040 <0.0020 <0.0060 <0.010 < <0.00300 0.0243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.010                              | <0.00300           | <0.0050                  |       | <0.00100           | <0.0100   | SVL                      |
| RR 1.5 C (Rancho Rio) DUP RESE-1002066 26-Feb-09 0.157 <0.00300 <0.025 0.0324 <0.00200 <0.000042 <0.0060 0.00904 0.086 0.000114 j 0.0338 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 <0.00                 | <0.00100                            |                    | <0.000100                |       | <0.00100           | <0.0100   | SVL                      |
| RR 1.5 C (Rancho Rio) DUP RESE-1002066 26-Feb-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                    |                          |       |                    |           | SVL                      |
| RR 1.5 C (Rancho Rio) DUP RESE-1002066 26-Feb-09 <0.00300 <0.025 <0.00200 <0.040 <0.00020 <0.0060 0.010 <0.00300 0.0316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.010                              | <0.00041           | <0.0050                  |       | <0.00100           | <0.0100   | SVL                      |
| RR 1.5 C (Rancho Rio) RESE-1002065 26-Feb-09 0.175 <0.00300 <0.025 0.0307 <0.00200 <0.000042 <0.0060 0.00896 0.088 0.000125 j 0.0297 <0.0080 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.00100                            |                    | <0.000100                |       | <0.00100           | <0.0100   | SVL                      |
| RR 1.5 C (Rancho Rio) RESE-1002065 26-Feb-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |                    |                          |       |                    |           | SVL                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.010                              | <0.00041           | <0.0050                  |       | <0.00100           | <0.0100   | SVL                      |



| SAMPLE LOCATION                             | SAMPLE                  | SAMPLE    |             |          |        |        |          |        |           |         |          | TRACE   | CONSTI | <b>TUENTS</b> <sup>a</sup> | (mg/L)b    |        |          |         |          |            |           |   |          |         | ANALYTICAL |
|---------------------------------------------|-------------------------|-----------|-------------|----------|--------|--------|----------|--------|-----------|---------|----------|---------|--------|----------------------------|------------|--------|----------|---------|----------|------------|-----------|---|----------|---------|------------|
|                                             | IDENTIFIER/ DESCRIPTION | DATE      | Al          | Sb       | As     | Ва     | Ве       | В      | Cd        | Cr      | Со       | Cu      | CN     | Fe                         | Pb         | Mn     | Hg       | Мо      | Ni       | Se         | Ag        | S | TI       | Zn      | LABORATORY |
|                                             | ·                       |           | _           |          |        |        |          |        |           | Sı      | ırface V | Vater   |        |                            |            |        |          |         |          | •          |           |   |          |         |            |
| RR 1.5 C (Rancho Rio)                       | RESE-1002100            | 21-May-09 | <0.080      | <0.00300 | <0.025 |        | <0.00200 |        | <0.000024 |         | <0.0060  | 0.00212 |        | 0.174                      | 0.000055 j | 0.202  |          | <0.0080 | 0.00159  |            | <0.000100 |   | <0.00100 | <0.0100 | SVL        |
| RR 1.5 C (Rancho Rio)                       | RESE-1002100            | 21-May-09 |             |          |        |        |          |        |           |         |          |         |        |                            |            |        | <0.00020 |         |          |            |           |   |          |         | SVL        |
| RR 1.5 C (Rancho Rio)                       | RESE-1002100            | 21-May-09 |             | <0.00300 | <0.025 | 0.0586 | <0.00200 | <0.040 | <0.0020   | <0.0060 |          | <0.010  |        |                            | <0.00300   | 0.183  |          |         | <0.010   | <0.00030   | <0.0050   |   | <0.00100 | <0.0100 | SVL        |
| RR 1.5 C (Rancho Rio) DUP                   | RESE-1002101            | 21-May-09 | <0.080      | <0.00300 | <0.025 |        | <0.00200 |        | <0.000024 |         | <0.0060  | 0.00199 |        | 0.189                      | <0.000053  | 0.207  |          | <0.0080 | 0.00270  |            | <0.000100 |   | <0.00100 | <0.0100 | SVL        |
| RR 1.5 C (Rancho Rio) DUP                   | RESE-1002101            | 21-May-09 |             |          |        |        |          |        |           |         |          |         |        |                            |            |        | <0.00020 |         |          |            |           |   |          |         | SVL        |
| RR 1.5 C (Rancho Rio) DUP                   | RESE-1002101            | 21-May-09 |             | <0.00300 | <0.025 | 0.0602 | <0.00200 | <0.040 | <0.0020   | <0.0060 |          | <0.010  |        |                            | <0.00300   | 0.187  |          |         | <0.010   | <0.00030   | <0.0050   |   | <0.00100 | <0.0100 | SVL        |
| RR 1.5 C (Rancho Rio)                       | RESE-1002128            | 18-Feb-10 | 0.088       | <0.00300 | <0.025 | 0.0405 |          |        | <0.000024 |         | <0.0060  | 0.00665 |        | <0.060                     | 0.000053 j | 0.0074 |          | <0.0080 | <0.00100 |            | <0.000100 |   | <0.00100 | 0.0377  | SVL        |
| RR 1.5 C (Rancho Rio)                       | RESE-1002128            | 18-Feb-10 |             |          |        |        |          |        |           |         |          |         |        |                            |            |        | <0.00020 |         |          |            |           |   |          |         | SVL        |
| RR 1.5 C (Rancho Rio)                       | RESE-1002128            | 18-Feb-10 |             | <0.00300 | <0.025 |        | <0.00200 | <0.040 | <0.0020   | <0.0060 |          | <0.010  |        |                            | <0.00300   | 0.0068 |          |         | <0.010   | <0.00030   | <0.0050   |   | <0.00100 | <0.0100 | SVL        |
| RR 1.5 C (Rancho Rio)                       | RESE-1002143            | 02-Nov-10 | <0.080      | <0.00300 | <0.025 | 0.0407 |          |        | <0.000024 |         | <0.0060  | 0.00840 |        | 0.274                      | 0.000386 j | 0.0178 |          | <0.0080 | <0.00100 |            | <0.000100 |   | <0.00100 | <0.0100 | SVL        |
| RR 1.5 C (Rancho Rio)                       | RESE-1002143            | 02-Nov-10 |             |          |        |        |          |        |           |         |          |         |        |                            |            |        | <0.00020 |         |          |            |           |   |          |         | SVL        |
| RR 1.5 C (Rancho Rio)                       | RESE-1002143            | 02-Nov-10 |             | <0.00300 | <0.025 |        | <0.00200 | <0.040 | <0.0020   | <0.0060 |          | <0.010  |        |                            | <0.00300   | 0.0252 |          |         | <0.010   | 0.00056 jd | <0.0050   |   | <0.00100 | <0.0100 | SVL        |
| RR 1.5 C (Rancho Rio)                       | RESE-1002202            | 09-Dec-11 | <0.080      | <0.00300 | <0.025 |        |          |        | <0.000026 |         | <0.0060  | 0.00776 |        | <0.060                     | <0.000042  | 0.0082 |          | <0.008  | 0.00134  |            | <0.000100 |   | <0.00100 | <0.0100 | SVL        |
| RR 1.5 C (Rancho Rio)                       | RESE-1002202            | 09-Dec-11 |             | <0.00300 | <0.025 | 0.0335 | <0.0020  | <0.040 | <0.0020   | <0.0060 |          | <0.010  |        |                            | <0.00300   | 0.0082 | <0.00020 |         | <0.010   | <0.00070   | <0.0050   |   | <0.00100 | <0.0100 | SVL        |
| RR 1.5 C (Rancho Rio) DUP                   | RESE-1002203            | 09-Dec-11 | 0.088       | <0.00300 | <0.025 |        |          |        | <0.000026 |         | <0.0060  | 0.00767 |        | <0.060                     | 0.000061   | 0.0101 |          | <0.008  | 0.00182  |            | <0.000100 |   | <0.00100 | <0.0100 | SVL        |
| RR 1.5 C (Rancho Rio) DUP                   | RESE-1002203            | 09-Dec-11 |             | <0.00300 | <0.025 | 0.0446 | <0.0020  | <0.040 | <0.0020   | <0.0060 |          | 0.010   |        |                            | <0.00300   | 0.0103 | <0.00020 |         | <0.010   | <0.00070   | <0.0050   |   | <0.00100 | <0.0100 | SVL        |
| SS-1                                        | RESE-1001106            | 07-Apr-04 | 0.114       | <0.0030  | 0.033  | 0.0259 | <0.0020  | <0.040 | <0.00001  | <0.0060 | <0.0060  | 0.057   |        | 0.042                      | <0.0030    | 0.0039 | <0.00020 | <0.0080 | <0.010   | <0.0030    | <0.00010  |   | <0.0020  | 0.0063  | SVL        |
| U.S EPA National Primary Drinking Water Re  | egulations              |           |             | 0.006    | 0.010  | 2      | 0.004    |        | 0.005     | 0.1     |          | 1.3     | 0.20   |                            | 0.015      |        | 0.002    |         |          | 0.05       |           |   | 0.002    |         |            |
| U.S EPA National Secondary Drinking Water   | Regulations             |           | 0.05 to 0.2 |          |        |        |          |        |           |         |          | 1.0     |        | 0.3                        |            | 0.050  |          |         |          |            | 0.1       |   |          | 5       |            |
| Arizona Numeric Aquifer Water Quality Stand | dards                   |           |             | 0.006    | 0.05   | 2.0    | 0.004    |        | 0.005     | 0.1     |          |         | 0.20   |                            | 0.05       |        | 0.002    |         | 0.1      | 0.05       |           |   | 0.002    |         |            |

Values in bold red are out of compliance with EPA primary water quality standards

Values in red italics are out of compliance with EPA secondary water quality standards

Values in red underline are out of compliance with Arizona numeric water quality standards

Values in blue indicate that detection limit exceeds standard

--- = Not available, not applicable

-- = Not calculated due to non-detect

Shading indicates dissolved results
Shading indicates total results
Shading indicates total recoverable results
Shading indicates total recoverable results
Shading indicates unknown filtration or no filtration method provided for analyses

a AI = Aluminum Sb = Antimony As = Arsenic Ba = Barium Be = Beryllium B = Boron Cd = Cadmium Cr = Chromium (total) Co = Cobalt Cu = Copper CN = Cyanide (amenable) Fe = Iron Pb = Lead Mn = Manganese Hg = Mercury Mo = Molybdenum Ni = Nickel Se = Selenium Ag = Silver S = Sulfide TI = Thallium Zn = Zinc

b mg/L = milligrams per liter

#### **Explanation of Codes**

np = Analyte not applicable

Absent = Analyte not present ge = Greater than or equal to reported value i = Insufficient sample j = Estimated value j+ = Estimated value, high bias j- = Estimated value, low bias Lost = Sample lost in processing n = Not measured na = Not available ND = Not Detected

Present = Analyte was detected q = Uncertain value r = Unusable data < = Less than reported detection limit > = Greater than reported value d = Diluted. Diluted samples are indicated only when value is estimated. estimated.

