Breadcrumb

  1. Home
  2. Documents

Documents

Here we are concerned with solving for the long term average values of these parameters for the state of California. My primary data source is a catalog of 1850-2006 M  4.0 seismicity compiled with Tianqing Cao (Appendix H). Because earthquakes outside of the state can influence California I consider both earthquakes within the state and within 100 km of the state border (Figure 1).

We document the precise sizes, but not the dates, of the six latest offsets across the San Andreas fault at Wallace Creek, California. Three and perhaps four of these, including the latest in 1857, show dextral offset of 7.5–8 m. The third and fourth offsets, however, are just 1.4 and 5.2 m. The predominance of similar offsets for the latest six events suggests that the fundamental properties of the fault system that control slip size do not vary greatly from event to event. The large offsets imply that ruptures involving this site are typically more than 200 km long.

The Tucson 1 ° X 2.0 quadrangle exhibits a wide variety of basin landforms and late Cenozoic surficial geologic deposits. Several factors contribute to this diversity. The Tucson quadrangle spans the transition between the relatively low ranges and typically undissected basins of south-central Arizona and the higher ranges and typically dissected basins of southeastern Arizona.

A formulation extending the Haskell-Thompson matrix method to include the effects of anelastic attenuation is presented. The formulation is exact in that no low-loss approximations are made. Consideration is given to nonparallel propagation and attenuation directions with corresponding velocity anisotropy. Examples are presented for models representing soils, the crust, and the core-mantle boundary.

California’s 35 million people live among some of the most active earthquake faults in the United States. Public safety demands credible assessments of the earthquake hazard to maintain appropriate building codes for safe construction and earthquake insurance for loss protection. Seismic hazard analysis begins with an earthquake rupture forecast—a model of probabilities that earthquakes of specified magnitudes, locations, and faulting types will occur during a specified time interval.

A Complete Manual for Engineers and Geologists in Mining, Civil, and Petroleum Engineering. COVER ONLY

This report summarizes the meteorological, upper-air (SoDAR), nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), and particulate matter (PM) data collected at the Resolution Copper Project near Superior, Arizona, for the fourth quarter, October 1 through December 31, 2016.

Flooding is among the worst natural disasters responsible for loss of life and property in Arizona, underscoring the importance of accurate estimation of flood magnitude for proper structural design and floodplain mapping. Twenty-four years of additional peak-flow data have been recorded since the last comprehensive regional flood frequency analysis conducted in Arizona. Periodically, flood frequency estimates and regional regression equations must be revised to maintain the accurate estimation of flood frequency and magnitude.

The Apache Leap South End parcels are three non-contiguous private inholdings within the Tonto National Forest. The Property is situated along the southern end of the Apache Leap, a prominent geologic feature that visually dominates the skyline east of the town of Superior, Arizona.

In this review, we present the physiological and molecular mechanisms of photoinhibition and discuss the interaction between light and other stress factors and its effects on plants destined for reforestation. In addition, the present work analyzes some of the features and strategies that help plants avoid or restrict the occurrence of photoinhibition.