DUP = Field Duplicate

LD = Laboratory duplicate

SP = Split sample

SPD = Split-Duplicate



| SAMPLE LOCATION              | SAMPLE                       | SAMPLE                 |                                        |                       | RADIOL            | OGICAL CO         | NSTITUENTS                    | а                  |                                | ANALYTICAL         |
|------------------------------|------------------------------|------------------------|----------------------------------------|-----------------------|-------------------|-------------------|-------------------------------|--------------------|--------------------------------|--------------------|
|                              | IDENTIFIER/<br>DESCRIPTION   | DATE                   | Gross<br>Alpha<br>(pCi/L) <sup>b</sup> | Gross Beta<br>(pCi/L) | Ra-226<br>(pCi/L) | Ra-228<br>(pCi/L) | Ra-226 +<br>Ra-228<br>(pCi/L) | Total U<br>(pCi/L) | Total U<br>(mg/L) <sup>c</sup> | LABORATORY         |
|                              |                              |                        | ;                                      | Surface Wate          | er                |                   |                               |                    |                                |                    |
| Blue Spring                  | RESE-1001087                 | 26-May-04              | $3.03 \pm 0$                           | <4.10                 | <0.70             | <1.4              |                               |                    | 0.0004 j                       | ACZ                |
| lue Spring                   | RESE-1002009                 | 19-Aug-08              | 3.8 ± 1.6                              | <3.3                  | <0.19             | <1.2              |                               | 1.1 ± 0.5          | 0.0006                         | Energy Labs        |
| lue Spring DUP               | RESE-1002010                 | 19-Aug-08              | 5.8 ± 1.8                              | <3.3                  | <0.20             | <1.2              |                               | 0.7 ± 0.4          | 0.0006                         | Energy Labs        |
| lue Spring                   | RESE-1003165                 | 17-Jul-10              | <2.1                                   | <4.0                  | <0.35             | <1.30             |                               |                    | 0.0007                         | ACZ                |
| ored Spring                  | RESE-1001088                 | 26-May-04              | <2.90                                  | 11.2 ± 0              | <0.90             | <1.40             |                               |                    | <0.0003                        | ACZ                |
| oulder Hole                  | RESE-1001008                 | 22-May-03              | <2.40                                  | <3.60                 | <0.90             | <1.50             |                               |                    | 0.00129                        | ACZ                |
| oulder Hole                  | RESE-1001083                 | 24-May-04              | <2.80                                  | 4.93 ± 0              | <0.40             | <1.50             |                               |                    | 0.0011                         | ACZ                |
| oulder Hole                  | RESE-1002006                 | 06-Aug-08              | <2.5                                   | <3.1                  | <0.23             | <1.2              |                               | $2.5 \pm 0.6$      | 0.0017                         | Energy Labs        |
| oulder Hole                  | RESE-1002167                 | 16-May-11              | <2.3                                   | 6.2 ± 3               | <0.41             | 1.1 ± 0.41        | 1.10                          |                    | 0.0017                         | ACZ                |
| C 10.9 C                     | RESE-1001004                 | 16-May-03              | <1.60                                  | <3.30                 | <1.00             | <1.50             |                               |                    | <0.00005                       | ACZ                |
| C 10.9 C                     | RESE-1001091                 | 27-May-04              | 2.16 ± 0                               | 5.83 ± 0              | <0.5              | <1.40             |                               |                    | <0.0003                        | ACZ                |
| C 13.5 C DUP                 | RESE-1001012                 | 30-May-03              | <1.60                                  | <4.00                 | <0.60             | <1.50             |                               |                    | <0.00005                       | ACZ                |
| C 13.5 C                     | RESE-1001011                 | 30-May-03              | <1.60                                  | <4.00                 | <0.30             | <1.40             |                               |                    | <0.00005                       | ACZ                |
| C 13.5 C                     | RESE-1001086                 | 26-May-04              | <1.6                                   | <4.00                 | <0.40             | <1.4              |                               |                    | <0.0003                        | ACZ                |
| C 13.5 C                     | RESE-1002014                 | 21-Aug-08              | 5.1 ± 1.3                              | <3.2                  | <0.22             | <1.2              |                               | <0.2               | <0.0003                        | Energy Labs        |
| C 14.7 C /US 60 Bridge       | RESE-1002015                 | 27-Aug-08              | $20.8 \pm 2.7$                         | 18.4 ± 2.3            | <0.19             | <1.2              |                               | $0.6 \pm 0.5$      | <0.0003                        | Energy Labs        |
| C 15.5 C                     | RESE-1002003                 | 05-Aug-08              | <1.0                                   | <2.6                  | <0.19             | 1.4 ± 0.79        | 1.40                          | <0.2               | <0.0003                        | Energy Labs        |
| C 4.1 E                      | RESE-1001007                 | 21-May-03              | <2.30                                  | <3.40                 | <1.10             | <1.40             |                               |                    | 0.00024 j                      | ACZ                |
| C 5.5 C                      | RESE-1001076                 | 20-May-04              | <2.0                                   | <4.1                  | <0.30             | <1.40             |                               |                    | 0.0001 j                       | ACZ                |
| C 6.1 E (Lower Crater Tanks) | RESE-1001077                 | 20-May-04              | <2.00                                  | <3.9                  | <0.30             | <1.4              |                               |                    | 0.0006                         | ACZ                |
| C 6.1 E (Lower Crater Tanks) | RESE-1002007                 | 07-Aug-08              | <1.6                                   | <2.7                  | <0.18             | <1.2              |                               | 1.2 ± 0.5          | 0.0005                         | Energy Labs        |
| C 6.14 C (Upper Crater Tank) | RESE-1002013                 | 20-Aug-08              | 3.9 ± 1.3                              | <3.2                  | <0.24             | <1.2              |                               | <0.2               | <0.0003                        | Energy Labs        |
| C 6.6 W                      | RESE-1001010                 | 29-May-03              | <2.70                                  | <4.30                 | <0.60             | <1.40             |                               |                    | 0.00009 j                      | ACZ                |
| C 6.6 W                      | RESE-1001074                 | 05-May-04              | <2.10                                  | <3.60                 | <0.50             | 1.42 ± 0.7        | 1.42                          |                    | 0.0000 j                       | ACZ                |
| C 7.1 C                      | RESE-1001009                 | 29-May-03              | <2.5                                   | <4.30                 | <0.40             | <1.4              |                               |                    | 0.00018 j                      | ACZ                |
| C 7.1 C                      | RESE-1001075                 | 05-May-04              | <1.80                                  | <4.00                 | <0.40             | <1.4              |                               |                    | <0.00016                       | ACZ                |
| C 8.1 C                      | RESE-1002005                 | 06-Aug-08              | <1.5                                   | <2.7                  | <0.20             | <1.2              |                               | 1.2 ± 0.5          | <0.0003                        | Energy Labs        |
| C 8.2 W                      | RESE-1001006                 |                        | <2.3                                   | <3.40                 | <1.10             | <1.40             |                               |                    | 0.00050                        | ACZ                |
| C 8.2 W                      | RESE-1001000<br>RESE-1001079 | 20-May-03<br>21-May-04 | <2.3                                   | <4.20                 | <0.30             | <1.40             |                               |                    | 0.0005                         | ACZ                |
| C 8.2 W                      | RESE-1000260                 | 19-Feb-08              | 2.9 ± 0.8                              | <2.5                  | <0.1              | <1.40             |                               | 1.1 ± 0.3          | 0.0006                         | Energy Labs        |
| C 8.2 W                      | RESE-1003002                 | 27-May-08              | <1.6                                   | <2.7                  | <0.12             | 1.1 ± 0.56        | 1.10                          | 1.3 ± 0.4          | 0.0005                         | Energy Labs        |
| C 8.2 W                      | RESE-1002004                 | 06-Aug-08              | <1.4                                   | <2.7                  | <0.12             | 1.4 ± 0.79        | 1.40                          | 1.0 ± 0.4          | 0.0005                         | Energy Labs        |
| C 8.2 W                      | RESE-1003023                 | 02-Dec-08              | <1.5                                   | <2.6                  | <0.15             | <1.2              |                               | 0.7 ± 0.4          | 0.0004                         | Energy Labs        |
| C 8.8 C                      | RESE-1001005                 | 20-May-03              | <2.10                                  | <3.40                 | <1.10             | <1.5              |                               |                    | 0.00014 j                      | ACZ                |
| C 8.8 C                      | RESE-1001078                 | 21-May-04              | 2.6 ± 2.4                              | <4.30                 | <0.30             | <1.50             |                               |                    | 0.0001j                        | ACZ                |
| overnment Springs            | RESE-1002130                 | 18-Mar-10              | 5.1 ± 2.4                              | 3.5 ± 1.7             | <0.23             | <1.20             |                               | 3.7                | 0.0032                         | Energy Labs        |
| overnment Springs            | RESE-1002181                 | 29-Aug-11              | 3.5 ± 3.4                              | 9.3 ± 3.3             | <0.24             | <1.20             |                               |                    | 0.0032                         | ACZ                |
| 0.1 C (Hackberry Canyon)     | RESE-1002011                 | 19-Aug-08              | 3.4 ± 1.2                              | <3.2                  | <0.20             | <1.2              |                               | <0.2               | <0.0003                        | Energy Labs        |
|                              |                              |                        |                                        |                       |                   |                   |                               |                    |                                |                    |
| dden Spring                  | RESE-1001003                 | 15-May-03              | <2.50                                  | <3.50                 | <1.00             | <1.4              | -                             |                    | 0.00067                        | ACZ                |
| Iden Spring                  | RESE-1001082<br>RESE-1002008 | 24-May-04              | <2.90<br>3.7 ± 2.4                     | <4.30<br><4.2         | <0.60<br><0.19    | <1.5<br><1.2      |                               | 0.7 ± 0.4          | 0.0007 j<br>0.0005             | ACZ<br>Energy Labs |
| dden Spring<br>dden Spring   | RESE-1002008<br>RESE-1003163 | 19-Aug-08<br>17-Jul-10 | 3.7 ± 2.4<br>4.2 ± 2.9                 | <4.2                  | <0.19             | <1.20             |                               | 0.7 ± 0.4          | 0.0005                         | Energy Labs<br>ACZ |
|                              |                              |                        |                                        |                       |                   |                   |                               |                    |                                |                    |
| 1.0 C (Iron Canyon)          | RESE-1002019                 | 28-Aug-08              | 18.2 ± 2                               | 23.8 ± 2.3            | <0.21             | <1.2              | -                             | <0.2               | <0.0003                        | Energy Labs        |
| ne Spring                    | RESE-1001002                 | 15-May-03              | 0.39 ± 3.8                             | <3.50                 | <1.00             | <1.4              |                               | 24.06              | 0.00039                        | ACZ                |
| ane Spring                   | RESE-1002022                 | 29-Aug-08              | 8.4 ± 2.7                              | <3.4                  | <0.20             | <1.2              |                               | 2.4 ± 0.6          | 0.0004                         | Energy Labs        |
| ane Spring                   | RESE-1003164                 | 17-Jul-10              | <2.30                                  | <4.10                 | <0.34             | <1.30             | -                             |                    | 0.0013                         | ACZ                |



| SAMPLE LOCATION                                   | SAMPLE                     | SAMPLE    |                                        |                       | RADIOL            | OGICAL CO         | NSTITUENTS                    | a                  |                                | ANALYTICAL  |
|---------------------------------------------------|----------------------------|-----------|----------------------------------------|-----------------------|-------------------|-------------------|-------------------------------|--------------------|--------------------------------|-------------|
|                                                   | IDENTIFIER/<br>DESCRIPTION | DATE      | Gross<br>Alpha<br>(pCi/L) <sup>b</sup> | Gross Beta<br>(pCi/L) | Ra-226<br>(pCi/L) | Ra-228<br>(pCi/L) | Ra-226 +<br>Ra-228<br>(pCi/L) | Total U<br>(pCi/L) | Total U<br>(mg/L) <sup>°</sup> | LABORATORY  |
|                                                   |                            |           | ,                                      | Surface Wate          | er                | •                 |                               |                    |                                |             |
| F 0.2 C (Lyons Fork Headwater Spring)             | RESE-1002093               | 14-May-09 | 4.9 ± 1.8                              | <2.7                  | <0.20             | <1.2              |                               | $3.4 \pm 0.5$      | 0.0041                         | Energy Labs |
| F 0.2 C (Lyons Fork Headwater Spring)             | RESE-1002133               | 18-Mar-10 | 1.7 ± 1.6                              | <1.6                  | <0.20             | <1.10             |                               | 1.6                | 0.0024                         | Energy Labs |
| 1C 3.3 C                                          | RESE-1002095               | 14-May-09 | <2.4                                   | <2.6                  | <0.20             | <1.2              |                               | $0.3 \pm 0.2$      | <0.0003                        | Energy Labs |
| IC 3.3 C                                          | RESE-1002131               | 18-Mar-10 | 2.0 ± 1.6                              | 2.6 ± 1.6             | <0.21             | <1.10             |                               | 2.3                | 0.0023                         | Energy Labs |
| C 3.4 W (Wet Leg Spring)                          | RESE-1002094               | 14-May-09 | <2.5                                   | <2.7                  | <0.19             | <1.1              |                               | 2.7 ± 0.4          | 0.0022                         | Energy Labs |
| C 3.4 W (Wet Leg Spring)                          | RESE-1002132               | 18-Mar-10 | <1.3                                   | 2.6 ± 1.6             | <0.22             | <1.20             |                               | 0.3                | <0.0003                        | Energy Labs |
| C 3.4 W (Wet Leg Spring)                          | RESE-1002173               | 31-May-11 | 2 ± 2.1                                | <4.10                 | <0.23             | <1.20             |                               |                    | 0.0006                         | ACZ         |
| C 5.2 C                                           | RESE-1002171               | 31-May-11 | 4.8 ± 2.7                              | 5 ± 2.9               | <0.22             | <1.00             |                               |                    | 0.0021                         | ACZ         |
| C 5.2 C                                           | RESE-1002184               | 29-Aug-11 | $7.5 \pm 3.5$                          | 8.1 ± 3.3             | <0.26             | <1.5              |                               |                    | 0.0015                         | ACZ         |
| C 8.4 C (Ranch Fork Headwaters Spring)            | RESE-1002090               | 14-May-09 | <3.6                                   | <3.0                  | <0.21             | 1.3 ± 0.79        | 1.30                          | $3.3 \pm 0.5$      | 0.0037                         | Energy Labs |
| C 8.4 C (Ranch Fork Headwaters Spring) DUP        | RESE-1002091               | 14-May-09 | <3.7                                   | <3.5                  | <0.20             | <1.2              |                               | 3.7 ± 0.7          | 0.0037                         | Energy Labs |
| C 8.4 C (Ranch Fork Headwaters Spring)            | RESE-1002134               | 18-Mar-10 | <1.7                                   | <1.6                  | <0.21             | <1.10             |                               | 1.7                | 0.0019                         | Energy Labs |
| ineral Creek Post-Fire                            | RESE-1003170               | 28-Jul-10 | <3.1                                   | <5.5                  | <0.19             | 1.1 ± 0.47        | 1.1                           |                    | 0.0029                         | ACZ         |
| umber Nine                                        | RESE-1002020               | 28-Aug-08 | 3.8 ± 1.1                              | <3.2                  | <0.22             | <1.2              |                               | <0.2               | <0.0003                        | Energy Labs |
| ak Flat Tributary                                 | RESE-1002016               | 27-Aug-08 | 4.0 ± 1.1                              | <3.2                  | <0.20             | <1.2              |                               | <0.2               | <0.0003                        | Energy Labs |
| ump Station Spring                                | RESE-1001001               | 15-May-03 | <2.4                                   | <3.60                 | <0.80             | <1.40             |                               |                    | 0.00071                        | ACZ         |
| ump Station Spring DUP                            | RESE-1001085               | 25-May-04 | <3.80                                  | <5.40                 | <0.50             | <1.4              |                               |                    | 0.0013                         | ACZ         |
| ump Station Spring                                | RESE-1001084               | 25-May-04 | 4.02 ± 0                               | <5.70                 | $4.3 \pm 0$       | <1.40             | 4.3                           |                    | 0.0013                         | ACZ         |
| ump Station Spring                                | RESE-1002001               | 05-Aug-08 | <3.5                                   | <4.1                  | <0.18             | <1.2              |                               | 1.2 ± 0.4          | 0.0011                         | Energy Labs |
| ump Station Spring                                | RESE-1002168               | 17-May-11 | <2.4                                   | <4.1                  | <0.26             | <0.92             |                               |                    | 0.0016                         | ACZ         |
| C 19.7 C (Queen above Magma Wash)                 | RESE-1002021               | 28-Aug-08 | 5.9 ± 1.8                              | 4.2 ± 2               | <0.21             | <1.2              |                               | $0.4 \pm 0.4$      | <0.0003                        | Energy Labs |
| C 21.7 C (Magma Avenue)                           | RESE-1002018               | 28-Aug-08 | 4.7 ± 1.5                              | <3.3                  | <0.20             | <1.2              |                               | <0.2               | <0.0003                        | Energy Labs |
| C 22.6 E (Karst Spring)                           | RESE-1002017               | 28-Aug-08 | 9.1 ± 2.5                              | <3.4                  | <0.21             | <1.2              |                               | 1.5 ± 0.5          | <0.0003                        | Energy Labs |
| C 27.3 C (Upper QC)                               | RESE-1002002               | 05-Aug-08 | <1.9                                   | 2.9 ± 1.7             | 0.87 ± 0.62       | <1.2              | 0.87                          | <0.2               | 0.0003                         | Energy Labs |
| R 1.5 C (Rancho Rio)                              | RESE-1002012               | 19-Aug-08 | 1.9 ± 1                                | <3.2                  | <0.28             | <1.2              |                               | <0.2               | <0.0003                        | Energy Labs |
| S.EPA National Primary Drinking Water Regulations |                            |           | 15 pCi/L                               | 50 pCi/L d            |                   |                   | 5 pCi/L                       |                    | 0.03 mg/L                      |             |
| urizona Numeric Aquifer Water Quality Standards   |                            |           | 15 pCi/L                               | 50 pCi/L              |                   |                   | 5 pCi/L                       |                    | 0.035 mg/L                     |             |

Values in bold red are out of compliance with EPA primary water quality standards
Values in red italics are out of compliance with Arizona numeric water quality standards
Values in blue indicate that detection limit exceeds standard

< = Less than reported detection limit

-- = Not calculated due to non-detect

--- = Not available, not applicable

a Ra-226 = Radium 226 Ra-228 = Radium 228 U = Uranium

 $^{\rm b}$  pCi/L = picocuries per liter  $^{\rm c}$  mg/L = milligrams per liter

d pCi/L alert level for EPA and Arizona Numeric Standard of 4 mrem/year (milliroentgen equivalent man per year)

### Explanation of Codes

Absent = Analyte not present
ge = Greater than or equal to reported value
i = Insufficient sample
j = Estimated value

j+ = Estimated value, high bias j- = Estimated value, low bias Lost = Sample lost in processing n = Not measured

na = Not available ND = Not Detected np = Analyte not applicable Present = Analyte was detected

q = Uncertain value r = Unusable data

< = Less than reported detection limit

> = Greater than reported value

d = Diluted. Diluted samples are indicated only when value is estimated.

DUP = Field Duplicate
LD = Laboratory duplicate
SP = Split sample
SPD = Split-Duplicate



| SAMPLE LOCATION               | SAMPLE IDENTIFIER/ | SAMPLE    |                          |                        | ISOTOPES                                  |                                       |                                                       | ANALYTICAL            |
|-------------------------------|--------------------|-----------|--------------------------|------------------------|-------------------------------------------|---------------------------------------|-------------------------------------------------------|-----------------------|
|                               | DESCRIPTION        | DATE      | δ¹8O <sup>a</sup><br>(‰) | δD <sup>b</sup><br>(‰) | δ <sup>13</sup> C in DIC <sup>c</sup> (‰) | δ <sup>34</sup> S <sup>d</sup><br>(‰) | δ <sup>18</sup> O in SO <sub>4</sub> <sup>e</sup> (‰) | LABORATORY            |
|                               |                    |           | Surfac                   | e Water                |                                           |                                       |                                                       |                       |
| lue Spring                    | RESE-1002009       | 19-Aug-08 | -9.7                     | -67                    |                                           | 4.5                                   | 17.7                                                  | University of Arizona |
| llue Spring DUP               | RESE-1002010       | 19-Aug-08 | -9.7                     | -67                    |                                           | 4.7                                   | 17.8                                                  | University of Arizona |
| llue Spring                   | RESE-1002052       | 12-Feb-09 | -7.9                     | -54                    |                                           | 3.7                                   | 4.9                                                   | University of Arizona |
| lue Spring                    | RESE-1002088       | 13-May-09 | -9.8                     | -67                    |                                           | 8.2                                   | 7.8                                                   | University of Arizona |
| lue Spring                    | RESE-1003165       | 17-Jul-10 |                          |                        | -15.5                                     | -                                     |                                                       | Beta Analytic         |
| lue Spring                    | RESE-1003165       | 17-Jul-10 | -9.74                    | -69.0                  |                                           | 4.4                                   | 1.0                                                   | Isotech               |
| ored Spring                   | RESE-1002051       | 12-Feb-09 | -6.8                     | -56                    |                                           | 7.7                                   | 6.4                                                   | University of Arizona |
| ored Spring                   | RESE-1002089       | 13-May-09 | -4.7                     | -49                    |                                           | 7.6                                   | 6.3                                                   | University of Arizona |
| oulder Hole                   | RESE-1002006       | 06-Aug-08 | -11.0                    | -81                    |                                           | 15.9                                  | 14.8                                                  | University of Arizona |
| oulder Hole                   | RESE-1002060       | 19-Feb-09 | -7.8                     | -50                    |                                           | 0.2                                   | 3.3                                                   | University of Arizona |
| loulder Hole                  | RESE-1002082       | 07-May-09 | -7.4                     | -53                    |                                           | 17.8                                  | 9.8                                                   | University of Arizona |
| Soulder Hole                  | RESE-1002167       | 16-May-11 |                          |                        | -13.4                                     | _                                     |                                                       | Beta Analytic         |
| oulder Hole                   | RESE-1002167       | 16-May-11 | -7.59                    | -61.0                  |                                           | 21.7                                  | -1.3                                                  | Isotech               |
| C 13.5 C                      | RESE-1002014       | 21-Aug-08 | -8.7                     | -73                    |                                           | 1.6                                   | i                                                     | University of Arizona |
| OC 13.5 C                     | RESE-1002057       | 19-Feb-09 | -8.2                     | -52                    |                                           | 0.8                                   | 7.4                                                   | University of Arizona |
| OC 13.5 C                     | RESE-1002103       | 21-May-09 | -5.9                     | -46                    |                                           | 20.7                                  | 14.6                                                  | University of Arizona |
| OC 14.7 C /US 60 Bridge       | RESE-1002015       | 27-Aug-08 | -13.5                    | -99                    |                                           | -1.8                                  | 10.3                                                  | University of Arizona |
| C 15.5 C                      | RESE-1002003       | 05-Aug-08 | -12.1                    | -97                    |                                           | i                                     | i                                                     | University of Arizona |
| OC 15.5 C                     | RESE-1002069       | 26-Feb-09 | -8.0                     | -51                    |                                           | 1.3                                   | 5.1                                                   | University of Arizona |
| OC 15.5 C                     | RESE-1002075       | 05-May-09 | -6.7                     | -47                    |                                           | 9.1                                   | 8.4                                                   | University of Arizona |
| C 6.1 E (Lower Crater Tanks)  | 001226             | 05-Jun-03 | -10.0                    | -69                    |                                           |                                       |                                                       | University of Arizona |
| DC 6.1 E (Lower Crater Tanks) | RESE-1002007       | 07-Aug-08 | -10.3                    | -70                    |                                           | 1.5                                   | 6.8                                                   | University of Arizona |
| DC 6.1 E (Lower Crater Tanks) | RESE-1002064       | 25-Feb-09 | -10.3                    | -70                    |                                           | 1.5                                   | 4.2                                                   | University of Arizona |
| C 6.1 E (Lower Crater Tanks)  | RESE-1002099       | 20-May-09 | -10.5                    | -70                    |                                           | 1.6                                   | 6.9                                                   | University of Arizona |
| OC 6.14 C (Upper Crater Tank) | RESE-1002013       | 20-Aug-08 | -10.5                    | -82                    |                                           | 6.7                                   | 13.4                                                  | University of Arizona |
| OC 6.14 C (Upper Crater Tank) | RESE-1002037       | 12-Nov-08 | -8.4                     | -68                    |                                           |                                       |                                                       | University of Arizona |
| OC 6.14 C (Upper Crater Tank) | RESE-1002056       | 18-Feb-09 | -8.0                     | -50                    |                                           | 0.6                                   | 7.3                                                   | University of Arizona |
| DC 6.14 C (Upper Crater Tank) | RESE-1002078       | 06-May-09 | -7.8                     | -55                    |                                           | 15.8                                  | i                                                     | University of Arizona |
| OC 6.6 W                      | 001227             | 05-Jun-03 | -9.9                     | -68                    |                                           |                                       |                                                       | University of Arizona |
| C 8.1 C                       | RESE-1002005       | 06-Aug-08 | -9.9                     | -71                    |                                           | 5.3                                   | 16.0                                                  | University of Arizona |
| OC 8.1 C                      | RESE-1002062       | 24-Feb-09 | -8.2                     | -51                    |                                           | 0.6                                   | 8.5                                                   | University of Arizona |
| OC 8.1 C                      | RESE-1002098       | 19-May-09 | -9.7                     | -66                    |                                           | 6.3                                   | 23.3                                                  | University of Arizona |
| OC 8.2 W                      | RESE-1000260       | 19-Feb-08 | -10.0                    | -68                    | -15.0                                     | 4.5                                   | 9.8                                                   | University of Arizona |
| OC 8.2 W                      | RESE-1003002       | 27-May-08 | -9.8                     | -68                    |                                           | 4.8                                   | 8.7                                                   | University of Arizona |
| OC 8.2 W                      | RESE-1002004       | 06-Aug-08 | -10.0                    | -68                    |                                           | 5.2                                   | 14.1                                                  | University of Arizona |



|                                        | DESCRIPTION  | DATE      | $\delta^{18}O^a$ | δD <sup>b</sup> | \$130 to DIO C                  | δ³4S <sup>d</sup>  | C180: 50 B                      |                       |
|----------------------------------------|--------------|-----------|------------------|-----------------|---------------------------------|--------------------|---------------------------------|-----------------------|
|                                        |              |           | (‰)              | (‰)             | δ¹³C in DIC <sup>c</sup><br>(‰) | 6 <sup>34</sup> 5" | δ¹8O in SO₄ <sup>e</sup><br>(‰) | LABORATORY            |
|                                        |              |           | Surfac           | e Water         |                                 |                    |                                 |                       |
| DC 8.2 W                               | RESE-1003023 | 02-Dec-08 | -10.1            | -68             |                                 | 4.5                | 1.8                             | University of Arizona |
| DC 8.2 W                               | RESE-1002063 | 24-Feb-09 | -9.8             | -66             |                                 | 3.7                | 7.1                             | University of Arizona |
| DC 8.2 W                               | RESE-1002097 | 19-May-09 | -10.3            | -69             |                                 | 4.5                | 10.9                            | University of Arizona |
| Government Springs                     | RESE-1002130 | 18-Mar-10 |                  |                 | -15.4                           |                    |                                 | Beta Analytic         |
| Government Springs                     | RESE-1002130 | 18-Mar-10 | -9.39            | -69.6           |                                 | 0.0                | 4.06                            | Isotech               |
| Government Springs                     | RESE-1002181 | 29-Aug-11 |                  |                 | -14.2                           |                    |                                 | Beta Analytic         |
| Government Springs                     | RESE-1002181 | 29-Aug-11 | -9.58            | -69.1           |                                 | -0.1               | 1.6                             | Isotech               |
| H 0.1 C (Hackberry Canyon)             | RESE-1002011 | 19-Aug-08 | -3.5             | -46             |                                 | 8.7                | 13.1                            | University of Arizona |
| H 0.1 C (Hackberry Canyon)             | RESE-1002061 | 24-Feb-09 | -7.4             | -49             |                                 | 0.3                | 4.7                             | University of Arizona |
| H 0.1 C (Hackberry Canyon)             | RESE-1002096 | 19-May-09 | -3.6             | -43             |                                 | 3.6                | 5.6                             | University of Arizona |
| Hidden Spring                          | RESE-1002008 | 19-Aug-08 | -9.4             | -68             |                                 | 0.2                | 5.9                             | University of Arizona |
| Hidden Spring                          | RESE-1002045 | 10-Feb-09 | -9.5             | -68             |                                 | -0.3               | 4.6                             | University of Arizona |
| Hidden Spring                          | RESE-1002086 | 12-May-09 | -9.7             | -68             |                                 | 0.0                | 4.4                             | University of Arizona |
| Hidden Spring                          | RESE-1003163 | 17-Jul-10 |                  | -               | -14.4                           |                    |                                 | Beta Analytic         |
| Hidden Spring                          | RESE-1003163 | 17-Jul-10 | -8.88            | -64.8           |                                 | 1.2                | 1.1                             | Isotech               |
| IC 1.0 C (Iron Canyon)                 | RESE-1002019 | 28-Aug-08 | -12.6            | -93             |                                 | -7.7               | 6.8                             | University of Arizona |
| IC 1.0 C (Iron Canyon)                 | RESE-1002055 | 17-Feb-09 | -8.3             | -52             |                                 | 0.4                | 7.4                             | University of Arizona |
| IC 1.0 C (Iron Canyon)                 | RESE-1002085 | 12-May-09 | -7.6             | -55             |                                 | -0.1               | 9.3                             | University of Arizona |
| Kane Spring                            | RESE-1002022 | 29-Aug-08 | -10.2            | -73             |                                 | 3.9                | 9.9                             | University of Arizona |
| Kane Spring                            | RESE-1002046 | 10-Feb-09 | -9.9             | -69             |                                 | 4.2                | 5.3                             | University of Arizona |
| Kane Spring                            | RESE-1002087 | 13-May-09 | -10.3            | -71             |                                 | 4.8                | 5.6                             | University of Arizona |
| Kane Spring                            | RESE-1003164 | 17-Jul-10 |                  |                 | -13.1                           |                    |                                 | Beta Analytic         |
| Kane Spring                            | RESE-1003164 | 17-Jul-10 | -10.01           | -71.8           |                                 | 2.6                | 1.6                             | Isotech               |
| LF 0.2 C (Lyons Fork Headwater Spring) | RESE-1002039 | 13-Nov-08 | -9.5             | -68             |                                 |                    |                                 | University of Arizona |
| LF 0.2 C (Lyons Fork Headwater Spring) | RESE-1002072 | 05-Mar-09 | -9.1             | -61             |                                 | -2.5               | 5.2                             | University of Arizona |
| LF 0.2 C (Lyons Fork Headwater Spring) | RESE-1002093 | 14-May-09 | -9.1             | -62             |                                 | -1.8               | 4.3                             | University of Arizona |
| LF 0.2 C (Lyons Fork Headwater Spring) | RESE-1002133 | 18-Mar-10 |                  |                 | -15.6                           |                    |                                 | Beta Analytic         |
| LF 0.2 C (Lyons Fork Headwater Spring) | RESE-1002133 | 18-Mar-10 | -7.90            | -53.5           |                                 | 6.2                | 1.69                            | Isotech               |
| MC 3.3 C                               | RESE-1002040 | 13-Nov-08 | -9.6             | -69             |                                 |                    |                                 | University of Arizona |
| MC 3.3 C                               | RESE-1002074 | 05-Mar-09 | -9.1             | -64             |                                 | -0.7               | 3.9                             | University of Arizona |
| MC 3.3 C                               | RESE-1002095 | 14-May-09 | -9.3             | -65             |                                 | 1.6                | 15.9                            | University of Arizona |
| MC 3.3 C                               | RESE-1002131 | 18-Mar-10 |                  |                 | -14.1                           |                    |                                 | Beta Analytic         |
| MC 3.3 C                               | RESE-1002131 | 18-Mar-10 | -8.21            | -56.9           |                                 | -3.4               | 2.37                            | Isotech               |
| MC 3.4 W (Wet Leg Spring)              | RESE-1002041 | 13-Nov-08 | -10.2            | -71             |                                 |                    |                                 | University of Arizona |
| MC 3.4 W (Wet Leg Spring)              | RESE-1002073 | 05-Mar-09 | -10.2            | -71             |                                 | 3.3                | 3.6                             | University of Arizona |



| SAMPLE LOCATION                             | SAMPLE IDENTIFIER/ | SAMPLE    |                          | ANALYTICAL             |                                           |                                       |                                                       |                       |
|---------------------------------------------|--------------------|-----------|--------------------------|------------------------|-------------------------------------------|---------------------------------------|-------------------------------------------------------|-----------------------|
|                                             | DESCRIPTION        | DATE      | δ¹8O <sup>a</sup><br>(‰) | δD <sup>b</sup><br>(‰) | δ <sup>13</sup> C in DIC <sup>c</sup> (‰) | δ <sup>34</sup> S <sup>d</sup><br>(‰) | δ <sup>18</sup> O in SO <sub>4</sub> <sup>e</sup> (‰) | LABORATORY            |
|                                             |                    | 1         | Surfac                   | e Water                |                                           |                                       |                                                       |                       |
| IC 3.4 W (Wet Leg Spring)                   | RESE-1002094       | 14-May-09 | -10.2                    | -70                    |                                           | 7.5                                   | 19.6                                                  | University of Arizona |
| IC 3.4 W (Wet Leg Spring)                   | RESE-1002132       | 18-Mar-10 |                          |                        | -16.5                                     |                                       |                                                       | Beta Analytic         |
| 1C 3.4 W (Wet Leg Spring)                   | RESE-1002132       | 18-Mar-10 | -9.50                    | -69.2                  |                                           | 0.2                                   | 0.45                                                  | Isotech               |
| IC 3.4 W (Wet Leg Spring)                   | RESE-1002173       | 31-May-11 |                          |                        | -15.8                                     |                                       |                                                       | Beta Analytic         |
| IC 3.4 W (Wet Leg Spring)                   | RESE-1002173       | 31-May-11 | -10.15                   | -72.5                  |                                           | 2.9                                   | -2.5                                                  | Isotech               |
| IC 5.2 C                                    | RESE-1002171       | 31-May-11 |                          |                        | -14.1                                     |                                       |                                                       | Beta Analytic         |
| IC 5.2 C                                    | RESE-1002171       | 31-May-11 | -9.05                    | -67.2                  |                                           | -0.3                                  | 4.6                                                   | Isotech               |
| C 5.2 C                                     | RESE-1002184       | 29-Aug-11 |                          |                        | -15.7                                     |                                       |                                                       | Beta Analytic         |
| IC 5.2 C                                    | RESE-1002184       | 29-Aug-11 | -9.36                    | -67.4                  |                                           | -0.3                                  | 2.3                                                   | Isotech               |
| IC 8.4 C (Ranch Fork Headwaters Spring)     | RESE-1002038       | 13-Nov-08 | -9.6                     | -69                    |                                           |                                       |                                                       | University of Arizona |
| MC 8.4 C (Ranch Fork Headwaters Spring)     | RESE-1002071       | 05-Mar-09 | -9.5                     | -66                    |                                           | 0.1                                   | 4.9                                                   | University of Arizona |
| IC 8.4 C (Ranch Fork Headwaters Spring)     | RESE-1002090       | 14-May-09 | -9.4                     | -67                    |                                           | -1.0                                  | 5.8                                                   | University of Arizona |
| IC 8.4 C (Ranch Fork Headwaters Spring) DUP | RESE-1002091       | 14-May-09 | -9.6                     | -67                    |                                           | -0.8                                  | 6.1                                                   | University of Arizona |
| IC 8.4 C (Ranch Fork Headwaters Spring)     | RESE-1002134       | 18-Mar-10 |                          |                        | -14.4                                     |                                       |                                                       | Beta Analytic         |
| IC 8.4 C (Ranch Fork Headwaters Spring)     | RESE-1002134       | 18-Mar-10 | -8.27                    | -56.9                  |                                           | -4.3                                  | 2.09                                                  | Isotech               |
| lineral Creek Post-Fire                     | RESE-1003170       | 28-Jul-10 | -8.85                    | -60.4                  |                                           |                                       |                                                       | Isotech               |
| lumber Nine                                 | RESE-1002020       | 28-Aug-08 | -12.8                    | -98                    |                                           | -0.5                                  | 6.7                                                   | University of Arizona |
| umber Nine                                  | RESE-1002058       | 19-Feb-09 | -7.5                     | -47                    |                                           | 0.9                                   | 6.2                                                   | University of Arizona |
| umber Nine DUP                              | RESE-1002059       | 19-Feb-09 | -7.6                     | -47                    |                                           | 0.5                                   | 6.3                                                   | University of Arizona |
| lumber Nine                                 | RESE-1002077       | 05-May-09 | -3.5                     | -36                    |                                           | 15.0                                  | 10.4                                                  | University of Arizona |
| ak Flat Tributary                           | RESE-1002016       | 27-Aug-08 | -14.1                    | -105                   |                                           | -0.4                                  | 6.0                                                   | University of Arizona |
| ak Flat Tributary                           | RESE-1002068       | 26-Feb-09 | -7.0                     | -45                    |                                           | 2.4                                   | 5.4                                                   | University of Arizona |
| ak Flat Tributary                           | RESE-1002076       | 05-May-09 | -2.2                     | -30                    |                                           | 10.6                                  | 11.6                                                  | University of Arizona |
| ump Station Spring                          | RESE-1002001       | 05-Aug-08 | -9.9                     | -67                    |                                           | -1.1                                  | 14.6                                                  | University of Arizona |
| ump Station Spring                          | RESE-1002053       | 17-Feb-09 | -7.7                     | -47                    |                                           | 1.2                                   | 7.0                                                   | University of Arizona |
| ump Station Spring                          | RESE-1002080       | 12-May-09 | -9.5                     | -63                    |                                           | -0.4                                  | 6.2                                                   | University of Arizona |
| rump Station Spring DUP                     | RESE-1002084       | 12-May-09 | -9.7                     | -64                    |                                           | -0.1                                  | 5.6                                                   | University of Arizona |
| ump Station Spring                          | RESE-1002168       | 17-May-11 |                          |                        | -15.4                                     |                                       |                                                       | Beta Analytic         |
| rump Station Spring                         | RESE-1002168       | 17-May-11 | -9.51                    | -66.3                  |                                           | -1.8                                  | 2.1                                                   | Isotech               |
| C 19.7 C (Queen above Magma Wash)           | RESE-1002021       | 28-Aug-08 | -12.0                    | -91                    |                                           | 0.1                                   | 4.4                                                   | University of Arizona |
| C 19.7 C (Queen above Magma Wash)           | RESE-1002048       | 11-Feb-09 | -8.3                     | -54                    |                                           | 0.9                                   | 7.2                                                   | University of Arizona |
| C 21.7 C (Magma Avenue)                     | RESE-1002018       | 28-Aug-08 | -11.9                    | -89                    |                                           | -1.1                                  | 4.9                                                   | University of Arizona |
| C 21.7 C (Magma Avenue)                     | RESE-1002047       | 11-Feb-09 | -8.4                     | -55                    |                                           | 0.8                                   | 6.5                                                   | University of Arizona |
| QC 21.7 C (Magma Avenue)                    | RESE-1002083       | 07-May-09 | 7.5                      | 4.0                    |                                           | 10.3                                  | 13.9                                                  | University of Arizona |
| QC 22.6 E (Karst Spring)                    | RESE-1002017       | 28-Aug-08 | -11.1                    | -80                    |                                           | 1.7                                   | 6.0                                                   | University of Arizona |



| SAMPLE LOCATION              | SAMPLE IDENTIFIER/ | SAMPLE    |                                | ANALYTICAL |                                       |                                |                                                   |                       |  |  |  |  |  |  |
|------------------------------|--------------------|-----------|--------------------------------|------------|---------------------------------------|--------------------------------|---------------------------------------------------|-----------------------|--|--|--|--|--|--|
|                              | DESCRIPTION        | DATE      | δ <sup>18</sup> Ο <sup>a</sup> | δD b       | δ <sup>13</sup> C in DIC <sup>c</sup> | δ <sup>34</sup> S <sup>d</sup> | δ <sup>18</sup> O in SO <sub>4</sub> <sup>e</sup> | LABORATORY            |  |  |  |  |  |  |
|                              |                    |           | (‰)                            | (‰)        | (‰)                                   | (‰)                            | (‰)                                               |                       |  |  |  |  |  |  |
| Surface Water                |                    |           |                                |            |                                       |                                |                                                   |                       |  |  |  |  |  |  |
| QC 22.6 E (Karst Spring) DUP | RESE-1002050       | 11-Feb-09 | -8.5                           | -56        |                                       | 0.5                            | 4.5                                               | University of Arizona |  |  |  |  |  |  |
| QC 22.6 E (Karst Spring)     | RESE-1002049       | 11-Feb-09 | -8.4                           | -57        |                                       | 0.7                            | 5.3                                               | University of Arizona |  |  |  |  |  |  |
| QC 27.3 C (Upper QC)         | RESE-1002002       | 05-Aug-08 | -2.2                           | -48        |                                       | 12.2                           | 11.3                                              | University of Arizona |  |  |  |  |  |  |
| QC 27.3 C (Upper QC)         | RESE-1002054       | 17-Feb-09 | -7.8                           | -47        |                                       | 0.8                            | 5.3                                               | University of Arizona |  |  |  |  |  |  |
| C 27.3 C (Upper QC)          | RESE-1002079       | 07-May-09 | -0.5                           | -24        |                                       | 8.9                            | 9.1                                               | University of Arizona |  |  |  |  |  |  |
| RR 1.5 C (Rancho Rio)        | RESE-1002012       | 19-Aug-08 | -9.6                           | -66        |                                       | 1.0                            | 8.4                                               | University of Arizona |  |  |  |  |  |  |
| RR 1.5 C (Rancho Rio) DUP    | RESE-1002066       | 26-Feb-09 | -7.7                           | -50        |                                       | 1.1                            | 5.3                                               | University of Arizona |  |  |  |  |  |  |
| RR 1.5 C (Rancho Rio)        | RESE-1002065       | 26-Feb-09 | -7.7                           | -51        |                                       | 1.1                            | 6.5                                               | University of Arizona |  |  |  |  |  |  |
| RR 1.5 C (Rancho Rio)        | RESE-1002100       | 21-May-09 | -8.4                           | -58        |                                       | 3.2                            | 7.6                                               | University of Arizona |  |  |  |  |  |  |
| R 1.5 C (Rancho Rio) DUP     | RESE-1002101       | 21-May-09 | -8.3                           | -58        |                                       | 3.1                            | 7.6                                               | University of Arizona |  |  |  |  |  |  |
| S-1                          | RESE-1001106       | 07-Apr-04 | -8.1                           | -55        |                                       |                                |                                                   | University of Arizona |  |  |  |  |  |  |

a  $\delta^{18}O$  (‰) = delta oxygen-18 (per mil)

#### **Explanation of Codes**

Absent = Analyte not present ge = Greater than or equal to reported value

i = Insufficient sample

j = Estimated value

j+ = Estimated value, high bias

j- = Estimated value, low bias

Lost = Sample lost in processing n = Not measured

na = Not available

ND = Not Detected np = Analyte not applicable Present = Analyte was detected q = Uncertain value

r = Unusable data

< = Less than reported detection limit

> = Greater than reported value d = Diluted. Diluted samples are indicated only when value is estimated.

DUP = Field Duplicate LD = Laboratory duplicate SP = Split sample SPD = Split-Duplicate



b δD (‰) = delta deuterium (per mil)

c  $\delta^{13}$ C in DIC (‰) = delta carbon-13 in dissolved inorganic carbon (per mil)

d  $\delta^{34}$ S (‰) = delta sulfur-34 (per mil)

e  $\delta^{18}$ O in SO<sub>4</sub> (‰) = delta oxygen-18 in sulfate (per mil)

<sup>--- =</sup> Not available, not applicable

<sup>-- =</sup> Not calculated due to non-detect

| SAMPLE LOCATION                  | SAMPLE       | SAMPLE    |                      |                                    |                       | RADIOISOTOR         | PE DATA                               |                                       |                                       |                                                 | ANALYTICAL            |
|----------------------------------|--------------|-----------|----------------------|------------------------------------|-----------------------|---------------------|---------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------------------|-----------------------|
|                                  | IDENTIFIER/  | DATE      | ³H (TU) <sup>a</sup> | <sup>14</sup> C (pmC) <sup>b</sup> | Sr (ppm) <sup>c</sup> | 87Sr/86Srd          | <sup>234</sup> U (pCi/L) <sup>e</sup> | <sup>235</sup> U (pCi/L) <sup>f</sup> | <sup>238</sup> U (pCi/L) <sup>g</sup> | <sup>234</sup> U/ <sup>238</sup> U <sup>h</sup> | LABORATORY            |
|                                  | DESCRIPTION  |           |                      |                                    |                       |                     |                                       |                                       |                                       |                                                 |                       |
|                                  |              |           |                      |                                    | Surface W             | /ater               |                                       |                                       |                                       |                                                 |                       |
| Blue Spring                      | RESE-1002009 | 19-Aug-08 |                      | -                                  | -                     |                     | $0.9 \pm 0.4$                         | <0.2                                  | <0.2                                  |                                                 | Energy Labs           |
| Blue Spring                      | RESE-1002009 | 19-Aug-08 |                      |                                    | 0.1636                | 0.711123 ± 0.00001  | -                                     |                                       |                                       |                                                 | Geochron              |
| Blue Spring                      | RESE-1002009 | 19-Aug-08 | <0.8                 |                                    | -                     |                     | -                                     |                                       |                                       |                                                 | University of Arizona |
| Blue Spring DUP                  | RESE-1002010 | 19-Aug-08 |                      |                                    | -                     |                     | $0.5 \pm 0.3$                         | <0.2                                  | <0.2                                  |                                                 | Energy Labs           |
| Blue Spring DUP                  | RESE-1002010 | 19-Aug-08 |                      |                                    | 0.1642                | 0.711117 ± 0.000009 |                                       |                                       |                                       |                                                 | Geochron              |
| Blue Spring DUP                  | RESE-1002010 | 19-Aug-08 | <0.8                 |                                    | _                     |                     |                                       |                                       |                                       |                                                 | University of Arizona |
| Blue Spring                      | RESE-1002088 | 13-May-09 | 0.8 ± 0.31           |                                    | -                     |                     |                                       |                                       |                                       |                                                 | University of Arizona |
| Blue Spring                      | RESE-1003165 | 17-Jul-10 |                      | _                                  |                       |                     | <1.20                                 | <1.20                                 | <1.20                                 |                                                 | ACZ                   |
| Blue Spring                      | RESE-1003165 | 17-Jul-10 |                      | 78.64 ± 0.38                       | -                     |                     | -                                     |                                       |                                       |                                                 | Beta Analytic         |
| Blue Spring                      | RESE-1003165 | 17-Jul-10 |                      |                                    | 0.1565                | 0.710825 ± 0.00001  |                                       |                                       |                                       |                                                 | Geochron              |
| Blue Spring                      | RESE-1003165 | 17-Jul-10 | <1.00                |                                    | _                     |                     |                                       |                                       |                                       |                                                 | Isotech               |
| Bored Spring                     | RESE-1002089 | 13-May-09 | 6.6 ± 0.35           |                                    |                       |                     |                                       |                                       |                                       |                                                 | University of Arizona |
| Boulder Hole                     | RESE-1002006 | 06-Aug-08 |                      |                                    |                       |                     | 1.8 ± 0.5                             | <0.2                                  | 0.6 ± 0.3                             | 3.0                                             | Energy Labs           |
| Boulder Hole                     | RESE-1002006 | 06-Aug-08 |                      |                                    | 0.3099                | 0.709883 ± 0.000009 |                                       |                                       |                                       |                                                 | Geochron              |
| Boulder Hole                     | RESE-1002006 | 06-Aug-08 | 2.7 ± 0.31           |                                    |                       |                     |                                       |                                       |                                       |                                                 | University of Arizona |
| Boulder Hole                     | RESE-1002082 | 07-May-09 | 2.2 ± 0.27           |                                    |                       |                     |                                       |                                       |                                       |                                                 | University of Arizona |
| Boulder Hole                     | RESE-1002167 | 16-May-11 |                      |                                    |                       |                     | <0.90                                 | <0.9                                  | <0.9                                  |                                                 | ACZ                   |
| Boulder Hole                     | RESE-1002167 | 16-May-11 |                      | 89.51 ± 0.33                       |                       |                     |                                       |                                       |                                       |                                                 | Beta Analytic         |
| Boulder Hole                     | RESE-1002167 | 16-May-11 |                      |                                    | 0.2985                | 0.709880 ± 0.00001  |                                       |                                       |                                       |                                                 | Geochron              |
| Boulder Hole                     | RESE-1002167 | 16-May-11 | 1.49 ± 0.17          |                                    |                       |                     |                                       |                                       |                                       |                                                 | Isotech               |
| DC 13.5 C                        | RESE-1002014 | 21-Aug-08 |                      |                                    |                       |                     | <0.2                                  | <0.2                                  | <0.2                                  |                                                 | Energy Labs           |
| DC 13.5 C                        | RESE-1002014 | 21-Aug-08 |                      |                                    | 0.0998                | 0.710162 ± 0.000014 |                                       |                                       |                                       |                                                 | Geochron              |
| DC 13.5 C                        | RESE-1002014 | 21-Aug-08 | $3.9 \pm 0.4$        |                                    |                       |                     |                                       |                                       |                                       |                                                 | University of Arizona |
| DC 13.5 C                        | RESE-1002103 | 21-May-09 | 4.0 ± 0.31           |                                    |                       |                     |                                       |                                       |                                       |                                                 | University of Arizona |
| DC 14.7 C /US 60 Bridge          | RESE-1002015 | 27-Aug-08 |                      |                                    |                       |                     | 0.4 ± 0.4                             | <0.2                                  | <0.2                                  |                                                 | Energy Labs           |
| DC 14.7 C /US 60 Bridge          | RESE-1002015 | 27-Aug-08 |                      |                                    | 0.0482                | 0.710313 ± 0.00001  |                                       |                                       |                                       |                                                 | Geochron              |
| DC 14.7 C /US 60 Bridge          | RESE-1002015 | 27-Aug-08 | 3.9 ± 0.41           |                                    |                       |                     |                                       |                                       |                                       |                                                 | University of Arizona |
| DC 15.5 C                        | RESE-1002003 | 05-Aug-08 |                      |                                    |                       |                     | <0.2                                  | <0.2                                  | <0.2                                  |                                                 | Energy Labs           |
| DC 15.5 C                        | RESE-1002003 | 05-Aug-08 |                      |                                    | 0.0257                | 0.710171 ± 0.00001  |                                       |                                       |                                       |                                                 | Geochron              |
| DC 15.5 C                        | RESE-1002003 | 05-Aug-08 | 4.8 ± 0.4            |                                    |                       |                     |                                       |                                       |                                       |                                                 | University of Arizona |
| DC 15.5 C                        | RESE-1002075 | 05-May-09 | 5.1 ± 0.38           |                                    |                       |                     |                                       |                                       |                                       |                                                 | University of Arizona |
| DC 6.1 E (Lower Crater Tanks)    | RESE-1002007 | 07-Aug-08 |                      |                                    |                       |                     | 1.1 ± 0.4                             | <0.2                                  | <0.2                                  |                                                 | Energy Labs           |
| DC 6.1 E (Lower Crater Tanks)    | RESE-1002007 | 07-Aug-08 |                      |                                    | 0.1573                | 0.710261 ± 0.00001  |                                       |                                       |                                       |                                                 | Geochron              |
| DC 6.1 E (Lower Crater Tanks)    | RESE-1002007 | 07-Aug-08 | <0.9                 |                                    |                       |                     |                                       |                                       |                                       |                                                 | University of Arizona |
| DC 6.1 E (Lower Crater Tanks) LD | RESE-1002007 | 07-Aug-08 |                      |                                    | 0.1574                | 0.710281 ± 0.000011 |                                       |                                       |                                       |                                                 | Geochron              |



| SAMPLE LOCATION               | SAMPLE                  | SAMPLE<br>DATE | RADIOISOTOPE DATA    |                                    |                       |                                                 |                                       |                                       |                                       |                                                 |                       |  |
|-------------------------------|-------------------------|----------------|----------------------|------------------------------------|-----------------------|-------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------------------|-----------------------|--|
|                               | IDENTIFIER/ DESCRIPTION |                | ³H (TU) <sup>a</sup> | <sup>14</sup> C (pmC) <sup>b</sup> | Sr (ppm) <sup>c</sup> | <sup>87</sup> Sr/ <sup>86</sup> Sr <sup>d</sup> | <sup>234</sup> U (pCi/L) <sup>e</sup> | <sup>235</sup> U (pCi/L) <sup>f</sup> | <sup>238</sup> U (pCi/L) <sup>g</sup> | <sup>234</sup> U/ <sup>238</sup> U <sup>h</sup> | LABORATORY            |  |
|                               |                         |                |                      |                                    | Surface W             | ater                                            | l                                     |                                       |                                       |                                                 |                       |  |
| DC 6.1 E (Lower Crater Tanks) | RESE-1002099            | 20-May-09      | <1.0                 |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |  |
| OC 6.14 C (Upper Crater Tank) | RESE-1002013            | 20-Aug-08      |                      |                                    |                       |                                                 | <0.2                                  | <0.2                                  | <0.2                                  |                                                 | Energy Labs           |  |
| DC 6.14 C (Upper Crater Tank) | RESE-1002013            | 20-Aug-08      |                      |                                    | 0.1557                | 0.710040 ± 0.00001                              |                                       |                                       |                                       |                                                 | Geochron              |  |
| DC 6.14 C (Upper Crater Tank) | RESE-1002013            | 20-Aug-08      | $3.8 \pm 0.36$       |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |  |
| OC 6.14 C (Upper Crater Tank) | RESE-1002078            | 06-May-09      | 2.8 ± 0.35           | -                                  |                       |                                                 |                                       | -                                     |                                       |                                                 | University of Arizona |  |
| OC 8.1 C                      | RESE-1002005            | 06-Aug-08      |                      |                                    |                       |                                                 | 0.7 ± 0.3                             | <0.2                                  | 0.4 ± 0.3                             | 1.8                                             | Energy Labs           |  |
| OC 8.1 C                      | RESE-1002005            | 06-Aug-08      |                      |                                    | 0.1613                | 0.710015 ± 0.000014                             |                                       |                                       |                                       |                                                 | Geochron              |  |
| OC 8.1 C                      | RESE-1002005            | 06-Aug-08      | 1.7 ± 0.33           |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |  |
| OC 8.1 C                      | RESE-1002098            | 19-May-09      | 1.2 ± 0.27           |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |  |
| DC 8.2 W                      | RESE-1000260            | 19-Feb-08      |                      |                                    |                       |                                                 | 0.9 ± 0.3                             | <0.2                                  | 0.2 ± 0.1                             | 4.5                                             | Energy Labs           |  |
| OC 8.2 W                      | RESE-1000260            | 19-Feb-08      |                      |                                    | 0.1553                | 0.709962 ± 0.000014                             |                                       |                                       |                                       |                                                 | Geochron              |  |
| OC 8.2 W                      | RESE-1000260            | 19-Feb-08      | 0.6 ± 0.24           | 72.8 ± 1.7                         |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |  |
| OC 8.2 W                      | RESE-1003002            | 27-May-08      |                      |                                    |                       |                                                 | 1.1 ± 0.3                             | <0.2                                  | 0.2 ± 0.2                             | 5.5                                             | Energy Labs           |  |
| OC 8.2 W                      | RESE-1003002            | 27-May-08      |                      |                                    | 0.1542                | 0.709959 ± 0.000009                             |                                       |                                       |                                       |                                                 | Geochron              |  |
| OC 8.2 W                      | RESE-1003002            | 27-May-08      | 0.9 ± 0.21           |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |  |
| OC 8.2 W                      | RESE-1002004            | 06-Aug-08      |                      |                                    |                       |                                                 | 0.7 ± 0.3                             | <0.2                                  | 0.2 ± 0.2                             | 3.5                                             | Energy Labs           |  |
| OC 8.2 W                      | RESE-1002004            | 06-Aug-08      |                      | -                                  | 0.1540                | 0.709962 ± 0.00001                              |                                       | _                                     |                                       |                                                 | Geochron              |  |
| OC 8.2 W                      | RESE-1002004            | 06-Aug-08      | <0.7                 |                                    |                       |                                                 |                                       | _                                     |                                       |                                                 | University of Arizona |  |
| OC 8.2 W                      | RESE-1003023            | 02-Dec-08      |                      |                                    |                       |                                                 | 0.6 ± 0.3                             | <0.2                                  | <0.2                                  |                                                 | Energy Labs           |  |
| OC 8.2 W                      | RESE-1003023            | 02-Dec-08      |                      |                                    | 0.1550                | 0.709973 ± 0.000007                             |                                       | _                                     |                                       |                                                 | Geochron              |  |
| OC 8.2 W                      | RESE-1003023            | 02-Dec-08      | <0.5                 |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |  |
| OC 8.2 W                      | RESE-1002097            | 19-May-09      | 0.7 ± 0.28           |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |  |
| Government Springs            | RESE-1002130            | 18-Mar-10      |                      | 93.73 ± 0.46                       |                       |                                                 |                                       | _                                     |                                       |                                                 | Beta Analytic         |  |
| Government Springs            | RESE-1002130            | 18-Mar-10      |                      | -                                  |                       |                                                 | $2.5 \pm 0.3$                         | <0.1                                  | 1 ± 0.2                               | 2.5                                             | Energy Labs           |  |
| Government Springs            | RESE-1002130            | 18-Mar-10      |                      | -                                  | 0.293                 | 0.712608 ± 0.000009                             |                                       | _                                     |                                       |                                                 | Geochron              |  |
| Government Springs            | RESE-1002130            | 18-Mar-10      | 1.71 ± 0.27          |                                    |                       |                                                 |                                       | _                                     |                                       |                                                 | Isotech               |  |
| Sovernment Springs            | RESE-1002181            | 29-Aug-11      |                      |                                    | -                     |                                                 | 2.8 ± 1.7                             | <0.95                                 | <0.95                                 |                                                 | ACZ                   |  |
| Sovernment Springs            | RESE-1002181            | 29-Aug-11      |                      | 97.78 ± 0.36                       |                       |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic         |  |
| Sovernment Springs            | RESE-1002181            | 29-Aug-11      |                      |                                    | 0.278                 | 0.712603 ± 0.000007                             |                                       |                                       |                                       |                                                 | Geochron              |  |
| Government Springs            | RESE-1002181            | 29-Aug-11      | 2.31 ± 0.3           |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | Isotech               |  |
| 1 0.1 C (Hackberry Canyon)    | RESE-1002011            | 19-Aug-08      |                      |                                    |                       |                                                 | <0.2                                  | <0.2                                  | <0.2                                  |                                                 | Energy Labs           |  |
| H 0.1 C (Hackberry Canyon)    | RESE-1002011            | 19-Aug-08      |                      |                                    | 0.1256                | 0.709784 ± 0.00002                              |                                       |                                       |                                       |                                                 | Geochron              |  |
| H 0.1 C (Hackberry Canyon)    | RESE-1002011            | 19-Aug-08      | $6.6 \pm 0.38$       | _                                  |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |  |
| H 0.1 C (Hackberry Canyon)    | RESE-1002096            | 19-May-09      | 2.1 ± 0.26           |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |  |



| SAMPLE LOCATION                       | SAMPLE       | SAMPLE    |                      |                                                                                                                                                                                                                                                                                                              |           | RADIOISOTO          | PE DATA       |       |               |     | ANALYTICAL            |
|---------------------------------------|--------------|-----------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------|---------------|-------|---------------|-----|-----------------------|
|                                       | IDENTIFIER/  | DATE      | ³H (TU) <sup>a</sup> | <sup>3</sup> H (TU) <sup>a</sup>   <sup>14</sup> C (pmC) <sup>b</sup>   Sr (ppm) <sup>c</sup>   <sup>87</sup> Sr/ <sup>86</sup> Sr <sup>d</sup>   <sup>234</sup> U (pCi/L) <sup>e</sup>   <sup>235</sup> U (pCi/L) <sup>f</sup>   <sup>238</sup> U (pCi/L) <sup>g</sup>   <sup>234</sup> U/ <sup>238</sup> U |           |                     |               |       |               |     |                       |
|                                       | DESCRIPTION  |           |                      |                                                                                                                                                                                                                                                                                                              |           |                     |               |       |               |     |                       |
|                                       |              |           |                      |                                                                                                                                                                                                                                                                                                              | Surface W | /ater               |               |       |               |     |                       |
| lidden Spring                         | RESE-1002008 | 19-Aug-08 | _                    | _                                                                                                                                                                                                                                                                                                            | _         |                     | $0.5 \pm 0.3$ | <0.2  | $0.3 \pm 0.2$ | 1.7 | Energy Labs           |
| lidden Spring                         | RESE-1002008 | 19-Aug-08 |                      |                                                                                                                                                                                                                                                                                                              | 0.1907    | 0.709949 ± 0.00001  |               |       |               |     | Geochron              |
| lidden Spring                         | RESE-1002008 | 19-Aug-08 | $2.1 \pm 0.39$       |                                                                                                                                                                                                                                                                                                              |           |                     |               |       |               |     | University of Arizona |
| lidden Spring                         | RESE-1002086 | 12-May-09 | 2.8 ± 0.33           |                                                                                                                                                                                                                                                                                                              |           |                     |               |       |               |     | University of Arizona |
| lidden Spring                         | RESE-1003163 | 17-Jul-10 |                      |                                                                                                                                                                                                                                                                                                              |           |                     | <1.30         | <1.30 | <1.3          |     | ACZ                   |
| lidden Spring                         | RESE-1003163 | 17-Jul-10 |                      | 101.00 ± 0.49                                                                                                                                                                                                                                                                                                |           |                     |               | _     |               |     | Beta Analytic         |
| lidden Spring                         | RESE-1003163 | 17-Jul-10 |                      |                                                                                                                                                                                                                                                                                                              | 0.1866    | 0.709946 ± 0.000006 |               | _     |               |     | Geochron              |
| lidden Spring                         | RESE-1003163 | 17-Jul-10 | 2.27 ± 0.16          |                                                                                                                                                                                                                                                                                                              |           |                     |               |       |               |     | Isotech               |
| C 1.0 C (Iron Canyon)                 | RESE-1002019 | 28-Aug-08 |                      |                                                                                                                                                                                                                                                                                                              |           |                     | <0.2          | <0.2  | <0.2          |     | Energy Labs           |
| C 1.0 C (Iron Canyon)                 | RESE-1002019 | 28-Aug-08 |                      | _                                                                                                                                                                                                                                                                                                            | 0.2035    | 0.710503 ± 0.000009 |               |       |               |     | Geochron              |
| C 1.0 C (Iron Canyon)                 | RESE-1002019 | 28-Aug-08 | $4.5 \pm 0.35$       | _                                                                                                                                                                                                                                                                                                            | _         |                     |               | _     |               |     | University of Arizona |
| C 1.0 C (Iron Canyon)                 | RESE-1002085 | 12-May-09 | 4.6 ± 0.42           |                                                                                                                                                                                                                                                                                                              | _         |                     |               |       |               |     | University of Arizona |
| Cane Spring                           | RESE-1002022 | 29-Aug-08 |                      |                                                                                                                                                                                                                                                                                                              |           |                     | 1.9 ± 0.5     | <0.2  | 0.5 ± 0.3     | 3.8 | Energy Labs           |
| Cane Spring                           | RESE-1002022 | 29-Aug-08 |                      |                                                                                                                                                                                                                                                                                                              | 0.1966    | 0.710588 ± 0.000014 |               |       |               |     | Geochron              |
| Kane Spring                           | RESE-1002022 | 29-Aug-08 | $0.9 \pm 0.38$       |                                                                                                                                                                                                                                                                                                              |           |                     |               |       |               |     | University of Arizona |
| Kane Spring                           | RESE-1002087 | 13-May-09 | 1.1 ± 0.31           |                                                                                                                                                                                                                                                                                                              |           |                     |               | -     |               |     | University of Arizona |
| ane Spring                            | RESE-1003164 | 17-Jul-10 |                      | -                                                                                                                                                                                                                                                                                                            | -         |                     | 3.1 ± 2.1     | <1.30 | <1.30         |     | ACZ                   |
| Kane Spring                           | RESE-1003164 | 17-Jul-10 |                      | 71.45 ± 0.35                                                                                                                                                                                                                                                                                                 | _         |                     |               | _     |               |     | Beta Analytic         |
| ane Spring                            | RESE-1003164 | 17-Jul-10 |                      | _                                                                                                                                                                                                                                                                                                            | 0.2148    | 0.710675 ± 0.000009 |               | _     |               |     | Geochron              |
| Kane Spring                           | RESE-1003164 | 17-Jul-10 | 0.97 ± 0.17          |                                                                                                                                                                                                                                                                                                              |           |                     |               | -     |               |     | Isotech               |
| F 0.2 C (Lyons Fork Headwater Spring) | RESE-1002093 | 14-May-09 |                      |                                                                                                                                                                                                                                                                                                              |           |                     | 1.9 ± 0.4     | <0.1  | 1.4 ± 0.3     | 1.4 | Energy Labs           |
| F 0.2 C (Lyons Fork Headwater Spring) | RESE-1002093 | 14-May-09 |                      |                                                                                                                                                                                                                                                                                                              | 0.3723    | 0.722708 ± 0.000007 |               | _     |               |     | Geochron              |
| F 0.2 C (Lyons Fork Headwater Spring) | RESE-1002093 | 14-May-09 | $3.3 \pm 0.35$       |                                                                                                                                                                                                                                                                                                              |           |                     |               | _     |               |     | University of Arizona |
| F 0.2 C (Lyons Fork Headwater Spring) | RESE-1002133 | 18-Mar-10 |                      | 102.9 ± 0.5                                                                                                                                                                                                                                                                                                  |           |                     |               |       |               |     | Beta Analytic         |
| F 0.2 C (Lyons Fork Headwater Spring) | RESE-1002133 | 18-Mar-10 |                      | _                                                                                                                                                                                                                                                                                                            | _         |                     | $0.9 \pm 0.2$ | <0.10 | $0.7 \pm 0.2$ | 1.3 | Energy Labs           |
| F 0.2 C (Lyons Fork Headwater Spring) | RESE-1002133 | 18-Mar-10 |                      | _                                                                                                                                                                                                                                                                                                            | 0.312     | 0.730685 ± 0.000007 |               | _     |               |     | Geochron              |
| F 0.2 C (Lyons Fork Headwater Spring) | RESE-1002133 | 18-Mar-10 | 3.16 ± 0.29          |                                                                                                                                                                                                                                                                                                              |           |                     |               |       |               |     | Isotech               |
| 1C 3.3 C                              | RESE-1002095 | 14-May-09 |                      | _                                                                                                                                                                                                                                                                                                            |           |                     | $0.3 \pm 0.2$ | <0.2  | <0.2          |     | Energy Labs           |
| 1C 3.3 C                              | RESE-1002095 | 14-May-09 |                      | _                                                                                                                                                                                                                                                                                                            | 0.2660    | 0.716595 ± 0.00001  |               |       |               |     | Geochron              |
| MC 3.3 C                              | RESE-1002095 | 14-May-09 | $2.6 \pm 0.29$       | _                                                                                                                                                                                                                                                                                                            |           |                     |               |       |               |     | University of Arizona |
| MC 3.3 C                              | RESE-1002131 | 18-Mar-10 |                      | 99.01 ± 0.48                                                                                                                                                                                                                                                                                                 |           |                     |               |       |               |     | Beta Analytic         |
| MC 3.3 C                              | RESE-1002131 | 18-Mar-10 |                      | _                                                                                                                                                                                                                                                                                                            |           |                     | 1.4 ± 0.2     | <0.10 | $0.8 \pm 0.2$ | 1.8 | Energy Labs           |
| MC 3.3 C                              | RESE-1002131 | 18-Mar-10 |                      | _                                                                                                                                                                                                                                                                                                            | 0.260     | 0.723783 ± 0.00001  |               |       |               |     | Geochron              |
| MC 3.3 C                              | RESE-1002131 | 18-Mar-10 | 2.83 ± 0.28          |                                                                                                                                                                                                                                                                                                              |           |                     |               |       |               |     | Isotech               |



| SAMPLE LOCATION                             | SAMPLE                  | SAMPLE    |                      |                                    |                       | RADIOISOTO                                      | PE DATA                               |                                       |                                       |                                                 | ANALYTICAL<br>LABORATORY |
|---------------------------------------------|-------------------------|-----------|----------------------|------------------------------------|-----------------------|-------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------------------|--------------------------|
|                                             | IDENTIFIER/ DESCRIPTION | DATE      | ³H (TU) <sup>a</sup> | <sup>14</sup> C (pmC) <sup>b</sup> | Sr (ppm) <sup>c</sup> | <sup>87</sup> Sr/ <sup>86</sup> Sr <sup>d</sup> | <sup>234</sup> U (pCi/L) <sup>e</sup> | <sup>235</sup> U (pCi/L) <sup>f</sup> | <sup>238</sup> U (pCi/L) <sup>g</sup> | <sup>234</sup> U/ <sup>238</sup> U <sup>h</sup> |                          |
|                                             |                         |           |                      |                                    | Surface W             | ater                                            | 1                                     |                                       |                                       | l .                                             |                          |
| IC 3.4 W (Wet Leg Spring)                   | RESE-1002094            | 14-May-09 |                      |                                    |                       |                                                 | 1.6 ± 0.3                             | <0.2                                  | 1.0 ± 0.3                             | 1.6                                             | Energy Labs              |
| MC 3.4 W (Wet Leg Spring)                   | RESE-1002094            | 14-May-09 |                      |                                    | 0.1361                | 0.710308 ± 0.000009                             |                                       |                                       |                                       |                                                 | Geochron                 |
| MC 3.4 W (Wet Leg Spring)                   | RESE-1002094            | 14-May-09 | 1.8 ± 0.33           |                                    |                       |                                                 |                                       | _                                     |                                       |                                                 | University of Arizona    |
| MC 3.4 W (Wet Leg Spring)                   | RESE-1002132            | 18-Mar-10 |                      | 83.59 ± 0.41                       |                       |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic            |
| MC 3.4 W (Wet Leg Spring)                   | RESE-1002132            | 18-Mar-10 | _                    |                                    | -                     |                                                 | $0.2 \pm 0.1$                         | <0.10                                 | <0.09                                 |                                                 | Energy Labs              |
| MC 3.4 W (Wet Leg Spring)                   | RESE-1002132            | 18-Mar-10 | _                    |                                    | 0.124                 | 0.710317 ± 0.000006                             |                                       |                                       |                                       |                                                 | Geochron                 |
| MC 3.4 W (Wet Leg Spring)                   | RESE-1002132            | 18-Mar-10 | <1.05                |                                    | -                     |                                                 | -                                     |                                       |                                       |                                                 | Isotech                  |
| MC 3.4 W (Wet Leg Spring)                   | RESE-1002173            | 31-May-11 | _                    |                                    | _                     |                                                 | 2.5 ± 2.1                             | <1.00                                 | <1.00                                 |                                                 | ACZ                      |
| MC 3.4 W (Wet Leg Spring)                   | RESE-1002173            | 31-May-11 | -                    | 72.17 ± 0.26                       | -                     |                                                 | -                                     |                                       |                                       |                                                 | Beta Analytic            |
| MC 3.4 W (Wet Leg Spring)                   | RESE-1002173            | 31-May-11 | -                    |                                    | 0.1255                | 0.710293 ± 0.00001                              | -                                     |                                       |                                       |                                                 | Geochron                 |
| MC 3.4 W (Wet Leg Spring)                   | RESE-1002173            | 31-May-11 | <1.00                |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | Isotech                  |
| MC 5.2 C                                    | RESE-1002171            | 31-May-11 |                      |                                    |                       |                                                 | 2.2 ± 1.7                             | <1.00                                 | 1.29 ± 1.5                            | 1.7                                             | ACZ                      |
| MC 5.2 C                                    | RESE-1002171            | 31-May-11 |                      | 91.88 ± 0.34                       |                       |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic            |
| MC 5.2 C                                    | RESE-1002171            | 31-May-11 |                      |                                    | 0.2808                | 0.714971 ± 0.000007                             |                                       |                                       |                                       |                                                 | Geochron                 |
| MC 5.2 C                                    | RESE-1002171            | 31-May-11 | 1.32 ± 0.15          |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | Isotech                  |
| MC 5.2 C                                    | RESE-1002184            | 29-Aug-11 | _                    |                                    | -                     |                                                 | 1.2 ± 1.6                             | <0.91                                 | <0.91                                 |                                                 | ACZ                      |
| MC 5.2 C                                    | RESE-1002184            | 29-Aug-11 |                      | 92.34 ± 0.34                       |                       |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic            |
| MC 5.2 C                                    | RESE-1002184            | 29-Aug-11 | _                    |                                    | 0.225                 | 0.714251 ± 0.000007                             |                                       |                                       |                                       |                                                 | Geochron                 |
| MC 5.2 C                                    | RESE-1002184            | 29-Aug-11 | 1.92 ± 0.26          |                                    | -                     |                                                 |                                       |                                       |                                       |                                                 | Isotech                  |
| MC 8.4 C (Ranch Fork Headwaters Spring)     | RESE-1002090            | 14-May-09 |                      |                                    |                       |                                                 | 2.2 ± 0.4                             | <0.2                                  | 1.0 ± 0.3                             | 2.2                                             | Energy Labs              |
| MC 8.4 C (Ranch Fork Headwaters Spring)     | RESE-1002090            | 14-May-09 |                      |                                    | 0.3690                | 0.716685 ± 0.000013                             |                                       |                                       |                                       |                                                 | Geochron                 |
| MC 8.4 C (Ranch Fork Headwaters Spring)     | RESE-1002090            | 14-May-09 | 1.7 ± 0.32           |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona    |
| MC 8.4 C (Ranch Fork Headwaters Spring) DUP | RESE-1002091            | 14-May-09 |                      |                                    |                       |                                                 | $2.3 \pm 0.5$                         | <0.3                                  | 1.1 ± 0.4                             | 2.1                                             | Energy Labs              |
| MC 8.4 C (Ranch Fork Headwaters Spring) DUP | RESE-1002091            | 14-May-09 |                      |                                    | 0.3689                | 0.716685 ± 0.000009                             |                                       |                                       |                                       |                                                 | Geochron                 |
| MC 8.4 C (Ranch Fork Headwaters Spring) DUP | RESE-1002091            | 14-May-09 | 1.6 ± 0.27           |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona    |
| MC 8.4 C (Ranch Fork Headwaters Spring)     | RESE-1002134            | 18-Mar-10 | _                    | 101.13 ± 0.49                      |                       |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic            |
| MC 8.4 C (Ranch Fork Headwaters Spring)     | RESE-1002134            | 18-Mar-10 | _                    |                                    |                       |                                                 | $0.9 \pm 0.2$                         | <0.10                                 | 0.7 ± 0.2                             | 1.3                                             | Energy Labs              |
| MC 8.4 C (Ranch Fork Headwaters Spring)     | RESE-1002134            | 18-Mar-10 |                      |                                    | 0.231                 | 0.718324 ± 0.000006                             |                                       |                                       |                                       |                                                 | Geochron                 |
| MC 8.4 C (Ranch Fork Headwaters Spring)     | RESE-1002134            | 18-Mar-10 | 2.97 ± 0.28          |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | Isotech                  |
| /lineral Creek Post-Fire                    | RESE-1003170            | 28-Jul-10 |                      |                                    |                       |                                                 | 3.3 ± 1.6                             | <1.1                                  | 1.75 ± 1.2                            | 1.9                                             | ACZ                      |
| Number Nine                                 | RESE-1002020            | 28-Aug-08 |                      |                                    |                       |                                                 | <0.2                                  | <0.2                                  | <0.2                                  |                                                 | Energy Labs              |
| Number Nine                                 | RESE-1002020            | 28-Aug-08 |                      |                                    | 0.0484                | 0.710144 ± 0.000007                             |                                       |                                       |                                       |                                                 | Geochron                 |
| Number Nine                                 | RESE-1002020            | 28-Aug-08 | $4.6 \pm 0.35$       |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizon     |
| Number Nine                                 | RESE-1002077            | 05-May-09 | 6.0 ± 0.32           |                                    |                       |                                                 | _                                     |                                       |                                       |                                                 | University of Arizona    |



| SAMPLE LOCATION                    | SAMPLE                  | SAMPLE    | RADIOISOTOPE DATA    |                                    |                       |                                                 |                                       |                                       |                                       |                                                 |                       |  |
|------------------------------------|-------------------------|-----------|----------------------|------------------------------------|-----------------------|-------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------------------|-----------------------|--|
|                                    | IDENTIFIER/ DESCRIPTION | DATE      | ³H (TU) <sup>a</sup> | <sup>14</sup> C (pmC) <sup>b</sup> | Sr (ppm) <sup>c</sup> | <sup>87</sup> Sr/ <sup>86</sup> Sr <sup>d</sup> | <sup>234</sup> U (pCi/L) <sup>e</sup> | <sup>235</sup> U (pCi/L) <sup>f</sup> | <sup>238</sup> U (pCi/L) <sup>g</sup> | <sup>234</sup> U/ <sup>238</sup> U <sup>h</sup> | LABORATORY            |  |
|                                    | 1                       |           |                      |                                    | Surface W             | ater at a same                                  |                                       | -                                     |                                       |                                                 |                       |  |
| Oak Flat Tributary                 | RESE-1002016            | 27-Aug-08 |                      |                                    |                       |                                                 | <0.2                                  | <0.2                                  | <0.2                                  |                                                 | Energy Labs           |  |
| Oak Flat Tributary                 | RESE-1002016            | 27-Aug-08 | _                    |                                    | 0.0479                | 0.710010 ± 0.000014                             | -                                     |                                       |                                       |                                                 | Geochron              |  |
| Oak Flat Tributary                 | RESE-1002016            | 27-Aug-08 | $4.5 \pm 0.4$        |                                    | -                     |                                                 | -                                     |                                       |                                       |                                                 | University of Arizona |  |
| Oak Flat Tributary                 | RESE-1002076            | 05-May-09 | 5.0 ± 0.34           |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |  |
| Pump Station Spring                | RESE-1002001            | 05-Aug-08 | -                    |                                    | _                     |                                                 | $0.7 \pm 0.3$                         | <0.2                                  | $0.4 \pm 0.2$                         | 1.8                                             | Energy Labs           |  |
| Pump Station Spring                | RESE-1002001            | 05-Aug-08 | _                    |                                    | 0.2190                | 0.710048 ± 0.000011                             | -                                     |                                       |                                       |                                                 | Geochron              |  |
| Pump Station Spring                | RESE-1002001            | 05-Aug-08 | $3.4 \pm 0.33$       |                                    | -                     |                                                 | -                                     |                                       |                                       |                                                 | University of Arizona |  |
| Pump Station Spring                | RESE-1002080            | 12-May-09 | 3.1 ± 0.29           |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |  |
| Pump Station Spring DUP            | RESE-1002084            | 12-May-09 | 4.8 ± 0.37           |                                    | _                     |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |  |
| Pump Station Spring                | RESE-1002168            | 17-May-11 |                      |                                    | _                     |                                                 | <0.95                                 | <0.95                                 | 0.98 ± 0.76                           |                                                 | ACZ                   |  |
| Pump Station Spring                | RESE-1002168            | 17-May-11 |                      | 96.69 ± 0.35                       |                       |                                                 |                                       |                                       |                                       |                                                 | Beta Analytic         |  |
| Pump Station Spring                | RESE-1002168            | 17-May-11 |                      |                                    | 0.3291                | 0.709997 ± 0.000011                             |                                       |                                       |                                       |                                                 | Geochron              |  |
| Pump Station Spring                | RESE-1002168            | 17-May-11 | 2.38 ± 0.17          |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | Isotech               |  |
| QC 19.7 C (Queen above Magma Wash) | RESE-1002021            | 28-Aug-08 |                      |                                    |                       |                                                 | $0.3 \pm 0.3$                         | <0.2                                  | <0.2                                  |                                                 | Energy Labs           |  |
| QC 19.7 C (Queen above Magma Wash) | RESE-1002021            | 28-Aug-08 |                      |                                    | 0.2038                | 0.710345 ± 0.000007                             |                                       |                                       |                                       |                                                 | Geochron              |  |
| QC 19.7 C (Queen above Magma Wash) | RESE-1002021            | 28-Aug-08 | $4.2 \pm 0.4$        |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |  |
| QC 21.7 C (Magma Avenue)           | RESE-1002018            | 28-Aug-08 |                      |                                    |                       |                                                 | $0.3 \pm 0.3$                         | <0.2                                  | <0.2                                  |                                                 | Energy Labs           |  |
| QC 21.7 C (Magma Avenue)           | RESE-1002018            | 28-Aug-08 |                      |                                    | 0.1602                | 0.710004 ± 0.00001                              |                                       |                                       |                                       |                                                 | Geochron              |  |
| QC 21.7 C (Magma Avenue)           | RESE-1002018            | 28-Aug-08 | $4.6 \pm 0.39$       |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |  |
| QC 21.7 C (Magma Avenue) LD        | RESE-1002018            | 28-Aug-08 |                      |                                    | 0.1599                | 0.710004 ± 0.000009                             |                                       |                                       |                                       |                                                 | Geochron              |  |
| QC 21.7 C (Magma Avenue)           | RESE-1002083            | 07-May-09 | $6.7 \pm 0.36$       |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |  |
| QC 22.6 E (Karst Spring)           | RESE-1002017            | 28-Aug-08 |                      |                                    |                       |                                                 | $0.9 \pm 0.4$                         | <0.2                                  | $0.6 \pm 0.3$                         | 1.5                                             | Energy Labs           |  |
| QC 22.6 E (Karst Spring)           | RESE-1002017            | 28-Aug-08 | -                    |                                    | 0.2477                | $0.709858 \pm 0.0007$                           |                                       |                                       |                                       |                                                 | Geochron              |  |
| QC 22.6 E (Karst Spring)           | RESE-1002017            | 28-Aug-08 | $3.2 \pm 0.36$       |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |  |
| QC 27.3 C (Upper QC)               | RESE-1002002            | 05-Aug-08 |                      |                                    |                       |                                                 | <0.2                                  | <0.2                                  | <0.2                                  |                                                 | Energy Labs           |  |
| QC 27.3 C (Upper QC)               | RESE-1002002            | 05-Aug-08 |                      |                                    | 0.2046                | 0.710052 ± 0.000009                             |                                       |                                       |                                       |                                                 | Geochron              |  |
| QC 27.3 C (Upper QC)               | RESE-1002002            | 05-Aug-08 | $6.7 \pm 0.39$       |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizon  |  |
| QC 27.3 C (Upper QC)               | RESE-1002079            | 07-May-09 | 5.8 ± 0.31           |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizon  |  |
| RR 1.5 C (Rancho Rio)              | RESE-1002012            | 19-Aug-08 |                      |                                    | -                     |                                                 | <0.2                                  | <0.2                                  | <0.2                                  |                                                 | Energy Labs           |  |
| RR 1.5 C (Rancho Rio)              | RESE-1002012            | 19-Aug-08 |                      |                                    | 0.1530                | 0.709789 ± 0.000011                             |                                       |                                       |                                       |                                                 | Geochron              |  |
| RR 1.5 C (Rancho Rio)              | RESE-1002012            | 19-Aug-08 | $3.7 \pm 0.37$       |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizon  |  |
| RR 1.5 C (Rancho Rio)              | RESE-1002100            | 21-May-09 | 4.0 ± 0.34           |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizon  |  |
| RR 1.5 C (Rancho Rio) DUP          | RESE-1002101            | 21-May-09 | 4.1 ± 0.33           |                                    |                       |                                                 |                                       |                                       |                                       |                                                 | University of Arizona |  |



#### TABLE B-5. RADIOISOTOPE DATA

### FOR SURFACE WATER SAMPLES OBTAINED IN DEVILS CANYON/UPPER QUEEN CREEK STUDY AREA

| SAMPLE LOCATION | SAMPLE      | SAMPLE |                      | RADIOISOTOPE DATA                                                                                                                                                                            |  |  |  |  |  |  |            |  |  |
|-----------------|-------------|--------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|------------|--|--|
|                 | IDENTIFIER/ | DATE   | ³H (TU) <sup>a</sup> | H (TU) <sup>a</sup> 14C (pmC) <sup>b</sup> Sr (ppm) <sup>c</sup> 87Sr/86Sr <sup>d</sup> 234U (pCi/L) <sup>e</sup> 235U (pCi/L) <sup>f</sup> 238U (pCi/L) <sup>g</sup> 234U/238U <sup>h</sup> |  |  |  |  |  |  | LABORATORY |  |  |
|                 | DESCRIPTION |        |                      |                                                                                                                                                                                              |  |  |  |  |  |  |            |  |  |

- a <sup>3</sup>H = Tritium; tritium unit (1 TU = 1 tritium atom per 10<sup>18</sup> atoms of hydrogen)
- b <sup>14</sup>C = carbon-14; pmC = percent modern carbon
- c Sr = strontium; ppm = parts per million
- d Mass of strontium-87 isotope divided by mass of strontium-86 isotope
- e Uranium-234 isotope; pCi/L = activity in picoCuries per liter
- f Uranium-235 isotope; pCi/L = activity in picoCuries per liter
- g Uranium-238 isotope; pCi/L = activity in picoCuries per liter
- h Activity of uranium-234 isotope divided by activity of uranium-238 isotope
- --- = Not available, not applicable -- = Not calculated due to non-detect

#### **Explanation of Codes**

Absent = Analyte not present ge = Greater than or equal to reported value

i = Insufficient sample

i = Estimated value

j+ = Estimated value, high bias j- = Estimated value, low bias

Lost = Sample lost in processing

n = Not measured na = Not available

ND = Not Detected

np = Analyte not applicable

Present = Analyte was detected

g = Uncertain value r = Unusable data

< = Less than reported detection limit

> = Greater than reported value d = Diluted. Diluted samples are indicated only when value is estimated.

DUP = Field Duplicate LD = Laboratory duplicates SP = Split samples SPD = Split-Duplicates

